MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axpre-lttrn Structured version   Visualization version   GIF version

Theorem axpre-lttrn 11119
Description: Ordering on reals is transitive. Axiom 19 of 22 for real and complex numbers, derived from ZF set theory. Note: The more general version for extended reals is axlttrn 11246. This construction-dependent theorem should not be referenced directly; instead, use ax-pre-lttrn 11143. (Contributed by NM, 19-May-1996.) (Revised by Mario Carneiro, 16-Jun-2013.) (New usage is discouraged.)
Assertion
Ref Expression
axpre-lttrn ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 < 𝐵𝐵 < 𝐶) → 𝐴 < 𝐶))

Proof of Theorem axpre-lttrn
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elreal 11084 . 2 (𝐴 ∈ ℝ ↔ ∃𝑥R𝑥, 0R⟩ = 𝐴)
2 elreal 11084 . 2 (𝐵 ∈ ℝ ↔ ∃𝑦R𝑦, 0R⟩ = 𝐵)
3 elreal 11084 . 2 (𝐶 ∈ ℝ ↔ ∃𝑧R𝑧, 0R⟩ = 𝐶)
4 breq1 5110 . . . 4 (⟨𝑥, 0R⟩ = 𝐴 → (⟨𝑥, 0R⟩ <𝑦, 0R⟩ ↔ 𝐴 <𝑦, 0R⟩))
54anbi1d 631 . . 3 (⟨𝑥, 0R⟩ = 𝐴 → ((⟨𝑥, 0R⟩ <𝑦, 0R⟩ ∧ ⟨𝑦, 0R⟩ <𝑧, 0R⟩) ↔ (𝐴 <𝑦, 0R⟩ ∧ ⟨𝑦, 0R⟩ <𝑧, 0R⟩)))
6 breq1 5110 . . 3 (⟨𝑥, 0R⟩ = 𝐴 → (⟨𝑥, 0R⟩ <𝑧, 0R⟩ ↔ 𝐴 <𝑧, 0R⟩))
75, 6imbi12d 344 . 2 (⟨𝑥, 0R⟩ = 𝐴 → (((⟨𝑥, 0R⟩ <𝑦, 0R⟩ ∧ ⟨𝑦, 0R⟩ <𝑧, 0R⟩) → ⟨𝑥, 0R⟩ <𝑧, 0R⟩) ↔ ((𝐴 <𝑦, 0R⟩ ∧ ⟨𝑦, 0R⟩ <𝑧, 0R⟩) → 𝐴 <𝑧, 0R⟩)))
8 breq2 5111 . . . 4 (⟨𝑦, 0R⟩ = 𝐵 → (𝐴 <𝑦, 0R⟩ ↔ 𝐴 < 𝐵))
9 breq1 5110 . . . 4 (⟨𝑦, 0R⟩ = 𝐵 → (⟨𝑦, 0R⟩ <𝑧, 0R⟩ ↔ 𝐵 <𝑧, 0R⟩))
108, 9anbi12d 632 . . 3 (⟨𝑦, 0R⟩ = 𝐵 → ((𝐴 <𝑦, 0R⟩ ∧ ⟨𝑦, 0R⟩ <𝑧, 0R⟩) ↔ (𝐴 < 𝐵𝐵 <𝑧, 0R⟩)))
1110imbi1d 341 . 2 (⟨𝑦, 0R⟩ = 𝐵 → (((𝐴 <𝑦, 0R⟩ ∧ ⟨𝑦, 0R⟩ <𝑧, 0R⟩) → 𝐴 <𝑧, 0R⟩) ↔ ((𝐴 < 𝐵𝐵 <𝑧, 0R⟩) → 𝐴 <𝑧, 0R⟩)))
12 breq2 5111 . . . 4 (⟨𝑧, 0R⟩ = 𝐶 → (𝐵 <𝑧, 0R⟩ ↔ 𝐵 < 𝐶))
1312anbi2d 630 . . 3 (⟨𝑧, 0R⟩ = 𝐶 → ((𝐴 < 𝐵𝐵 <𝑧, 0R⟩) ↔ (𝐴 < 𝐵𝐵 < 𝐶)))
14 breq2 5111 . . 3 (⟨𝑧, 0R⟩ = 𝐶 → (𝐴 <𝑧, 0R⟩ ↔ 𝐴 < 𝐶))
1513, 14imbi12d 344 . 2 (⟨𝑧, 0R⟩ = 𝐶 → (((𝐴 < 𝐵𝐵 <𝑧, 0R⟩) → 𝐴 <𝑧, 0R⟩) ↔ ((𝐴 < 𝐵𝐵 < 𝐶) → 𝐴 < 𝐶)))
16 ltresr 11093 . . . . 5 (⟨𝑥, 0R⟩ <𝑦, 0R⟩ ↔ 𝑥 <R 𝑦)
17 ltresr 11093 . . . . 5 (⟨𝑦, 0R⟩ <𝑧, 0R⟩ ↔ 𝑦 <R 𝑧)
18 ltsosr 11047 . . . . . 6 <R Or R
19 ltrelsr 11021 . . . . . 6 <R ⊆ (R × R)
2018, 19sotri 6100 . . . . 5 ((𝑥 <R 𝑦𝑦 <R 𝑧) → 𝑥 <R 𝑧)
2116, 17, 20syl2anb 598 . . . 4 ((⟨𝑥, 0R⟩ <𝑦, 0R⟩ ∧ ⟨𝑦, 0R⟩ <𝑧, 0R⟩) → 𝑥 <R 𝑧)
22 ltresr 11093 . . . 4 (⟨𝑥, 0R⟩ <𝑧, 0R⟩ ↔ 𝑥 <R 𝑧)
2321, 22sylibr 234 . . 3 ((⟨𝑥, 0R⟩ <𝑦, 0R⟩ ∧ ⟨𝑦, 0R⟩ <𝑧, 0R⟩) → ⟨𝑥, 0R⟩ <𝑧, 0R⟩)
2423a1i 11 . 2 ((𝑥R𝑦R𝑧R) → ((⟨𝑥, 0R⟩ <𝑦, 0R⟩ ∧ ⟨𝑦, 0R⟩ <𝑧, 0R⟩) → ⟨𝑥, 0R⟩ <𝑧, 0R⟩))
251, 2, 3, 7, 11, 15, 243gencl 3491 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 < 𝐵𝐵 < 𝐶) → 𝐴 < 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  cop 4595   class class class wbr 5107  Rcnr 10818  0Rc0r 10819   <R cltr 10824  cr 11067   < cltrr 11072
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-inf2 9594
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-oadd 8438  df-omul 8439  df-er 8671  df-ec 8673  df-qs 8677  df-ni 10825  df-pli 10826  df-mi 10827  df-lti 10828  df-plpq 10861  df-mpq 10862  df-ltpq 10863  df-enq 10864  df-nq 10865  df-erq 10866  df-plq 10867  df-mq 10868  df-1nq 10869  df-rq 10870  df-ltnq 10871  df-np 10934  df-1p 10935  df-plp 10936  df-ltp 10938  df-enr 11008  df-nr 11009  df-ltr 11012  df-0r 11013  df-r 11078  df-lt 11081
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator