![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eqeltrri | Structured version Visualization version GIF version |
Description: Substitution of equal classes into membership relation. (Contributed by NM, 21-Jun-1993.) |
Ref | Expression |
---|---|
eqeltrri.1 | ⊢ 𝐴 = 𝐵 |
eqeltrri.2 | ⊢ 𝐴 ∈ 𝐶 |
Ref | Expression |
---|---|
eqeltrri | ⊢ 𝐵 ∈ 𝐶 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeltrri.1 | . . 3 ⊢ 𝐴 = 𝐵 | |
2 | 1 | eqcomi 2743 | . 2 ⊢ 𝐵 = 𝐴 |
3 | eqeltrri.2 | . 2 ⊢ 𝐴 ∈ 𝐶 | |
4 | 2, 3 | eqeltri 2834 | 1 ⊢ 𝐵 ∈ 𝐶 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1536 ∈ wcel 2105 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-ext 2705 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1776 df-cleq 2726 df-clel 2813 |
This theorem is referenced by: 3eltr3i 2850 zfrep4 5298 p0ex 5389 pp0ex 5391 ord3ex 5392 zfpair 5426 epse 5670 unexOLD 7763 fvresex 7982 opabex3 7990 abexssex 7993 abexex 7994 oprabrexex2 8001 seqomlem3 8490 1on 8516 2on 8518 inf0 9658 scottexs 9924 kardex 9931 infxpenlem 10050 r1om 10280 cfon 10292 fin23lem16 10372 fin1a2lem6 10442 hsmexlem5 10467 brdom7disj 10568 brdom6disj 10569 1lt2pi 10942 0cn 11250 resubcli 11568 0reALT 11603 1nn 12274 10nn 12746 numsucc 12770 nummac 12775 unirnioo 13485 ioorebas 13487 om2uzrani 13989 uzrdg0i 13996 hashunlei 14460 cats1fvn 14893 trclubi 15031 4sqlem19 16996 dec2dvds 17096 mod2xnegi 17104 modsubi 17105 gcdi 17106 isstruct2 17182 grppropstr 18983 nn0srg 21472 fermltlchr 21561 ltbval 22078 sn0topon 23020 indistop 23024 indisuni 23025 indistps2 23034 indistps2ALT 23037 restbas 23181 leordtval2 23235 iocpnfordt 23238 icomnfordt 23239 iooordt 23240 reordt 23241 dis1stc 23522 ptcmpfi 23836 ustfn 24225 ustn0 24244 retopbas 24796 blssioo 24830 xrtgioo 24841 zcld 24848 cnperf 24855 retopconn 24864 iimulcnOLD 24981 rembl 25588 mbfdm 25674 ismbf 25676 mbf0 25682 bddiblnc 25891 abelthlem9 26498 advlog 26710 advlogexp 26711 2irrexpq 26787 cxpcn3 26805 loglesqrt 26818 log2ub 27006 ppi1i 27225 cht2 27229 cht3 27230 bpos1lem 27340 lgslem4 27358 vmadivsum 27540 log2sumbnd 27602 selberg2 27609 selbergr 27626 nogt01o 27755 mulsproplem9 28164 1n0s 28365 2nns 28416 iscgrg 28534 ishpg 28781 ax5seglem7 28964 h2hva 31002 h2hsm 31003 h2hnm 31004 norm-ii-i 31165 hhshsslem2 31296 shincli 31390 chincli 31488 lnophdi 32030 imaelshi 32086 rnelshi 32087 bdophdi 32125 dfdec100 32836 dpadd2 32876 dpmul 32879 dpmul4 32880 nn0omnd 33352 nn0archi 33354 znfermltl 33373 ccfldextrr 33675 lmatfvlem 33775 rrhre 33983 sigaex 34090 br2base 34250 sxbrsigalem3 34253 carsgclctunlem3 34301 sitmcl 34332 rpsqrtcn 34586 hgt750lem 34644 hgt750lem2 34645 afsval 34664 kur14lem7 35196 retopsconn 35233 satfvsuclem1 35343 fmlasuc0 35368 hfuni 36165 neibastop2lem 36342 onint1 36431 bj-snfromadj 37026 topdifinffinlem 37329 poimirlem9 37615 poimirlem28 37634 poimirlem30 37636 poimirlem32 37638 ftc1cnnc 37678 cncfres 37751 lineset 39720 lautset 40064 pautsetN 40080 tendoset 40741 decpmulnc 42300 decpmul 42301 areaquad 43204 0no 43424 finonex 43443 sblpnf 44305 lhe4.4ex1a 44324 fourierdlem62 46123 fourierdlem76 46137 65537prm 47500 11gbo 47699 bgoldbtbndlem1 47729 seppcld 48725 |
Copyright terms: Public domain | W3C validator |