![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eqeltrri | Structured version Visualization version GIF version |
Description: Substitution of equal classes into membership relation. (Contributed by NM, 21-Jun-1993.) |
Ref | Expression |
---|---|
eqeltrri.1 | ⊢ 𝐴 = 𝐵 |
eqeltrri.2 | ⊢ 𝐴 ∈ 𝐶 |
Ref | Expression |
---|---|
eqeltrri | ⊢ 𝐵 ∈ 𝐶 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeltrri.1 | . . 3 ⊢ 𝐴 = 𝐵 | |
2 | 1 | eqcomi 2749 | . 2 ⊢ 𝐵 = 𝐴 |
3 | eqeltrri.2 | . 2 ⊢ 𝐴 ∈ 𝐶 | |
4 | 2, 3 | eqeltri 2840 | 1 ⊢ 𝐵 ∈ 𝐶 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ∈ wcel 2108 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 df-cleq 2732 df-clel 2819 |
This theorem is referenced by: 3eltr3i 2856 zfrep4 5314 p0ex 5402 pp0ex 5404 ord3ex 5405 zfpair 5439 epse 5682 unexOLD 7780 fvresex 8000 opabex3 8008 abexssex 8011 abexex 8012 oprabrexex2 8019 seqomlem3 8508 1on 8534 2on 8536 inf0 9690 scottexs 9956 kardex 9963 infxpenlem 10082 r1om 10312 cfon 10324 fin23lem16 10404 fin1a2lem6 10474 hsmexlem5 10499 brdom7disj 10600 brdom6disj 10601 1lt2pi 10974 0cn 11282 resubcli 11598 0reALT 11633 1nn 12304 10nn 12774 numsucc 12798 nummac 12803 unirnioo 13509 ioorebas 13511 om2uzrani 14003 uzrdg0i 14010 hashunlei 14474 cats1fvn 14907 trclubi 15045 4sqlem19 17010 dec2dvds 17110 mod2xnegi 17118 modsubi 17119 gcdi 17120 isstruct2 17196 grppropstr 18993 nn0srg 21478 fermltlchr 21567 ltbval 22084 sn0topon 23026 indistop 23030 indisuni 23031 indistps2 23040 indistps2ALT 23043 restbas 23187 leordtval2 23241 iocpnfordt 23244 icomnfordt 23245 iooordt 23246 reordt 23247 dis1stc 23528 ptcmpfi 23842 ustfn 24231 ustn0 24250 retopbas 24802 blssioo 24836 xrtgioo 24847 zcld 24854 cnperf 24861 retopconn 24870 iimulcnOLD 24987 rembl 25594 mbfdm 25680 ismbf 25682 mbf0 25688 bddiblnc 25897 abelthlem9 26502 advlog 26714 advlogexp 26715 2irrexpq 26791 cxpcn3 26809 loglesqrt 26822 log2ub 27010 ppi1i 27229 cht2 27233 cht3 27234 bpos1lem 27344 lgslem4 27362 vmadivsum 27544 log2sumbnd 27606 selberg2 27613 selbergr 27630 nogt01o 27759 mulsproplem9 28168 1n0s 28369 2nns 28420 iscgrg 28538 ishpg 28785 ax5seglem7 28968 h2hva 31006 h2hsm 31007 h2hnm 31008 norm-ii-i 31169 hhshsslem2 31300 shincli 31394 chincli 31492 lnophdi 32034 imaelshi 32090 rnelshi 32091 bdophdi 32129 dfdec100 32834 dpadd2 32874 dpmul 32877 dpmul4 32878 nn0omnd 33338 nn0archi 33340 znfermltl 33359 ccfldextrr 33661 lmatfvlem 33761 rrhre 33967 sigaex 34074 br2base 34234 sxbrsigalem3 34237 carsgclctunlem3 34285 sitmcl 34316 rpsqrtcn 34570 hgt750lem 34628 hgt750lem2 34629 afsval 34648 kur14lem7 35180 retopsconn 35217 satfvsuclem1 35327 fmlasuc0 35352 hfuni 36148 neibastop2lem 36326 onint1 36415 bj-snfromadj 37010 topdifinffinlem 37313 poimirlem9 37589 poimirlem28 37608 poimirlem30 37610 poimirlem32 37612 ftc1cnnc 37652 cncfres 37725 lineset 39695 lautset 40039 pautsetN 40055 tendoset 40716 decpmulnc 42276 decpmul 42277 areaquad 43177 0no 43397 finonex 43416 sblpnf 44279 lhe4.4ex1a 44298 fourierdlem62 46089 fourierdlem76 46103 65537prm 47450 11gbo 47649 bgoldbtbndlem1 47679 seppcld 48609 |
Copyright terms: Public domain | W3C validator |