MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axpre-lttrn Structured version   Visualization version   GIF version

Theorem axpre-lttrn 11209
Description: Ordering on reals is transitive. Axiom 19 of 22 for real and complex numbers, derived from ZF set theory. Note: The more general version for extended reals is axlttrn 11336. This construction-dependent theorem should not be referenced directly; instead, use ax-pre-lttrn 11233. (Contributed by NM, 19-May-1996.) (Revised by Mario Carneiro, 16-Jun-2013.) (New usage is discouraged.)
Assertion
Ref Expression
axpre-lttrn ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 < 𝐵𝐵 < 𝐶) → 𝐴 < 𝐶))

Proof of Theorem axpre-lttrn
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elreal 11174 . 2 (𝐴 ∈ ℝ ↔ ∃𝑥R𝑥, 0R⟩ = 𝐴)
2 elreal 11174 . 2 (𝐵 ∈ ℝ ↔ ∃𝑦R𝑦, 0R⟩ = 𝐵)
3 elreal 11174 . 2 (𝐶 ∈ ℝ ↔ ∃𝑧R𝑧, 0R⟩ = 𝐶)
4 breq1 5156 . . . 4 (⟨𝑥, 0R⟩ = 𝐴 → (⟨𝑥, 0R⟩ <𝑦, 0R⟩ ↔ 𝐴 <𝑦, 0R⟩))
54anbi1d 629 . . 3 (⟨𝑥, 0R⟩ = 𝐴 → ((⟨𝑥, 0R⟩ <𝑦, 0R⟩ ∧ ⟨𝑦, 0R⟩ <𝑧, 0R⟩) ↔ (𝐴 <𝑦, 0R⟩ ∧ ⟨𝑦, 0R⟩ <𝑧, 0R⟩)))
6 breq1 5156 . . 3 (⟨𝑥, 0R⟩ = 𝐴 → (⟨𝑥, 0R⟩ <𝑧, 0R⟩ ↔ 𝐴 <𝑧, 0R⟩))
75, 6imbi12d 343 . 2 (⟨𝑥, 0R⟩ = 𝐴 → (((⟨𝑥, 0R⟩ <𝑦, 0R⟩ ∧ ⟨𝑦, 0R⟩ <𝑧, 0R⟩) → ⟨𝑥, 0R⟩ <𝑧, 0R⟩) ↔ ((𝐴 <𝑦, 0R⟩ ∧ ⟨𝑦, 0R⟩ <𝑧, 0R⟩) → 𝐴 <𝑧, 0R⟩)))
8 breq2 5157 . . . 4 (⟨𝑦, 0R⟩ = 𝐵 → (𝐴 <𝑦, 0R⟩ ↔ 𝐴 < 𝐵))
9 breq1 5156 . . . 4 (⟨𝑦, 0R⟩ = 𝐵 → (⟨𝑦, 0R⟩ <𝑧, 0R⟩ ↔ 𝐵 <𝑧, 0R⟩))
108, 9anbi12d 630 . . 3 (⟨𝑦, 0R⟩ = 𝐵 → ((𝐴 <𝑦, 0R⟩ ∧ ⟨𝑦, 0R⟩ <𝑧, 0R⟩) ↔ (𝐴 < 𝐵𝐵 <𝑧, 0R⟩)))
1110imbi1d 340 . 2 (⟨𝑦, 0R⟩ = 𝐵 → (((𝐴 <𝑦, 0R⟩ ∧ ⟨𝑦, 0R⟩ <𝑧, 0R⟩) → 𝐴 <𝑧, 0R⟩) ↔ ((𝐴 < 𝐵𝐵 <𝑧, 0R⟩) → 𝐴 <𝑧, 0R⟩)))
12 breq2 5157 . . . 4 (⟨𝑧, 0R⟩ = 𝐶 → (𝐵 <𝑧, 0R⟩ ↔ 𝐵 < 𝐶))
1312anbi2d 628 . . 3 (⟨𝑧, 0R⟩ = 𝐶 → ((𝐴 < 𝐵𝐵 <𝑧, 0R⟩) ↔ (𝐴 < 𝐵𝐵 < 𝐶)))
14 breq2 5157 . . 3 (⟨𝑧, 0R⟩ = 𝐶 → (𝐴 <𝑧, 0R⟩ ↔ 𝐴 < 𝐶))
1513, 14imbi12d 343 . 2 (⟨𝑧, 0R⟩ = 𝐶 → (((𝐴 < 𝐵𝐵 <𝑧, 0R⟩) → 𝐴 <𝑧, 0R⟩) ↔ ((𝐴 < 𝐵𝐵 < 𝐶) → 𝐴 < 𝐶)))
16 ltresr 11183 . . . . 5 (⟨𝑥, 0R⟩ <𝑦, 0R⟩ ↔ 𝑥 <R 𝑦)
