![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > axpre-lttrn | Structured version Visualization version GIF version |
Description: Ordering on reals is transitive. Axiom 19 of 22 for real and complex numbers, derived from ZF set theory. Note: The more general version for extended reals is axlttrn 11285. This construction-dependent theorem should not be referenced directly; instead, use ax-pre-lttrn 11184. (Contributed by NM, 19-May-1996.) (Revised by Mario Carneiro, 16-Jun-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
axpre-lttrn | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 <ℝ 𝐵 ∧ 𝐵 <ℝ 𝐶) → 𝐴 <ℝ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elreal 11125 | . 2 ⊢ (𝐴 ∈ ℝ ↔ ∃𝑥 ∈ R ⟨𝑥, 0R⟩ = 𝐴) | |
2 | elreal 11125 | . 2 ⊢ (𝐵 ∈ ℝ ↔ ∃𝑦 ∈ R ⟨𝑦, 0R⟩ = 𝐵) | |
3 | elreal 11125 | . 2 ⊢ (𝐶 ∈ ℝ ↔ ∃𝑧 ∈ R ⟨𝑧, 0R⟩ = 𝐶) | |
4 | breq1 5151 | . . . 4 ⊢ (⟨𝑥, 0R⟩ = 𝐴 → (⟨𝑥, 0R⟩ <ℝ ⟨𝑦, 0R⟩ ↔ 𝐴 <ℝ ⟨𝑦, 0R⟩)) | |
5 | 4 | anbi1d 630 | . . 3 ⊢ (⟨𝑥, 0R⟩ = 𝐴 → ((⟨𝑥, 0R⟩ <ℝ ⟨𝑦, 0R⟩ ∧ ⟨𝑦, 0R⟩ <ℝ ⟨𝑧, 0R⟩) ↔ (𝐴 <ℝ ⟨𝑦, 0R⟩ ∧ ⟨𝑦, 0R⟩ <ℝ ⟨𝑧, 0R⟩))) |
6 | breq1 5151 | . . 3 ⊢ (⟨𝑥, 0R⟩ = 𝐴 → (⟨𝑥, 0R⟩ <ℝ ⟨𝑧, 0R⟩ ↔ 𝐴 <ℝ ⟨𝑧, 0R⟩)) | |
7 | 5, 6 | imbi12d 344 | . 2 ⊢ (⟨𝑥, 0R⟩ = 𝐴 → (((⟨𝑥, 0R⟩ <ℝ ⟨𝑦, 0R⟩ ∧ ⟨𝑦, 0R⟩ <ℝ ⟨𝑧, 0R⟩) → ⟨𝑥, 0R⟩ <ℝ ⟨𝑧, 0R⟩) ↔ ((𝐴 <ℝ ⟨𝑦, 0R⟩ ∧ ⟨𝑦, 0R⟩ <ℝ ⟨𝑧, 0R⟩) → 𝐴 <ℝ ⟨𝑧, 0R⟩))) |
8 | breq2 5152 | . . . 4 ⊢ (⟨𝑦, 0R⟩ = 𝐵 → (𝐴 <ℝ ⟨𝑦, 0R⟩ ↔ 𝐴 <ℝ 𝐵)) | |
9 | breq1 5151 | . . . 4 ⊢ (⟨𝑦, 0R⟩ = 𝐵 → (⟨𝑦, 0R⟩ <ℝ ⟨𝑧, 0R⟩ ↔ 𝐵 <ℝ ⟨𝑧, 0R⟩)) | |
10 | 8, 9 | anbi12d 631 | . . 3 ⊢ (⟨𝑦, 0R⟩ = 𝐵 → ((𝐴 <ℝ ⟨𝑦, 0R⟩ ∧ ⟨𝑦, 0R⟩ <ℝ ⟨𝑧, 0R⟩) ↔ (𝐴 <ℝ 𝐵 ∧ 𝐵 <ℝ ⟨𝑧, 0R⟩))) |
11 | 10 | imbi1d 341 | . 2 ⊢ (⟨𝑦, 0R⟩ = 𝐵 → (((𝐴 <ℝ ⟨𝑦, 0R⟩ ∧ ⟨𝑦, 0R⟩ <ℝ ⟨𝑧, 0R⟩) → 𝐴 <ℝ ⟨𝑧, 0R⟩) ↔ ((𝐴 <ℝ 𝐵 ∧ 𝐵 <ℝ ⟨𝑧, 0R⟩) → 𝐴 <ℝ ⟨𝑧, 0R⟩))) |
12 | breq2 5152 | . . . 4 ⊢ (⟨𝑧, 0R⟩ = 𝐶 → (𝐵 <ℝ ⟨𝑧, 0R⟩ ↔ 𝐵 <ℝ 𝐶)) | |
13 | 12 | anbi2d 629 | . . 3 ⊢ (⟨𝑧, 0R⟩ = 𝐶 → ((𝐴 <ℝ 𝐵 ∧ 𝐵 <ℝ ⟨𝑧, 0R⟩) ↔ (𝐴 <ℝ 𝐵 ∧ 𝐵 <ℝ 𝐶))) |
14 | breq2 5152 | . . 3 ⊢ (⟨𝑧, 0R⟩ = 𝐶 → (𝐴 <ℝ ⟨𝑧, 0R⟩ ↔ 𝐴 <ℝ 𝐶)) | |
15 | 13, 14 | imbi12d 344 | . 2 ⊢ (⟨𝑧, 0R⟩ = 𝐶 → (((𝐴 <ℝ 𝐵 ∧ 𝐵 <ℝ ⟨𝑧, 0R⟩) → 𝐴 <ℝ ⟨𝑧, 0R⟩) ↔ ((𝐴 <ℝ 𝐵 ∧ 𝐵 <ℝ 𝐶) → 𝐴 <ℝ 𝐶))) |
16 | ltresr 11134 | . . . . 5 ⊢ (⟨𝑥, 0R⟩ <ℝ ⟨𝑦, 0R⟩ ↔ 𝑥 <R 𝑦) | |
17 | ltresr 11134 | . . . . 5 ⊢ (⟨𝑦, 0R⟩ <ℝ ⟨𝑧, 0R⟩ ↔ 𝑦 <R 𝑧) | |
18 | ltsosr 11088 | . . . . . 6 ⊢ <R Or R | |
19 | ltrelsr 11062 | . . . . . 6 ⊢ <R ⊆ (R × R) | |
20 | 18, 19 | sotri 6128 | . . . . 5 ⊢ ((𝑥 <R 𝑦 ∧ 𝑦 <R 𝑧) → 𝑥 <R 𝑧) |
21 | 16, 17, 20 | syl2anb 598 | . . . 4 ⊢ ((⟨𝑥, 0R⟩ <ℝ ⟨𝑦, 0R⟩ ∧ ⟨𝑦, 0R⟩ <ℝ ⟨𝑧, 0R⟩) → 𝑥 <R 𝑧) |
22 | ltresr 11134 | . . . 4 ⊢ (⟨𝑥, 0R⟩ <ℝ ⟨𝑧, 0R⟩ ↔ 𝑥 <R 𝑧) | |
23 | 21, 22 | sylibr 233 | . . 3 ⊢ ((⟨𝑥, 0R⟩ <ℝ ⟨𝑦, 0R⟩ ∧ ⟨𝑦, 0R⟩ <ℝ ⟨𝑧, 0R⟩) → ⟨𝑥, 0R⟩ <ℝ ⟨𝑧, 0R⟩) |
24 | 23 | a1i 11 | . 2 ⊢ ((𝑥 ∈ R ∧ 𝑦 ∈ R ∧ 𝑧 ∈ R) → ((⟨𝑥, 0R⟩ <ℝ ⟨𝑦, 0R⟩ ∧ ⟨𝑦, 0R⟩ <ℝ ⟨𝑧, 0R⟩) → ⟨𝑥, 0R⟩ <ℝ ⟨𝑧, 0R⟩)) |
25 | 1, 2, 3, 7, 11, 15, 24 | 3gencl 3517 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 <ℝ 𝐵 ∧ 𝐵 <ℝ 𝐶) → 𝐴 <ℝ 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1087 = wceq 1541 ∈ wcel 2106 ⟨cop 4634 class class class wbr 5148 Rcnr 10859 0Rc0r 10860 <R cltr 10865 ℝcr 11108 <ℝ cltrr 11113 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 ax-inf2 9635 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ov 7411 df-oprab 7412 df-mpo 7413 df-om 7855 df-1st 7974 df-2nd 7975 df-frecs 8265 df-wrecs 8296 df-recs 8370 df-rdg 8409 df-1o 8465 df-oadd 8469 df-omul 8470 df-er 8702 df-ec 8704 df-qs 8708 df-ni 10866 df-pli 10867 df-mi 10868 df-lti 10869 df-plpq 10902 df-mpq 10903 df-ltpq 10904 df-enq 10905 df-nq 10906 df-erq 10907 df-plq 10908 df-mq 10909 df-1nq 10910 df-rq 10911 df-ltnq 10912 df-np 10975 df-1p 10976 df-plp 10977 df-ltp 10979 df-enr 11049 df-nr 11050 df-ltr 11053 df-0r 11054 df-r 11119 df-lt 11122 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |