Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  3exbidv Structured version   Visualization version   GIF version

Theorem 3exbidv 1927
 Description: Formula-building rule for three existential quantifiers (deduction form). (Contributed by NM, 1-May-1995.)
Hypothesis
Ref Expression
3exbidv.1 (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
3exbidv (𝜑 → (∃𝑥𝑦𝑧𝜓 ↔ ∃𝑥𝑦𝑧𝜒))
Distinct variable groups:   𝜑,𝑥   𝜑,𝑦   𝜑,𝑧
Allowed substitution hints:   𝜓(𝑥,𝑦,𝑧)   𝜒(𝑥,𝑦,𝑧)

Proof of Theorem 3exbidv
StepHypRef Expression
1 3exbidv.1 . . 3 (𝜑 → (𝜓𝜒))
21exbidv 1923 . 2 (𝜑 → (∃𝑧𝜓 ↔ ∃𝑧𝜒))
322exbidv 1926 1 (𝜑 → (∃𝑥𝑦𝑧𝜓 ↔ ∃𝑥𝑦𝑧𝜒))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209  ∃wex 1781 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912 This theorem depends on definitions:  df-bi 210  df-ex 1782 This theorem is referenced by:  ceqsex6v  3524  euotd  5376  oprabidw  7161  oprabid  7162  eloprabga  7235  eloprabi  7736  bnj981  32229  fundcmpsurbijinj  43720
 Copyright terms: Public domain W3C validator