Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > exdistr | Structured version Visualization version GIF version |
Description: Distribution of existential quantifiers. See also exdistrv 1956. (Contributed by NM, 9-Mar-1995.) |
Ref | Expression |
---|---|
exdistr | ⊢ (∃𝑥∃𝑦(𝜑 ∧ 𝜓) ↔ ∃𝑥(𝜑 ∧ ∃𝑦𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 19.42v 1954 | . 2 ⊢ (∃𝑦(𝜑 ∧ 𝜓) ↔ (𝜑 ∧ ∃𝑦𝜓)) | |
2 | 1 | exbii 1849 | 1 ⊢ (∃𝑥∃𝑦(𝜑 ∧ 𝜓) ↔ ∃𝑥(𝜑 ∧ ∃𝑦𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 209 ∧ wa 399 ∃wex 1781 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 |
This theorem depends on definitions: df-bi 210 df-an 400 df-ex 1782 |
This theorem is referenced by: exdistrv 1956 19.42vv 1958 3exdistr 1962 sbccomlem 3778 coass 6099 uniuni 7488 eulerpartlemgvv 31866 bnj986 32459 dfiota3 33800 ac6s6f 35917 |
Copyright terms: Public domain | W3C validator |