Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > eqeltrri | Structured version Visualization version GIF version |
Description: Substitution of equal classes into membership relation. (Contributed by NM, 21-Jun-1993.) |
Ref | Expression |
---|---|
eqeltrri.1 | ⊢ 𝐴 = 𝐵 |
eqeltrri.2 | ⊢ 𝐴 ∈ 𝐶 |
Ref | Expression |
---|---|
eqeltrri | ⊢ 𝐵 ∈ 𝐶 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeltrri.1 | . . 3 ⊢ 𝐴 = 𝐵 | |
2 | 1 | eqcomi 2747 | . 2 ⊢ 𝐵 = 𝐴 |
3 | eqeltrri.2 | . 2 ⊢ 𝐴 ∈ 𝐶 | |
4 | 2, 3 | eqeltri 2835 | 1 ⊢ 𝐵 ∈ 𝐶 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∈ wcel 2108 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1784 df-cleq 2730 df-clel 2817 |
This theorem is referenced by: 3eltr3i 2851 zfrep4 5215 p0ex 5302 pp0ex 5304 ord3ex 5305 zfpair 5339 epse 5563 unex 7574 fvresex 7776 opabex3 7783 abexssex 7786 abexex 7787 oprabrexex2 7794 seqomlem3 8253 inf0 9309 scottexs 9576 kardex 9583 infxpenlem 9700 r1om 9931 cfon 9942 fin23lem16 10022 fin1a2lem6 10092 hsmexlem5 10117 brdom7disj 10218 brdom6disj 10219 1lt2pi 10592 0cn 10898 resubcli 11213 0reALT 11248 1nn 11914 10nn 12382 numsucc 12406 nummac 12411 unirnioo 13110 ioorebas 13112 fz0to4untppr 13288 om2uzrani 13600 uzrdg0i 13607 hashunlei 14068 cats1fvn 14499 trclubi 14635 4sqlem19 16592 dec2dvds 16692 mod2xnegi 16700 modsubi 16701 gcdi 16702 isstruct2 16778 grppropstr 18511 nn0srg 20580 ltbval 21154 sn0topon 22056 indistop 22060 indisuni 22061 indistps2 22070 indistps2ALT 22073 restbas 22217 leordtval2 22271 iocpnfordt 22274 icomnfordt 22275 iooordt 22276 reordt 22277 dis1stc 22558 ptcmpfi 22872 ustfn 23261 ustn0 23280 retopbas 23830 blssioo 23864 xrtgioo 23875 zcld 23882 cnperf 23889 retopconn 23898 iimulcn 24007 rembl 24609 mbfdm 24695 ismbf 24697 mbf0 24703 bddiblnc 24911 abelthlem9 25504 advlog 25714 advlogexp 25715 2irrexpq 25790 cxpcn3 25806 loglesqrt 25816 log2ub 26004 ppi1i 26222 cht2 26226 cht3 26227 bpos1lem 26335 lgslem4 26353 vmadivsum 26535 log2sumbnd 26597 selberg2 26604 selbergr 26621 iscgrg 26777 ishpg 27024 ax5seglem7 27206 h2hva 29237 h2hsm 29238 h2hnm 29239 norm-ii-i 29400 hhshsslem2 29531 shincli 29625 chincli 29723 lnophdi 30265 imaelshi 30321 rnelshi 30322 bdophdi 30360 dfdec100 31046 dpadd2 31086 dpmul 31089 dpmul4 31090 nn0omnd 31447 nn0archi 31449 znfermltl 31464 ccfldextrr 31625 lmatfvlem 31667 rmulccn 31780 rrhre 31871 sigaex 31978 br2base 32136 sxbrsigalem3 32139 carsgclctunlem3 32187 sitmcl 32218 rpsqrtcn 32473 hgt750lem 32531 hgt750lem2 32532 afsval 32551 kur14lem7 33074 retopsconn 33111 satfvsuclem1 33221 fmlasuc0 33246 nogt01o 33826 hfuni 34413 neibastop2lem 34476 onint1 34565 topdifinffinlem 35445 poimirlem9 35713 poimirlem28 35732 poimirlem30 35734 poimirlem32 35736 ftc1cnnc 35776 cncfres 35850 lineset 37679 lautset 38023 pautsetN 38039 tendoset 38700 decpmulnc 40236 decpmul 40237 areaquad 40963 sblpnf 41817 lhe4.4ex1a 41836 fourierdlem62 43599 fourierdlem76 43613 65537prm 44916 11gbo 45115 bgoldbtbndlem1 45145 seppcld 46111 |
Copyright terms: Public domain | W3C validator |