| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eqeltrri | Structured version Visualization version GIF version | ||
| Description: Substitution of equal classes into membership relation. (Contributed by NM, 21-Jun-1993.) |
| Ref | Expression |
|---|---|
| eqeltrri.1 | ⊢ 𝐴 = 𝐵 |
| eqeltrri.2 | ⊢ 𝐴 ∈ 𝐶 |
| Ref | Expression |
|---|---|
| eqeltrri | ⊢ 𝐵 ∈ 𝐶 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqeltrri.1 | . . 3 ⊢ 𝐴 = 𝐵 | |
| 2 | 1 | eqcomi 2743 | . 2 ⊢ 𝐵 = 𝐴 |
| 3 | eqeltrri.2 | . 2 ⊢ 𝐴 ∈ 𝐶 | |
| 4 | 2, 3 | eqeltri 2829 | 1 ⊢ 𝐵 ∈ 𝐶 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1539 ∈ wcel 2107 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1779 df-cleq 2726 df-clel 2808 |
| This theorem is referenced by: 3eltr3i 2845 zfrep4 5273 p0ex 5364 pp0ex 5366 ord3ex 5367 zfpair 5401 epse 5647 unexOLD 7747 fvresex 7966 opabex3 7974 abexssex 7977 abexex 7978 oprabrexex2 7985 seqomlem3 8474 1on 8500 2on 8502 inf0 9643 scottexs 9909 kardex 9916 infxpenlem 10035 r1om 10265 cfon 10277 fin23lem16 10357 fin1a2lem6 10427 hsmexlem5 10452 brdom7disj 10553 brdom6disj 10554 1lt2pi 10927 0cn 11235 resubcli 11553 0reALT 11588 1nn 12259 10nn 12732 numsucc 12756 nummac 12761 unirnioo 13471 ioorebas 13473 om2uzrani 13975 uzrdg0i 13982 hashunlei 14446 cats1fvn 14879 trclubi 15017 4sqlem19 16983 dec2dvds 17083 mod2xnegi 17091 modsubi 17092 gcdi 17093 isstruct2 17168 grppropstr 18940 nn0srg 21417 fermltlchr 21502 ltbval 22015 sn0topon 22952 indistop 22956 indisuni 22957 indistps2 22966 indistps2ALT 22968 restbas 23112 leordtval2 23166 iocpnfordt 23169 icomnfordt 23170 iooordt 23171 reordt 23172 dis1stc 23453 ptcmpfi 23767 ustfn 24156 ustn0 24175 retopbas 24717 blssioo 24752 xrtgioo 24764 zcld 24771 cnperf 24778 retopconn 24787 iimulcnOLD 24904 rembl 25511 mbfdm 25597 ismbf 25599 mbf0 25605 bddiblnc 25813 abelthlem9 26420 advlog 26632 advlogexp 26633 2irrexpq 26709 cxpcn3 26727 loglesqrt 26740 log2ub 26928 ppi1i 27147 cht2 27151 cht3 27152 bpos1lem 27262 lgslem4 27280 vmadivsum 27462 log2sumbnd 27524 selberg2 27531 selbergr 27548 nogt01o 27677 mulsproplem9 28086 1n0s 28287 2nns 28338 iscgrg 28456 ishpg 28703 ax5seglem7 28880 h2hva 30921 h2hsm 30922 h2hnm 30923 norm-ii-i 31084 hhshsslem2 31215 shincli 31309 chincli 31407 lnophdi 31949 imaelshi 32005 rnelshi 32006 bdophdi 32044 dfdec100 32772 dpadd2 32832 dpmul 32835 dpmul4 32836 nn0omnd 33308 nn0archi 33310 znfermltl 33329 ccfldextrr 33634 lmatfvlem 33773 rrhre 33981 sigaex 34070 br2base 34230 sxbrsigalem3 34233 carsgclctunlem3 34281 sitmcl 34312 rpsqrtcn 34567 hgt750lem 34625 hgt750lem2 34626 afsval 34645 kur14lem7 35176 retopsconn 35213 satfvsuclem1 35323 fmlasuc0 35348 hfuni 36144 neibastop2lem 36320 onint1 36409 bj-snfromadj 37004 topdifinffinlem 37307 poimirlem9 37595 poimirlem28 37614 poimirlem30 37616 poimirlem32 37618 ftc1cnnc 37658 cncfres 37731 lineset 39699 lautset 40043 pautsetN 40059 tendoset 40720 decpmulnc 42285 decpmul 42286 areaquad 43191 0no 43410 finonex 43429 sblpnf 44286 lhe4.4ex1a 44305 fourierdlem62 46140 fourierdlem76 46154 65537prm 47521 11gbo 47720 bgoldbtbndlem1 47750 seppcld 48787 |
| Copyright terms: Public domain | W3C validator |