![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > axpre-lttrn | Structured version Visualization version GIF version |
Description: Ordering on reals is transitive. Axiom 19 of 22 for real and complex numbers, derived from ZF set theory. Note: The more general version for extended reals is axlttrn 11302. This construction-dependent theorem should not be referenced directly; instead, use ax-pre-lttrn 11199. (Contributed by NM, 19-May-1996.) (Revised by Mario Carneiro, 16-Jun-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
axpre-lttrn | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 <ℝ 𝐵 ∧ 𝐵 <ℝ 𝐶) → 𝐴 <ℝ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elreal 11140 | . 2 ⊢ (𝐴 ∈ ℝ ↔ ∃𝑥 ∈ R ⟨𝑥, 0R⟩ = 𝐴) | |
2 | elreal 11140 | . 2 ⊢ (𝐵 ∈ ℝ ↔ ∃𝑦 ∈ R ⟨𝑦, 0R⟩ = 𝐵) | |
3 | elreal 11140 | . 2 ⊢ (𝐶 ∈ ℝ ↔ ∃𝑧 ∈ R ⟨𝑧, 0R⟩ = 𝐶) | |
4 | breq1 5145 | . . . 4 ⊢ (⟨𝑥, 0R⟩ = 𝐴 → (⟨𝑥, 0R⟩ <ℝ ⟨𝑦, 0R⟩ ↔ 𝐴 <ℝ ⟨𝑦, 0R⟩)) | |
5 | 4 | anbi1d 629 | . . 3 ⊢ (⟨𝑥, 0R⟩ = 𝐴 → ((⟨𝑥, 0R⟩ <ℝ ⟨𝑦, 0R⟩ ∧ ⟨𝑦, 0R⟩ <ℝ ⟨𝑧, 0R⟩) ↔ (𝐴 <ℝ ⟨𝑦, 0R⟩ ∧ ⟨𝑦, 0R⟩ <ℝ ⟨𝑧, 0R⟩))) |
6 | breq1 5145 | . . 3 ⊢ (⟨𝑥, 0R⟩ = 𝐴 → (⟨𝑥, 0R⟩ <ℝ ⟨𝑧, 0R⟩ ↔ 𝐴 <ℝ ⟨𝑧, 0R⟩)) | |
7 | 5, 6 | imbi12d 344 | . 2 ⊢ (⟨𝑥, 0R⟩ = 𝐴 → (((⟨𝑥, 0R⟩ <ℝ ⟨𝑦, 0R⟩ ∧ ⟨𝑦, 0R⟩ <ℝ ⟨𝑧, 0R⟩) → ⟨𝑥, 0R⟩ <ℝ ⟨𝑧, 0R⟩) ↔ ((𝐴 <ℝ ⟨𝑦, 0R⟩ ∧ ⟨𝑦, 0R⟩ <ℝ ⟨𝑧, 0R⟩) → 𝐴 <ℝ ⟨𝑧, 0R⟩))) |
8 | breq2 5146 | . . . 4 ⊢ (⟨𝑦, 0R⟩ = 𝐵 → (𝐴 <ℝ ⟨𝑦, 0R⟩ ↔ 𝐴 <ℝ 𝐵)) | |
9 | breq1 5145 | . . . 4 ⊢ (⟨𝑦, 0R⟩ = 𝐵 → (⟨𝑦, 0R⟩ <ℝ ⟨𝑧, 0R⟩ ↔ 𝐵 <ℝ ⟨𝑧, 0R⟩)) | |
10 | 8, 9 | anbi12d 630 | . . 3 ⊢ (⟨𝑦, 0R⟩ = 𝐵 → ((𝐴 <ℝ ⟨𝑦, 0R⟩ ∧ ⟨𝑦, 0R⟩ <ℝ ⟨𝑧, 0R⟩) ↔ (𝐴 <ℝ 𝐵 ∧ 𝐵 <ℝ ⟨𝑧, 0R⟩))) |
11 | 10 | imbi1d 341 | . 2 ⊢ (⟨𝑦, 0R⟩ = 𝐵 → (((𝐴 <ℝ ⟨𝑦, 0R⟩ ∧ ⟨𝑦, 0R⟩ <ℝ ⟨𝑧, 0R⟩) → 𝐴 <ℝ ⟨𝑧, 0R⟩) ↔ ((𝐴 <ℝ 𝐵 ∧ 𝐵 <ℝ ⟨𝑧, 0R⟩) → 𝐴 <ℝ ⟨𝑧, 0R⟩))) |
12 | breq2 5146 | . . . 4 ⊢ (⟨𝑧, 0R⟩ = 𝐶 → (𝐵 <ℝ ⟨𝑧, 0R⟩ ↔ 𝐵 <ℝ 𝐶)) | |
13 | 12 | anbi2d 628 | . . 3 ⊢ (⟨𝑧, 0R⟩ = 𝐶 → ((𝐴 <ℝ 𝐵 ∧ 𝐵 <ℝ ⟨𝑧, 0R⟩) ↔ (𝐴 <ℝ 𝐵 ∧ 𝐵 <ℝ 𝐶))) |
14 | breq2 5146 | . . 3 ⊢ (⟨𝑧, 0R⟩ = 𝐶 → (𝐴 <ℝ ⟨𝑧, 0R⟩ ↔ 𝐴 <ℝ 𝐶)) | |
15 | 13, 14 | imbi12d 344 | . 2 ⊢ (⟨𝑧, 0R⟩ = 𝐶 → (((𝐴 <ℝ 𝐵 ∧ 𝐵 <ℝ ⟨𝑧, 0R⟩) → 𝐴 <ℝ ⟨𝑧, 0R⟩) ↔ ((𝐴 <ℝ 𝐵 ∧ 𝐵 <ℝ 𝐶) → 𝐴 <ℝ 𝐶))) |
16 | ltresr 11149 | . . . . 5 ⊢ (⟨𝑥, 0R⟩ <ℝ ⟨𝑦, 0R⟩ ↔ 𝑥 <R 𝑦) | |
17 | ltresr 11149 | . . . . 5 ⊢ (⟨𝑦, 0R⟩ <ℝ ⟨𝑧, 0R⟩ ↔ 𝑦 <R 𝑧) | |
18 | ltsosr 11103 | . . . . . 6 ⊢ <R Or R | |
19 | ltrelsr 11077 | . . . . . 6 ⊢ <R ⊆ (R × R) | |
20 | 18, 19 | sotri 6127 | . . . . 5 ⊢ ((𝑥 <R 𝑦 ∧ 𝑦 <R 𝑧) → 𝑥 <R 𝑧) |
21 | 16, 17, 20 | syl2anb 597 | . . . 4 ⊢ ((⟨𝑥, 0R⟩ <ℝ ⟨𝑦, 0R⟩ ∧ ⟨𝑦, 0R⟩ <ℝ ⟨𝑧, 0R⟩) → 𝑥 <R 𝑧) |
22 | ltresr 11149 | . . . 4 ⊢ (⟨𝑥, 0R⟩ <ℝ ⟨𝑧, 0R⟩ ↔ 𝑥 <R 𝑧) | |
23 | 21, 22 | sylibr 233 | . . 3 ⊢ ((⟨𝑥, 0R⟩ <ℝ ⟨𝑦, 0R⟩ ∧ ⟨𝑦, 0R⟩ <ℝ ⟨𝑧, 0R⟩) → ⟨𝑥, 0R⟩ <ℝ ⟨𝑧, 0R⟩) |
24 | 23 | a1i 11 | . 2 ⊢ ((𝑥 ∈ R ∧ 𝑦 ∈ R ∧ 𝑧 ∈ R) → ((⟨𝑥, 0R⟩ <ℝ ⟨𝑦, 0R⟩ ∧ ⟨𝑦, 0R⟩ <ℝ ⟨𝑧, 0R⟩) → ⟨𝑥, 0R⟩ <ℝ ⟨𝑧, 0R⟩)) |
25 | 1, 2, 3, 7, 11, 15, 24 | 3gencl 3513 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 <ℝ 𝐵 ∧ 𝐵 <ℝ 𝐶) → 𝐴 <ℝ 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 = wceq 1534 ∈ wcel 2099 ⟨cop 4630 class class class wbr 5142 Rcnr 10874 0Rc0r 10875 <R cltr 10880 ℝcr 11123 <ℝ cltrr 11128 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7732 ax-inf2 9650 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-ral 3057 df-rex 3066 df-rmo 3371 df-reu 3372 df-rab 3428 df-v 3471 df-sbc 3775 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3963 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-int 4945 df-iun 4993 df-br 5143 df-opab 5205 df-mpt 5226 df-tr 5260 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-ov 7417 df-oprab 7418 df-mpo 7419 df-om 7863 df-1st 7985 df-2nd 7986 df-frecs 8278 df-wrecs 8309 df-recs 8383 df-rdg 8422 df-1o 8478 df-oadd 8482 df-omul 8483 df-er 8716 df-ec 8718 df-qs 8722 df-ni 10881 df-pli 10882 df-mi 10883 df-lti 10884 df-plpq 10917 df-mpq 10918 df-ltpq 10919 df-enq 10920 df-nq 10921 df-erq 10922 df-plq 10923 df-mq 10924 df-1nq 10925 df-rq 10926 df-ltnq 10927 df-np 10990 df-1p 10991 df-plp 10992 df-ltp 10994 df-enr 11064 df-nr 11065 df-ltr 11068 df-0r 11069 df-r 11134 df-lt 11137 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |