Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > eqeltrri | Structured version Visualization version GIF version |
Description: Substitution of equal classes into membership relation. (Contributed by NM, 21-Jun-1993.) |
Ref | Expression |
---|---|
eqeltrri.1 | ⊢ 𝐴 = 𝐵 |
eqeltrri.2 | ⊢ 𝐴 ∈ 𝐶 |
Ref | Expression |
---|---|
eqeltrri | ⊢ 𝐵 ∈ 𝐶 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeltrri.1 | . . 3 ⊢ 𝐴 = 𝐵 | |
2 | 1 | eqcomi 2748 | . 2 ⊢ 𝐵 = 𝐴 |
3 | eqeltrri.2 | . 2 ⊢ 𝐴 ∈ 𝐶 | |
4 | 2, 3 | eqeltri 2836 | 1 ⊢ 𝐵 ∈ 𝐶 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∈ wcel 2107 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2710 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1783 df-cleq 2731 df-clel 2817 |
This theorem is referenced by: 3eltr3i 2852 zfrep4 5221 p0ex 5308 pp0ex 5310 ord3ex 5311 zfpair 5345 epse 5573 unex 7605 fvresex 7811 opabex3 7819 abexssex 7822 abexex 7823 oprabrexex2 7830 seqomlem3 8292 1on 8318 2on 8320 inf0 9388 scottexs 9654 kardex 9661 infxpenlem 9778 r1om 10009 cfon 10020 fin23lem16 10100 fin1a2lem6 10170 hsmexlem5 10195 brdom7disj 10296 brdom6disj 10297 1lt2pi 10670 0cn 10976 resubcli 11292 0reALT 11327 1nn 11993 10nn 12462 numsucc 12486 nummac 12491 unirnioo 13190 ioorebas 13192 fz0to4untppr 13368 om2uzrani 13681 uzrdg0i 13688 hashunlei 14149 cats1fvn 14580 trclubi 14716 4sqlem19 16673 dec2dvds 16773 mod2xnegi 16781 modsubi 16782 gcdi 16783 isstruct2 16859 grppropstr 18605 nn0srg 20677 ltbval 21253 sn0topon 22157 indistop 22161 indisuni 22162 indistps2 22171 indistps2ALT 22174 restbas 22318 leordtval2 22372 iocpnfordt 22375 icomnfordt 22376 iooordt 22377 reordt 22378 dis1stc 22659 ptcmpfi 22973 ustfn 23362 ustn0 23381 retopbas 23933 blssioo 23967 xrtgioo 23978 zcld 23985 cnperf 23992 retopconn 24001 iimulcn 24110 rembl 24713 mbfdm 24799 ismbf 24801 mbf0 24807 bddiblnc 25015 abelthlem9 25608 advlog 25818 advlogexp 25819 2irrexpq 25894 cxpcn3 25910 loglesqrt 25920 log2ub 26108 ppi1i 26326 cht2 26330 cht3 26331 bpos1lem 26439 lgslem4 26457 vmadivsum 26639 log2sumbnd 26701 selberg2 26708 selbergr 26725 iscgrg 26882 ishpg 27129 ax5seglem7 27312 h2hva 29345 h2hsm 29346 h2hnm 29347 norm-ii-i 29508 hhshsslem2 29639 shincli 29733 chincli 29831 lnophdi 30373 imaelshi 30429 rnelshi 30430 bdophdi 30468 dfdec100 31153 dpadd2 31193 dpmul 31196 dpmul4 31197 nn0omnd 31554 nn0archi 31556 znfermltl 31571 ccfldextrr 31732 lmatfvlem 31774 rmulccn 31887 rrhre 31980 sigaex 32087 br2base 32245 sxbrsigalem3 32248 carsgclctunlem3 32296 sitmcl 32327 rpsqrtcn 32582 hgt750lem 32640 hgt750lem2 32641 afsval 32660 kur14lem7 33183 retopsconn 33220 satfvsuclem1 33330 fmlasuc0 33355 nogt01o 33908 hfuni 34495 neibastop2lem 34558 onint1 34647 topdifinffinlem 35527 poimirlem9 35795 poimirlem28 35814 poimirlem30 35816 poimirlem32 35818 ftc1cnnc 35858 cncfres 35932 lineset 37759 lautset 38103 pautsetN 38119 tendoset 38780 decpmulnc 40322 decpmul 40323 areaquad 41054 finonex 41068 sblpnf 41935 lhe4.4ex1a 41954 fourierdlem62 43716 fourierdlem76 43730 65537prm 45039 11gbo 45238 bgoldbtbndlem1 45268 seppcld 46234 |
Copyright terms: Public domain | W3C validator |