MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0mpo0 Structured version   Visualization version   GIF version

Theorem 0mpo0 7399
Description: A mapping operation with empty domain is empty. Generalization of mpo0 7401. (Contributed by AV, 27-Jan-2024.)
Assertion
Ref Expression
0mpo0 ((𝐴 = ∅ ∨ 𝐵 = ∅) → (𝑥𝐴, 𝑦𝐵𝐶) = ∅)
Distinct variable groups:   𝑦,𝐴   𝑥,𝐴   𝑥,𝐵   𝑦,𝐵
Allowed substitution hints:   𝐶(𝑥,𝑦)

Proof of Theorem 0mpo0
Dummy variables 𝑤 𝑧 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-mpo 7321 . . 3 (𝑥𝐴, 𝑦𝐵𝐶) = {⟨⟨𝑥, 𝑦⟩, 𝑤⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝑤 = 𝐶)}
2 df-oprab 7320 . . 3 {⟨⟨𝑥, 𝑦⟩, 𝑤⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝑤 = 𝐶)} = {𝑧 ∣ ∃𝑥𝑦𝑤(𝑧 = ⟨⟨𝑥, 𝑦⟩, 𝑤⟩ ∧ ((𝑥𝐴𝑦𝐵) ∧ 𝑤 = 𝐶))}
31, 2eqtri 2764 . 2 (𝑥𝐴, 𝑦𝐵𝐶) = {𝑧 ∣ ∃𝑥𝑦𝑤(𝑧 = ⟨⟨𝑥, 𝑦⟩, 𝑤⟩ ∧ ((𝑥𝐴𝑦𝐵) ∧ 𝑤 = 𝐶))}
4 nel02 4276 . . . . . . . . . 10 (𝐴 = ∅ → ¬ 𝑥𝐴)
5 nel02 4276 . . . . . . . . . 10 (𝐵 = ∅ → ¬ 𝑦𝐵)
64, 5orim12i 906 . . . . . . . . 9 ((𝐴 = ∅ ∨ 𝐵 = ∅) → (¬ 𝑥𝐴 ∨ ¬ 𝑦𝐵))
7 ianor 979 . . . . . . . . 9 (¬ (𝑥𝐴𝑦𝐵) ↔ (¬ 𝑥𝐴 ∨ ¬ 𝑦𝐵))
86, 7sylibr 233 . . . . . . . 8 ((𝐴 = ∅ ∨ 𝐵 = ∅) → ¬ (𝑥𝐴𝑦𝐵))
9 simprl 768 . . . . . . . 8 ((𝑣 = ⟨⟨𝑥, 𝑦⟩, 𝑤⟩ ∧ ((𝑥𝐴𝑦𝐵) ∧ 𝑤 = 𝐶)) → (𝑥𝐴𝑦𝐵))
108, 9nsyl 140 . . . . . . 7 ((𝐴 = ∅ ∨ 𝐵 = ∅) → ¬ (𝑣 = ⟨⟨𝑥, 𝑦⟩, 𝑤⟩ ∧ ((𝑥𝐴𝑦𝐵) ∧ 𝑤 = 𝐶)))
1110nexdv 1938 . . . . . 6 ((𝐴 = ∅ ∨ 𝐵 = ∅) → ¬ ∃𝑤(𝑣 = ⟨⟨𝑥, 𝑦⟩, 𝑤⟩ ∧ ((𝑥𝐴𝑦𝐵) ∧ 𝑤 = 𝐶)))
1211nexdv 1938 . . . . 5 ((𝐴 = ∅ ∨ 𝐵 = ∅) → ¬ ∃𝑦𝑤(𝑣 = ⟨⟨𝑥, 𝑦⟩, 𝑤⟩ ∧ ((𝑥𝐴𝑦𝐵) ∧ 𝑤 = 𝐶)))
1312nexdv 1938 . . . 4 ((𝐴 = ∅ ∨ 𝐵 = ∅) → ¬ ∃𝑥𝑦𝑤(𝑣 = ⟨⟨𝑥, 𝑦⟩, 𝑤⟩ ∧ ((𝑥𝐴𝑦𝐵) ∧ 𝑤 = 𝐶)))
