MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eloprabgaOLD Structured version   Visualization version   GIF version

Theorem eloprabgaOLD 7559
Description: Obsolete version of eloprabga 7558 as of 15-Oct-2024. (Contributed by NM, 14-Sep-1999.) Remove unnecessary distinct variable conditions. (Revised by David Abernethy, 19-Jun-2012.) (Revised by Mario Carneiro, 19-Dec-2013.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypothesis
Ref Expression
eloprabga.1 ((𝑥 = 𝐴𝑦 = 𝐵𝑧 = 𝐶) → (𝜑𝜓))
Assertion
Ref Expression
eloprabgaOLD ((𝐴𝑉𝐵𝑊𝐶𝑋) → (⟨⟨𝐴, 𝐵⟩, 𝐶⟩ ∈ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} ↔ 𝜓))
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝑥,𝐵,𝑦,𝑧   𝑥,𝐶,𝑦,𝑧   𝜓,𝑥,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)   𝑉(𝑥,𝑦,𝑧)   𝑊(𝑥,𝑦,𝑧)   𝑋(𝑥,𝑦,𝑧)

Proof of Theorem eloprabgaOLD
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 elex 3509 . 2 (𝐴𝑉𝐴 ∈ V)
2 elex 3509 . 2 (𝐵𝑊𝐵 ∈ V)
3 elex 3509 . 2 (𝐶𝑋𝐶 ∈ V)
4 opex 5484 . . 3 ⟨⟨𝐴, 𝐵⟩, 𝐶⟩ ∈ V
5 simpr 484 . . . . . . . . . 10 (((𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐶 ∈ V) ∧ 𝑤 = ⟨⟨𝐴, 𝐵⟩, 𝐶⟩) → 𝑤 = ⟨⟨𝐴, 𝐵⟩, 𝐶⟩)
65eqeq1d 2742 . . . . . . . . 9 (((𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐶 ∈ V) ∧ 𝑤 = ⟨⟨𝐴, 𝐵⟩, 𝐶⟩) → (𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ↔ ⟨⟨𝐴, 𝐵⟩, 𝐶⟩ = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩))
7 eqcom 2747 . . . . . . . . . 10 (⟨⟨𝐴, 𝐵⟩, 𝐶⟩ = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ↔ ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ = ⟨⟨𝐴, 𝐵⟩, 𝐶⟩)
8 vex 3492 . . . . . . . . . . 11 𝑥 ∈ V
9 vex 3492 . . . . . . . . . . 11 𝑦 ∈ V
10 vex 3492 . . . . . . . . . . 11 𝑧 ∈ V
118, 9, 10otth2 5503 . . . . . . . . . 10 (⟨⟨𝑥, 𝑦⟩, 𝑧⟩ = ⟨⟨𝐴, 𝐵⟩, 𝐶⟩ ↔ (𝑥 = 𝐴𝑦 = 𝐵𝑧 = 𝐶))
127, 11bitri 275 . . . . . . . . 9 (⟨⟨𝐴, 𝐵⟩, 𝐶⟩ = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ↔ (𝑥 = 𝐴𝑦 = 𝐵𝑧 = 𝐶))
136, 12bitrdi 287 . . . . . . . 8 (((𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐶 ∈ V) ∧ 𝑤 = ⟨⟨𝐴, 𝐵⟩, 𝐶⟩) → (𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ↔ (𝑥 = 𝐴𝑦 = 𝐵𝑧 = 𝐶)))
1413anbi1d 630 . . . . . . 7 (((𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐶 ∈ V) ∧ 𝑤 = ⟨⟨𝐴, 𝐵⟩, 𝐶⟩) → ((𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑) ↔ ((𝑥 = 𝐴𝑦 = 𝐵𝑧 = 𝐶) ∧ 𝜑)))
15 eloprabga.1 . . . . . . . 8 ((𝑥 = 𝐴𝑦 = 𝐵𝑧 = 𝐶) → (𝜑𝜓))
1615pm5.32i 574 . . . . . . 7 (((𝑥 = 𝐴𝑦 = 𝐵𝑧 = 𝐶) ∧ 𝜑) ↔ ((𝑥 = 𝐴𝑦 = 𝐵𝑧 = 𝐶) ∧ 𝜓))
1714, 16bitrdi 287 . . . . . 6 (((𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐶 ∈ V) ∧ 𝑤 = ⟨⟨𝐴, 𝐵⟩, 𝐶⟩) → ((𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑) ↔ ((𝑥 = 𝐴𝑦 = 𝐵𝑧 = 𝐶) ∧ 𝜓)))
18173exbidv 1924 . . . . 5 (((𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐶 ∈ V) ∧ 𝑤 = ⟨⟨𝐴, 𝐵⟩, 𝐶⟩) → (∃𝑥𝑦𝑧(𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑) ↔ ∃𝑥𝑦𝑧((𝑥 = 𝐴𝑦 = 𝐵𝑧 = 𝐶) ∧ 𝜓)))
19 df-oprab 7452 . . . . . . . . 9 {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} = {𝑤 ∣ ∃𝑥𝑦𝑧(𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑)}
2019eleq2i 2836 . . . . . . . 8 (𝑤 ∈ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} ↔ 𝑤 ∈ {𝑤 ∣ ∃𝑥𝑦𝑧(𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑)})
21 abid 2721 . . . . . . . 8 (𝑤 ∈ {𝑤 ∣ ∃𝑥𝑦𝑧(𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑)} ↔ ∃𝑥𝑦𝑧(𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑))
2220, 21bitr2i 276 . . . . . . 7 (∃𝑥𝑦𝑧(𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑) ↔ 𝑤 ∈ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑})
23 eleq1 2832 . . . . . . 7 (𝑤 = ⟨⟨𝐴, 𝐵⟩, 𝐶⟩ → (𝑤 ∈ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} ↔ ⟨⟨𝐴, 𝐵⟩, 𝐶⟩ ∈ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑}))
2422, 23bitrid 283 . . . . . 6 (𝑤 = ⟨⟨𝐴, 𝐵⟩, 𝐶⟩ → (∃𝑥𝑦𝑧(𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑) ↔ ⟨⟨𝐴, 𝐵⟩, 𝐶⟩ ∈ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑}))
2524adantl 481 . . . . 5 (((𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐶 ∈ V) ∧ 𝑤 = ⟨⟨𝐴, 𝐵⟩, 𝐶⟩) → (∃𝑥𝑦𝑧(𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑) ↔ ⟨⟨𝐴, 𝐵⟩, 𝐶⟩ ∈ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑}))
26 19.41vvv 1951 . . . . . . 7 (∃𝑥𝑦𝑧((𝑥 = 𝐴𝑦 = 𝐵𝑧 = 𝐶) ∧ 𝜓) ↔ (∃𝑥𝑦𝑧(𝑥 = 𝐴𝑦 = 𝐵𝑧 = 𝐶) ∧ 𝜓))
27 elisset 2826 . . . . . . . . . 10 (𝐴 ∈ V → ∃𝑥 𝑥 = 𝐴)
28 elisset 2826 . . . . . . . . . 10 (𝐵 ∈ V → ∃𝑦 𝑦 = 𝐵)
29 elisset 2826 . . . . . . . . . 10 (𝐶 ∈ V → ∃𝑧 𝑧 = 𝐶)
3027, 28, 293anim123i 1151 . . . . . . . . 9 ((𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐶 ∈ V) → (∃𝑥 𝑥 = 𝐴 ∧ ∃𝑦 𝑦 = 𝐵 ∧ ∃𝑧 𝑧 = 𝐶))
31 eeeanv 2356 . . . . . . . . 9 (∃𝑥𝑦𝑧(𝑥 = 𝐴𝑦 = 𝐵𝑧 = 𝐶) ↔ (∃𝑥 𝑥 = 𝐴 ∧ ∃𝑦 𝑦 = 𝐵 ∧ ∃𝑧 𝑧 = 𝐶))
3230, 31sylibr 234 . . . . . . . 8 ((𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐶 ∈ V) → ∃𝑥𝑦𝑧(𝑥 = 𝐴𝑦 = 𝐵𝑧 = 𝐶))
3332biantrurd 532 . . . . . . 7 ((𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐶 ∈ V) → (𝜓 ↔ (∃𝑥𝑦𝑧(𝑥 = 𝐴𝑦 = 𝐵𝑧 = 𝐶) ∧ 𝜓)))
3426, 33bitr4id 290 . . . . . 6 ((𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐶 ∈ V) → (∃𝑥𝑦𝑧((𝑥 = 𝐴𝑦 = 𝐵𝑧 = 𝐶) ∧ 𝜓) ↔ 𝜓))
3534adantr 480 . . . . 5 (((𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐶 ∈ V) ∧ 𝑤 = ⟨⟨𝐴, 𝐵⟩, 𝐶⟩) → (∃𝑥𝑦𝑧((𝑥 = 𝐴𝑦 = 𝐵𝑧 = 𝐶) ∧ 𝜓) ↔ 𝜓))
3618, 25, 353bitr3d 309 . . . 4 (((𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐶 ∈ V) ∧ 𝑤 = ⟨⟨𝐴, 𝐵⟩, 𝐶⟩) → (⟨⟨𝐴, 𝐵⟩, 𝐶⟩ ∈ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} ↔ 𝜓))
3736expcom 413 . . 3 (𝑤 = ⟨⟨𝐴, 𝐵⟩, 𝐶⟩ → ((𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐶 ∈ V) → (⟨⟨𝐴, 𝐵⟩, 𝐶⟩ ∈ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} ↔ 𝜓)))
384, 37vtocle 3567 . 2 ((𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐶 ∈ V) → (⟨⟨𝐴, 𝐵⟩, 𝐶⟩ ∈ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} ↔ 𝜓))
391, 2, 3, 38syl3an 1160 1 ((𝐴𝑉𝐵𝑊𝐶𝑋) → (⟨⟨𝐴, 𝐵⟩, 𝐶⟩ ∈ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} ↔ 𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wex 1777  wcel 2108  {cab 2717  Vcvv 3488  cop 4654  {coprab 7449
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-oprab 7452
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator