MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oprabidw Structured version   Visualization version   GIF version

Theorem oprabidw 7286
Description: The law of concretion. Special case of Theorem 9.5 of [Quine] p. 61. Version of oprabid 7287 with a disjoint variable condition, which does not require ax-13 2372. (Contributed by Mario Carneiro, 20-Mar-2013.) (Revised by Gino Giotto, 26-Jan-2024.)
Assertion
Ref Expression
oprabidw (⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∈ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} ↔ 𝜑)
Distinct variable group:   𝑥,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)

Proof of Theorem oprabidw
Dummy variables 𝑎 𝑟 𝑠 𝑡 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 opex 5373 . 2 ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∈ V
2 opex 5373 . . . . . 6 𝑥, 𝑦⟩ ∈ V
3 vex 3426 . . . . . 6 𝑧 ∈ V
42, 3eqvinop 5395 . . . . 5 (𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ↔ ∃𝑎𝑡(𝑤 = ⟨𝑎, 𝑡⟩ ∧ ⟨𝑎, 𝑡⟩ = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩))
54biimpi 215 . . . 4 (𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ → ∃𝑎𝑡(𝑤 = ⟨𝑎, 𝑡⟩ ∧ ⟨𝑎, 𝑡⟩ = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩))
6 eqeq1 2742 . . . . . . . 8 (𝑤 = ⟨𝑎, 𝑡⟩ → (𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ↔ ⟨𝑎, 𝑡⟩ = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩))
7 vex 3426 . . . . . . . . 9 𝑎 ∈ V
8 vex 3426 . . . . . . . . 9 𝑡 ∈ V
97, 8opth1 5384 . . . . . . . 8 (⟨𝑎, 𝑡⟩ = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ → 𝑎 = ⟨𝑥, 𝑦⟩)
106, 9syl6bi 252 . . . . . . 7 (𝑤 = ⟨𝑎, 𝑡⟩ → (𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ → 𝑎 = ⟨𝑥, 𝑦⟩))
11 vex 3426 . . . . . . . . . 10 𝑥 ∈ V
12 vex 3426 . . . . . . . . . 10 𝑦 ∈ V
1311, 12eqvinop 5395 . . . . . . . . 9 (𝑎 = ⟨𝑥, 𝑦⟩ ↔ ∃𝑟𝑠(𝑎 = ⟨𝑟, 𝑠⟩ ∧ ⟨𝑟, 𝑠⟩ = ⟨𝑥, 𝑦⟩))
14 opeq1 4801 . . . . . . . . . . . . 13 (𝑎 = ⟨𝑟, 𝑠⟩ → ⟨𝑎, 𝑡⟩ = ⟨⟨𝑟, 𝑠⟩, 𝑡⟩)
1514eqeq2d 2749 . . . . . . . . . . . 12 (𝑎 = ⟨𝑟, 𝑠⟩ → (𝑤 = ⟨𝑎, 𝑡⟩ ↔ 𝑤 = ⟨⟨𝑟, 𝑠⟩, 𝑡⟩))
1611, 12, 3otth2 5392 . . . . . . . . . . . . . . 15 (⟨⟨𝑥, 𝑦⟩, 𝑧⟩ = ⟨⟨𝑟, 𝑠⟩, 𝑡⟩ ↔ (𝑥 = 𝑟𝑦 = 𝑠𝑧 = 𝑡))
17 euequ 2597 . . . . . . . . . . . . . . . . . 18 ∃!𝑥 𝑥 = 𝑟
18 eupick 2635 . . . . . . . . . . . . . . . . . 18 ((∃!𝑥 𝑥 = 𝑟 ∧ ∃𝑥(𝑥 = 𝑟 ∧ ∃𝑦(𝑦 = 𝑠 ∧ ∃𝑧(𝑧 = 𝑡𝜑)))) → (𝑥 = 𝑟 → ∃𝑦(𝑦 = 𝑠 ∧ ∃𝑧(𝑧 = 𝑡𝜑))))
1917, 18mpan 686 . . . . . . . . . . . . . . . . 17 (∃𝑥(𝑥 = 𝑟 ∧ ∃𝑦(𝑦 = 𝑠 ∧ ∃𝑧(𝑧 = 𝑡𝜑))) → (𝑥 = 𝑟 → ∃𝑦(𝑦 = 𝑠 ∧ ∃𝑧(𝑧 = 𝑡𝜑))))
20 euequ 2597 . . . . . . . . . . . . . . . . . . 19 ∃!𝑦 𝑦 = 𝑠
21 eupick 2635 . . . . . . . . . . . . . . . . . . 19 ((∃!𝑦 𝑦 = 𝑠 ∧ ∃𝑦(𝑦 = 𝑠 ∧ ∃𝑧(𝑧 = 𝑡𝜑))) → (𝑦 = 𝑠 → ∃𝑧(𝑧 = 𝑡𝜑)))
2220, 21mpan 686 . . . . . . . . . . . . . . . . . 18 (∃𝑦(𝑦 = 𝑠 ∧ ∃𝑧(𝑧 = 𝑡𝜑)) → (𝑦 = 𝑠 → ∃𝑧(𝑧 = 𝑡𝜑)))
23 euequ 2597 . . . . . . . . . . . . . . . . . . 19 ∃!𝑧 𝑧 = 𝑡
24 eupick 2635 . . . . . . . . . . . . . . . . . . 19 ((∃!𝑧 𝑧 = 𝑡 ∧ ∃𝑧(𝑧 = 𝑡𝜑)) → (𝑧 = 𝑡𝜑))
2523, 24mpan 686 . . . . . . . . . . . . . . . . . 18 (∃𝑧(𝑧 = 𝑡𝜑) → (𝑧 = 𝑡𝜑))
2622, 25syl6 35 . . . . . . . . . . . . . . . . 17 (∃𝑦(𝑦 = 𝑠 ∧ ∃𝑧(𝑧 = 𝑡𝜑)) → (𝑦 = 𝑠 → (𝑧 = 𝑡𝜑)))
2719, 26syl6 35 . . . . . . . . . . . . . . . 16 (∃𝑥(𝑥 = 𝑟 ∧ ∃𝑦(𝑦 = 𝑠 ∧ ∃𝑧(𝑧 = 𝑡𝜑))) → (𝑥 = 𝑟 → (𝑦 = 𝑠 → (𝑧 = 𝑡𝜑))))
28273impd 1346 . . . . . . . . . . . . . . 15 (∃𝑥(𝑥 = 𝑟 ∧ ∃𝑦(𝑦 = 𝑠 ∧ ∃𝑧(𝑧 = 𝑡𝜑))) → ((𝑥 = 𝑟𝑦 = 𝑠𝑧 = 𝑡) → 𝜑))
2916, 28syl5bi 241 . . . . . . . . . . . . . 14 (∃𝑥(𝑥 = 𝑟 ∧ ∃𝑦(𝑦 = 𝑠 ∧ ∃𝑧(𝑧 = 𝑡𝜑))) → (⟨⟨𝑥, 𝑦⟩, 𝑧⟩ = ⟨⟨𝑟, 𝑠⟩, 𝑡⟩ → 𝜑))
30 df-3an 1087 . . . . . . . . . . . . . . . . . . 19 ((𝑥 = 𝑟𝑦 = 𝑠𝑧 = 𝑡) ↔ ((𝑥 = 𝑟𝑦 = 𝑠) ∧ 𝑧 = 𝑡))
3116, 30bitri 274 . . . . . . . . . . . . . . . . . 18 (⟨⟨𝑥, 𝑦⟩, 𝑧⟩ = ⟨⟨𝑟, 𝑠⟩, 𝑡⟩ ↔ ((𝑥 = 𝑟𝑦 = 𝑠) ∧ 𝑧 = 𝑡))
3231anbi1i 623 . . . . . . . . . . . . . . . . 17 ((⟨⟨𝑥, 𝑦⟩, 𝑧⟩ = ⟨⟨𝑟, 𝑠⟩, 𝑡⟩ ∧ 𝜑) ↔ (((𝑥 = 𝑟𝑦 = 𝑠) ∧ 𝑧 = 𝑡) ∧ 𝜑))
33 anass 468 . . . . . . . . . . . . . . . . 17 ((((𝑥 = 𝑟𝑦 = 𝑠) ∧ 𝑧 = 𝑡) ∧ 𝜑) ↔ ((𝑥 = 𝑟𝑦 = 𝑠) ∧ (𝑧 = 𝑡𝜑)))
34 anass 468 . . . . . . . . . . . . . . . . 17 (((𝑥 = 𝑟𝑦 = 𝑠) ∧ (𝑧 = 𝑡𝜑)) ↔ (𝑥 = 𝑟 ∧ (𝑦 = 𝑠 ∧ (𝑧 = 𝑡𝜑))))
3532, 33, 343bitri 296 . . . . . . . . . . . . . . . 16 ((⟨⟨𝑥, 𝑦⟩, 𝑧⟩ = ⟨⟨𝑟, 𝑠⟩, 𝑡⟩ ∧ 𝜑) ↔ (𝑥 = 𝑟 ∧ (𝑦 = 𝑠 ∧ (𝑧 = 𝑡𝜑))))
36353exbii 1853 . . . . . . . . . . . . . . 15 (∃𝑥𝑦𝑧(⟨⟨𝑥, 𝑦⟩, 𝑧⟩ = ⟨⟨𝑟, 𝑠⟩, 𝑡⟩ ∧ 𝜑) ↔ ∃𝑥𝑦𝑧(𝑥 = 𝑟 ∧ (𝑦 = 𝑠 ∧ (𝑧 = 𝑡𝜑))))
37 nfe1 2149 . . . . . . . . . . . . . . . . . . 19 𝑥𝑥(𝑥 = 𝑟 ∧ ∃𝑧(𝑦 = 𝑠 ∧ (𝑧 = 𝑡𝜑)))
38 19.8a 2176 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑦 = 𝑠 ∧ (𝑧 = 𝑡𝜑)) → ∃𝑧(𝑦 = 𝑠 ∧ (𝑧 = 𝑡𝜑)))
3938anim2i 616 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑥 = 𝑟 ∧ (𝑦 = 𝑠 ∧ (𝑧 = 𝑡𝜑))) → (𝑥 = 𝑟 ∧ ∃𝑧(𝑦 = 𝑠 ∧ (𝑧 = 𝑡𝜑))))
4039eximi 1838 . . . . . . . . . . . . . . . . . . . . 21 (∃𝑧(𝑥 = 𝑟 ∧ (𝑦 = 𝑠 ∧ (𝑧 = 𝑡𝜑))) → ∃𝑧(𝑥 = 𝑟 ∧ ∃𝑧(𝑦 = 𝑠 ∧ (𝑧 = 𝑡𝜑))))
41 biidd 261 . . . . . . . . . . . . . . . . . . . . . 22 (∀𝑥 𝑥 = 𝑧 → ((𝑥 = 𝑟 ∧ ∃𝑧(𝑦 = 𝑠 ∧ (𝑧 = 𝑡𝜑))) ↔ (𝑥 = 𝑟 ∧ ∃𝑧(𝑦 = 𝑠 ∧ (𝑧 = 𝑡𝜑)))))
4241drex1v 2369 . . . . . . . . . . . . . . . . . . . . 21 (∀𝑥 𝑥 = 𝑧 → (∃𝑥(𝑥 = 𝑟 ∧ ∃𝑧(𝑦 = 𝑠 ∧ (𝑧 = 𝑡𝜑))) ↔ ∃𝑧(𝑥 = 𝑟 ∧ ∃𝑧(𝑦 = 𝑠 ∧ (𝑧 = 𝑡𝜑)))))
4340, 42syl5ibr 245 . . . . . . . . . . . . . . . . . . . 20 (∀𝑥 𝑥 = 𝑧 → (∃𝑧(𝑥 = 𝑟 ∧ (𝑦 = 𝑠 ∧ (𝑧 = 𝑡𝜑))) → ∃𝑥(𝑥 = 𝑟 ∧ ∃𝑧(𝑦 = 𝑠 ∧ (𝑧 = 𝑡𝜑)))))
44 19.40 1890 . . . . . . . . . . . . . . . . . . . . 21 (∃𝑧(𝑥 = 𝑟 ∧ (𝑦 = 𝑠 ∧ (𝑧 = 𝑡𝜑))) → (∃𝑧 𝑥 = 𝑟 ∧ ∃𝑧(𝑦 = 𝑠 ∧ (𝑧 = 𝑡𝜑))))
45 nfvd 1919 . . . . . . . . . . . . . . . . . . . . . . 23 (¬ ∀𝑥 𝑥 = 𝑧 → Ⅎ𝑧 𝑥 = 𝑟)
464519.9d 2199 . . . . . . . . . . . . . . . . . . . . . 22 (¬ ∀𝑥 𝑥 = 𝑧 → (∃𝑧 𝑥 = 𝑟𝑥 = 𝑟))
4746anim1d 610 . . . . . . . . . . . . . . . . . . . . 21 (¬ ∀𝑥 𝑥 = 𝑧 → ((∃𝑧 𝑥 = 𝑟 ∧ ∃𝑧(𝑦 = 𝑠 ∧ (𝑧 = 𝑡𝜑))) → (𝑥 = 𝑟 ∧ ∃𝑧(𝑦 = 𝑠 ∧ (𝑧 = 𝑡𝜑)))))
48 19.8a 2176 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥 = 𝑟 ∧ ∃𝑧(𝑦 = 𝑠 ∧ (𝑧 = 𝑡𝜑))) → ∃𝑥(𝑥 = 𝑟 ∧ ∃𝑧(𝑦 = 𝑠 ∧ (𝑧 = 𝑡𝜑))))
4944, 47, 48syl56 36 . . . . . . . . . . . . . . . . . . . 20 (¬ ∀𝑥 𝑥 = 𝑧 → (∃𝑧(𝑥 = 𝑟 ∧ (𝑦 = 𝑠 ∧ (𝑧 = 𝑡𝜑))) → ∃𝑥(𝑥 = 𝑟 ∧ ∃𝑧(𝑦 = 𝑠 ∧ (𝑧 = 𝑡𝜑)))))
5043, 49pm2.61i 182 . . . . . . . . . . . . . . . . . . 19 (∃𝑧(𝑥 = 𝑟 ∧ (𝑦 = 𝑠 ∧ (𝑧 = 𝑡𝜑))) → ∃𝑥(𝑥 = 𝑟 ∧ ∃𝑧(𝑦 = 𝑠 ∧ (𝑧 = 𝑡𝜑))))
5137, 50exlimi 2213 . . . . . . . . . . . . . . . . . 18 (∃𝑥𝑧(𝑥 = 𝑟 ∧ (𝑦 = 𝑠 ∧ (𝑧 = 𝑡𝜑))) → ∃𝑥(𝑥 = 𝑟 ∧ ∃𝑧(𝑦 = 𝑠 ∧ (𝑧 = 𝑡𝜑))))
5251eximi 1838 . . . . . . . . . . . . . . . . 17 (∃𝑦𝑥𝑧(𝑥 = 𝑟 ∧ (𝑦 = 𝑠 ∧ (𝑧 = 𝑡𝜑))) → ∃𝑦𝑥(𝑥 = 𝑟 ∧ ∃𝑧(𝑦 = 𝑠 ∧ (𝑧 = 𝑡𝜑))))
53 excom 2164 . . . . . . . . . . . . . . . . 17 (∃𝑥𝑦𝑧(𝑥 = 𝑟 ∧ (𝑦 = 𝑠 ∧ (𝑧 = 𝑡𝜑))) ↔ ∃𝑦𝑥𝑧(𝑥 = 𝑟 ∧ (𝑦 = 𝑠 ∧ (𝑧 = 𝑡𝜑))))
54 excom 2164 . . . . . . . . . . . . . . . . 17 (∃𝑥𝑦(𝑥 = 𝑟 ∧ ∃𝑧(𝑦 = 𝑠 ∧ (𝑧 = 𝑡𝜑))) ↔ ∃𝑦𝑥(𝑥 = 𝑟 ∧ ∃𝑧(𝑦 = 𝑠 ∧ (𝑧 = 𝑡𝜑))))
5552, 53, 543imtr4i 291 . . . . . . . . . . . . . . . 16 (∃𝑥𝑦𝑧(𝑥 = 𝑟 ∧ (𝑦 = 𝑠 ∧ (𝑧 = 𝑡𝜑))) → ∃𝑥𝑦(𝑥 = 𝑟 ∧ ∃𝑧(𝑦 = 𝑠 ∧ (𝑧 = 𝑡𝜑))))
56 nfe1 2149 . . . . . . . . . . . . . . . . 17 𝑥𝑥(𝑥 = 𝑟 ∧ ∃𝑦𝑧(𝑦 = 𝑠 ∧ (𝑧 = 𝑡𝜑)))
57 19.8a 2176 . . . . . . . . . . . . . . . . . . . . 21 (∃𝑧(𝑦 = 𝑠 ∧ (𝑧 = 𝑡𝜑)) → ∃𝑦𝑧(𝑦 = 𝑠 ∧ (𝑧 = 𝑡𝜑)))
5857anim2i 616 . . . . . . . . . . . . . . . . . . . 20 ((𝑥 = 𝑟 ∧ ∃𝑧(𝑦 = 𝑠 ∧ (𝑧 = 𝑡𝜑))) → (𝑥 = 𝑟 ∧ ∃𝑦𝑧(𝑦 = 𝑠 ∧ (𝑧 = 𝑡𝜑))))
5958eximi 1838 . . . . . . . . . . . . . . . . . . 19 (∃𝑦(𝑥 = 𝑟 ∧ ∃𝑧(𝑦 = 𝑠 ∧ (𝑧 = 𝑡𝜑))) → ∃𝑦(𝑥 = 𝑟 ∧ ∃𝑦𝑧(𝑦 = 𝑠 ∧ (𝑧 = 𝑡𝜑))))
60 biidd 261 . . . . . . . . . . . . . . . . . . . 20 (∀𝑥 𝑥 = 𝑦 → ((𝑥 = 𝑟 ∧ ∃𝑦𝑧(𝑦 = 𝑠 ∧ (𝑧 = 𝑡𝜑))) ↔ (𝑥 = 𝑟 ∧ ∃𝑦𝑧(𝑦 = 𝑠 ∧ (𝑧 = 𝑡𝜑)))))
6160drex1v 2369 . . . . . . . . . . . . . . . . . . 19 (∀𝑥 𝑥 = 𝑦 → (∃𝑥(𝑥 = 𝑟 ∧ ∃𝑦𝑧(𝑦 = 𝑠 ∧ (𝑧 = 𝑡𝜑))) ↔ ∃𝑦(𝑥 = 𝑟 ∧ ∃𝑦𝑧(𝑦 = 𝑠 ∧ (𝑧 = 𝑡𝜑)))))
6259, 61syl5ibr 245 . . . . . . . . . . . . . . . . . 18 (∀𝑥 𝑥 = 𝑦 → (∃𝑦(𝑥 = 𝑟 ∧ ∃𝑧(𝑦 = 𝑠 ∧ (𝑧 = 𝑡𝜑))) → ∃𝑥(𝑥 = 𝑟 ∧ ∃𝑦𝑧(𝑦 = 𝑠 ∧ (𝑧 = 𝑡𝜑)))))
63 19.40 1890 . . . . . . . . . . . . . . . . . . 19 (∃𝑦(𝑥 = 𝑟 ∧ ∃𝑧(𝑦 = 𝑠 ∧ (𝑧 = 𝑡𝜑))) → (∃𝑦 𝑥 = 𝑟 ∧ ∃𝑦𝑧(𝑦 = 𝑠 ∧ (𝑧 = 𝑡𝜑))))
64 nfvd 1919 . . . . . . . . . . . . . . . . . . . . 21 (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑦 𝑥 = 𝑟)
656419.9d 2199 . . . . . . . . . . . . . . . . . . . 20 (¬ ∀𝑥 𝑥 = 𝑦 → (∃𝑦 𝑥 = 𝑟𝑥 = 𝑟))