1413alrimiv 1929 . . 3 ((𝐴 = ∅ ∨ 𝐵 = ∅) → ∀𝑣 ¬ ∃𝑥𝑦𝑤(𝑣 = ⟨⟨𝑥, 𝑦⟩, 𝑤⟩ ∧ ((𝑥𝐴𝑦𝐵) ∧ 𝑤 = 𝐶)))
15 eqeq1 2740 . . . . . 6 (𝑧 = 𝑣 → (𝑧 = ⟨⟨𝑥, 𝑦⟩, 𝑤⟩ ↔ 𝑣 = ⟨⟨𝑥, 𝑦⟩, 𝑤⟩))
1615anbi1d 630 . . . . 5 (𝑧 = 𝑣 → ((𝑧 = ⟨⟨𝑥, 𝑦⟩, 𝑤⟩ ∧ ((𝑥𝐴𝑦𝐵) ∧ 𝑤 = 𝐶)) ↔ (𝑣 = ⟨⟨𝑥, 𝑦⟩, 𝑤⟩ ∧ ((𝑥𝐴𝑦𝐵) ∧ 𝑤 = 𝐶))))
17163exbidv 1927 . . . 4 (𝑧 = 𝑣 → (∃𝑥𝑦𝑤(𝑧 = ⟨⟨𝑥, 𝑦⟩, 𝑤⟩ ∧ ((𝑥𝐴𝑦𝐵) ∧ 𝑤 = 𝐶)) ↔ ∃𝑥𝑦𝑤(𝑣 = ⟨⟨𝑥, 𝑦⟩, 𝑤⟩ ∧ ((𝑥𝐴𝑦𝐵) ∧ 𝑤 = 𝐶))))
1817ab0w 4317 . . 3 ({𝑧 ∣ ∃𝑥𝑦𝑤(𝑧 = ⟨⟨𝑥, 𝑦⟩, 𝑤⟩ ∧ ((𝑥𝐴𝑦𝐵) ∧ 𝑤 = 𝐶))} = ∅ ↔ ∀𝑣 ¬ ∃𝑥𝑦𝑤(𝑣 = ⟨⟨𝑥, 𝑦⟩, 𝑤⟩ ∧ ((𝑥𝐴𝑦𝐵) ∧ 𝑤 = 𝐶)))
1914, 18sylibr 233 . 2 ((𝐴 = ∅ ∨ 𝐵 = ∅) → {𝑧 ∣ ∃𝑥𝑦𝑤(𝑧 = ⟨⟨𝑥, 𝑦⟩, 𝑤⟩ ∧ ((𝑥𝐴𝑦𝐵) ∧ 𝑤 = 𝐶))} = ∅)
203, 19eqtrid 2788 1 ((𝐴 = ∅ ∨ 𝐵 = ∅) → (𝑥𝐴, 𝑦𝐵𝐶) = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  wo 844  wal 1538   = wceq 1540  wex 1780  wcel 2105  {cab 2713  c0 4266  cop 4576  {coprab 7317  cmpo 7318
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-ext 2707
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-tru 1543  df-fal 1553  df-ex 1781  df-sb 2067  df-clab 2714  df-cleq 2728  df-clel 2814  df-dif 3899  df-nul 4267  df-oprab 7320  df-mpo 7321
This theorem is referenced by:  mpo0v  7400  homffval  17473  comfffval  17481  natfval  17736  xpchomfval  17970  xpccofval  17973  plusffval  18406  efmndplusg  18592  grpsubfval  18696  grpsubfvalALT  18697  oppglsm  19320  dvrfval  19998  scaffval  20221  ipffval  20933  psrmulr  21233  marrepfval  21789  marepvfval  21794  pcofval  24253  clwwlknonmpo  28585  mendplusgfval  41232  mendmulrfval  41234  mendvscafval  41237
  Copyright terms: Public domain W3C validator