| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eqeltrri | Structured version Visualization version GIF version | ||
| Description: Substitution of equal classes into membership relation. (Contributed by NM, 21-Jun-1993.) |
| Ref | Expression |
|---|---|
| eqeltrri.1 | ⊢ 𝐴 = 𝐵 |
| eqeltrri.2 | ⊢ 𝐴 ∈ 𝐶 |
| Ref | Expression |
|---|---|
| eqeltrri | ⊢ 𝐵 ∈ 𝐶 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqeltrri.1 | . . 3 ⊢ 𝐴 = 𝐵 | |
| 2 | 1 | eqcomi 2738 | . 2 ⊢ 𝐵 = 𝐴 |
| 3 | eqeltrri.2 | . 2 ⊢ 𝐴 ∈ 𝐶 | |
| 4 | 2, 3 | eqeltri 2824 | 1 ⊢ 𝐵 ∈ 𝐶 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2721 df-clel 2803 |
| This theorem is referenced by: 3eltr3i 2840 zfrep4 5232 p0ex 5323 pp0ex 5325 ord3ex 5326 zfpair 5360 epse 5601 unexOLD 7681 fvresex 7895 opabex3 7902 abexssex 7905 abexex 7906 oprabrexex2 7913 seqomlem3 8374 1on 8400 2on 8401 inf0 9517 scottexs 9783 kardex 9790 infxpenlem 9907 r1om 10137 cfon 10149 fin23lem16 10229 fin1a2lem6 10299 hsmexlem5 10324 brdom7disj 10425 brdom6disj 10426 1lt2pi 10799 0cn 11107 resubcli 11426 0reALT 11461 1nn 12139 10nn 12607 numsucc 12631 nummac 12636 unirnioo 13352 ioorebas 13354 om2uzrani 13859 uzrdg0i 13866 hashunlei 14332 cats1fvn 14765 trclubi 14903 4sqlem19 16875 dec2dvds 16975 mod2xnegi 16983 modsubi 16984 gcdi 16985 isstruct2 17060 grppropstr 18832 nn0srg 21344 fermltlchr 21436 ltbval 21948 sn0topon 22883 indistop 22887 indisuni 22888 indistps2 22897 indistps2ALT 22899 restbas 23043 leordtval2 23097 iocpnfordt 23100 icomnfordt 23101 iooordt 23102 reordt 23103 dis1stc 23384 ptcmpfi 23698 ustfn 24087 ustn0 24106 retopbas 24646 blssioo 24681 xrtgioo 24693 zcld 24700 cnperf 24707 retopconn 24716 iimulcnOLD 24833 rembl 25439 mbfdm 25525 ismbf 25527 mbf0 25533 bddiblnc 25741 abelthlem9 26348 advlog 26561 advlogexp 26562 2irrexpq 26638 cxpcn3 26656 loglesqrt 26669 log2ub 26857 ppi1i 27076 cht2 27080 cht3 27081 bpos1lem 27191 lgslem4 27209 vmadivsum 27391 log2sumbnd 27453 selberg2 27460 selbergr 27477 nogt01o 27606 mulsproplem9 28032 1n0s 28245 n0sfincut 28251 2nns 28310 iscgrg 28457 ishpg 28704 ax5seglem7 28880 h2hva 30918 h2hsm 30919 h2hnm 30920 norm-ii-i 31081 hhshsslem2 31212 shincli 31306 chincli 31404 lnophdi 31946 imaelshi 32002 rnelshi 32003 bdophdi 32041 dfdec100 32776 dpadd2 32851 dpmul 32854 dpmul4 32855 nn0omnd 33283 nn0archi 33285 znfermltl 33304 ccfldextrr 33619 lmatfvlem 33788 rrhre 33994 sigaex 34083 br2base 34243 sxbrsigalem3 34246 carsgclctunlem3 34294 sitmcl 34325 rpsqrtcn 34567 hgt750lem 34625 hgt750lem2 34626 afsval 34645 kur14lem7 35195 retopsconn 35232 satfvsuclem1 35342 fmlasuc0 35367 hfuni 36168 neibastop2lem 36344 onint1 36433 bj-snfromadj 37028 topdifinffinlem 37331 poimirlem9 37619 poimirlem28 37638 poimirlem30 37640 poimirlem32 37642 ftc1cnnc 37682 cncfres 37755 lineset 39727 lautset 40071 pautsetN 40087 tendoset 40748 decpmulnc 42270 decpmul 42271 areaquad 43199 0no 43418 finonex 43437 sblpnf 44293 lhe4.4ex1a 44312 fourierdlem62 46159 fourierdlem76 46173 lamberte 46882 65537prm 47570 11gbo 47769 bgoldbtbndlem1 47799 seppcld 48924 |
| Copyright terms: Public domain | W3C validator |