| Step | Hyp | Ref
| Expression |
| 1 | | opex 5469 |
. 2
⊢
〈〈𝑥, 𝑦〉, 𝑧〉 ∈ V |
| 2 | | opex 5469 |
. . . . . 6
⊢
〈𝑥, 𝑦〉 ∈ V |
| 3 | | vex 3484 |
. . . . . 6
⊢ 𝑧 ∈ V |
| 4 | 2, 3 | eqvinop 5492 |
. . . . 5
⊢ (𝑤 = 〈〈𝑥, 𝑦〉, 𝑧〉 ↔ ∃𝑎∃𝑡(𝑤 = 〈𝑎, 𝑡〉 ∧ 〈𝑎, 𝑡〉 = 〈〈𝑥, 𝑦〉, 𝑧〉)) |
| 5 | 4 | biimpi 216 |
. . . 4
⊢ (𝑤 = 〈〈𝑥, 𝑦〉, 𝑧〉 → ∃𝑎∃𝑡(𝑤 = 〈𝑎, 𝑡〉 ∧ 〈𝑎, 𝑡〉 = 〈〈𝑥, 𝑦〉, 𝑧〉)) |
| 6 | | eqeq1 2741 |
. . . . . . . 8
⊢ (𝑤 = 〈𝑎, 𝑡〉 → (𝑤 = 〈〈𝑥, 𝑦〉, 𝑧〉 ↔ 〈𝑎, 𝑡〉 = 〈〈𝑥, 𝑦〉, 𝑧〉)) |
| 7 | | vex 3484 |
. . . . . . . . 9
⊢ 𝑎 ∈ V |
| 8 | | vex 3484 |
. . . . . . . . 9
⊢ 𝑡 ∈ V |
| 9 | 7, 8 | opth1 5480 |
. . . . . . . 8
⊢
(〈𝑎, 𝑡〉 = 〈〈𝑥, 𝑦〉, 𝑧〉 → 𝑎 = 〈𝑥, 𝑦〉) |
| 10 | 6, 9 | biimtrdi 253 |
. . . . . . 7
⊢ (𝑤 = 〈𝑎, 𝑡〉 → (𝑤 = 〈〈𝑥, 𝑦〉, 𝑧〉 → 𝑎 = 〈𝑥, 𝑦〉)) |
| 11 | | vex 3484 |
. . . . . . . . . 10
⊢ 𝑥 ∈ V |
| 12 | | vex 3484 |
. . . . . . . . . 10
⊢ 𝑦 ∈ V |
| 13 | 11, 12 | eqvinop 5492 |
. . . . . . . . 9
⊢ (𝑎 = 〈𝑥, 𝑦〉 ↔ ∃𝑟∃𝑠(𝑎 = 〈𝑟, 𝑠〉 ∧ 〈𝑟, 𝑠〉 = 〈𝑥, 𝑦〉)) |
| 14 | | opeq1 4873 |
. . . . . . . . . . . . 13
⊢ (𝑎 = 〈𝑟, 𝑠〉 → 〈𝑎, 𝑡〉 = 〈〈𝑟, 𝑠〉, 𝑡〉) |
| 15 | 14 | eqeq2d 2748 |
. . . . . . . . . . . 12
⊢ (𝑎 = 〈𝑟, 𝑠〉 → (𝑤 = 〈𝑎, 𝑡〉 ↔ 𝑤 = 〈〈𝑟, 𝑠〉, 𝑡〉)) |
| 16 | 11, 12, 3 | otth2 5488 |
. . . . . . . . . . . . . . 15
⊢
(〈〈𝑥,
𝑦〉, 𝑧〉 = 〈〈𝑟, 𝑠〉, 𝑡〉 ↔ (𝑥 = 𝑟 ∧ 𝑦 = 𝑠 ∧ 𝑧 = 𝑡)) |
| 17 | | euequ 2597 |
. . . . . . . . . . . . . . . . . 18
⊢
∃!𝑥 𝑥 = 𝑟 |
| 18 | | eupick 2633 |
. . . . . . . . . . . . . . . . . 18
⊢
((∃!𝑥 𝑥 = 𝑟 ∧ ∃𝑥(𝑥 = 𝑟 ∧ ∃𝑦(𝑦 = 𝑠 ∧ ∃𝑧(𝑧 = 𝑡 ∧ 𝜑)))) → (𝑥 = 𝑟 → ∃𝑦(𝑦 = 𝑠 ∧ ∃𝑧(𝑧 = 𝑡 ∧ 𝜑)))) |
| 19 | 17, 18 | mpan 690 |
. . . . . . . . . . . . . . . . 17
⊢
(∃𝑥(𝑥 = 𝑟 ∧ ∃𝑦(𝑦 = 𝑠 ∧ ∃𝑧(𝑧 = 𝑡 ∧ 𝜑))) → (𝑥 = 𝑟 → ∃𝑦(𝑦 = 𝑠 ∧ ∃𝑧(𝑧 = 𝑡 ∧ 𝜑)))) |
| 20 | | euequ 2597 |
. . . . . . . . . . . . . . . . . . 19
⊢
∃!𝑦 𝑦 = 𝑠 |
| 21 | | eupick 2633 |
. . . . . . . . . . . . . . . . . . 19
⊢
((∃!𝑦 𝑦 = 𝑠 ∧ ∃𝑦(𝑦 = 𝑠 ∧ ∃𝑧(𝑧 = 𝑡 ∧ 𝜑))) → (𝑦 = 𝑠 → ∃𝑧(𝑧 = 𝑡 ∧ 𝜑))) |
