| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eqeltrri | Structured version Visualization version GIF version | ||
| Description: Substitution of equal classes into membership relation. (Contributed by NM, 21-Jun-1993.) |
| Ref | Expression |
|---|---|
| eqeltrri.1 | ⊢ 𝐴 = 𝐵 |
| eqeltrri.2 | ⊢ 𝐴 ∈ 𝐶 |
| Ref | Expression |
|---|---|
| eqeltrri | ⊢ 𝐵 ∈ 𝐶 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqeltrri.1 | . . 3 ⊢ 𝐴 = 𝐵 | |
| 2 | 1 | eqcomi 2740 | . 2 ⊢ 𝐵 = 𝐴 |
| 3 | eqeltrri.2 | . 2 ⊢ 𝐴 ∈ 𝐶 | |
| 4 | 2, 3 | eqeltri 2827 | 1 ⊢ 𝐵 ∈ 𝐶 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∈ wcel 2111 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-cleq 2723 df-clel 2806 |
| This theorem is referenced by: 3eltr3i 2843 zfrep4 5229 p0ex 5320 pp0ex 5322 ord3ex 5323 zfpair 5357 epse 5596 unexOLD 7678 fvresex 7892 opabex3 7899 abexssex 7902 abexex 7903 oprabrexex2 7910 seqomlem3 8371 1on 8397 2on 8398 inf0 9511 scottexs 9780 kardex 9787 infxpenlem 9904 r1om 10134 cfon 10146 fin23lem16 10226 fin1a2lem6 10296 hsmexlem5 10321 brdom7disj 10422 brdom6disj 10423 1lt2pi 10796 0cn 11104 resubcli 11423 0reALT 11458 1nn 12136 10nn 12604 numsucc 12628 nummac 12633 unirnioo 13349 ioorebas 13351 om2uzrani 13859 uzrdg0i 13866 hashunlei 14332 cats1fvn 14765 trclubi 14903 4sqlem19 16875 dec2dvds 16975 mod2xnegi 16983 modsubi 16984 gcdi 16985 isstruct2 17060 grppropstr 18866 nn0srg 21374 fermltlchr 21466 ltbval 21978 sn0topon 22913 indistop 22917 indisuni 22918 indistps2 22927 indistps2ALT 22929 restbas 23073 leordtval2 23127 iocpnfordt 23130 icomnfordt 23131 iooordt 23132 reordt 23133 dis1stc 23414 ptcmpfi 23728 ustfn 24117 ustn0 24136 retopbas 24675 blssioo 24710 xrtgioo 24722 zcld 24729 cnperf 24736 retopconn 24745 iimulcnOLD 24862 rembl 25468 mbfdm 25554 ismbf 25556 mbf0 25562 bddiblnc 25770 abelthlem9 26377 advlog 26590 advlogexp 26591 2irrexpq 26667 cxpcn3 26685 loglesqrt 26698 log2ub 26886 ppi1i 27105 cht2 27109 cht3 27110 bpos1lem 27220 lgslem4 27238 vmadivsum 27420 log2sumbnd 27482 selberg2 27489 selbergr 27506 nogt01o 27635 mulsproplem9 28063 1n0s 28276 n0sfincut 28282 2nns 28341 iscgrg 28490 ishpg 28737 ax5seglem7 28913 h2hva 30954 h2hsm 30955 h2hnm 30956 norm-ii-i 31117 hhshsslem2 31248 shincli 31342 chincli 31440 lnophdi 31982 imaelshi 32038 rnelshi 32039 bdophdi 32077 dfdec100 32813 dpadd2 32890 dpmul 32893 dpmul4 32894 nn0omnd 33309 nn0archi 33312 znfermltl 33331 ccfldextrr 33659 lmatfvlem 33828 rrhre 34034 sigaex 34123 br2base 34282 sxbrsigalem3 34285 carsgclctunlem3 34333 sitmcl 34364 rpsqrtcn 34606 hgt750lem 34664 hgt750lem2 34665 afsval 34684 kur14lem7 35256 retopsconn 35293 satfvsuclem1 35403 fmlasuc0 35428 hfuni 36228 neibastop2lem 36404 onint1 36493 bj-snfromadj 37088 topdifinffinlem 37391 poimirlem9 37668 poimirlem28 37687 poimirlem30 37689 poimirlem32 37691 ftc1cnnc 37731 cncfres 37804 lineset 39836 lautset 40180 pautsetN 40196 tendoset 40857 decpmulnc 42379 decpmul 42380 areaquad 43308 0no 43527 finonex 43546 sblpnf 44402 lhe4.4ex1a 44421 fourierdlem62 46265 fourierdlem76 46279 lamberte 46987 65537prm 47675 11gbo 47874 bgoldbtbndlem1 47904 seppcld 49029 |
| Copyright terms: Public domain | W3C validator |