| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eqeltrri | Structured version Visualization version GIF version | ||
| Description: Substitution of equal classes into membership relation. (Contributed by NM, 21-Jun-1993.) |
| Ref | Expression |
|---|---|
| eqeltrri.1 | ⊢ 𝐴 = 𝐵 |
| eqeltrri.2 | ⊢ 𝐴 ∈ 𝐶 |
| Ref | Expression |
|---|---|
| eqeltrri | ⊢ 𝐵 ∈ 𝐶 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqeltrri.1 | . . 3 ⊢ 𝐴 = 𝐵 | |
| 2 | 1 | eqcomi 2738 | . 2 ⊢ 𝐵 = 𝐴 |
| 3 | eqeltrri.2 | . 2 ⊢ 𝐴 ∈ 𝐶 | |
| 4 | 2, 3 | eqeltri 2824 | 1 ⊢ 𝐵 ∈ 𝐶 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2721 df-clel 2803 |
| This theorem is referenced by: 3eltr3i 2840 zfrep4 5248 p0ex 5339 pp0ex 5341 ord3ex 5342 zfpair 5376 epse 5620 unexOLD 7721 fvresex 7938 opabex3 7946 abexssex 7949 abexex 7950 oprabrexex2 7957 seqomlem3 8420 1on 8446 2on 8447 inf0 9574 scottexs 9840 kardex 9847 infxpenlem 9966 r1om 10196 cfon 10208 fin23lem16 10288 fin1a2lem6 10358 hsmexlem5 10383 brdom7disj 10484 brdom6disj 10485 1lt2pi 10858 0cn 11166 resubcli 11484 0reALT 11519 1nn 12197 10nn 12665 numsucc 12689 nummac 12694 unirnioo 13410 ioorebas 13412 om2uzrani 13917 uzrdg0i 13924 hashunlei 14390 cats1fvn 14824 trclubi 14962 4sqlem19 16934 dec2dvds 17034 mod2xnegi 17042 modsubi 17043 gcdi 17044 isstruct2 17119 grppropstr 18885 nn0srg 21354 fermltlchr 21439 ltbval 21950 sn0topon 22885 indistop 22889 indisuni 22890 indistps2 22899 indistps2ALT 22901 restbas 23045 leordtval2 23099 iocpnfordt 23102 icomnfordt 23103 iooordt 23104 reordt 23105 dis1stc 23386 ptcmpfi 23700 ustfn 24089 ustn0 24108 retopbas 24648 blssioo 24683 xrtgioo 24695 zcld 24702 cnperf 24709 retopconn 24718 iimulcnOLD 24835 rembl 25441 mbfdm 25527 ismbf 25529 mbf0 25535 bddiblnc 25743 abelthlem9 26350 advlog 26563 advlogexp 26564 2irrexpq 26640 cxpcn3 26658 loglesqrt 26671 log2ub 26859 ppi1i 27078 cht2 27082 cht3 27083 bpos1lem 27193 lgslem4 27211 vmadivsum 27393 log2sumbnd 27455 selberg2 27462 selbergr 27479 nogt01o 27608 mulsproplem9 28027 1n0s 28240 n0sfincut 28246 2nns 28304 iscgrg 28439 ishpg 28686 ax5seglem7 28862 h2hva 30903 h2hsm 30904 h2hnm 30905 norm-ii-i 31066 hhshsslem2 31197 shincli 31291 chincli 31389 lnophdi 31931 imaelshi 31987 rnelshi 31988 bdophdi 32026 dfdec100 32755 dpadd2 32830 dpmul 32833 dpmul4 32834 nn0omnd 33316 nn0archi 33318 znfermltl 33337 ccfldextrr 33642 lmatfvlem 33805 rrhre 34011 sigaex 34100 br2base 34260 sxbrsigalem3 34263 carsgclctunlem3 34311 sitmcl 34342 rpsqrtcn 34584 hgt750lem 34642 hgt750lem2 34643 afsval 34662 kur14lem7 35199 retopsconn 35236 satfvsuclem1 35346 fmlasuc0 35371 hfuni 36172 neibastop2lem 36348 onint1 36437 bj-snfromadj 37032 topdifinffinlem 37335 poimirlem9 37623 poimirlem28 37642 poimirlem30 37644 poimirlem32 37646 ftc1cnnc 37686 cncfres 37759 lineset 39732 lautset 40076 pautsetN 40092 tendoset 40753 decpmulnc 42275 decpmul 42276 areaquad 43205 0no 43424 finonex 43443 sblpnf 44299 lhe4.4ex1a 44318 fourierdlem62 46166 fourierdlem76 46180 lamberte 46889 65537prm 47577 11gbo 47776 bgoldbtbndlem1 47806 seppcld 48918 |
| Copyright terms: Public domain | W3C validator |