MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0mpo0 Structured version   Visualization version   GIF version

Theorem 0mpo0 7429
Description: A mapping operation with empty domain is empty. Generalization of mpo0 7431. (Contributed by AV, 27-Jan-2024.)
Assertion
Ref Expression
0mpo0 ((𝐴 = ∅ ∨ 𝐵 = ∅) → (𝑥𝐴, 𝑦𝐵𝐶) = ∅)
Distinct variable groups:   𝑦,𝐴   𝑥,𝐴   𝑥,𝐵   𝑦,𝐵
Allowed substitution hints:   𝐶(𝑥,𝑦)

Proof of Theorem 0mpo0
Dummy variables 𝑤 𝑧 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-mpo 7351 . . 3 (𝑥𝐴, 𝑦𝐵𝐶) = {⟨⟨𝑥, 𝑦⟩, 𝑤⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝑤 = 𝐶)}
2 df-oprab 7350 . . 3 {⟨⟨𝑥, 𝑦⟩, 𝑤⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝑤 = 𝐶)} = {𝑧 ∣ ∃𝑥𝑦𝑤(𝑧 = ⟨⟨𝑥, 𝑦⟩, 𝑤⟩ ∧ ((𝑥𝐴𝑦𝐵) ∧ 𝑤 = 𝐶))}
31, 2eqtri 2754 . 2 (𝑥𝐴, 𝑦𝐵𝐶) = {𝑧 ∣ ∃𝑥𝑦𝑤(𝑧 = ⟨⟨𝑥, 𝑦⟩, 𝑤⟩ ∧ ((𝑥𝐴𝑦𝐵) ∧ 𝑤 = 𝐶))}
4 nel02 4286 . . . . . . . . . 10 (𝐴 = ∅ → ¬ 𝑥𝐴)
5 nel02 4286 . . . . . . . . . 10 (𝐵 = ∅ → ¬ 𝑦𝐵)
64, 5orim12i 908 . . . . . . . . 9 ((𝐴 = ∅ ∨ 𝐵 = ∅) → (¬ 𝑥𝐴 ∨ ¬ 𝑦𝐵))
7 ianor 983 . . . . . . . . 9 (¬ (𝑥𝐴𝑦𝐵) ↔ (¬ 𝑥𝐴 ∨ ¬ 𝑦𝐵))
86, 7sylibr 234 . . . . . . . 8 ((𝐴 = ∅ ∨ 𝐵 = ∅) → ¬ (𝑥𝐴𝑦𝐵))
9 simprl 770 . . . . . . . 8 ((𝑣 = ⟨⟨𝑥, 𝑦⟩, 𝑤⟩ ∧ ((𝑥𝐴𝑦𝐵) ∧ 𝑤 = 𝐶)) → (𝑥𝐴𝑦𝐵))
108, 9nsyl 140 . . . . . . 7 ((𝐴 = ∅ ∨ 𝐵 = ∅) → ¬ (𝑣 = ⟨⟨𝑥, 𝑦⟩, 𝑤⟩ ∧ ((𝑥𝐴𝑦𝐵) ∧ 𝑤 = 𝐶)))
1110nexdv 1937 . . . . . 6 ((𝐴 = ∅ ∨ 𝐵 = ∅) → ¬ ∃𝑤(𝑣 = ⟨⟨𝑥, 𝑦⟩, 𝑤⟩ ∧ ((𝑥𝐴𝑦𝐵) ∧ 𝑤 = 𝐶)))
1211nexdv 1937 . . . . 5 ((𝐴 = ∅ ∨ 𝐵 = ∅) → ¬ ∃𝑦𝑤(𝑣 = ⟨⟨𝑥, 𝑦⟩, 𝑤⟩ ∧ ((𝑥𝐴𝑦𝐵) ∧ 𝑤 = 𝐶)))
1312nexdv 1937 . . . 4 ((𝐴 = ∅ ∨ 𝐵 = ∅) → ¬ ∃𝑥𝑦𝑤(𝑣 = ⟨⟨𝑥, 𝑦⟩, 𝑤⟩ ∧ ((𝑥𝐴𝑦𝐵) ∧ 𝑤 = 𝐶)))
1413alrimiv 1928 . . 3 ((𝐴 = ∅ ∨ 𝐵 = ∅) → ∀𝑣 ¬ ∃𝑥𝑦𝑤(𝑣 = ⟨⟨𝑥, 𝑦⟩, 𝑤⟩ ∧ ((𝑥𝐴𝑦𝐵) ∧ 𝑤 = 𝐶)))
15 eqeq1 2735 . . . . . 6 (𝑧 = 𝑣 → (𝑧 = ⟨⟨𝑥, 𝑦⟩, 𝑤⟩ ↔ 𝑣 = ⟨⟨𝑥, 𝑦⟩, 𝑤⟩))
1615anbi1d 631 . . . . 5 (𝑧 = 𝑣 → ((𝑧 = ⟨⟨𝑥, 𝑦⟩, 𝑤⟩ ∧ ((𝑥𝐴𝑦𝐵) ∧ 𝑤 = 𝐶)) ↔ (𝑣 = ⟨⟨𝑥, 𝑦⟩, 𝑤⟩ ∧ ((𝑥𝐴𝑦𝐵) ∧ 𝑤 = 𝐶))))
17163exbidv 1926 . . . 4 (𝑧 = 𝑣 → (∃𝑥𝑦𝑤(𝑧 = ⟨⟨𝑥, 𝑦⟩, 𝑤⟩ ∧ ((𝑥𝐴𝑦𝐵) ∧ 𝑤 = 𝐶)) ↔ ∃𝑥𝑦𝑤(𝑣 = ⟨⟨𝑥, 𝑦⟩, 𝑤⟩ ∧ ((𝑥𝐴𝑦𝐵) ∧ 𝑤 = 𝐶))))
1817ab0w 4326 . . 3 ({𝑧 ∣ ∃𝑥𝑦𝑤(𝑧 = ⟨⟨𝑥, 𝑦⟩, 𝑤⟩ ∧ ((𝑥𝐴𝑦𝐵) ∧ 𝑤 = 𝐶))} = ∅ ↔ ∀𝑣 ¬ ∃𝑥𝑦𝑤(𝑣 = ⟨⟨𝑥, 𝑦⟩, 𝑤⟩ ∧ ((𝑥𝐴𝑦𝐵) ∧ 𝑤 = 𝐶)))
1914, 18sylibr 234 . 2 ((𝐴 = ∅ ∨ 𝐵 = ∅) → {𝑧 ∣ ∃𝑥𝑦𝑤(𝑧 = ⟨⟨𝑥, 𝑦⟩, 𝑤⟩ ∧ ((𝑥𝐴𝑦𝐵) ∧ 𝑤 = 𝐶))} = ∅)
203, 19eqtrid 2778 1 ((𝐴 = ∅ ∨ 𝐵 = ∅) → (𝑥𝐴, 𝑦𝐵𝐶) = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 847  wal 1539   = wceq 1541  wex 1780  wcel 2111  {cab 2709  c0 4280  cop 4579  {coprab 7347  cmpo 7348
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-dif 3900  df-nul 4281  df-oprab 7350  df-mpo 7351
This theorem is referenced by:  mpo0v  7430  homffval  17596  comfffval  17604  natfval  17856  xpchomfval  18085  xpccofval  18088  plusffval  18554  efmndplusg  18788  grpsubfval  18896  grpsubfvalALT  18897  oppglsm  19554  dvrfval  20320  scaffval  20813  ipffval  21585  psrmulr  21879  marrepfval  22475  marepvfval  22480  pcofval  24937  clwwlknonmpo  30069  mendplusgfval  43284  mendmulrfval  43286  mendvscafval  43289  homf0  49120  upfval  49287
  Copyright terms: Public domain W3C validator