![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > axpre-lttrn | Structured version Visualization version GIF version |
Description: Ordering on reals is transitive. Axiom 19 of 22 for real and complex numbers, derived from ZF set theory. Note: The more general version for extended reals is axlttrn 11336. This construction-dependent theorem should not be referenced directly; instead, use ax-pre-lttrn 11233. (Contributed by NM, 19-May-1996.) (Revised by Mario Carneiro, 16-Jun-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
axpre-lttrn | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 <ℝ 𝐵 ∧ 𝐵 <ℝ 𝐶) → 𝐴 <ℝ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elreal 11174 | . 2 ⊢ (𝐴 ∈ ℝ ↔ ∃𝑥 ∈ R 〈𝑥, 0R〉 = 𝐴) | |
2 | elreal 11174 | . 2 ⊢ (𝐵 ∈ ℝ ↔ ∃𝑦 ∈ R 〈𝑦, 0R〉 = 𝐵) | |
3 | elreal 11174 | . 2 ⊢ (𝐶 ∈ ℝ ↔ ∃𝑧 ∈ R 〈𝑧, 0R〉 = 𝐶) | |
4 | breq1 5156 | . . . 4 ⊢ (〈𝑥, 0R〉 = 𝐴 → (〈𝑥, 0R〉 <ℝ 〈𝑦, 0R〉 ↔ 𝐴 <ℝ 〈𝑦, 0R〉)) | |
5 | 4 | anbi1d 629 | . . 3 ⊢ (〈𝑥, 0R〉 = 𝐴 → ((〈𝑥, 0R〉 <ℝ 〈𝑦, 0R〉 ∧ 〈𝑦, 0R〉 <ℝ 〈𝑧, 0R〉) ↔ (𝐴 <ℝ 〈𝑦, 0R〉 ∧ 〈𝑦, 0R〉 <ℝ 〈𝑧, 0R〉))) |
6 | breq1 5156 | . . 3 ⊢ (〈𝑥, 0R〉 = 𝐴 → (〈𝑥, 0R〉 <ℝ 〈𝑧, 0R〉 ↔ 𝐴 <ℝ 〈𝑧, 0R〉)) | |
7 | 5, 6 | imbi12d 343 | . 2 ⊢ (〈𝑥, 0R〉 = 𝐴 → (((〈𝑥, 0R〉 <ℝ 〈𝑦, 0R〉 ∧ 〈𝑦, 0R〉 <ℝ 〈𝑧, 0R〉) → 〈𝑥, 0R〉 <ℝ 〈𝑧, 0R〉) ↔ ((𝐴 <ℝ 〈𝑦, 0R〉 ∧ 〈𝑦, 0R〉 <ℝ 〈𝑧, 0R〉) → 𝐴 <ℝ 〈𝑧, 0R〉))) |
8 | breq2 5157 | . . . 4 ⊢ (〈𝑦, 0R〉 = 𝐵 → (𝐴 <ℝ 〈𝑦, 0R〉 ↔ 𝐴 <ℝ 𝐵)) | |
9 | breq1 5156 | . . . 4 ⊢ (〈𝑦, 0R〉 = 𝐵 → (〈𝑦, 0R〉 <ℝ 〈𝑧, 0R〉 ↔ 𝐵 <ℝ 〈𝑧, 0R〉)) | |
10 | 8, 9 | anbi12d 630 | . . 3 ⊢ (〈𝑦, 0R〉 = 𝐵 → ((𝐴 <ℝ 〈𝑦, 0R〉 ∧ 〈𝑦, 0R〉 <ℝ 〈𝑧, 0R〉) ↔ (𝐴 <ℝ 𝐵 ∧ 𝐵 <ℝ 〈𝑧, 0R〉))) |
11 | 10 | imbi1d 340 | . 2 ⊢ (〈𝑦, 0R〉 = 𝐵 → (((𝐴 <ℝ 〈𝑦, 0R〉 ∧ 〈𝑦, 0R〉 <ℝ 〈𝑧, 0R〉) → 𝐴 <ℝ 〈𝑧, 0R〉) ↔ ((𝐴 <ℝ 𝐵 ∧ 𝐵 <ℝ 〈𝑧, 0R〉) → 𝐴 <ℝ 〈𝑧, 0R〉))) |
12 | breq2 5157 | . . . 4 ⊢ (〈𝑧, 0R〉 = 𝐶 → (𝐵 <ℝ 〈𝑧, 0R〉 ↔ 𝐵 <ℝ 𝐶)) | |
13 | 12 | anbi2d 628 | . . 3 ⊢ (〈𝑧, 0R〉 = 𝐶 → ((𝐴 <ℝ 𝐵 ∧ 𝐵 <ℝ 〈𝑧, 0R〉) ↔ (𝐴 <ℝ 𝐵 ∧ 𝐵 <ℝ 𝐶))) |
14 | breq2 5157 | . . 3 ⊢ (〈𝑧, 0R〉 = 𝐶 → (𝐴 <ℝ 〈𝑧, 0R〉 ↔ 𝐴 <ℝ 𝐶)) | |
15 | 13, 14 | imbi12d 343 | . 2 ⊢ (〈𝑧, 0R〉 = 𝐶 → (((𝐴 <ℝ 𝐵 ∧ 𝐵 <ℝ 〈𝑧, 0R〉) → 𝐴 <ℝ 〈𝑧, 0R〉) ↔ ((𝐴 <ℝ 𝐵 ∧ 𝐵 <ℝ 𝐶) → 𝐴 <ℝ 𝐶))) |
16 | ltresr 11183 | . . . . 5 ⊢ (〈𝑥, 0R〉 <ℝ 〈𝑦, 0R〉 ↔ 𝑥 <R 𝑦) | |
17 | ltresr 11183 | . . . . 5 ⊢ (〈𝑦, 0R〉 <ℝ 〈𝑧, 0R〉 ↔ 𝑦 <R 𝑧) | |
18 | ltsosr 11137 | . . . . . 6 ⊢ <R Or R | |
19 | ltrelsr 11111 | . . . . . 6 ⊢ <R ⊆ (R × R) | |
20 | 18, 19 | sotri 6139 | . . . . 5 ⊢ ((𝑥 <R 𝑦 ∧ 𝑦 <R 𝑧) → 𝑥 <R 𝑧) |
21 | 16, 17, 20 | syl2anb 596 | . . . 4 ⊢ ((〈𝑥, 0R〉 <ℝ 〈𝑦, 0R〉 ∧ 〈𝑦, 0R〉 <ℝ 〈𝑧, 0R〉) → 𝑥 <R 𝑧) |
22 | ltresr 11183 | . . . 4 ⊢ (〈𝑥, 0R〉 <ℝ 〈𝑧, 0R〉 ↔ 𝑥 <R 𝑧) | |
23 | 21, 22 | sylibr 233 | . . 3 ⊢ ((〈𝑥, 0R〉 <ℝ 〈𝑦, 0R〉 ∧ 〈𝑦, 0R〉 <ℝ 〈𝑧, 0R〉) → 〈𝑥, 0R〉 <ℝ 〈𝑧, 0R〉) |
24 | 23 | a1i 11 | . 2 ⊢ ((𝑥 ∈ R ∧ 𝑦 ∈ R ∧ 𝑧 ∈ R) → ((〈𝑥, 0R〉 <ℝ 〈𝑦, 0R〉 ∧ 〈𝑦, 0R〉 <ℝ 〈𝑧, 0R〉) → 〈𝑥, 0R〉 <ℝ 〈𝑧, 0R〉)) |
25 | 1, 2, 3, 7, 11, 15, 24 | 3gencl 3508 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 <ℝ 𝐵 ∧ 𝐵 <ℝ 𝐶) → 𝐴 <ℝ 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 ∧ w3a 1084 = wceq 1534 ∈ wcel 2099 〈cop 4639 class class class wbr 5153 Rcnr 10908 0Rc0r 10909 <R cltr 10914 ℝcr 11157 <ℝ cltrr 11162 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-sep 5304 ax-nul 5311 ax-pow 5369 ax-pr 5433 ax-un 7746 ax-inf2 9684 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3464 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3967 df-nul 4326 df-if 4534 df-pw 4609 df-sn 4634 df-pr 4636 df-op 4640 df-uni 4914 df-int 4955 df-iun 5003 df-br 5154 df-opab 5216 df-mpt 5237 df-tr 5271 df-id 5580 df-eprel 5586 df-po 5594 df-so 5595 df-fr 5637 df-we 5639 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-pred 6312 df-ord 6379 df-on 6380 df-lim 6381 df-suc 6382 df-iota 6506 df-fun 6556 df-fn 6557 df-f 6558 df-f1 6559 df-fo 6560 df-f1o 6561 df-fv 6562 df-ov 7427 df-oprab 7428 df-mpo 7429 df-om 7877 df-1st 8003 df-2nd 8004 df-frecs 8296 df-wrecs 8327 df-recs 8401 df-rdg 8440 df-1o 8496 df-oadd 8500 df-omul 8501 df-er 8734 df-ec 8736 df-qs 8740 df-ni 10915 df-pli 10916 df-mi 10917 df-lti 10918 df-plpq 10951 df-mpq 10952 df-ltpq 10953 df-enq 10954 df-nq 10955 df-erq 10956 df-plq 10957 df-mq 10958 df-1nq 10959 df-rq 10960 df-ltnq 10961 df-np 11024 df-1p 11025 df-plp 11026 df-ltp 11028 df-enr 11098 df-nr 11099 df-ltr 11102 df-0r 11103 df-r 11168 df-lt 11171 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |