MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  exdistr Structured version   Visualization version   GIF version

Theorem exdistr 1955
Description: Distribution of existential quantifiers. See also exdistrv 1956. (Contributed by NM, 9-Mar-1995.)
Assertion
Ref Expression
exdistr (∃𝑥𝑦(𝜑𝜓) ↔ ∃𝑥(𝜑 ∧ ∃𝑦𝜓))
Distinct variable group:   𝜑,𝑦
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑥,𝑦)

Proof of Theorem exdistr
StepHypRef Expression
1 19.42v 1954 . 2 (∃𝑦(𝜑𝜓) ↔ (𝜑 ∧ ∃𝑦𝜓))
21exbii 1849 1 (∃𝑥𝑦(𝜑𝜓) ↔ ∃𝑥(𝜑 ∧ ∃𝑦𝜓))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  wex 1780
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1781
This theorem is referenced by:  exdistrv  1956  19.42vv  1958  3exdistr  1961  rexcom4  3259  sbccomlemOLD  3821  coass  6213  uniuni  7695  eulerpartlemgvv  34384  bnj986  34962  dfiota3  35956  ac6s6f  38212
  Copyright terms: Public domain W3C validator