![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > axpre-lttrn | Structured version Visualization version GIF version |
Description: Ordering on reals is transitive. Axiom 19 of 22 for real and complex numbers, derived from ZF set theory. Note: The more general version for extended reals is axlttrn 11234. This construction-dependent theorem should not be referenced directly; instead, use ax-pre-lttrn 11133. (Contributed by NM, 19-May-1996.) (Revised by Mario Carneiro, 16-Jun-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
axpre-lttrn | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 <ℝ 𝐵 ∧ 𝐵 <ℝ 𝐶) → 𝐴 <ℝ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elreal 11074 | . 2 ⊢ (𝐴 ∈ ℝ ↔ ∃𝑥 ∈ R ⟨𝑥, 0R⟩ = 𝐴) | |
2 | elreal 11074 | . 2 ⊢ (𝐵 ∈ ℝ ↔ ∃𝑦 ∈ R ⟨𝑦, 0R⟩ = 𝐵) | |
3 | elreal 11074 | . 2 ⊢ (𝐶 ∈ ℝ ↔ ∃𝑧 ∈ R ⟨𝑧, 0R⟩ = 𝐶) | |
4 | breq1 5113 | . . . 4 ⊢ (⟨𝑥, 0R⟩ = 𝐴 → (⟨𝑥, 0R⟩ <ℝ ⟨𝑦, 0R⟩ ↔ 𝐴 <ℝ ⟨𝑦, 0R⟩)) | |
5 | 4 | anbi1d 631 | . . 3 ⊢ (⟨𝑥, 0R⟩ = 𝐴 → ((⟨𝑥, 0R⟩ <ℝ ⟨𝑦, 0R⟩ ∧ ⟨𝑦, 0R⟩ <ℝ ⟨𝑧, 0R⟩) ↔ (𝐴 <ℝ ⟨𝑦, 0R⟩ ∧ ⟨𝑦, 0R⟩ <ℝ ⟨𝑧, 0R⟩))) |
6 | breq1 5113 | . . 3 ⊢ (⟨𝑥, 0R⟩ = 𝐴 → (⟨𝑥, 0R⟩ <ℝ ⟨𝑧, 0R⟩ ↔ 𝐴 <ℝ ⟨𝑧, 0R⟩)) | |
7 | 5, 6 | imbi12d 345 | . 2 ⊢ (⟨𝑥, 0R⟩ = 𝐴 → (((⟨𝑥, 0R⟩ <ℝ ⟨𝑦, 0R⟩ ∧ ⟨𝑦, 0R⟩ <ℝ ⟨𝑧, 0R⟩) → ⟨𝑥, 0R⟩ <ℝ ⟨𝑧, 0R⟩) ↔ ((𝐴 <ℝ ⟨𝑦, 0R⟩ ∧ ⟨𝑦, 0R⟩ <ℝ ⟨𝑧, 0R⟩) → 𝐴 <ℝ ⟨𝑧, 0R⟩))) |
8 | breq2 5114 | . . . 4 ⊢ (⟨𝑦, 0R⟩ = 𝐵 → (𝐴 <ℝ ⟨𝑦, 0R⟩ ↔ 𝐴 <ℝ 𝐵)) | |
9 | breq1 5113 | . . . 4 ⊢ (⟨𝑦, 0R⟩ = 𝐵 → (⟨𝑦, 0R⟩ <ℝ ⟨𝑧, 0R⟩ ↔ 𝐵 <ℝ ⟨𝑧, 0R⟩)) | |
10 | 8, 9 | anbi12d 632 | . . 3 ⊢ (⟨𝑦, 0R⟩ = 𝐵 → ((𝐴 <ℝ ⟨𝑦, 0R⟩ ∧ ⟨𝑦, 0R⟩ <ℝ ⟨𝑧, 0R⟩) ↔ (𝐴 <ℝ 𝐵 ∧ 𝐵 <ℝ ⟨𝑧, 0R⟩))) |
11 | 10 | imbi1d 342 | . 2 ⊢ (⟨𝑦, 0R⟩ = 𝐵 → (((𝐴 <ℝ ⟨𝑦, 0R⟩ ∧ ⟨𝑦, 0R⟩ <ℝ ⟨𝑧, 0R⟩) → 𝐴 <ℝ ⟨𝑧, 0R⟩) ↔ ((𝐴 <ℝ 𝐵 ∧ 𝐵 <ℝ ⟨𝑧, 0R⟩) → 𝐴 <ℝ ⟨𝑧, 0R⟩))) |
12 | breq2 5114 | . . . 4 ⊢ (⟨𝑧, 0R⟩ = 𝐶 → (𝐵 <ℝ ⟨𝑧, 0R⟩ ↔ 𝐵 <ℝ 𝐶)) | |
13 | 12 | anbi2d 630 | . . 3 ⊢ (⟨𝑧, 0R⟩ = 𝐶 → ((𝐴 <ℝ 𝐵 ∧ 𝐵 <ℝ ⟨𝑧, 0R⟩) ↔ (𝐴 <ℝ 𝐵 ∧ 𝐵 <ℝ 𝐶))) |
14 | breq2 5114 | . . 3 ⊢ (⟨𝑧, 0R⟩ = 𝐶 → (𝐴 <ℝ ⟨𝑧, 0R⟩ ↔ 𝐴 <ℝ 𝐶)) | |
15 | 13, 14 | imbi12d 345 | . 2 ⊢ (⟨𝑧, 0R⟩ = 𝐶 → (((𝐴 <ℝ 𝐵 ∧ 𝐵 <ℝ ⟨𝑧, 0R⟩) → 𝐴 <ℝ ⟨𝑧, 0R⟩) ↔ ((𝐴 <ℝ 𝐵 ∧ 𝐵 <ℝ 𝐶) → 𝐴 <ℝ 𝐶))) |
16 | ltresr 11083 | . . . . 5 ⊢ (⟨𝑥, 0R⟩ <ℝ ⟨𝑦, 0R⟩ ↔ 𝑥 <R 𝑦) | |
17 | ltresr 11083 | . . . . 5 ⊢ (⟨𝑦, 0R⟩ <ℝ ⟨𝑧, 0R⟩ ↔ 𝑦 <R 𝑧) | |
18 | ltsosr 11037 | . . . . . 6 ⊢ <R Or R | |
19 | ltrelsr 11011 | . . . . . 6 ⊢ <R ⊆ (R × R) | |
20 | 18, 19 | sotri 6086 | . . . . 5 ⊢ ((𝑥 <R 𝑦 ∧ 𝑦 <R 𝑧) → 𝑥 <R 𝑧) |
21 | 16, 17, 20 | syl2anb 599 | . . . 4 ⊢ ((⟨𝑥, 0R⟩ <ℝ ⟨𝑦, 0R⟩ ∧ ⟨𝑦, 0R⟩ <ℝ ⟨𝑧, 0R⟩) → 𝑥 <R 𝑧) |
22 | ltresr 11083 | . . . 4 ⊢ (⟨𝑥, 0R⟩ <ℝ ⟨𝑧, 0R⟩ ↔ 𝑥 <R 𝑧) | |
23 | 21, 22 | sylibr 233 | . . 3 ⊢ ((⟨𝑥, 0R⟩ <ℝ ⟨𝑦, 0R⟩ ∧ ⟨𝑦, 0R⟩ <ℝ ⟨𝑧, 0R⟩) → ⟨𝑥, 0R⟩ <ℝ ⟨𝑧, 0R⟩) |
24 | 23 | a1i 11 | . 2 ⊢ ((𝑥 ∈ R ∧ 𝑦 ∈ R ∧ 𝑧 ∈ R) → ((⟨𝑥, 0R⟩ <ℝ ⟨𝑦, 0R⟩ ∧ ⟨𝑦, 0R⟩ <ℝ ⟨𝑧, 0R⟩) → ⟨𝑥, 0R⟩ <ℝ ⟨𝑧, 0R⟩)) |
25 | 1, 2, 3, 7, 11, 15, 24 | 3gencl 3490 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 <ℝ 𝐵 ∧ 𝐵 <ℝ 𝐶) → 𝐴 <ℝ 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 ∧ w3a 1088 = wceq 1542 ∈ wcel 2107 ⟨cop 4597 class class class wbr 5110 Rcnr 10808 0Rc0r 10809 <R cltr 10814 ℝcr 11057 <ℝ cltrr 11062 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2708 ax-sep 5261 ax-nul 5268 ax-pow 5325 ax-pr 5389 ax-un 7677 ax-inf2 9584 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2890 df-ne 2945 df-ral 3066 df-rex 3075 df-rmo 3356 df-reu 3357 df-rab 3411 df-v 3450 df-sbc 3745 df-csb 3861 df-dif 3918 df-un 3920 df-in 3922 df-ss 3932 df-pss 3934 df-nul 4288 df-if 4492 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4871 df-int 4913 df-iun 4961 df-br 5111 df-opab 5173 df-mpt 5194 df-tr 5228 df-id 5536 df-eprel 5542 df-po 5550 df-so 5551 df-fr 5593 df-we 5595 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6258 df-ord 6325 df-on 6326 df-lim 6327 df-suc 6328 df-iota 6453 df-fun 6503 df-fn 6504 df-f 6505 df-f1 6506 df-fo 6507 df-f1o 6508 df-fv 6509 df-ov 7365 df-oprab 7366 df-mpo 7367 df-om 7808 df-1st 7926 df-2nd 7927 df-frecs 8217 df-wrecs 8248 df-recs 8322 df-rdg 8361 df-1o 8417 df-oadd 8421 df-omul 8422 df-er 8655 df-ec 8657 df-qs 8661 df-ni 10815 df-pli 10816 df-mi 10817 df-lti 10818 df-plpq 10851 df-mpq 10852 df-ltpq 10853 df-enq 10854 df-nq 10855 df-erq 10856 df-plq 10857 df-mq 10858 df-1nq 10859 df-rq 10860 df-ltnq 10861 df-np 10924 df-1p 10925 df-plp 10926 df-ltp 10928 df-enr 10998 df-nr 10999 df-ltr 11002 df-0r 11003 df-r 11068 df-lt 11071 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |