MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3exbidv Structured version   Visualization version   GIF version

Theorem 3exbidv 1926
Description: Formula-building rule for three existential quantifiers (deduction form). (Contributed by NM, 1-May-1995.)
Hypothesis
Ref Expression
3exbidv.1 (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
3exbidv (𝜑 → (∃𝑥𝑦𝑧𝜓 ↔ ∃𝑥𝑦𝑧𝜒))
Distinct variable groups:   𝜑,𝑥   𝜑,𝑦   𝜑,𝑧
Allowed substitution hints:   𝜓(𝑥,𝑦,𝑧)   𝜒(𝑥,𝑦,𝑧)

Proof of Theorem 3exbidv
StepHypRef Expression
1 3exbidv.1 . . 3 (𝜑 → (𝜓𝜒))
21exbidv 1922 . 2 (𝜑 → (∃𝑧𝜓 ↔ ∃𝑧𝜒))
322exbidv 1925 1 (𝜑 → (∃𝑥𝑦𝑧𝜓 ↔ ∃𝑥𝑦𝑧𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wex 1779
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911
This theorem depends on definitions:  df-bi 206  df-ex 1780
This theorem is referenced by:  ceqsex6v  3491  euotd  5440  oprabidw  7338  oprabid  7339  0mpo0  7390  eloprabga  7414  eloprabgaOLD  7415  eloprabi  7935  bnj981  32979  fundcmpsurbijinj  45106
  Copyright terms: Public domain W3C validator