Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > axpre-lttrn | Structured version Visualization version GIF version |
Description: Ordering on reals is transitive. Axiom 19 of 22 for real and complex numbers, derived from ZF set theory. Note: The more general version for extended reals is axlttrn 11117. This construction-dependent theorem should not be referenced directly; instead, use ax-pre-lttrn 11016. (Contributed by NM, 19-May-1996.) (Revised by Mario Carneiro, 16-Jun-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
axpre-lttrn | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 <ℝ 𝐵 ∧ 𝐵 <ℝ 𝐶) → 𝐴 <ℝ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elreal 10957 | . 2 ⊢ (𝐴 ∈ ℝ ↔ ∃𝑥 ∈ R 〈𝑥, 0R〉 = 𝐴) | |
2 | elreal 10957 | . 2 ⊢ (𝐵 ∈ ℝ ↔ ∃𝑦 ∈ R 〈𝑦, 0R〉 = 𝐵) | |
3 | elreal 10957 | . 2 ⊢ (𝐶 ∈ ℝ ↔ ∃𝑧 ∈ R 〈𝑧, 0R〉 = 𝐶) | |
4 | breq1 5088 | . . . 4 ⊢ (〈𝑥, 0R〉 = 𝐴 → (〈𝑥, 0R〉 <ℝ 〈𝑦, 0R〉 ↔ 𝐴 <ℝ 〈𝑦, 0R〉)) | |
5 | 4 | anbi1d 630 | . . 3 ⊢ (〈𝑥, 0R〉 = 𝐴 → ((〈𝑥, 0R〉 <ℝ 〈𝑦, 0R〉 ∧ 〈𝑦, 0R〉 <ℝ 〈𝑧, 0R〉) ↔ (𝐴 <ℝ 〈𝑦, 0R〉 ∧ 〈𝑦, 0R〉 <ℝ 〈𝑧, 0R〉))) |
6 | breq1 5088 | . . 3 ⊢ (〈𝑥, 0R〉 = 𝐴 → (〈𝑥, 0R〉 <ℝ 〈𝑧, 0R〉 ↔ 𝐴 <ℝ 〈𝑧, 0R〉)) | |
7 | 5, 6 | imbi12d 344 | . 2 ⊢ (〈𝑥, 0R〉 = 𝐴 → (((〈𝑥, 0R〉 <ℝ 〈𝑦, 0R〉 ∧ 〈𝑦, 0R〉 <ℝ 〈𝑧, 0R〉) → 〈𝑥, 0R〉 <ℝ 〈𝑧, 0R〉) ↔ ((𝐴 <ℝ 〈𝑦, 0R〉 ∧ 〈𝑦, 0R〉 <ℝ 〈𝑧, 0R〉) → 𝐴 <ℝ 〈𝑧, 0R〉))) |
8 | breq2 5089 | . . . 4 ⊢ (〈𝑦, 0R〉 = 𝐵 → (𝐴 <ℝ 〈𝑦, 0R〉 ↔ 𝐴 <ℝ 𝐵)) | |
9 | breq1 5088 | . . . 4 ⊢ (〈𝑦, 0R〉 = 𝐵 → (〈𝑦, 0R〉 <ℝ 〈𝑧, 0R〉 ↔ 𝐵 <ℝ 〈𝑧, 0R〉)) | |
10 | 8, 9 | anbi12d 631 | . . 3 ⊢ (〈𝑦, 0R〉 = 𝐵 → ((𝐴 <ℝ 〈𝑦, 0R〉 ∧ 〈𝑦, 0R〉 <ℝ 〈𝑧, 0R〉) ↔ (𝐴 <ℝ 𝐵 ∧ 𝐵 <ℝ 〈𝑧, 0R〉))) |
11 | 10 | imbi1d 341 | . 2 ⊢ (〈𝑦, 0R〉 = 𝐵 → (((𝐴 <ℝ 〈𝑦, 0R〉 ∧ 〈𝑦, 0R〉 <ℝ 〈𝑧, 0R〉) → 𝐴 <ℝ 〈𝑧, 0R〉) ↔ ((𝐴 <ℝ 𝐵 ∧ 𝐵 <ℝ 〈𝑧, 0R〉) → 𝐴 <ℝ 〈𝑧, 0R〉))) |
12 | breq2 5089 | . . . 4 ⊢ (〈𝑧, 0R〉 = 𝐶 → (𝐵 <ℝ 〈𝑧, 0R〉 ↔ 𝐵 <ℝ 𝐶)) | |
13 | 12 | anbi2d 629 | . . 3 ⊢ (〈𝑧, 0R〉 = 𝐶 → ((𝐴 <ℝ 𝐵 ∧ 𝐵 <ℝ 〈𝑧, 0R〉) ↔ (𝐴 <ℝ 𝐵 ∧ 𝐵 <ℝ 𝐶))) |
14 | breq2 5089 | . . 3 ⊢ (〈𝑧, 0R〉 = 𝐶 → (𝐴 <ℝ 〈𝑧, 0R〉 ↔ 𝐴 <ℝ 𝐶)) | |
15 | 13, 14 | imbi12d 344 | . 2 ⊢ (〈𝑧, 0R〉 = 𝐶 → (((𝐴 <ℝ 𝐵 ∧ 𝐵 <ℝ 〈𝑧, 0R〉) → 𝐴 <ℝ 〈𝑧, 0R〉) ↔ ((𝐴 <ℝ 𝐵 ∧ 𝐵 <ℝ 𝐶) → 𝐴 <ℝ 𝐶))) |
16 | ltresr 10966 | . . . . 5 ⊢ (〈𝑥, 0R〉 <ℝ 〈𝑦, 0R〉 ↔ 𝑥 <R 𝑦) | |
17 | ltresr 10966 | . . . . 5 ⊢ (〈𝑦, 0R〉 <ℝ 〈𝑧, 0R〉 ↔ 𝑦 <R 𝑧) | |
18 | ltsosr 10920 | . . . . . 6 ⊢ <R Or R | |
19 | ltrelsr 10894 | . . . . . 6 ⊢ <R ⊆ (R × R) | |
20 | 18, 19 | sotri 6052 | . . . . 5 ⊢ ((𝑥 <R 𝑦 ∧ 𝑦 <R 𝑧) → 𝑥 <R 𝑧) |
21 | 16, 17, 20 | syl2anb 598 | . . . 4 ⊢ ((〈𝑥, 0R〉 <ℝ 〈𝑦, 0R〉 ∧ 〈𝑦, 0R〉 <ℝ 〈𝑧, 0R〉) → 𝑥 <R 𝑧) |
22 | ltresr 10966 | . . . 4 ⊢ (〈𝑥, 0R〉 <ℝ 〈𝑧, 0R〉 ↔ 𝑥 <R 𝑧) | |
23 | 21, 22 | sylibr 233 | . . 3 ⊢ ((〈𝑥, 0R〉 <ℝ 〈𝑦, 0R〉 ∧ 〈𝑦, 0R〉 <ℝ 〈𝑧, 0R〉) → 〈𝑥, 0R〉 <ℝ 〈𝑧, 0R〉) |
24 | 23 | a1i 11 | . 2 ⊢ ((𝑥 ∈ R ∧ 𝑦 ∈ R ∧ 𝑧 ∈ R) → ((〈𝑥, 0R〉 <ℝ 〈𝑦, 0R〉 ∧ 〈𝑦, 0R〉 <ℝ 〈𝑧, 0R〉) → 〈𝑥, 0R〉 <ℝ 〈𝑧, 0R〉)) |
25 | 1, 2, 3, 7, 11, 15, 24 | 3gencl 3482 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 <ℝ 𝐵 ∧ 𝐵 <ℝ 𝐶) → 𝐴 <ℝ 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1086 = wceq 1540 ∈ wcel 2105 〈cop 4575 class class class wbr 5085 Rcnr 10691 0Rc0r 10692 <R cltr 10697 ℝcr 10940 <ℝ cltrr 10945 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2708 ax-sep 5236 ax-nul 5243 ax-pow 5301 ax-pr 5365 ax-un 7626 ax-inf2 9467 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-ral 3063 df-rex 3072 df-rmo 3350 df-reu 3351 df-rab 3405 df-v 3443 df-sbc 3726 df-csb 3842 df-dif 3899 df-un 3901 df-in 3903 df-ss 3913 df-pss 3915 df-nul 4267 df-if 4470 df-pw 4545 df-sn 4570 df-pr 4572 df-op 4576 df-uni 4849 df-int 4891 df-iun 4937 df-br 5086 df-opab 5148 df-mpt 5169 df-tr 5203 df-id 5505 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5560 df-we 5562 df-xp 5611 df-rel 5612 df-cnv 5613 df-co 5614 df-dm 5615 df-rn 5616 df-res 5617 df-ima 5618 df-pred 6222 df-ord 6289 df-on 6290 df-lim 6291 df-suc 6292 df-iota 6415 df-fun 6465 df-fn 6466 df-f 6467 df-f1 6468 df-fo 6469 df-f1o 6470 df-fv 6471 df-ov 7316 df-oprab 7317 df-mpo 7318 df-om 7756 df-1st 7874 df-2nd 7875 df-frecs 8142 df-wrecs 8173 df-recs 8247 df-rdg 8286 df-1o 8342 df-oadd 8346 df-omul 8347 df-er 8544 df-ec 8546 df-qs 8550 df-ni 10698 df-pli 10699 df-mi 10700 df-lti 10701 df-plpq 10734 df-mpq 10735 df-ltpq 10736 df-enq 10737 df-nq 10738 df-erq 10739 df-plq 10740 df-mq 10741 df-1nq 10742 df-rq 10743 df-ltnq 10744 df-np 10807 df-1p 10808 df-plp 10809 df-ltp 10811 df-enr 10881 df-nr 10882 df-ltr 10885 df-0r 10886 df-r 10951 df-lt 10954 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |