| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eqeltrri | Structured version Visualization version GIF version | ||
| Description: Substitution of equal classes into membership relation. (Contributed by NM, 21-Jun-1993.) |
| Ref | Expression |
|---|---|
| eqeltrri.1 | ⊢ 𝐴 = 𝐵 |
| eqeltrri.2 | ⊢ 𝐴 ∈ 𝐶 |
| Ref | Expression |
|---|---|
| eqeltrri | ⊢ 𝐵 ∈ 𝐶 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqeltrri.1 | . . 3 ⊢ 𝐴 = 𝐵 | |
| 2 | 1 | eqcomi 2738 | . 2 ⊢ 𝐵 = 𝐴 |
| 3 | eqeltrri.2 | . 2 ⊢ 𝐴 ∈ 𝐶 | |
| 4 | 2, 3 | eqeltri 2824 | 1 ⊢ 𝐵 ∈ 𝐶 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2721 df-clel 2803 |
| This theorem is referenced by: 3eltr3i 2840 zfrep4 5243 p0ex 5334 pp0ex 5336 ord3ex 5337 zfpair 5371 epse 5613 unexOLD 7701 fvresex 7918 opabex3 7925 abexssex 7928 abexex 7929 oprabrexex2 7936 seqomlem3 8397 1on 8423 2on 8424 inf0 9550 scottexs 9816 kardex 9823 infxpenlem 9942 r1om 10172 cfon 10184 fin23lem16 10264 fin1a2lem6 10334 hsmexlem5 10359 brdom7disj 10460 brdom6disj 10461 1lt2pi 10834 0cn 11142 resubcli 11460 0reALT 11495 1nn 12173 10nn 12641 numsucc 12665 nummac 12670 unirnioo 13386 ioorebas 13388 om2uzrani 13893 uzrdg0i 13900 hashunlei 14366 cats1fvn 14800 trclubi 14938 4sqlem19 16910 dec2dvds 17010 mod2xnegi 17018 modsubi 17019 gcdi 17020 isstruct2 17095 grppropstr 18867 nn0srg 21379 fermltlchr 21471 ltbval 21983 sn0topon 22918 indistop 22922 indisuni 22923 indistps2 22932 indistps2ALT 22934 restbas 23078 leordtval2 23132 iocpnfordt 23135 icomnfordt 23136 iooordt 23137 reordt 23138 dis1stc 23419 ptcmpfi 23733 ustfn 24122 ustn0 24141 retopbas 24681 blssioo 24716 xrtgioo 24728 zcld 24735 cnperf 24742 retopconn 24751 iimulcnOLD 24868 rembl 25474 mbfdm 25560 ismbf 25562 mbf0 25568 bddiblnc 25776 abelthlem9 26383 advlog 26596 advlogexp 26597 2irrexpq 26673 cxpcn3 26691 loglesqrt 26704 log2ub 26892 ppi1i 27111 cht2 27115 cht3 27116 bpos1lem 27226 lgslem4 27244 vmadivsum 27426 log2sumbnd 27488 selberg2 27495 selbergr 27512 nogt01o 27641 mulsproplem9 28067 1n0s 28280 n0sfincut 28286 2nns 28345 iscgrg 28492 ishpg 28739 ax5seglem7 28915 h2hva 30953 h2hsm 30954 h2hnm 30955 norm-ii-i 31116 hhshsslem2 31247 shincli 31341 chincli 31439 lnophdi 31981 imaelshi 32037 rnelshi 32038 bdophdi 32076 dfdec100 32805 dpadd2 32880 dpmul 32883 dpmul4 32884 nn0omnd 33309 nn0archi 33311 znfermltl 33330 ccfldextrr 33635 lmatfvlem 33798 rrhre 34004 sigaex 34093 br2base 34253 sxbrsigalem3 34256 carsgclctunlem3 34304 sitmcl 34335 rpsqrtcn 34577 hgt750lem 34635 hgt750lem2 34636 afsval 34655 kur14lem7 35192 retopsconn 35229 satfvsuclem1 35339 fmlasuc0 35364 hfuni 36165 neibastop2lem 36341 onint1 36430 bj-snfromadj 37025 topdifinffinlem 37328 poimirlem9 37616 poimirlem28 37635 poimirlem30 37637 poimirlem32 37639 ftc1cnnc 37679 cncfres 37752 lineset 39725 lautset 40069 pautsetN 40085 tendoset 40746 decpmulnc 42268 decpmul 42269 areaquad 43198 0no 43417 finonex 43436 sblpnf 44292 lhe4.4ex1a 44311 fourierdlem62 46159 fourierdlem76 46173 lamberte 46882 65537prm 47570 11gbo 47769 bgoldbtbndlem1 47799 seppcld 48911 |
| Copyright terms: Public domain | W3C validator |