17 ltresr 11183 . . . . 5 (⟨𝑦, 0R⟩ <𝑧, 0R⟩ ↔ 𝑦 <R 𝑧)
18 ltsosr 11137 . . . . . 6 <R Or R
19 ltrelsr 11111 . . . . . 6 <R ⊆ (R × R)
2018, 19sotri 6139 . . . . 5 ((𝑥 <R 𝑦𝑦 <R 𝑧) → 𝑥 <R 𝑧)
2116, 17, 20syl2anb 596 . . . 4 ((⟨𝑥, 0R⟩ <𝑦, 0R⟩ ∧ ⟨𝑦, 0R⟩ <𝑧, 0R⟩) → 𝑥 <R 𝑧)
22 ltresr 11183 . . . 4 (⟨𝑥, 0R⟩ <𝑧, 0R⟩ ↔ 𝑥 <R 𝑧)
2321, 22sylibr 233 . . 3 ((⟨𝑥, 0R⟩ <𝑦, 0R⟩ ∧ ⟨𝑦, 0R⟩ <𝑧, 0R⟩) → ⟨𝑥, 0R⟩ <𝑧, 0R⟩)
2423a1i 11 . 2 ((𝑥R𝑦R𝑧R) → ((⟨𝑥, 0R⟩ <𝑦, 0R⟩ ∧ ⟨𝑦, 0R⟩ <𝑧, 0R⟩) → ⟨𝑥, 0R⟩ <𝑧, 0R⟩))
251, 2, 3, 7, 11, 15, 243gencl 3508 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 < 𝐵𝐵 < 𝐶) → 𝐴 < 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394  w3a 1084   = wceq 1534  wcel 2099  cop 4639   class class class wbr 5153  Rcnr 10908  0Rc0r 10909   <R cltr 10914  cr 11157   < cltrr 11162
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-sep 5304  ax-nul 5311  ax-pow 5369  ax-pr 5433  ax-un 7746  ax-inf2 9684
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3967  df-nul 4326  df-if 4534  df-pw 4609  df-sn 4634  df-pr 4636  df-op 4640  df-uni 4914  df-int 4955  df-iun 5003  df-br 5154  df-opab 5216  df-mpt 5237  df-tr 5271  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-pred 6312  df-ord 6379  df-on 6380  df-lim 6381  df-suc 6382  df-iota 6506  df-fun 6556  df-fn 6557  df-f 6558  df-f1 6559  df-fo 6560  df-f1o 6561  df-fv 6562  df-ov 7427  df-oprab 7428  df-mpo 7429  df-om 7877  df-1st 8003  df-2nd 8004  df-frecs 8296  df-wrecs 8327  df-recs 8401  df-rdg 8440  df-1o 8496  df-oadd 8500  df-omul 8501  df-er 8734  df-ec 8736  df-qs 8740  df-ni 10915  df-pli 10916  df-mi 10917  df-lti 10918  df-plpq 10951  df-mpq 10952  df-ltpq 10953  df-enq 10954  df-nq 10955  df-erq 10956  df-plq 10957  df-mq 10958  df-1nq 10959  df-rq 10960  df-ltnq 10961  df-np 11024  df-1p 11025  df-plp 11026  df-ltp 11028  df-enr 11098  df-nr 11099  df-ltr 11102  df-0r 11103  df-r 11168  df-lt 11171
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator