MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0mpo0 Structured version   Visualization version   GIF version

Theorem 0mpo0 7452
Description: A mapping operation with empty domain is empty. Generalization of mpo0 7454. (Contributed by AV, 27-Jan-2024.)
Assertion
Ref Expression
0mpo0 ((𝐴 = ∅ ∨ 𝐵 = ∅) → (𝑥𝐴, 𝑦𝐵𝐶) = ∅)
Distinct variable groups:   𝑦,𝐴   𝑥,𝐴   𝑥,𝐵   𝑦,𝐵
Allowed substitution hints:   𝐶(𝑥,𝑦)

Proof of Theorem 0mpo0
Dummy variables 𝑤 𝑧 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-mpo 7374 . . 3 (𝑥𝐴, 𝑦𝐵𝐶) = {⟨⟨𝑥, 𝑦⟩, 𝑤⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝑤 = 𝐶)}
2 df-oprab 7373 . . 3 {⟨⟨𝑥, 𝑦⟩, 𝑤⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝑤 = 𝐶)} = {𝑧 ∣ ∃𝑥𝑦𝑤(𝑧 = ⟨⟨𝑥, 𝑦⟩, 𝑤⟩ ∧ ((𝑥𝐴𝑦𝐵) ∧ 𝑤 = 𝐶))}
31, 2eqtri 2752 . 2 (𝑥𝐴, 𝑦𝐵𝐶) = {𝑧 ∣ ∃𝑥𝑦𝑤(𝑧 = ⟨⟨𝑥, 𝑦⟩, 𝑤⟩ ∧ ((𝑥𝐴𝑦𝐵) ∧ 𝑤 = 𝐶))}
4 nel02 4298 . . . . . . . . . 10 (𝐴 = ∅ → ¬ 𝑥𝐴)
5 nel02 4298 . . . . . . . . . 10 (𝐵 = ∅ → ¬ 𝑦𝐵)
64, 5orim12i 908 . . . . . . . . 9 ((𝐴 = ∅ ∨ 𝐵 = ∅) → (¬ 𝑥𝐴 ∨ ¬ 𝑦𝐵))
7 ianor 983 . . . . . . . . 9 (¬ (𝑥𝐴𝑦𝐵) ↔ (¬ 𝑥𝐴 ∨ ¬ 𝑦𝐵))
86, 7sylibr 234 . . . . . . . 8 ((𝐴 = ∅ ∨ 𝐵 = ∅) → ¬ (𝑥𝐴𝑦𝐵))
9 simprl 770 . . . . . . . 8 ((𝑣 = ⟨⟨𝑥, 𝑦⟩, 𝑤⟩ ∧ ((𝑥𝐴𝑦𝐵) ∧ 𝑤 = 𝐶)) → (𝑥𝐴𝑦𝐵))
108, 9nsyl 140 . . . . . . 7 ((𝐴 = ∅ ∨ 𝐵 = ∅) → ¬ (𝑣 = ⟨⟨𝑥, 𝑦⟩, 𝑤⟩ ∧ ((𝑥𝐴𝑦𝐵) ∧ 𝑤 = 𝐶)))
1110nexdv 1936 . . . . . 6 ((𝐴 = ∅ ∨ 𝐵 = ∅) → ¬ ∃𝑤(𝑣 = ⟨⟨𝑥, 𝑦⟩, 𝑤⟩ ∧ ((𝑥𝐴𝑦𝐵) ∧ 𝑤 = 𝐶)))
1211nexdv 1936 . . . . 5 ((𝐴 = ∅ ∨ 𝐵 = ∅) → ¬ ∃𝑦𝑤(𝑣 = ⟨⟨𝑥, 𝑦⟩, 𝑤⟩ ∧ ((𝑥𝐴𝑦𝐵) ∧ 𝑤 = 𝐶)))
1312nexdv 1936 . . . 4 ((𝐴 = ∅ ∨ 𝐵 = ∅) → ¬ ∃𝑥𝑦𝑤(𝑣 = ⟨⟨𝑥, 𝑦⟩, 𝑤⟩ ∧ ((𝑥𝐴𝑦𝐵) ∧ 𝑤 = 𝐶)))
1413alrimiv 1927 . . 3 ((𝐴 = ∅ ∨ 𝐵 = ∅) → ∀𝑣 ¬ ∃𝑥𝑦𝑤(𝑣 = ⟨⟨𝑥, 𝑦⟩, 𝑤⟩ ∧ ((𝑥𝐴𝑦𝐵) ∧ 𝑤 = 𝐶)))
15 eqeq1 2733 . . . . . 6 (𝑧 = 𝑣 → (𝑧 = ⟨⟨𝑥, 𝑦⟩, 𝑤⟩ ↔ 𝑣 = ⟨⟨𝑥, 𝑦⟩, 𝑤⟩))
1615anbi1d 631 . . . . 5 (𝑧 = 𝑣 → ((𝑧 = ⟨⟨𝑥, 𝑦⟩, 𝑤⟩ ∧ ((𝑥𝐴𝑦𝐵) ∧ 𝑤 = 𝐶)) ↔ (𝑣 = ⟨⟨𝑥, 𝑦⟩, 𝑤⟩ ∧ ((𝑥𝐴𝑦𝐵) ∧ 𝑤 = 𝐶))))
17163exbidv 1925 . . . 4 (𝑧 = 𝑣 → (∃𝑥𝑦𝑤(𝑧 = ⟨⟨𝑥, 𝑦⟩, 𝑤⟩ ∧ ((𝑥𝐴𝑦𝐵) ∧ 𝑤 = 𝐶)) ↔ ∃𝑥𝑦𝑤(𝑣 = ⟨⟨𝑥, 𝑦⟩, 𝑤⟩ ∧ ((𝑥𝐴𝑦𝐵) ∧ 𝑤 = 𝐶))))
1817ab0w 4338 . . 3 ({𝑧 ∣ ∃𝑥𝑦𝑤(𝑧 = ⟨⟨𝑥, 𝑦⟩, 𝑤⟩ ∧ ((𝑥𝐴𝑦𝐵) ∧ 𝑤 = 𝐶))} = ∅ ↔ ∀𝑣 ¬ ∃𝑥𝑦𝑤(𝑣 = ⟨⟨𝑥, 𝑦⟩, 𝑤⟩ ∧ ((𝑥𝐴𝑦𝐵) ∧ 𝑤 = 𝐶)))
1914, 18sylibr 234 . 2 ((𝐴 = ∅ ∨ 𝐵 = ∅) → {𝑧 ∣ ∃𝑥𝑦𝑤(𝑧 = ⟨⟨𝑥, 𝑦⟩, 𝑤⟩ ∧ ((𝑥𝐴𝑦𝐵) ∧ 𝑤 = 𝐶))} = ∅)
203, 19eqtrid 2776 1 ((𝐴 = ∅ ∨ 𝐵 = ∅) → (𝑥𝐴, 𝑦𝐵𝐶) = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 847  wal 1538   = wceq 1540  wex 1779  wcel 2109  {cab 2707  c0 4292  cop 4591  {coprab 7370  cmpo 7371
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-dif 3914  df-nul 4293  df-oprab 7373  df-mpo 7374
This theorem is referenced by:  mpo0v  7453  homffval  17631  comfffval  17639  natfval  17891  xpchomfval  18120  xpccofval  18123  plusffval  18555  efmndplusg  18789  grpsubfval  18897  grpsubfvalALT  18898  oppglsm  19556  dvrfval  20322  scaffval  20818  ipffval  21590  psrmulr  21884  marrepfval  22480  marepvfval  22485  pcofval  24943  clwwlknonmpo  30068  mendplusgfval  43163  mendmulrfval  43165  mendvscafval  43168  homf0  48991  upfval  49158
  Copyright terms: Public domain W3C validator