| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > axpre-lttrn | Structured version Visualization version GIF version | ||
| Description: Ordering on reals is transitive. Axiom 19 of 22 for real and complex numbers, derived from ZF set theory. Note: The more general version for extended reals is axlttrn 11222. This construction-dependent theorem should not be referenced directly; instead, use ax-pre-lttrn 11119. (Contributed by NM, 19-May-1996.) (Revised by Mario Carneiro, 16-Jun-2013.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| axpre-lttrn | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 <ℝ 𝐵 ∧ 𝐵 <ℝ 𝐶) → 𝐴 <ℝ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elreal 11060 | . 2 ⊢ (𝐴 ∈ ℝ ↔ ∃𝑥 ∈ R 〈𝑥, 0R〉 = 𝐴) | |
| 2 | elreal 11060 | . 2 ⊢ (𝐵 ∈ ℝ ↔ ∃𝑦 ∈ R 〈𝑦, 0R〉 = 𝐵) | |
| 3 | elreal 11060 | . 2 ⊢ (𝐶 ∈ ℝ ↔ ∃𝑧 ∈ R 〈𝑧, 0R〉 = 𝐶) | |
| 4 | breq1 5105 | . . . 4 ⊢ (〈𝑥, 0R〉 = 𝐴 → (〈𝑥, 0R〉 <ℝ 〈𝑦, 0R〉 ↔ 𝐴 <ℝ 〈𝑦, 0R〉)) | |
| 5 | 4 | anbi1d 631 | . . 3 ⊢ (〈𝑥, 0R〉 = 𝐴 → ((〈𝑥, 0R〉 <ℝ 〈𝑦, 0R〉 ∧ 〈𝑦, 0R〉 <ℝ 〈𝑧, 0R〉) ↔ (𝐴 <ℝ 〈𝑦, 0R〉 ∧ 〈𝑦, 0R〉 <ℝ 〈𝑧, 0R〉))) |
| 6 | breq1 5105 | . . 3 ⊢ (〈𝑥, 0R〉 = 𝐴 → (〈𝑥, 0R〉 <ℝ 〈𝑧, 0R〉 ↔ 𝐴 <ℝ 〈𝑧, 0R〉)) | |
| 7 | 5, 6 | imbi12d 344 | . 2 ⊢ (〈𝑥, 0R〉 = 𝐴 → (((〈𝑥, 0R〉 <ℝ 〈𝑦, 0R〉 ∧ 〈𝑦, 0R〉 <ℝ 〈𝑧, 0R〉) → 〈𝑥, 0R〉 <ℝ 〈𝑧, 0R〉) ↔ ((𝐴 <ℝ 〈𝑦, 0R〉 ∧ 〈𝑦, 0R〉 <ℝ 〈𝑧, 0R〉) → 𝐴 <ℝ 〈𝑧, 0R〉))) |
| 8 | breq2 5106 | . . . 4 ⊢ (〈𝑦, 0R〉 = 𝐵 → (𝐴 <ℝ 〈𝑦, 0R〉 ↔ 𝐴 <ℝ 𝐵)) | |
| 9 | breq1 5105 | . . . 4 ⊢ (〈𝑦, 0R〉 = 𝐵 → (〈𝑦, 0R〉 <ℝ 〈𝑧, 0R〉 ↔ 𝐵 <ℝ 〈𝑧, 0R〉)) | |
| 10 | 8, 9 | anbi12d 632 | . . 3 ⊢ (〈𝑦, 0R〉 = 𝐵 → ((𝐴 <ℝ 〈𝑦, 0R〉 ∧ 〈𝑦, 0R〉 <ℝ 〈𝑧, 0R〉) ↔ (𝐴 <ℝ 𝐵 ∧ 𝐵 <ℝ 〈𝑧, 0R〉))) |
| 11 | 10 | imbi1d 341 | . 2 ⊢ (〈𝑦, 0R〉 = 𝐵 → (((𝐴 <ℝ 〈𝑦, 0R〉 ∧ 〈𝑦, 0R〉 <ℝ 〈𝑧, 0R〉) → 𝐴 <ℝ 〈𝑧, 0R〉) ↔ ((𝐴 <ℝ 𝐵 ∧ 𝐵 <ℝ 〈𝑧, 0R〉) → 𝐴 <ℝ 〈𝑧, 0R〉))) |
| 12 | breq2 5106 | . . . 4 ⊢ (〈𝑧, 0R〉 = 𝐶 → (𝐵 <ℝ 〈𝑧, 0R〉 ↔ 𝐵 <ℝ 𝐶)) | |
| 13 | 12 | anbi2d 630 | . . 3 ⊢ (〈𝑧, 0R〉 = 𝐶 → ((𝐴 <ℝ 𝐵 ∧ 𝐵 <ℝ 〈𝑧, 0R〉) ↔ (𝐴 <ℝ 𝐵 ∧ 𝐵 <ℝ 𝐶))) |
| 14 | breq2 5106 | . . 3 ⊢ (〈𝑧, 0R〉 = 𝐶 → (𝐴 <ℝ 〈𝑧, 0R〉 ↔ 𝐴 <ℝ 𝐶)) | |
| 15 | 13, 14 | imbi12d 344 | . 2 ⊢ (〈𝑧, 0R〉 = 𝐶 → (((𝐴 <ℝ 𝐵 ∧ 𝐵 <ℝ 〈𝑧, 0R〉) → 𝐴 <ℝ 〈𝑧, 0R〉) ↔ ((𝐴 <ℝ 𝐵 ∧ 𝐵 <ℝ 𝐶) → 𝐴 <ℝ 𝐶))) |
| 16 | ltresr 11069 | . . . . 5 ⊢ (〈𝑥, 0R〉 <ℝ 〈𝑦, 0R〉 ↔ 𝑥 <R 𝑦) | |
| 17 | ltresr 11069 | . . . . 5 ⊢ (〈𝑦, 0R〉 <ℝ 〈𝑧, 0R〉 ↔ 𝑦 <R 𝑧) | |
| 18 | ltsosr 11023 | . . . . . 6 ⊢ <R Or R | |
| 19 | ltrelsr 10997 | . . . . . 6 ⊢ <R ⊆ (R × R) | |
| 20 | 18, 19 | sotri 6088 | . . . . 5 ⊢ ((𝑥 <R 𝑦 ∧ 𝑦 <R 𝑧) → 𝑥 <R 𝑧) |
| 21 | 16, 17, 20 | syl2anb 598 | . . . 4 ⊢ ((〈𝑥, 0R〉 <ℝ 〈𝑦, 0R〉 ∧ 〈𝑦, 0R〉 <ℝ 〈𝑧, 0R〉) → 𝑥 <R 𝑧) |
| 22 | ltresr 11069 | . . . 4 ⊢ (〈𝑥, 0R〉 <ℝ 〈𝑧, 0R〉 ↔ 𝑥 <R 𝑧) | |
| 23 | 21, 22 | sylibr 234 | . . 3 ⊢ ((〈𝑥, 0R〉 <ℝ 〈𝑦, 0R〉 ∧ 〈𝑦, 0R〉 <ℝ 〈𝑧, 0R〉) → 〈𝑥, 0R〉 <ℝ 〈𝑧, 0R〉) |
| 24 | 23 | a1i 11 | . 2 ⊢ ((𝑥 ∈ R ∧ 𝑦 ∈ R ∧ 𝑧 ∈ R) → ((〈𝑥, 0R〉 <ℝ 〈𝑦, 0R〉 ∧ 〈𝑦, 0R〉 <ℝ 〈𝑧, 0R〉) → 〈𝑥, 0R〉 <ℝ 〈𝑧, 0R〉)) |
| 25 | 1, 2, 3, 7, 11, 15, 24 | 3gencl 3488 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 <ℝ 𝐵 ∧ 𝐵 <ℝ 𝐶) → 𝐴 <ℝ 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 〈cop 4591 class class class wbr 5102 Rcnr 10794 0Rc0r 10795 <R cltr 10800 ℝcr 11043 <ℝ cltrr 11048 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-inf2 9570 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-int 4907 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-oadd 8415 df-omul 8416 df-er 8648 df-ec 8650 df-qs 8654 df-ni 10801 df-pli 10802 df-mi 10803 df-lti 10804 df-plpq 10837 df-mpq 10838 df-ltpq 10839 df-enq 10840 df-nq 10841 df-erq 10842 df-plq 10843 df-mq 10844 df-1nq 10845 df-rq 10846 df-ltnq 10847 df-np 10910 df-1p 10911 df-plp 10912 df-ltp 10914 df-enr 10984 df-nr 10985 df-ltr 10988 df-0r 10989 df-r 11054 df-lt 11057 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |