![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > exdistr | Structured version Visualization version GIF version |
Description: Distribution of existential quantifiers. See also exdistrv 1951. (Contributed by NM, 9-Mar-1995.) |
Ref | Expression |
---|---|
exdistr | ⊢ (∃𝑥∃𝑦(𝜑 ∧ 𝜓) ↔ ∃𝑥(𝜑 ∧ ∃𝑦𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 19.42v 1949 | . 2 ⊢ (∃𝑦(𝜑 ∧ 𝜓) ↔ (𝜑 ∧ ∃𝑦𝜓)) | |
2 | 1 | exbii 1842 | 1 ⊢ (∃𝑥∃𝑦(𝜑 ∧ 𝜓) ↔ ∃𝑥(𝜑 ∧ ∃𝑦𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 ∃wex 1773 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1774 |
This theorem is referenced by: exdistrv 1951 19.42vv 1953 3exdistr 1956 rexcom4 3279 sbccomlem 3859 coass 6257 uniuni 7745 eulerpartlemgvv 33904 bnj986 34494 dfiota3 35427 ac6s6f 37553 |
Copyright terms: Public domain | W3C validator |