MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eloprabga Structured version   Visualization version   GIF version

Theorem eloprabga 7117
Description: The law of concretion for operation class abstraction. Compare elopab 5304. (Contributed by NM, 14-Sep-1999.) (Unnecessary distinct variable restrictions were removed by David Abernethy, 19-Jun-2012.) (Revised by Mario Carneiro, 19-Dec-2013.)
Hypothesis
Ref Expression
eloprabga.1 ((𝑥 = 𝐴𝑦 = 𝐵𝑧 = 𝐶) → (𝜑𝜓))
Assertion
Ref Expression
eloprabga ((𝐴𝑉𝐵𝑊𝐶𝑋) → (⟨⟨𝐴, 𝐵⟩, 𝐶⟩ ∈ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} ↔ 𝜓))
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝑥,𝐵,𝑦,𝑧   𝑥,𝐶,𝑦,𝑧   𝜓,𝑥,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)   𝑉(𝑥,𝑦,𝑧)   𝑊(𝑥,𝑦,𝑧)   𝑋(𝑥,𝑦,𝑧)

Proof of Theorem eloprabga
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 elex 3455 . 2 (𝐴𝑉𝐴 ∈ V)
2 elex 3455 . 2 (𝐵𝑊𝐵 ∈ V)
3 elex 3455 . 2 (𝐶𝑋𝐶 ∈ V)
4 opex 5248 . . 3 ⟨⟨𝐴, 𝐵⟩, 𝐶⟩ ∈ V
5 simpr 485 . . . . . . . . . 10 (((𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐶 ∈ V) ∧ 𝑤 = ⟨⟨𝐴, 𝐵⟩, 𝐶⟩) → 𝑤 = ⟨⟨𝐴, 𝐵⟩, 𝐶⟩)
65eqeq1d 2797 . . . . . . . . 9 (((𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐶 ∈ V) ∧ 𝑤 = ⟨⟨𝐴, 𝐵⟩, 𝐶⟩) → (𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ↔ ⟨⟨𝐴, 𝐵⟩, 𝐶⟩ = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩))
7 eqcom 2802 . . . . . . . . . 10 (⟨⟨𝐴, 𝐵⟩, 𝐶⟩ = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ↔ ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ = ⟨⟨𝐴, 𝐵⟩, 𝐶⟩)
8 vex 3440 . . . . . . . . . . 11 𝑥 ∈ V
9 vex 3440 . . . . . . . . . . 11 𝑦 ∈ V
10 vex 3440 . . . . . . . . . . 11 𝑧 ∈ V
118, 9, 10otth2 5267 . . . . . . . . . 10 (⟨⟨𝑥, 𝑦⟩, 𝑧⟩ = ⟨⟨𝐴, 𝐵⟩, 𝐶⟩ ↔ (𝑥 = 𝐴𝑦 = 𝐵𝑧 = 𝐶))
127, 11bitri 276 . . . . . . . . 9 (⟨⟨𝐴, 𝐵⟩, 𝐶⟩ = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ↔ (𝑥 = 𝐴𝑦 = 𝐵𝑧 = 𝐶))
136, 12syl6bb 288 . . . . . . . 8 (((𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐶 ∈ V) ∧ 𝑤 = ⟨⟨𝐴, 𝐵⟩, 𝐶⟩) → (𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ↔ (𝑥 = 𝐴𝑦 = 𝐵𝑧 = 𝐶)))
1413anbi1d 629 . . . . . . 7 (((𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐶 ∈ V) ∧ 𝑤 = ⟨⟨𝐴, 𝐵⟩, 𝐶⟩) → ((𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑) ↔ ((𝑥 = 𝐴𝑦 = 𝐵𝑧 = 𝐶) ∧ 𝜑)))
15 eloprabga.1 . . . . . . . 8 ((𝑥 = 𝐴𝑦 = 𝐵𝑧 = 𝐶) → (𝜑𝜓))
1615pm5.32i 575 . . . . . . 7 (((𝑥 = 𝐴𝑦 = 𝐵𝑧 = 𝐶) ∧ 𝜑) ↔ ((𝑥 = 𝐴𝑦 = 𝐵𝑧 = 𝐶) ∧ 𝜓))
1714, 16syl6bb 288 . . . . . 6 (((𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐶 ∈ V) ∧ 𝑤 = ⟨⟨𝐴, 𝐵⟩, 𝐶⟩) → ((𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑) ↔ ((𝑥 = 𝐴𝑦 = 𝐵𝑧 = 𝐶) ∧ 𝜓)))
18173exbidv 1903 . . . . 5 (((𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐶 ∈ V) ∧ 𝑤 = ⟨⟨𝐴, 𝐵⟩, 𝐶⟩) → (∃𝑥𝑦𝑧(𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑) ↔ ∃𝑥𝑦𝑧((𝑥 = 𝐴𝑦 = 𝐵𝑧 = 𝐶) ∧ 𝜓)))
19 df-oprab 7020 . . . . . . . . 9 {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} = {𝑤 ∣ ∃𝑥𝑦𝑧(𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑)}
2019eleq2i 2874 . . . . . . . 8 (𝑤 ∈ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} ↔ 𝑤 ∈ {𝑤 ∣ ∃𝑥𝑦𝑧(𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑)})
21 abid 2779 . . . . . . . 8 (𝑤 ∈ {𝑤 ∣ ∃𝑥𝑦𝑧(𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑)} ↔ ∃𝑥𝑦𝑧(𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑))
