| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eqeltrri | Structured version Visualization version GIF version | ||
| Description: Substitution of equal classes into membership relation. (Contributed by NM, 21-Jun-1993.) |
| Ref | Expression |
|---|---|
| eqeltrri.1 | ⊢ 𝐴 = 𝐵 |
| eqeltrri.2 | ⊢ 𝐴 ∈ 𝐶 |
| Ref | Expression |
|---|---|
| eqeltrri | ⊢ 𝐵 ∈ 𝐶 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqeltrri.1 | . . 3 ⊢ 𝐴 = 𝐵 | |
| 2 | 1 | eqcomi 2745 | . 2 ⊢ 𝐵 = 𝐴 |
| 3 | eqeltrri.2 | . 2 ⊢ 𝐴 ∈ 𝐶 | |
| 4 | 2, 3 | eqeltri 2831 | 1 ⊢ 𝐵 ∈ 𝐶 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2728 df-clel 2810 |
| This theorem is referenced by: 3eltr3i 2847 zfrep4 5268 p0ex 5359 pp0ex 5361 ord3ex 5362 zfpair 5396 epse 5641 unexOLD 7744 fvresex 7963 opabex3 7971 abexssex 7974 abexex 7975 oprabrexex2 7982 seqomlem3 8471 1on 8497 2on 8499 inf0 9640 scottexs 9906 kardex 9913 infxpenlem 10032 r1om 10262 cfon 10274 fin23lem16 10354 fin1a2lem6 10424 hsmexlem5 10449 brdom7disj 10550 brdom6disj 10551 1lt2pi 10924 0cn 11232 resubcli 11550 0reALT 11585 1nn 12256 10nn 12729 numsucc 12753 nummac 12758 unirnioo 13471 ioorebas 13473 om2uzrani 13975 uzrdg0i 13982 hashunlei 14448 cats1fvn 14882 trclubi 15020 4sqlem19 16988 dec2dvds 17088 mod2xnegi 17096 modsubi 17097 gcdi 17098 isstruct2 17173 grppropstr 18941 nn0srg 21410 fermltlchr 21495 ltbval 22006 sn0topon 22941 indistop 22945 indisuni 22946 indistps2 22955 indistps2ALT 22957 restbas 23101 leordtval2 23155 iocpnfordt 23158 icomnfordt 23159 iooordt 23160 reordt 23161 dis1stc 23442 ptcmpfi 23756 ustfn 24145 ustn0 24164 retopbas 24704 blssioo 24739 xrtgioo 24751 zcld 24758 cnperf 24765 retopconn 24774 iimulcnOLD 24891 rembl 25498 mbfdm 25584 ismbf 25586 mbf0 25592 bddiblnc 25800 abelthlem9 26407 advlog 26620 advlogexp 26621 2irrexpq 26697 cxpcn3 26715 loglesqrt 26728 log2ub 26916 ppi1i 27135 cht2 27139 cht3 27140 bpos1lem 27250 lgslem4 27268 vmadivsum 27450 log2sumbnd 27512 selberg2 27519 selbergr 27536 nogt01o 27665 mulsproplem9 28084 1n0s 28297 n0sfincut 28303 2nns 28361 iscgrg 28496 ishpg 28743 ax5seglem7 28919 h2hva 30960 h2hsm 30961 h2hnm 30962 norm-ii-i 31123 hhshsslem2 31254 shincli 31348 chincli 31446 lnophdi 31988 imaelshi 32044 rnelshi 32045 bdophdi 32083 dfdec100 32814 dpadd2 32889 dpmul 32892 dpmul4 32893 nn0omnd 33365 nn0archi 33367 znfermltl 33386 ccfldextrr 33693 lmatfvlem 33851 rrhre 34057 sigaex 34146 br2base 34306 sxbrsigalem3 34309 carsgclctunlem3 34357 sitmcl 34388 rpsqrtcn 34630 hgt750lem 34688 hgt750lem2 34689 afsval 34708 kur14lem7 35239 retopsconn 35276 satfvsuclem1 35386 fmlasuc0 35411 hfuni 36207 neibastop2lem 36383 onint1 36472 bj-snfromadj 37067 topdifinffinlem 37370 poimirlem9 37658 poimirlem28 37677 poimirlem30 37679 poimirlem32 37681 ftc1cnnc 37721 cncfres 37794 lineset 39762 lautset 40106 pautsetN 40122 tendoset 40783 decpmulnc 42305 decpmul 42306 areaquad 43215 0no 43434 finonex 43453 sblpnf 44309 lhe4.4ex1a 44328 fourierdlem62 46177 fourierdlem76 46191 lamberte 46900 65537prm 47570 11gbo 47769 bgoldbtbndlem1 47799 seppcld 48884 |
| Copyright terms: Public domain | W3C validator |