MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3exbidv Structured version   Visualization version   GIF version

Theorem 3exbidv 1924
Description: Formula-building rule for three existential quantifiers (deduction form). (Contributed by NM, 1-May-1995.)
Hypothesis
Ref Expression
3exbidv.1 (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
3exbidv (𝜑 → (∃𝑥𝑦𝑧𝜓 ↔ ∃𝑥𝑦𝑧𝜒))
Distinct variable groups:   𝜑,𝑥   𝜑,𝑦   𝜑,𝑧
Allowed substitution hints:   𝜓(𝑥,𝑦,𝑧)   𝜒(𝑥,𝑦,𝑧)

Proof of Theorem 3exbidv
StepHypRef Expression
1 3exbidv.1 . . 3 (𝜑 → (𝜓𝜒))
21exbidv 1920 . 2 (𝜑 → (∃𝑧𝜓 ↔ ∃𝑧𝜒))
322exbidv 1923 1 (𝜑 → (∃𝑥𝑦𝑧𝜓 ↔ ∃𝑥𝑦𝑧𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wex 1777
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909
This theorem depends on definitions:  df-bi 207  df-ex 1778
This theorem is referenced by:  ceqsex6v  3551  euotd  5532  oprabidw  7479  oprabid  7480  0mpo0  7533  eloprabga  7558  eloprabgaOLD  7559  eloprabi  8104  bnj981  34926  fundcmpsurbijinj  47284
  Copyright terms: Public domain W3C validator