2220, 21bitr2i 277 . . . . . . 7 (∃𝑥𝑦𝑧(𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑) ↔ 𝑤 ∈ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑})
23 eleq1 2870 . . . . . . 7 (𝑤 = ⟨⟨𝐴, 𝐵⟩, 𝐶⟩ → (𝑤 ∈ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} ↔ ⟨⟨𝐴, 𝐵⟩, 𝐶⟩ ∈ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑}))
2422, 23syl5bb 284 . . . . . 6 (𝑤 = ⟨⟨𝐴, 𝐵⟩, 𝐶⟩ → (∃𝑥𝑦𝑧(𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑) ↔ ⟨⟨𝐴, 𝐵⟩, 𝐶⟩ ∈ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑}))
2524adantl 482 . . . . 5 (((𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐶 ∈ V) ∧ 𝑤 = ⟨⟨𝐴, 𝐵⟩, 𝐶⟩) → (∃𝑥𝑦𝑧(𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑) ↔ ⟨⟨𝐴, 𝐵⟩, 𝐶⟩ ∈ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑}))
26 elisset 3448 . . . . . . . . . 10 (𝐴 ∈ V → ∃𝑥 𝑥 = 𝐴)
27 elisset 3448 . . . . . . . . . 10 (𝐵 ∈ V → ∃𝑦 𝑦 = 𝐵)
28 elisset 3448 . . . . . . . . . 10 (𝐶 ∈ V → ∃𝑧 𝑧 = 𝐶)
2926, 27, 283anim123i 1144 . . . . . . . . 9 ((𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐶 ∈ V) → (∃𝑥 𝑥 = 𝐴 ∧ ∃𝑦 𝑦 = 𝐵 ∧ ∃𝑧 𝑧 = 𝐶))
30 eeeanv 2327 . . . . . . . . 9 (∃𝑥𝑦𝑧(𝑥 = 𝐴𝑦 = 𝐵𝑧 = 𝐶) ↔ (∃𝑥 𝑥 = 𝐴 ∧ ∃𝑦 𝑦 = 𝐵 ∧ ∃𝑧 𝑧 = 𝐶))
3129, 30sylibr 235 . . . . . . . 8 ((𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐶 ∈ V) → ∃𝑥𝑦𝑧(𝑥 = 𝐴𝑦 = 𝐵𝑧 = 𝐶))
3231biantrurd 533 . . . . . . 7 ((𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐶 ∈ V) → (𝜓 ↔ (∃𝑥𝑦𝑧(𝑥 = 𝐴𝑦 = 𝐵𝑧 = 𝐶) ∧ 𝜓)))
33 19.41vvv 1929 . . . . . . 7 (∃𝑥𝑦𝑧((𝑥 = 𝐴𝑦 = 𝐵𝑧 = 𝐶) ∧ 𝜓) ↔ (∃𝑥𝑦𝑧(𝑥 = 𝐴𝑦 = 𝐵𝑧 = 𝐶) ∧ 𝜓))
3432, 33syl6rbbr 291 . . . . . 6 ((𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐶 ∈ V) → (∃𝑥𝑦𝑧((𝑥 = 𝐴𝑦 = 𝐵𝑧 = 𝐶) ∧ 𝜓) ↔ 𝜓))
3534adantr 481 . . . . 5 (((𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐶 ∈ V) ∧ 𝑤 = ⟨⟨𝐴, 𝐵⟩, 𝐶⟩) → (∃𝑥𝑦𝑧((𝑥 = 𝐴𝑦 = 𝐵𝑧 = 𝐶) ∧ 𝜓) ↔ 𝜓))
3618, 25, 353bitr3d 310 . . . 4 (((𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐶 ∈ V) ∧ 𝑤 = ⟨⟨𝐴, 𝐵⟩, 𝐶⟩) → (⟨⟨𝐴, 𝐵⟩, 𝐶⟩ ∈ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} ↔ 𝜓))
3736expcom 414 . . 3 (𝑤 = ⟨⟨𝐴, 𝐵⟩, 𝐶⟩ → ((𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐶 ∈ V) → (⟨⟨𝐴, 𝐵⟩, 𝐶⟩ ∈ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} ↔ 𝜓)))
384, 37vtocle 3527 . 2 ((𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐶 ∈ V) → (⟨⟨𝐴, 𝐵⟩, 𝐶⟩ ∈ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} ↔ 𝜓))
391, 2, 3, 38syl3an 1153 1 ((𝐴𝑉𝐵𝑊𝐶𝑋) → (⟨⟨𝐴, 𝐵⟩, 𝐶⟩ ∈ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} ↔ 𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396  w3a 1080   = wceq 1522  wex 1761  wcel 2081  {cab 2775  Vcvv 3437  cop 4478  {coprab 7017
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1777  ax-4 1791  ax-5 1888  ax-6 1947  ax-7 1992  ax-8 2083  ax-9 2091  ax-10 2112  ax-11 2126  ax-12 2141  ax-ext 2769  ax-sep 5094  ax-nul 5101  ax-pr 5221
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3an 1082  df-tru 1525  df-ex 1762  df-nf 1766  df-sb 2043  df-clab 2776  df-cleq 2788  df-clel 2863  df-nfc 2935  df-rab 3114  df-v 3439  df-dif 3862  df-un 3864  df-in 3866  df-ss 3874  df-nul 4212  df-if 4382  df-sn 4473  df-pr 4475  df-op 4479  df-oprab 7020
This theorem is referenced by:  eloprabg  7118  ovigg  7151  vdwpc  16145  elmpps  32428  uncov  34404  brrabga  35130
  Copyright terms: Public domain W3C validator