MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axpre-lttrn Structured version   Visualization version   GIF version

Theorem axpre-lttrn 11160
Description: Ordering on reals is transitive. Axiom 19 of 22 for real and complex numbers, derived from ZF set theory. Note: The more general version for extended reals is axlttrn 11285. This construction-dependent theorem should not be referenced directly; instead, use ax-pre-lttrn 11184. (Contributed by NM, 19-May-1996.) (Revised by Mario Carneiro, 16-Jun-2013.) (New usage is discouraged.)
Assertion
Ref Expression
axpre-lttrn ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 < 𝐵𝐵 < 𝐶) → 𝐴 < 𝐶))

Proof of Theorem axpre-lttrn
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elreal 11125 . 2 (𝐴 ∈ ℝ ↔ ∃𝑥R𝑥, 0R⟩ = 𝐴)
2 elreal 11125 . 2 (𝐵 ∈ ℝ ↔ ∃𝑦R𝑦, 0R⟩ = 𝐵)
3 elreal 11125 . 2 (𝐶 ∈ ℝ ↔ ∃𝑧R𝑧, 0R⟩ = 𝐶)
4 breq1 5151 . . . 4 (⟨𝑥, 0R⟩ = 𝐴 → (⟨𝑥, 0R⟩ <𝑦, 0R⟩ ↔ 𝐴 <𝑦, 0R⟩))
54anbi1d 630 . . 3 (⟨𝑥, 0R⟩ = 𝐴 → ((⟨𝑥, 0R⟩ <𝑦, 0R⟩ ∧ ⟨𝑦, 0R⟩ <𝑧, 0R⟩) ↔ (𝐴 <𝑦, 0R⟩ ∧ ⟨𝑦, 0R⟩ <𝑧, 0R⟩)))
6 breq1 5151 . . 3 (⟨𝑥, 0R⟩ = 𝐴 → (⟨𝑥, 0R⟩ <𝑧, 0R⟩ ↔ 𝐴 <𝑧, 0R⟩))
75, 6imbi12d 344 . 2 (⟨𝑥, 0R⟩ = 𝐴 → (((⟨𝑥, 0R⟩ <𝑦, 0R⟩ ∧ ⟨𝑦, 0R⟩ <𝑧, 0R⟩) → ⟨𝑥, 0R⟩ <𝑧, 0R⟩) ↔ ((𝐴 <𝑦, 0R⟩ ∧ ⟨𝑦, 0R⟩ <𝑧, 0R⟩) → 𝐴 <𝑧, 0R⟩)))
8 breq2 5152 . . . 4 (⟨𝑦, 0R⟩ = 𝐵 → (𝐴 <𝑦, 0R⟩ ↔ 𝐴 < 𝐵))
9 breq1 5151 . . . 4 (⟨𝑦, 0R⟩ = 𝐵 → (⟨𝑦, 0R⟩ <𝑧, 0R⟩ ↔ 𝐵 <𝑧, 0R⟩))
108, 9anbi12d 631 . . 3 (⟨𝑦, 0R⟩ = 𝐵 → ((𝐴 <𝑦, 0R⟩ ∧ ⟨𝑦, 0R⟩ <𝑧, 0R⟩) ↔ (𝐴 < 𝐵𝐵 <𝑧, 0R⟩)))
1110imbi1d 341 . 2 (⟨𝑦, 0R⟩ = 𝐵 → (((𝐴 <𝑦, 0R⟩ ∧ ⟨𝑦, 0R⟩ <𝑧, 0R⟩) → 𝐴 <𝑧, 0R⟩) ↔ ((𝐴 < 𝐵𝐵 <𝑧, 0R⟩) → 𝐴 <𝑧, 0R⟩)))
12 breq2 5152 . . . 4 (⟨𝑧, 0R⟩ = 𝐶 → (𝐵 <𝑧, 0R⟩ ↔ 𝐵 < 𝐶))
1312anbi2d 629 . . 3 (⟨𝑧, 0R⟩ = 𝐶 → ((𝐴 < 𝐵𝐵 <𝑧, 0R⟩) ↔ (𝐴 < 𝐵𝐵 < 𝐶)))
14 breq2 5152 . . 3 (⟨𝑧, 0R⟩ = 𝐶 → (𝐴 <𝑧, 0R⟩ ↔ 𝐴 < 𝐶))
1513, 14imbi12d 344 . 2 (⟨𝑧, 0R⟩ = 𝐶 → (((𝐴 < 𝐵𝐵 <𝑧, 0R⟩) → 𝐴 <𝑧, 0R⟩) ↔ ((𝐴 < 𝐵𝐵 < 𝐶) → 𝐴 < 𝐶)))
16 ltresr 11134 . . . . 5 (⟨𝑥, 0R⟩ <𝑦, 0R⟩ ↔ 𝑥 <R 𝑦)
17 ltresr 11134 . . . . 5 (⟨𝑦, 0R⟩ <𝑧, 0R⟩ ↔ 𝑦 <R 𝑧)
18 ltsosr 11088 . . . . . 6 <R Or R
19 ltrelsr 11062 . . . . . 6 <R ⊆ (R × R)
2018, 19sotri 6128 . . . . 5 ((𝑥 <R 𝑦𝑦 <R 𝑧) → 𝑥 <R 𝑧)
2116, 17, 20syl2anb 598 . . . 4 ((⟨𝑥, 0R⟩ <𝑦, 0R⟩ ∧ ⟨𝑦, 0R⟩ <𝑧, 0R⟩) → 𝑥 <R 𝑧)
22 ltresr 11134 . . . 4 (⟨𝑥, 0R⟩ <𝑧, 0R⟩ ↔ 𝑥 <R 𝑧)
2321, 22sylibr 233 . . 3 ((⟨𝑥, 0R⟩ <𝑦, 0R⟩ ∧ ⟨𝑦, 0R⟩ <𝑧, 0R⟩) → ⟨𝑥, 0R⟩ <𝑧, 0R⟩)
2423a1i 11 . 2 ((𝑥R𝑦R𝑧R) → ((⟨𝑥, 0R⟩ <𝑦, 0R⟩ ∧ ⟨𝑦, 0R⟩ <𝑧, 0R⟩) → ⟨𝑥, 0R⟩ <𝑧, 0R⟩))
251, 2, 3, 7, 11, 15, 243gencl 3517 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 < 𝐵𝐵 < 𝐶) → 𝐴 < 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1087   = wceq 1541  wcel 2106  cop 4634   class class class wbr 5148  Rcnr 10859  0Rc0r 10860   <R cltr 10865  cr 11108   < cltrr 11113
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7724  ax-inf2 9635
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-ov 7411  df-oprab 7412  df-mpo 7413  df-om 7855  df-1st 7974  df-2nd 7975  df-frecs 8265  df-wrecs 8296  df-recs 8370  df-rdg 8409  df-1o 8465  df-oadd 8469  df-omul 8470  df-er 8702  df-ec 8704  df-qs 8708  df-ni 10866  df-pli 10867  df-mi 10868  df-lti 10869  df-plpq 10902  df-mpq 10903  df-ltpq 10904  df-enq 10905  df-nq 10906  df-erq 10907  df-plq 10908  df-mq 10909  df-1nq 10910  df-rq 10911  df-ltnq 10912  df-np 10975  df-1p 10976  df-plp 10977  df-ltp 10979  df-enr 11049  df-nr 11050  df-ltr 11053  df-0r 11054  df-r 11119  df-lt 11122
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator