MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0mpo0 Structured version   Visualization version   GIF version

Theorem 0mpo0 7533
Description: A mapping operation with empty domain is empty. Generalization of mpo0 7535. (Contributed by AV, 27-Jan-2024.)
Assertion
Ref Expression
0mpo0 ((𝐴 = ∅ ∨ 𝐵 = ∅) → (𝑥𝐴, 𝑦𝐵𝐶) = ∅)
Distinct variable groups:   𝑦,𝐴   𝑥,𝐴   𝑥,𝐵   𝑦,𝐵
Allowed substitution hints:   𝐶(𝑥,𝑦)

Proof of Theorem 0mpo0
Dummy variables 𝑤 𝑧 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-mpo 7453 . . 3 (𝑥𝐴, 𝑦𝐵𝐶) = {⟨⟨𝑥, 𝑦⟩, 𝑤⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝑤 = 𝐶)}
2 df-oprab 7452 . . 3 {⟨⟨𝑥, 𝑦⟩, 𝑤⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝑤 = 𝐶)} = {𝑧 ∣ ∃𝑥𝑦𝑤(𝑧 = ⟨⟨𝑥, 𝑦⟩, 𝑤⟩ ∧ ((𝑥𝐴𝑦𝐵) ∧ 𝑤 = 𝐶))}
31, 2eqtri 2768 . 2 (𝑥𝐴, 𝑦𝐵𝐶) = {𝑧 ∣ ∃𝑥𝑦𝑤(𝑧 = ⟨⟨𝑥, 𝑦⟩, 𝑤⟩ ∧ ((𝑥𝐴𝑦𝐵) ∧ 𝑤 = 𝐶))}
4 nel02 4362 . . . . . . . . . 10 (𝐴 = ∅ → ¬ 𝑥𝐴)
5 nel02 4362 . . . . . . . . . 10 (𝐵 = ∅ → ¬ 𝑦𝐵)
64, 5orim12i 907 . . . . . . . . 9 ((𝐴 = ∅ ∨ 𝐵 = ∅) → (¬ 𝑥𝐴 ∨ ¬ 𝑦𝐵))
7 ianor 982 . . . . . . . . 9 (¬ (𝑥𝐴𝑦𝐵) ↔ (¬ 𝑥𝐴 ∨ ¬ 𝑦𝐵))
86, 7sylibr 234 . . . . . . . 8 ((𝐴 = ∅ ∨ 𝐵 = ∅) → ¬ (𝑥𝐴𝑦𝐵))
9 simprl 770 . . . . . . . 8 ((𝑣 = ⟨⟨𝑥, 𝑦⟩, 𝑤⟩ ∧ ((𝑥𝐴𝑦𝐵) ∧ 𝑤 = 𝐶)) → (𝑥𝐴𝑦𝐵))
108, 9nsyl 140 . . . . . . 7 ((𝐴 = ∅ ∨ 𝐵 = ∅) → ¬ (𝑣 = ⟨⟨𝑥, 𝑦⟩, 𝑤⟩ ∧ ((𝑥𝐴𝑦𝐵) ∧ 𝑤 = 𝐶)))
1110nexdv 1935 . . . . . 6 ((𝐴 = ∅ ∨ 𝐵 = ∅) → ¬ ∃𝑤(𝑣 = ⟨⟨𝑥, 𝑦⟩, 𝑤⟩ ∧ ((𝑥𝐴𝑦𝐵) ∧ 𝑤 = 𝐶)))
1211nexdv 1935 . . . . 5 ((𝐴 = ∅ ∨ 𝐵 = ∅) → ¬ ∃𝑦𝑤(𝑣 = ⟨⟨𝑥, 𝑦⟩, 𝑤⟩ ∧ ((𝑥𝐴𝑦𝐵) ∧ 𝑤 = 𝐶)))
1312nexdv 1935 . . . 4 ((𝐴 = ∅ ∨ 𝐵 = ∅) → ¬ ∃𝑥𝑦𝑤(𝑣 = ⟨⟨𝑥, 𝑦⟩, 𝑤⟩ ∧ ((𝑥𝐴𝑦𝐵) ∧ 𝑤 = 𝐶)))
1413alrimiv 1926 . . 3 ((𝐴 = ∅ ∨ 𝐵 = ∅) → ∀𝑣 ¬ ∃𝑥𝑦𝑤(𝑣 = ⟨⟨𝑥, 𝑦⟩, 𝑤⟩ ∧ ((𝑥𝐴𝑦𝐵) ∧ 𝑤 = 𝐶)))
15 eqeq1 2744 . . . . . 6 (𝑧 = 𝑣 → (𝑧 = ⟨⟨𝑥, 𝑦⟩, 𝑤⟩ ↔ 𝑣 = ⟨⟨𝑥, 𝑦⟩, 𝑤⟩))
1615anbi1d 630 . . . . 5 (𝑧 = 𝑣 → ((𝑧 = ⟨⟨𝑥, 𝑦⟩, 𝑤⟩ ∧ ((𝑥𝐴𝑦𝐵) ∧ 𝑤 = 𝐶)) ↔ (𝑣 = ⟨⟨𝑥, 𝑦⟩, 𝑤⟩ ∧ ((𝑥𝐴𝑦𝐵) ∧ 𝑤 = 𝐶))))
17163exbidv 1924 . . . 4 (𝑧 = 𝑣 → (∃𝑥𝑦𝑤(𝑧 = ⟨⟨𝑥, 𝑦⟩, 𝑤⟩ ∧ ((𝑥𝐴𝑦𝐵) ∧ 𝑤 = 𝐶)) ↔ ∃𝑥𝑦𝑤(𝑣 = ⟨⟨𝑥, 𝑦⟩, 𝑤⟩ ∧ ((𝑥𝐴𝑦𝐵) ∧ 𝑤 = 𝐶))))
1817ab0w 4401 . . 3 ({𝑧 ∣ ∃𝑥𝑦𝑤(𝑧 = ⟨⟨𝑥, 𝑦⟩, 𝑤⟩ ∧ ((𝑥𝐴𝑦𝐵) ∧ 𝑤 = 𝐶))} = ∅ ↔ ∀𝑣 ¬ ∃𝑥𝑦𝑤(𝑣 = ⟨⟨𝑥, 𝑦⟩, 𝑤⟩ ∧ ((𝑥𝐴𝑦𝐵) ∧ 𝑤 = 𝐶)))
1914, 18sylibr 234 . 2 ((𝐴 = ∅ ∨ 𝐵 = ∅) → {𝑧 ∣ ∃𝑥𝑦𝑤(𝑧 = ⟨⟨𝑥, 𝑦⟩, 𝑤⟩ ∧ ((𝑥𝐴𝑦𝐵) ∧ 𝑤 = 𝐶))} = ∅)
203, 19eqtrid 2792 1 ((𝐴 = ∅ ∨ 𝐵 = ∅) → (𝑥𝐴, 𝑦𝐵𝐶) = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 846  wal 1535   = wceq 1537  wex 1777  wcel 2108  {cab 2717  c0 4352  cop 4654  {coprab 7449  cmpo 7450
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-dif 3979  df-nul 4353  df-oprab 7452  df-mpo 7453
This theorem is referenced by:  mpo0v  7534  homffval  17748  comfffval  17756  natfval  18014  xpchomfval  18248  xpccofval  18251  plusffval  18684  efmndplusg  18915  grpsubfval  19023  grpsubfvalALT  19024  oppglsm  19684  dvrfval  20428  scaffval  20900  ipffval  21689  psrmulr  21985  marrepfval  22587  marepvfval  22592  pcofval  25062  clwwlknonmpo  30121  mendplusgfval  43142  mendmulrfval  43144  mendvscafval  43147
  Copyright terms: Public domain W3C validator