| 22 | 20, 21 | mpan 690 |
. . . . . . . . . . . . . . . . . 18
⊢
(∃𝑦(𝑦 = 𝑠 ∧ ∃𝑧(𝑧 = 𝑡 ∧ 𝜑)) → (𝑦 = 𝑠 → ∃𝑧(𝑧 = 𝑡 ∧ 𝜑))) |
| 23 | | euequ 2597 |
. . . . . . . . . . . . . . . . . . 19
⊢
∃!𝑧 𝑧 = 𝑡 |
| 24 | | eupick 2633 |
. . . . . . . . . . . . . . . . . . 19
⊢
((∃!𝑧 𝑧 = 𝑡 ∧ ∃𝑧(𝑧 = 𝑡 ∧ 𝜑)) → (𝑧 = 𝑡 → 𝜑)) |
| 25 | 23, 24 | mpan 690 |
. . . . . . . . . . . . . . . . . 18
⊢
(∃𝑧(𝑧 = 𝑡 ∧ 𝜑) → (𝑧 = 𝑡 → 𝜑)) |
| 26 | 22, 25 | syl6 35 |
. . . . . . . . . . . . . . . . 17
⊢
(∃𝑦(𝑦 = 𝑠 ∧ ∃𝑧(𝑧 = 𝑡 ∧ 𝜑)) → (𝑦 = 𝑠 → (𝑧 = 𝑡 → 𝜑))) |
| 27 | 19, 26 | syl6 35 |
. . . . . . . . . . . . . . . 16
⊢
(∃𝑥(𝑥 = 𝑟 ∧ ∃𝑦(𝑦 = 𝑠 ∧ ∃𝑧(𝑧 = 𝑡 ∧ 𝜑))) → (𝑥 = 𝑟 → (𝑦 = 𝑠 → (𝑧 = 𝑡 → 𝜑)))) |
| 28 | 27 | 3impd 1349 |
. . . . . . . . . . . . . . 15
⊢
(∃𝑥(𝑥 = 𝑟 ∧ ∃𝑦(𝑦 = 𝑠 ∧ ∃𝑧(𝑧 = 𝑡 ∧ 𝜑))) → ((𝑥 = 𝑟 ∧ 𝑦 = 𝑠 ∧ 𝑧 = 𝑡) → 𝜑)) |
| 29 | 16, 28 | biimtrid 242 |
. . . . . . . . . . . . . 14
⊢
(∃𝑥(𝑥 = 𝑟 ∧ ∃𝑦(𝑦 = 𝑠 ∧ ∃𝑧(𝑧 = 𝑡 ∧ 𝜑))) → (〈〈𝑥, 𝑦〉, 𝑧〉 = 〈〈𝑟, 𝑠〉, 𝑡〉 → 𝜑)) |
| 30 | | df-3an 1089 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑥 = 𝑟 ∧ 𝑦 = 𝑠 ∧ 𝑧 = 𝑡) ↔ ((𝑥 = 𝑟 ∧ 𝑦 = 𝑠) ∧ 𝑧 = 𝑡)) |
| 31 | 16, 30 | bitri 275 |
. . . . . . . . . . . . . . . . . 18
⊢
(〈〈𝑥,
𝑦〉, 𝑧〉 = 〈〈𝑟, 𝑠〉, 𝑡〉 ↔ ((𝑥 = 𝑟 ∧ 𝑦 = 𝑠) ∧ 𝑧 = 𝑡)) |
| 32 | 31 | anbi1i 624 |
. . . . . . . . . . . . . . . . 17
⊢
((〈〈𝑥,
𝑦〉, 𝑧〉 = 〈〈𝑟, 𝑠〉, 𝑡〉 ∧ 𝜑) ↔ (((𝑥 = 𝑟 ∧ 𝑦 = 𝑠) ∧ 𝑧 = 𝑡) ∧ 𝜑)) |
| 33 | | anass 468 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝑥 = 𝑟 ∧ 𝑦 = 𝑠) ∧ 𝑧 = 𝑡) ∧ 𝜑) ↔ ((𝑥 = 𝑟 ∧ 𝑦 = 𝑠) ∧ (𝑧 = 𝑡 ∧ 𝜑))) |
| 34 | | anass 468 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑥 = 𝑟 ∧ 𝑦 = 𝑠) ∧ (𝑧 = 𝑡 ∧ 𝜑)) ↔ (𝑥 = 𝑟 ∧ (𝑦 = 𝑠 ∧ (𝑧 = 𝑡 ∧ 𝜑)))) |
| 35 | 32, 33, 34 | 3bitri 297 |
. . . . . . . . . . . . . . . 16
⊢
((〈〈𝑥,
𝑦〉, 𝑧〉 = 〈〈𝑟, 𝑠〉, 𝑡〉 ∧ 𝜑) ↔ (𝑥 = 𝑟 ∧ (𝑦 = 𝑠 ∧ (𝑧 = 𝑡 ∧ 𝜑)))) |
| 36 | 35 | 3exbii 1850 |
. . . . . . . . . . . . . . 15
⊢
(∃𝑥∃𝑦∃𝑧(〈〈𝑥, 𝑦〉, 𝑧〉 = 〈〈𝑟, 𝑠〉, 𝑡〉 ∧ 𝜑) ↔ ∃𝑥∃𝑦∃𝑧(𝑥 = 𝑟 ∧ (𝑦 = 𝑠 ∧ (𝑧 = 𝑡 ∧ 𝜑)))) |
| 37 | | nfe1 2150 |
. . . . . . . . . . . . . . . . . . 19
⊢
Ⅎ𝑥∃𝑥(𝑥 = 𝑟 ∧ ∃𝑧(𝑦 = 𝑠 ∧ (𝑧 = 𝑡 ∧ 𝜑))) |
| 38 | | 19.8a 2181 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑦 = 𝑠 ∧ (𝑧 = 𝑡 ∧ 𝜑)) → ∃𝑧(𝑦 = 𝑠 ∧ (𝑧 = 𝑡 ∧ 𝜑))) |
| 39 | 38 | anim2i 617 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑥 = 𝑟 ∧ (𝑦 = 𝑠 ∧ (𝑧 = 𝑡 ∧ 𝜑))) → (𝑥 = 𝑟 ∧ ∃𝑧(𝑦 = 𝑠 ∧ (𝑧 = 𝑡 ∧ 𝜑)))) |
| 40 | 39 | eximi 1835 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(∃𝑧(𝑥 = 𝑟 ∧ (𝑦 = 𝑠 ∧ (𝑧 = 𝑡 ∧ 𝜑))) → ∃𝑧(𝑥 = 𝑟 ∧ ∃𝑧(𝑦 = 𝑠 ∧ (𝑧 = 𝑡 ∧ 𝜑)))) |
| 41 | | biidd 262 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(∀𝑥 𝑥 = 𝑧 → ((𝑥 = 𝑟 ∧ ∃𝑧(𝑦 = 𝑠 ∧ (𝑧 = 𝑡 ∧ 𝜑))) ↔ (𝑥 = 𝑟 ∧ ∃𝑧(𝑦 = 𝑠 ∧ (𝑧 = 𝑡 ∧ 𝜑))))) |
| 42 | 41 | drex1v 2374 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(∀𝑥 𝑥 = 𝑧 → (∃𝑥(𝑥 = 𝑟 ∧ ∃𝑧(𝑦 = 𝑠 ∧ (𝑧 = 𝑡 ∧ 𝜑))) ↔ ∃𝑧(𝑥 = 𝑟 ∧ ∃𝑧(𝑦 = 𝑠 ∧ (𝑧 = 𝑡 ∧ 𝜑))))) |
| 43 | 40, 42 | imbitrrid 246 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(∀𝑥 𝑥 = 𝑧 → (∃𝑧(𝑥 = 𝑟 ∧ (𝑦 = 𝑠 ∧ (𝑧 = 𝑡 ∧ 𝜑))) → ∃𝑥(𝑥 = 𝑟 ∧ ∃𝑧(𝑦 = 𝑠 ∧ (𝑧 = 𝑡 ∧ 𝜑))))) |
| 44 | | 19.40 1886 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(∃𝑧(𝑥 = 𝑟 ∧ (𝑦 = 𝑠 ∧ (𝑧 = 𝑡 ∧ 𝜑))) → (∃𝑧 𝑥 = 𝑟 ∧ ∃𝑧(𝑦 = 𝑠 ∧ (𝑧 = 𝑡 ∧ 𝜑)))) |
| 45 | | nfvd 1915 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (¬
∀𝑥 𝑥 = 𝑧 → Ⅎ𝑧 𝑥 = 𝑟) |
| 46 | 45 | 19.9d 2203 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (¬
∀𝑥 𝑥 = 𝑧 → (∃𝑧 𝑥 = 𝑟 → 𝑥 = 𝑟)) |
| 47 | 46 | anim1d 611 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (¬
∀𝑥 𝑥 = 𝑧 → ((∃𝑧 𝑥 = 𝑟 ∧ ∃𝑧(𝑦 = 𝑠 ∧ (𝑧 = 𝑡 ∧ 𝜑))) → (𝑥 = 𝑟 ∧ ∃𝑧(𝑦 = 𝑠 ∧ (𝑧 = 𝑡 ∧ 𝜑))))) |
| 48 | | 19.8a 2181 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑥 = 𝑟 ∧ ∃𝑧(𝑦 = 𝑠 ∧ (𝑧 = 𝑡 ∧ 𝜑))) → ∃𝑥(𝑥 = 𝑟 ∧ ∃𝑧(𝑦 = 𝑠 ∧ (𝑧 = 𝑡 ∧ 𝜑)))) |
| 49 | 44, 47, 48 | syl56 36 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (¬
∀𝑥 𝑥 = 𝑧 → (∃𝑧(𝑥 = 𝑟 ∧ (𝑦 = 𝑠 ∧ (𝑧 = 𝑡 ∧ 𝜑))) → ∃𝑥(𝑥 = 𝑟 ∧ ∃𝑧(𝑦 = 𝑠 ∧ (𝑧 = 𝑡 ∧ 𝜑))))) |
| 50 | 43, 49 | pm2.61i 182 |
. . . . . . . . . . . . . . . . . . 19
⊢
(∃𝑧(𝑥 = 𝑟 ∧ (𝑦 = 𝑠 ∧ (𝑧 = 𝑡 ∧ 𝜑))) → ∃𝑥(𝑥 = 𝑟 ∧ ∃𝑧(𝑦 = 𝑠 ∧ (𝑧 = 𝑡 ∧ 𝜑)))) |
| 51 | 37, 50 | exlimi 2217 |
. . . . . . . . . . . . . . . . . 18
⊢
(∃𝑥∃𝑧(𝑥 = 𝑟 ∧ (𝑦 = 𝑠 ∧ (𝑧 = 𝑡 ∧ 𝜑))) → ∃𝑥(𝑥 = 𝑟 ∧ ∃𝑧(𝑦 = 𝑠 ∧ (𝑧 = 𝑡 ∧ 𝜑)))) |
| 52 | 51 | eximi 1835 |
. . . . . . . . . . . . . . . . 17
⊢
(∃𝑦∃𝑥∃𝑧(𝑥 = 𝑟 ∧ (𝑦 = 𝑠 ∧ (𝑧 = 𝑡 ∧ 𝜑))) → ∃𝑦∃𝑥(𝑥 = 𝑟 ∧ ∃𝑧(𝑦 = 𝑠 ∧ (𝑧 = 𝑡 ∧ 𝜑)))) |
| 53 | | excom 2162 |
. . . . . . . . . . . . . . . . 17
⊢
(∃𝑥∃𝑦∃𝑧(𝑥 = 𝑟 ∧ (𝑦 = 𝑠 ∧ (𝑧 = 𝑡 ∧ 𝜑))) ↔ ∃𝑦∃𝑥∃𝑧(𝑥 = 𝑟 ∧ (𝑦 = 𝑠 ∧ (𝑧 = 𝑡 ∧ 𝜑)))) |
| 54 | | excom 2162 |
. . . . . . . . . . . . . . . . 17
⊢
(∃𝑥∃𝑦(𝑥 = 𝑟 ∧ ∃𝑧(𝑦 = 𝑠 ∧ (𝑧 = 𝑡 ∧ 𝜑))) ↔ ∃𝑦∃𝑥(𝑥 = 𝑟 ∧ ∃𝑧(𝑦 = 𝑠 ∧ (𝑧 = 𝑡 ∧ 𝜑)))) |
| 55 | 52, 53, 54 | 3imtr4i 292 |
. . . . . . . . . . . . . . . 16
⊢
(∃𝑥∃𝑦∃𝑧(𝑥 = 𝑟 ∧ (𝑦 = 𝑠 ∧ (𝑧 = 𝑡 ∧ 𝜑))) → ∃𝑥∃𝑦(𝑥 = 𝑟 ∧ ∃𝑧(𝑦 = 𝑠 ∧ (𝑧 = 𝑡 ∧ 𝜑)))) |
| 56 | | nfe1 2150 |
. . . . . . . . . . . . . . . . 17
⊢
Ⅎ𝑥∃𝑥(𝑥 = 𝑟 ∧ ∃𝑦∃𝑧(𝑦 = 𝑠 ∧ (𝑧 = 𝑡 ∧ 𝜑))) |
| 57 | | 19.8a 2181 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(∃𝑧(𝑦 = 𝑠 ∧ (𝑧 = 𝑡 ∧ 𝜑)) → ∃𝑦∃𝑧(𝑦 = 𝑠 ∧ (𝑧 = 𝑡 ∧ 𝜑))) |
| 58 | 57 | anim2i 617 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑥 = 𝑟 ∧ ∃𝑧(𝑦 = 𝑠 ∧ (𝑧 = 𝑡 ∧ 𝜑))) → (𝑥 = 𝑟 ∧ ∃𝑦∃𝑧(𝑦 = 𝑠 ∧ (𝑧 = 𝑡 ∧ 𝜑)))) |
| 59 | 58 | eximi 1835 |
. . . . . . . . . . . . . . . . . . 19
⊢
(∃𝑦(𝑥 = 𝑟 ∧ ∃𝑧(𝑦 = 𝑠 ∧ (𝑧 = 𝑡 ∧ 𝜑))) → ∃𝑦(𝑥 = 𝑟 ∧ ∃𝑦∃𝑧(𝑦 = 𝑠 ∧ (𝑧 = 𝑡 ∧ 𝜑)))) |
| 60 | | biidd 262 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(∀𝑥 𝑥 = 𝑦 → ((𝑥 = 𝑟 ∧ ∃𝑦∃𝑧(𝑦 = 𝑠 ∧ (𝑧 = 𝑡 ∧ 𝜑))) ↔ (𝑥 = 𝑟 ∧ ∃𝑦∃𝑧(𝑦 = 𝑠 ∧ (𝑧 = 𝑡 ∧ 𝜑))))) |
| 61 | 60 | drex1v 2374 |
. . . . . . . . . . . . . . . . . . 19
⊢
(∀𝑥 𝑥 = 𝑦 → (∃𝑥(𝑥 = 𝑟 ∧ ∃𝑦∃𝑧(𝑦 = 𝑠 ∧ (𝑧 = 𝑡 ∧ 𝜑))) ↔ ∃𝑦(𝑥 = 𝑟 ∧ ∃𝑦∃𝑧(𝑦 = 𝑠 ∧ (𝑧 = 𝑡 ∧ 𝜑))))) |
| 62 | 59, 61 | imbitrrid 246 |
. . . . . . . . . . . . . . . . . 18
⊢
(∀𝑥 𝑥 = 𝑦 → (∃𝑦(𝑥 = 𝑟 ∧ ∃𝑧(𝑦 = 𝑠 ∧ (𝑧 = 𝑡 ∧ 𝜑))) → ∃𝑥(𝑥 = 𝑟 ∧ ∃𝑦∃𝑧(𝑦 = 𝑠 ∧ (𝑧 = 𝑡 ∧ 𝜑))))) |
| 63 | | 19.40 1886 |
. . . . . . . . . . . . . . . . . . 19
⊢
(∃𝑦(𝑥 = 𝑟 ∧ ∃𝑧(𝑦 = 𝑠 ∧ (𝑧 = 𝑡 ∧ 𝜑))) → (∃𝑦 𝑥 = 𝑟 ∧ ∃𝑦∃𝑧(𝑦 = 𝑠 ∧ (𝑧 = 𝑡 ∧ 𝜑)))) |
| 64 | | nfvd 1915 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (¬
∀𝑥 𝑥 = 𝑦 → Ⅎ𝑦 𝑥 = 𝑟) |
| 65 | 64 | 19.9d 2203 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (¬
∀𝑥 𝑥 = 𝑦 → (∃𝑦 𝑥 = 𝑟 → 𝑥 = 𝑟)) |
| 66 | 65 | anim1d 611 |
. . . . . . . . . . . . . . . . . . 19
⊢ (¬
∀𝑥 𝑥 = 𝑦 → ((∃𝑦 𝑥 = 𝑟 ∧ ∃𝑦∃𝑧(𝑦 = 𝑠 ∧ (𝑧 = 𝑡 ∧ 𝜑))) → (𝑥 = 𝑟 ∧ ∃𝑦∃𝑧(𝑦 = 𝑠 ∧ (𝑧 = 𝑡 ∧ 𝜑))))) |
| 67 | | 19.8a 2181 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑥 = 𝑟 ∧ ∃𝑦∃𝑧(𝑦 = 𝑠 ∧ (𝑧 = 𝑡 ∧ 𝜑))) → ∃𝑥(𝑥 = 𝑟 ∧ ∃𝑦∃𝑧(𝑦 = 𝑠 ∧ (𝑧 = 𝑡 ∧ 𝜑)))) |
| 68 | 63, 66, 67 | syl56 36 |
. . . . . . . . . . . . . . . . . 18
⊢ (¬
∀𝑥 𝑥 = 𝑦 → (∃𝑦(𝑥 = 𝑟 ∧ ∃𝑧(𝑦 = 𝑠 ∧ (𝑧 = 𝑡 ∧ 𝜑))) → ∃𝑥(𝑥 = 𝑟 ∧ ∃𝑦∃𝑧(𝑦 = 𝑠 ∧ (𝑧 = 𝑡 ∧ 𝜑))))) |
| 69 | 62, 68 | pm2.61i 182 |
. . . . . . . . . . . . . . . . 17
⊢
(∃𝑦(𝑥 = 𝑟 ∧ ∃𝑧(𝑦 = 𝑠 ∧ (𝑧 = 𝑡 ∧ 𝜑))) → ∃𝑥(𝑥 = 𝑟 ∧ ∃𝑦∃𝑧(𝑦 = 𝑠 ∧ (𝑧 = 𝑡 ∧ 𝜑)))) |
| 70 | 56, 69 | exlimi 2217 |
. . . . . . . . . . . . . . . 16
⊢
(∃𝑥∃𝑦(𝑥 = 𝑟 ∧ ∃𝑧(𝑦 = 𝑠 ∧ (𝑧 = 𝑡 ∧ 𝜑))) → ∃𝑥(𝑥 = 𝑟 ∧ ∃𝑦∃𝑧(𝑦 = 𝑠 ∧ (𝑧 = 𝑡 ∧ 𝜑)))) |
| 71 | | nfe1 2150 |
. . . . . . . . . . . . . . . . . . 19
⊢
Ⅎ𝑦∃𝑦(𝑦 = 𝑠 ∧ ∃𝑧(𝑧 = 𝑡 ∧ 𝜑)) |
| 72 | | 19.8a 2181 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑧 = 𝑡 ∧ 𝜑) → ∃𝑧(𝑧 = 𝑡 ∧ 𝜑)) |
| 73 | 72 | anim2i 617 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑦 = 𝑠 ∧ (𝑧 = 𝑡 ∧ 𝜑)) → (𝑦 = 𝑠 ∧ ∃𝑧(𝑧 = 𝑡 ∧ 𝜑))) |
| 74 | 73 | eximi 1835 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(∃𝑧(𝑦 = 𝑠 ∧ (𝑧 = 𝑡 ∧ 𝜑)) → ∃𝑧(𝑦 = 𝑠 ∧ ∃𝑧(𝑧 = 𝑡 ∧ 𝜑))) |
| 75 | | biidd 262 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(∀𝑦 𝑦 = 𝑧 → ((𝑦 = 𝑠 ∧ ∃𝑧(𝑧 = 𝑡 ∧ 𝜑)) ↔ (𝑦 = 𝑠 ∧ ∃𝑧(𝑧 = 𝑡 ∧ 𝜑)))) |
| 76 | 75 | drex1v 2374 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(∀𝑦 𝑦 = 𝑧 → (∃𝑦(𝑦 = 𝑠 ∧ ∃𝑧(𝑧 = 𝑡 ∧ 𝜑)) ↔ ∃𝑧(𝑦 = 𝑠 ∧ ∃𝑧(𝑧 = 𝑡 ∧ 𝜑)))) |
| 77 | 74, 76 | imbitrrid 246 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(∀𝑦 𝑦 = 𝑧 → (∃𝑧(𝑦 = 𝑠 ∧ (𝑧 = 𝑡 ∧ 𝜑)) → ∃𝑦(𝑦 = 𝑠 ∧ ∃𝑧(𝑧 = 𝑡 ∧ 𝜑)))) |
| 78 | | 19.40 1886 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(∃𝑧(𝑦 = 𝑠 ∧ (𝑧 = 𝑡 ∧ 𝜑)) → (∃𝑧 𝑦 = 𝑠 ∧ ∃𝑧(𝑧 = 𝑡 ∧ 𝜑))) |
| 79 | | nfvd 1915 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (¬
∀𝑦 𝑦 = 𝑧 → Ⅎ𝑧 𝑦 = 𝑠) |
| 80 | 79 | 19.9d 2203 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (¬
∀𝑦 𝑦 = 𝑧 → (∃𝑧 𝑦 = 𝑠 → 𝑦 = 𝑠)) |
| 81 | 80 | anim1d 611 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (¬
∀𝑦 𝑦 = 𝑧 → ((∃𝑧 𝑦 = 𝑠 ∧ ∃𝑧(𝑧 = 𝑡 ∧ 𝜑)) → (𝑦 = 𝑠 ∧ ∃𝑧(𝑧 = 𝑡 ∧ 𝜑)))) |
| 82 | | 19.8a 2181 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑦 = 𝑠 ∧ ∃𝑧(𝑧 = 𝑡 ∧ 𝜑)) → ∃𝑦(𝑦 = 𝑠 ∧ ∃𝑧(𝑧 = 𝑡 ∧ 𝜑))) |
| 83 | 78, 81, 82 | syl56 36 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (¬
∀𝑦 𝑦 = 𝑧 → (∃𝑧(𝑦 = 𝑠 ∧ (𝑧 = 𝑡 ∧ 𝜑)) → ∃𝑦(𝑦 = 𝑠 ∧ ∃𝑧(𝑧 = 𝑡 ∧ 𝜑)))) |
| 84 | 77, 83 | pm2.61i 182 |
. . . . . . . . . . . . . . . . . . 19
⊢
(∃𝑧(𝑦 = 𝑠 ∧ (𝑧 = 𝑡 ∧ 𝜑)) → ∃𝑦(𝑦 = 𝑠 ∧ ∃𝑧(𝑧 = 𝑡 ∧ 𝜑))) |
| 85 | 71, 84 | exlimi 2217 |
. . . . . . . . . . . . . . . . . 18
⊢
(∃𝑦∃𝑧(𝑦 = 𝑠 ∧ (𝑧 = 𝑡 ∧ 𝜑)) → ∃𝑦(𝑦 = 𝑠 ∧ ∃𝑧(𝑧 = 𝑡 ∧ 𝜑))) |
| 86 | 85 | anim2i 617 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑥 = 𝑟 ∧ ∃𝑦∃𝑧(𝑦 = 𝑠 ∧ (𝑧 = 𝑡 ∧ 𝜑))) → (𝑥 = 𝑟 ∧ ∃𝑦(𝑦 = 𝑠 ∧ ∃𝑧(𝑧 = 𝑡 ∧ 𝜑)))) |
| 87 | 86 | eximi 1835 |
. . . . . . . . . . . . . . . 16
⊢
(∃𝑥(𝑥 = 𝑟 ∧ ∃𝑦∃𝑧(𝑦 = 𝑠 ∧ (𝑧 = 𝑡 ∧ 𝜑))) → ∃𝑥(𝑥 = 𝑟 ∧ ∃𝑦(𝑦 = 𝑠 ∧ ∃𝑧(𝑧 = 𝑡 ∧ 𝜑)))) |
| 88 | 55, 70, 87 | 3syl 18 |
. . . . . . . . . . . . . . 15
⊢
(∃𝑥∃𝑦∃𝑧(𝑥 = 𝑟 ∧ (𝑦 = 𝑠 ∧ (𝑧 = 𝑡 ∧ 𝜑))) → ∃𝑥(𝑥 = 𝑟 ∧ ∃𝑦(𝑦 = 𝑠 ∧ ∃𝑧(𝑧 = 𝑡 ∧ 𝜑)))) |
| 89 | 36, 88 | sylbi 217 |
. . . . . . . . . . . . . 14
⊢
(∃𝑥∃𝑦∃𝑧(〈〈𝑥, 𝑦〉, 𝑧〉 = 〈〈𝑟, 𝑠〉, 𝑡〉 ∧ 𝜑) → ∃𝑥(𝑥 = 𝑟 ∧ ∃𝑦(𝑦 = 𝑠 ∧ ∃𝑧(𝑧 = 𝑡 ∧ 𝜑)))) |
| 90 | 29, 89 | syl11 33 |
. . . . . . . . . . . . 13
⊢
(〈〈𝑥,
𝑦〉, 𝑧〉 = 〈〈𝑟, 𝑠〉, 𝑡〉 → (∃𝑥∃𝑦∃𝑧(〈〈𝑥, 𝑦〉, 𝑧〉 = 〈〈𝑟, 𝑠〉, 𝑡〉 ∧ 𝜑) → 𝜑)) |
| 91 | | eqeq1 2741 |
. . . . . . . . . . . . . . 15
⊢ (𝑤 = 〈〈𝑟, 𝑠〉, 𝑡〉 → (𝑤 = 〈〈𝑥, 𝑦〉, 𝑧〉 ↔ 〈〈𝑟, 𝑠〉, 𝑡〉 = 〈〈𝑥, 𝑦〉, 𝑧〉)) |
| 92 | | eqcom 2744 |
. . . . . . . . . . . . . . 15
⊢
(〈〈𝑟,
𝑠〉, 𝑡〉 = 〈〈𝑥, 𝑦〉, 𝑧〉 ↔ 〈〈𝑥, 𝑦〉, 𝑧〉 = 〈〈𝑟, 𝑠〉, 𝑡〉) |
| 93 | 91, 92 | bitrdi 287 |
. . . . . . . . . . . . . 14
⊢ (𝑤 = 〈〈𝑟, 𝑠〉, 𝑡〉 → (𝑤 = 〈〈𝑥, 𝑦〉, 𝑧〉 ↔ 〈〈𝑥, 𝑦〉, 𝑧〉 = 〈〈𝑟, 𝑠〉, 𝑡〉)) |
| 94 | 93 | anbi1d 631 |
. . . . . . . . . . . . . . . 16
⊢ (𝑤 = 〈〈𝑟, 𝑠〉, 𝑡〉 → ((𝑤 = 〈〈𝑥, 𝑦〉, 𝑧〉 ∧ 𝜑) ↔ (〈〈𝑥, 𝑦〉, 𝑧〉 = 〈〈𝑟, 𝑠〉, 𝑡〉 ∧ 𝜑))) |
| 95 | 94 | 3exbidv 1925 |
. . . . . . . . . . . . . . 15
⊢ (𝑤 = 〈〈𝑟, 𝑠〉, 𝑡〉 → (∃𝑥∃𝑦∃𝑧(𝑤 = 〈〈𝑥, 𝑦〉, 𝑧〉 ∧ 𝜑) ↔ ∃𝑥∃𝑦∃𝑧(〈〈𝑥, 𝑦〉, 𝑧〉 = 〈〈𝑟, 𝑠〉, 𝑡〉 ∧ 𝜑))) |
| 96 | 95 | imbi1d 341 |
. . . . . . . . . . . . . 14
⊢ (𝑤 = 〈〈𝑟, 𝑠〉, 𝑡〉 → ((∃𝑥∃𝑦∃𝑧(𝑤 = 〈〈𝑥, 𝑦〉, 𝑧〉 ∧ 𝜑) → 𝜑) ↔ (∃𝑥∃𝑦∃𝑧(〈〈𝑥, 𝑦〉, 𝑧〉 = 〈〈𝑟, 𝑠〉, 𝑡〉 ∧ 𝜑) → 𝜑))) |
| 97 | 93, 96 | imbi12d 344 |
. . . . . . . . . . . . 13
⊢ (𝑤 = 〈〈𝑟, 𝑠〉, 𝑡〉 → ((𝑤 = 〈〈𝑥, 𝑦〉, 𝑧〉 → (∃𝑥∃𝑦∃𝑧(𝑤 = 〈〈𝑥, 𝑦〉, 𝑧〉 ∧ 𝜑) → 𝜑)) ↔ (〈〈𝑥, 𝑦〉, 𝑧〉 = 〈〈𝑟, 𝑠〉, 𝑡〉 → (∃𝑥∃𝑦∃𝑧(〈〈𝑥, 𝑦〉, 𝑧〉 = 〈〈𝑟, 𝑠〉, 𝑡〉 ∧ 𝜑) → 𝜑)))) |
| 98 | 90, 97 | mpbiri 258 |
. . . . . . . . . . . 12
⊢ (𝑤 = 〈〈𝑟, 𝑠〉, 𝑡〉 → (𝑤 = 〈〈𝑥, 𝑦〉, 𝑧〉 → (∃𝑥∃𝑦∃𝑧(𝑤 = 〈〈𝑥, 𝑦〉, 𝑧〉 ∧ 𝜑) → 𝜑))) |
| 99 | 15, 98 | biimtrdi 253 |
. . . . . . . . . . 11
⊢ (𝑎 = 〈𝑟, 𝑠〉 → (𝑤 = 〈𝑎, 𝑡〉 → (𝑤 = 〈〈𝑥, 𝑦〉, 𝑧〉 → (∃𝑥∃𝑦∃𝑧(𝑤 = 〈〈𝑥, 𝑦〉, 𝑧〉 ∧ 𝜑) → 𝜑)))) |
| 100 | 99 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝑎 = 〈𝑟, 𝑠〉 ∧ 〈𝑟, 𝑠〉 = 〈𝑥, 𝑦〉) → (𝑤 = 〈𝑎, 𝑡〉 → (𝑤 = 〈〈𝑥, 𝑦〉, 𝑧〉 → (∃𝑥∃𝑦∃𝑧(𝑤 = 〈〈𝑥, 𝑦〉, 𝑧〉 ∧ 𝜑) → 𝜑)))) |
| 101 | 100 | exlimivv 1932 |
. . . . . . . . 9
⊢
(∃𝑟∃𝑠(𝑎 = 〈𝑟, 𝑠〉 ∧ 〈𝑟, 𝑠〉 = 〈𝑥, 𝑦〉) → (𝑤 = 〈𝑎, 𝑡〉 → (𝑤 = 〈〈𝑥, 𝑦〉, 𝑧〉 → (∃𝑥∃𝑦∃𝑧(𝑤 = 〈〈𝑥, 𝑦〉, 𝑧〉 ∧ 𝜑) → 𝜑)))) |
| 102 | 13, 101 | sylbi 217 |
. . . . . . . 8
⊢ (𝑎 = 〈𝑥, 𝑦〉 → (𝑤 = 〈𝑎, 𝑡〉 → (𝑤 = 〈〈𝑥, 𝑦〉, 𝑧〉 → (∃𝑥∃𝑦∃𝑧(𝑤 = 〈〈𝑥, 𝑦〉, 𝑧〉 ∧ 𝜑) → 𝜑)))) |
| 103 | 102 | com3l 89 |
. . . . . . 7
⊢ (𝑤 = 〈𝑎, 𝑡〉 → (𝑤 = 〈〈𝑥, 𝑦〉, 𝑧〉 → (𝑎 = 〈𝑥, 𝑦〉 → (∃𝑥∃𝑦∃𝑧(𝑤 = 〈〈𝑥, 𝑦〉, 𝑧〉 ∧ 𝜑) → 𝜑)))) |
| 104 | 10, 103 | mpdd 43 |
. . . . . 6
⊢ (𝑤 = 〈𝑎, 𝑡〉 → (𝑤 = 〈〈𝑥, 𝑦〉, 𝑧〉 → (∃𝑥∃𝑦∃𝑧(𝑤 = 〈〈𝑥, 𝑦〉, 𝑧〉 ∧ 𝜑) → 𝜑))) |
| 105 | 104 | adantr 480 |
. . . . 5
⊢ ((𝑤 = 〈𝑎, 𝑡〉 ∧ 〈𝑎, 𝑡〉 = 〈〈𝑥, 𝑦〉, 𝑧〉) → (𝑤 = 〈〈𝑥, 𝑦〉, 𝑧〉 → (∃𝑥∃𝑦∃𝑧(𝑤 = 〈〈𝑥, 𝑦〉, 𝑧〉 ∧ 𝜑) → 𝜑))) |
| 106 | 105 | exlimivv 1932 |
. . . 4
⊢
(∃𝑎∃𝑡(𝑤 = 〈𝑎, 𝑡〉 ∧ 〈𝑎, 𝑡〉 = 〈〈𝑥, 𝑦〉, 𝑧〉) → (𝑤 = 〈〈𝑥, 𝑦〉, 𝑧〉 → (∃𝑥∃𝑦∃𝑧(𝑤 = 〈〈𝑥, 𝑦〉, 𝑧〉 ∧ 𝜑) → 𝜑))) |
| 107 | 5, 106 | mpcom 38 |
. . 3
⊢ (𝑤 = 〈〈𝑥, 𝑦〉, 𝑧〉 → (∃𝑥∃𝑦∃𝑧(𝑤 = 〈〈𝑥, 𝑦〉, 𝑧〉 ∧ 𝜑) → 𝜑)) |
| 108 | | 19.8a 2181 |
. . . . 5
⊢ ((𝑤 = 〈〈𝑥, 𝑦〉, 𝑧〉 ∧ 𝜑) → ∃𝑧(𝑤 = 〈〈𝑥, 𝑦〉, 𝑧〉 ∧ 𝜑)) |
| 109 | | 19.8a 2181 |
. . . . 5
⊢
(∃𝑧(𝑤 = 〈〈𝑥, 𝑦〉, 𝑧〉 ∧ 𝜑) → ∃𝑦∃𝑧(𝑤 = 〈〈𝑥, 𝑦〉, 𝑧〉 ∧ 𝜑)) |
| 110 | | 19.8a 2181 |
. . . . 5
⊢
(∃𝑦∃𝑧(𝑤 = 〈〈𝑥, 𝑦〉, 𝑧〉 ∧ 𝜑) → ∃𝑥∃𝑦∃𝑧(𝑤 = 〈〈𝑥, 𝑦〉, 𝑧〉 ∧ 𝜑)) |
| 111 | 108, 109,
110 | 3syl 18 |
. . . 4
⊢ ((𝑤 = 〈〈𝑥, 𝑦〉, 𝑧〉 ∧ 𝜑) → ∃𝑥∃𝑦∃𝑧(𝑤 = 〈〈𝑥, 𝑦〉, 𝑧〉 ∧ 𝜑)) |
| 112 | 111 | ex 412 |
. . 3
⊢ (𝑤 = 〈〈𝑥, 𝑦〉, 𝑧〉 → (𝜑 → ∃𝑥∃𝑦∃𝑧(𝑤 = 〈〈𝑥, 𝑦〉, 𝑧〉 ∧ 𝜑))) |
| 113 | 107, 112 | impbid 212 |
. 2
⊢ (𝑤 = 〈〈𝑥, 𝑦〉, 𝑧〉 → (∃𝑥∃𝑦∃𝑧(𝑤 = 〈〈𝑥, 𝑦〉, 𝑧〉 ∧ 𝜑) ↔ 𝜑)) |
| 114 | | df-oprab 7435 |
. 2
⊢
{〈〈𝑥,
𝑦〉, 𝑧〉 ∣ 𝜑} = {𝑤 ∣ ∃𝑥∃𝑦∃𝑧(𝑤 = 〈〈𝑥, 𝑦〉, 𝑧〉 ∧ 𝜑)} |
| 115 | 1, 113, 114 | elab2 3682 |
1
⊢
(〈〈𝑥,
𝑦〉, 𝑧〉 ∈ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} ↔ 𝜑) |