Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > exdistr | Structured version Visualization version GIF version |
Description: Distribution of existential quantifiers. See also exdistrv 1959. (Contributed by NM, 9-Mar-1995.) |
Ref | Expression |
---|---|
exdistr | ⊢ (∃𝑥∃𝑦(𝜑 ∧ 𝜓) ↔ ∃𝑥(𝜑 ∧ ∃𝑦𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 19.42v 1957 | . 2 ⊢ (∃𝑦(𝜑 ∧ 𝜓) ↔ (𝜑 ∧ ∃𝑦𝜓)) | |
2 | 1 | exbii 1850 | 1 ⊢ (∃𝑥∃𝑦(𝜑 ∧ 𝜓) ↔ ∃𝑥(𝜑 ∧ ∃𝑦𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 396 ∃wex 1782 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1783 |
This theorem is referenced by: exdistrv 1959 19.42vv 1961 3exdistr 1964 rexcom4 3233 sbccomlem 3803 coass 6169 uniuni 7612 eulerpartlemgvv 32343 bnj986 32935 dfiota3 34225 ac6s6f 36331 |
Copyright terms: Public domain | W3C validator |