6665anim1d 610 . . . . . . . . . . . . . . . . . . 19 (¬ ∀𝑥 𝑥 = 𝑦 → ((∃𝑦 𝑥 = 𝑟 ∧ ∃𝑦𝑧(𝑦 = 𝑠 ∧ (𝑧 = 𝑡𝜑))) → (𝑥 = 𝑟 ∧ ∃𝑦𝑧(𝑦 = 𝑠 ∧ (𝑧 = 𝑡𝜑)))))
67 19.8a 2176 . . . . . . . . . . . . . . . . . . 19 ((𝑥 = 𝑟 ∧ ∃𝑦𝑧(𝑦 = 𝑠 ∧ (𝑧 = 𝑡𝜑))) → ∃𝑥(𝑥 = 𝑟 ∧ ∃𝑦𝑧(𝑦 = 𝑠 ∧ (𝑧 = 𝑡𝜑))))
6863, 66, 67syl56 36 . . . . . . . . . . . . . . . . . 18 (¬ ∀𝑥 𝑥 = 𝑦 → (∃𝑦(𝑥 = 𝑟 ∧ ∃𝑧(𝑦 = 𝑠 ∧ (𝑧 = 𝑡𝜑))) → ∃𝑥(𝑥 = 𝑟 ∧ ∃𝑦𝑧(𝑦 = 𝑠 ∧ (𝑧 = 𝑡𝜑)))))
6962, 68pm2.61i 182 . . . . . . . . . . . . . . . . 17 (∃𝑦(𝑥 = 𝑟 ∧ ∃𝑧(𝑦 = 𝑠 ∧ (𝑧 = 𝑡𝜑))) → ∃𝑥(𝑥 = 𝑟 ∧ ∃𝑦𝑧(𝑦 = 𝑠 ∧ (𝑧 = 𝑡𝜑))))
7056, 69exlimi 2213 . . . . . . . . . . . . . . . 16 (∃𝑥𝑦(𝑥 = 𝑟 ∧ ∃𝑧(𝑦 = 𝑠 ∧ (𝑧 = 𝑡𝜑))) → ∃𝑥(𝑥 = 𝑟 ∧ ∃𝑦𝑧(𝑦 = 𝑠 ∧ (𝑧 = 𝑡𝜑))))
71 nfe1 2149 . . . . . . . . . . . . . . . . . . 19 𝑦𝑦(𝑦 = 𝑠 ∧ ∃𝑧(𝑧 = 𝑡𝜑))
72 19.8a 2176 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑧 = 𝑡𝜑) → ∃𝑧(𝑧 = 𝑡𝜑))
7372anim2i 616 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑦 = 𝑠 ∧ (𝑧 = 𝑡𝜑)) → (𝑦 = 𝑠 ∧ ∃𝑧(𝑧 = 𝑡𝜑)))
7473eximi 1838 . . . . . . . . . . . . . . . . . . . . 21 (∃𝑧(𝑦 = 𝑠 ∧ (𝑧 = 𝑡𝜑)) → ∃𝑧(𝑦 = 𝑠 ∧ ∃𝑧(𝑧 = 𝑡𝜑)))
75 biidd 261 . . . . . . . . . . . . . . . . . . . . . 22 (∀𝑦 𝑦 = 𝑧 → ((𝑦 = 𝑠 ∧ ∃𝑧(𝑧 = 𝑡𝜑)) ↔ (𝑦 = 𝑠 ∧ ∃𝑧(𝑧 = 𝑡𝜑))))
7675drex1v 2369 . . . . . . . . . . . . . . . . . . . . 21 (∀𝑦 𝑦 = 𝑧 → (∃𝑦(𝑦 = 𝑠 ∧ ∃𝑧(𝑧 = 𝑡𝜑)) ↔ ∃𝑧(𝑦 = 𝑠 ∧ ∃𝑧(𝑧 = 𝑡𝜑))))
7774, 76syl5ibr 245 . . . . . . . . . . . . . . . . . . . 20 (∀𝑦 𝑦 = 𝑧 → (∃𝑧(𝑦 = 𝑠 ∧ (𝑧 = 𝑡𝜑)) → ∃𝑦(𝑦 = 𝑠 ∧ ∃𝑧(𝑧 = 𝑡𝜑))))
78 19.40 1890 . . . . . . . . . . . . . . . . . . . . 21 (∃𝑧(𝑦 = 𝑠 ∧ (𝑧 = 𝑡𝜑)) → (∃𝑧 𝑦 = 𝑠 ∧ ∃𝑧(𝑧 = 𝑡𝜑)))
79 nfvd 1919 . . . . . . . . . . . . . . . . . . . . . . 23 (¬ ∀𝑦 𝑦 = 𝑧 → Ⅎ𝑧 𝑦 = 𝑠)
807919.9d 2199 . . . . . . . . . . . . . . . . . . . . . 22 (¬ ∀𝑦 𝑦 = 𝑧 → (∃𝑧 𝑦 = 𝑠𝑦 = 𝑠))
8180anim1d 610 . . . . . . . . . . . . . . . . . . . . 21 (¬ ∀𝑦 𝑦 = 𝑧 → ((∃𝑧 𝑦 = 𝑠 ∧ ∃𝑧(𝑧 = 𝑡𝜑)) → (𝑦 = 𝑠 ∧ ∃𝑧(𝑧 = 𝑡𝜑))))
82 19.8a 2176 . . . . . . . . . . . . . . . . . . . . 21 ((𝑦 = 𝑠 ∧ ∃𝑧(𝑧 = 𝑡𝜑)) → ∃𝑦(𝑦 = 𝑠 ∧ ∃𝑧(𝑧 = 𝑡𝜑)))
8378, 81, 82syl56 36 . . . . . . . . . . . . . . . . . . . 20 (¬ ∀𝑦 𝑦 = 𝑧 → (∃𝑧(𝑦 = 𝑠 ∧ (𝑧 = 𝑡𝜑)) → ∃𝑦(𝑦 = 𝑠 ∧ ∃𝑧(𝑧 = 𝑡𝜑))))
8477, 83pm2.61i 182 . . . . . . . . . . . . . . . . . . 19 (∃𝑧(𝑦 = 𝑠 ∧ (𝑧 = 𝑡𝜑)) → ∃𝑦(𝑦 = 𝑠 ∧ ∃𝑧(𝑧 = 𝑡𝜑)))
8571, 84exlimi 2213 . . . . . . . . . . . . . . . . . 18 (∃𝑦𝑧(𝑦 = 𝑠 ∧ (𝑧 = 𝑡𝜑)) → ∃𝑦(𝑦 = 𝑠 ∧ ∃𝑧(𝑧 = 𝑡𝜑)))
8685anim2i 616 . . . . . . . . . . . . . . . . 17 ((𝑥 = 𝑟 ∧ ∃𝑦𝑧(𝑦 = 𝑠 ∧ (𝑧 = 𝑡𝜑))) → (𝑥 = 𝑟 ∧ ∃𝑦(𝑦 = 𝑠 ∧ ∃𝑧(𝑧 = 𝑡𝜑))))
8786eximi 1838 . . . . . . . . . . . . . . . 16 (∃𝑥(𝑥 = 𝑟 ∧ ∃𝑦𝑧(𝑦 = 𝑠 ∧ (𝑧 = 𝑡𝜑))) → ∃𝑥(𝑥 = 𝑟 ∧ ∃𝑦(𝑦 = 𝑠 ∧ ∃𝑧(𝑧 = 𝑡𝜑))))
8855, 70, 873syl 18 . . . . . . . . . . . . . . 15 (∃𝑥𝑦𝑧(𝑥 = 𝑟 ∧ (𝑦 = 𝑠 ∧ (𝑧 = 𝑡𝜑))) → ∃𝑥(𝑥 = 𝑟 ∧ ∃𝑦(𝑦 = 𝑠 ∧ ∃𝑧(𝑧 = 𝑡𝜑))))
8936, 88sylbi 216 . . . . . . . . . . . . . 14 (∃𝑥𝑦𝑧(⟨⟨𝑥, 𝑦⟩, 𝑧⟩ = ⟨⟨𝑟, 𝑠⟩, 𝑡⟩ ∧ 𝜑) → ∃𝑥(𝑥 = 𝑟 ∧ ∃𝑦(𝑦 = 𝑠 ∧ ∃𝑧(𝑧 = 𝑡𝜑))))
9029, 89syl11 33 . . . . . . . . . . . . 13 (⟨⟨𝑥, 𝑦⟩, 𝑧⟩ = ⟨⟨𝑟, 𝑠⟩, 𝑡⟩ → (∃𝑥𝑦𝑧(⟨⟨𝑥, 𝑦⟩, 𝑧⟩ = ⟨⟨𝑟, 𝑠⟩, 𝑡⟩ ∧ 𝜑) → 𝜑))
91 eqeq1 2742 . . . . . . . . . . . . . . 15 (𝑤 = ⟨⟨𝑟, 𝑠⟩, 𝑡⟩ → (𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ↔ ⟨⟨𝑟, 𝑠⟩, 𝑡⟩ = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩))
92 eqcom 2745 . . . . . . . . . . . . . . 15 (⟨⟨𝑟, 𝑠⟩, 𝑡⟩ = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ↔ ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ = ⟨⟨𝑟, 𝑠⟩, 𝑡⟩)
9391, 92bitrdi 286 . . . . . . . . . . . . . 14 (𝑤 = ⟨⟨𝑟, 𝑠⟩, 𝑡⟩ → (𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ↔ ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ = ⟨⟨𝑟, 𝑠⟩, 𝑡⟩))
9493anbi1d 629 . . . . . . . . . . . . . . . 16 (𝑤 = ⟨⟨𝑟, 𝑠⟩, 𝑡⟩ → ((𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑) ↔ (⟨⟨𝑥, 𝑦⟩, 𝑧⟩ = ⟨⟨𝑟, 𝑠⟩, 𝑡⟩ ∧ 𝜑)))
95943exbidv 1929 . . . . . . . . . . . . . . 15 (𝑤 = ⟨⟨𝑟, 𝑠⟩, 𝑡⟩ → (∃𝑥𝑦𝑧(𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑) ↔ ∃𝑥𝑦𝑧(⟨⟨𝑥, 𝑦⟩, 𝑧⟩ = ⟨⟨𝑟, 𝑠⟩, 𝑡⟩ ∧ 𝜑)))
9695imbi1d 341 . . . . . . . . . . . . . 14 (𝑤 = ⟨⟨𝑟, 𝑠⟩, 𝑡⟩ → ((∃𝑥𝑦𝑧(𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑) → 𝜑) ↔ (∃𝑥𝑦𝑧(⟨⟨𝑥, 𝑦⟩, 𝑧⟩ = ⟨⟨𝑟, 𝑠⟩, 𝑡⟩ ∧ 𝜑) → 𝜑)))
9793, 96imbi12d 344 . . . . . . . . . . . . 13 (𝑤 = ⟨⟨𝑟, 𝑠⟩, 𝑡⟩ → ((𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ → (∃𝑥𝑦𝑧(𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑) → 𝜑)) ↔ (⟨⟨𝑥, 𝑦⟩, 𝑧⟩ = ⟨⟨𝑟, 𝑠⟩, 𝑡⟩ → (∃𝑥𝑦𝑧(⟨⟨𝑥, 𝑦⟩, 𝑧⟩ = ⟨⟨𝑟, 𝑠⟩, 𝑡⟩ ∧ 𝜑) → 𝜑))))
9890, 97mpbiri 257 . . . . . . . . . . . 12 (𝑤 = ⟨⟨𝑟, 𝑠⟩, 𝑡⟩ → (𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ → (∃𝑥𝑦𝑧(𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑) → 𝜑)))
9915, 98syl6bi 252 . . . . . . . . . . 11 (𝑎 = ⟨𝑟, 𝑠⟩ → (𝑤 = ⟨𝑎, 𝑡⟩ → (𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ → (∃𝑥𝑦𝑧(𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑) → 𝜑))))
10099adantr 480 . . . . . . . . . 10 ((𝑎 = ⟨𝑟, 𝑠⟩ ∧ ⟨𝑟, 𝑠⟩ = ⟨𝑥, 𝑦⟩) → (𝑤 = ⟨𝑎, 𝑡⟩ → (𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ → (∃𝑥𝑦𝑧(𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑) → 𝜑))))
101100exlimivv 1936 . . . . . . . . 9 (∃𝑟𝑠(𝑎 = ⟨𝑟, 𝑠⟩ ∧ ⟨𝑟, 𝑠⟩ = ⟨𝑥, 𝑦⟩) → (𝑤 = ⟨𝑎, 𝑡⟩ → (𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ → (∃𝑥𝑦𝑧(𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑) → 𝜑))))
10213, 101sylbi 216 . . . . . . . 8 (𝑎 = ⟨𝑥, 𝑦⟩ → (𝑤 = ⟨𝑎, 𝑡⟩ → (𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ → (∃𝑥𝑦𝑧(𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑) → 𝜑))))
103102com3l 89 . . . . . . 7 (𝑤 = ⟨𝑎, 𝑡⟩ → (𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ → (𝑎 = ⟨𝑥, 𝑦⟩ → (∃𝑥𝑦𝑧(𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑) → 𝜑))))
10410, 103mpdd 43 . . . . . 6 (𝑤 = ⟨𝑎, 𝑡⟩ → (𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ → (∃𝑥𝑦𝑧(𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑) → 𝜑)))
105104adantr 480 . . . . 5 ((𝑤 = ⟨𝑎, 𝑡⟩ ∧ ⟨𝑎, 𝑡⟩ = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩) → (𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ → (∃𝑥𝑦𝑧(𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑) → 𝜑)))
106105exlimivv 1936 . . . 4 (∃𝑎𝑡(𝑤 = ⟨𝑎, 𝑡⟩ ∧ ⟨𝑎, 𝑡⟩ = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩) → (𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ → (∃𝑥𝑦𝑧(𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑) → 𝜑)))
1075, 106mpcom 38 . . 3 (𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ → (∃𝑥𝑦𝑧(𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑) → 𝜑))
108 19.8a 2176 . . . . 5 ((𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑) → ∃𝑧(𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑))
109 19.8a 2176 . . . . 5 (∃𝑧(𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑) → ∃𝑦𝑧(𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑))
110 19.8a 2176 . . . . 5 (∃𝑦𝑧(𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑) → ∃𝑥𝑦𝑧(𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑))
111108, 109, 1103syl 18 . . . 4 ((𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑) → ∃𝑥𝑦𝑧(𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑))
112111ex 412 . . 3 (𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ → (𝜑 → ∃𝑥𝑦𝑧(𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑)))
113107, 112impbid 211 . 2 (𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ → (∃𝑥𝑦𝑧(𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑) ↔ 𝜑))
114 df-oprab 7259 . 2 {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} = {𝑤 ∣ ∃𝑥𝑦𝑧(𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑)}
1151, 113, 114elab2 3606 1 (⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∈ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} ↔ 𝜑)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  w3a 1085  wal 1537   = wceq 1539  wex 1783  wcel 2108  ∃!weu 2568  cop 4564  {coprab 7256
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-oprab 7259
This theorem is referenced by:  eqoprab2bw  7323  ovid  7392  ovidig  7393  tposoprab  8049  xpcomco  8802
  Copyright terms: Public domain W3C validator