| Step | Hyp | Ref
| Expression |
| 1 | | eqeq1 2741 |
. . . . . 6
⊢ (𝑤 = 𝐴 → (𝑤 = 〈〈𝑥, 𝑦〉, 𝑧〉 ↔ 𝐴 = 〈〈𝑥, 𝑦〉, 𝑧〉)) |
| 2 | 1 | anbi1d 631 |
. . . . 5
⊢ (𝑤 = 𝐴 → ((𝑤 = 〈〈𝑥, 𝑦〉, 𝑧〉 ∧ 𝜑) ↔ (𝐴 = 〈〈𝑥, 𝑦〉, 𝑧〉 ∧ 𝜑))) |
| 3 | 2 | 3exbidv 1925 |
. . . 4
⊢ (𝑤 = 𝐴 → (∃𝑥∃𝑦∃𝑧(𝑤 = 〈〈𝑥, 𝑦〉, 𝑧〉 ∧ 𝜑) ↔ ∃𝑥∃𝑦∃𝑧(𝐴 = 〈〈𝑥, 𝑦〉, 𝑧〉 ∧ 𝜑))) |
| 4 | | df-oprab 7435 |
. . . 4
⊢
{〈〈𝑥,
𝑦〉, 𝑧〉 ∣ 𝜑} = {𝑤 ∣ ∃𝑥∃𝑦∃𝑧(𝑤 = 〈〈𝑥, 𝑦〉, 𝑧〉 ∧ 𝜑)} |
| 5 | 3, 4 | elab2g 3680 |
. . 3
⊢ (𝐴 ∈ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} → (𝐴 ∈ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} ↔ ∃𝑥∃𝑦∃𝑧(𝐴 = 〈〈𝑥, 𝑦〉, 𝑧〉 ∧ 𝜑))) |
| 6 | 5 | ibi 267 |
. 2
⊢ (𝐴 ∈ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} → ∃𝑥∃𝑦∃𝑧(𝐴 = 〈〈𝑥, 𝑦〉, 𝑧〉 ∧ 𝜑)) |
| 7 | | opex 5469 |
. . . . . . . . . . 11
⊢
〈𝑥, 𝑦〉 ∈ V |
| 8 | | vex 3484 |
. . . . . . . . . . 11
⊢ 𝑧 ∈ V |
| 9 | 7, 8 | op1std 8024 |
. . . . . . . . . 10
⊢ (𝐴 = 〈〈𝑥, 𝑦〉, 𝑧〉 → (1st ‘𝐴) = 〈𝑥, 𝑦〉) |
| 10 | 9 | fveq2d 6910 |
. . . . . . . . 9
⊢ (𝐴 = 〈〈𝑥, 𝑦〉, 𝑧〉 → (1st
‘(1st ‘𝐴)) = (1st ‘〈𝑥, 𝑦〉)) |
| 11 | | vex 3484 |
. . . . . . . . . 10
⊢ 𝑥 ∈ V |
| 12 | | vex 3484 |
. . . . . . . . . 10
⊢ 𝑦 ∈ V |
| 13 | 11, 12 | op1st 8022 |
. . . . . . . . 9
⊢
(1st ‘〈𝑥, 𝑦〉) = 𝑥 |
| 14 | 10, 13 | eqtr2di 2794 |
. . . . . . . 8
⊢ (𝐴 = 〈〈𝑥, 𝑦〉, 𝑧〉 → 𝑥 = (1st ‘(1st
‘𝐴))) |
| 15 | | eloprabi.1 |
. . . . . . . 8
⊢ (𝑥 = (1st
‘(1st ‘𝐴)) → (𝜑 ↔ 𝜓)) |
| 16 | 14, 15 | syl 17 |
. . . . . . 7
⊢ (𝐴 = 〈〈𝑥, 𝑦〉, 𝑧〉 → (𝜑 ↔ 𝜓)) |
| 17 | 9 | fveq2d 6910 |
. . . . . . . . 9
⊢ (𝐴 = 〈〈𝑥, 𝑦〉, 𝑧〉 → (2nd
‘(1st ‘𝐴)) = (2nd ‘〈𝑥, 𝑦〉)) |
| 18 | 11, 12 | op2nd 8023 |
. . . . . . . . 9
⊢
(2nd ‘〈𝑥, 𝑦〉) = 𝑦 |
| 19 | 17, 18 | eqtr2di 2794 |
. . . . . . . 8
⊢ (𝐴 = 〈〈𝑥, 𝑦〉, 𝑧〉 → 𝑦 = (2nd ‘(1st
‘𝐴))) |
| 20 | | eloprabi.2 |
. . . . . . . 8
⊢ (𝑦 = (2nd
‘(1st ‘𝐴)) → (𝜓 ↔ 𝜒)) |
| 21 | 19, 20 | syl 17 |
. . . . . . 7
⊢ (𝐴 = 〈〈𝑥, 𝑦〉, 𝑧〉 → (𝜓 ↔ 𝜒)) |
| 22 | 7, 8 | op2ndd 8025 |
. . . . . . . . 9
⊢ (𝐴 = 〈〈𝑥, 𝑦〉, 𝑧〉 → (2nd ‘𝐴) = 𝑧) |
| 23 | 22 | eqcomd 2743 |
. . . . . . . 8
⊢ (𝐴 = 〈〈𝑥, 𝑦〉, 𝑧〉 → 𝑧 = (2nd ‘𝐴)) |
| 24 | | eloprabi.3 |
. . . . . . . 8
⊢ (𝑧 = (2nd ‘𝐴) → (𝜒 ↔ 𝜃)) |
| 25 | 23, 24 | syl 17 |
. . . . . . 7
⊢ (𝐴 = 〈〈𝑥, 𝑦〉, 𝑧〉 → (𝜒 ↔ 𝜃)) |
| 26 | 16, 21, 25 | 3bitrd 305 |
. . . . . 6
⊢ (𝐴 = 〈〈𝑥, 𝑦〉, 𝑧〉 → (𝜑 ↔ 𝜃)) |
| 27 | 26 | biimpa 476 |
. . . . 5
⊢ ((𝐴 = 〈〈𝑥, 𝑦〉, 𝑧〉 ∧ 𝜑) → 𝜃) |
| 28 | 27 | exlimiv 1930 |
. . . 4
⊢
(∃𝑧(𝐴 = 〈〈𝑥, 𝑦〉, 𝑧〉 ∧ 𝜑) → 𝜃) |
| 29 | 28 | exlimiv 1930 |
. . 3
⊢
(∃𝑦∃𝑧(𝐴 = 〈〈𝑥, 𝑦〉, 𝑧〉 ∧ 𝜑) → 𝜃) |
| 30 | 29 | exlimiv 1930 |
. 2
⊢
(∃𝑥∃𝑦∃𝑧(𝐴 = 〈〈𝑥, 𝑦〉, 𝑧〉 ∧ 𝜑) → 𝜃) |
| 31 | 6, 30 | syl 17 |
1
⊢ (𝐴 ∈ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} → 𝜃) |