| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cgsexg | Structured version Visualization version GIF version | ||
| Description: Implicit substitution inference for general classes. (Contributed by NM, 26-Aug-2007.) |
| Ref | Expression |
|---|---|
| cgsexg.1 | ⊢ (𝑥 = 𝐴 → 𝜒) |
| cgsexg.2 | ⊢ (𝜒 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| cgsexg | ⊢ (𝐴 ∈ 𝑉 → (∃𝑥(𝜒 ∧ 𝜑) ↔ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cgsexg.2 | . . . 4 ⊢ (𝜒 → (𝜑 ↔ 𝜓)) | |
| 2 | 1 | biimpa 476 | . . 3 ⊢ ((𝜒 ∧ 𝜑) → 𝜓) |
| 3 | 2 | exlimiv 1930 | . 2 ⊢ (∃𝑥(𝜒 ∧ 𝜑) → 𝜓) |
| 4 | elisset 2817 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → ∃𝑥 𝑥 = 𝐴) | |
| 5 | cgsexg.1 | . . . . 5 ⊢ (𝑥 = 𝐴 → 𝜒) | |
| 6 | 5 | eximi 1835 | . . . 4 ⊢ (∃𝑥 𝑥 = 𝐴 → ∃𝑥𝜒) |
| 7 | 4, 6 | syl 17 | . . 3 ⊢ (𝐴 ∈ 𝑉 → ∃𝑥𝜒) |
| 8 | 1 | biimprcd 250 | . . . . 5 ⊢ (𝜓 → (𝜒 → 𝜑)) |
| 9 | 8 | ancld 550 | . . . 4 ⊢ (𝜓 → (𝜒 → (𝜒 ∧ 𝜑))) |
| 10 | 9 | eximdv 1917 | . . 3 ⊢ (𝜓 → (∃𝑥𝜒 → ∃𝑥(𝜒 ∧ 𝜑))) |
| 11 | 7, 10 | syl5com 31 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝜓 → ∃𝑥(𝜒 ∧ 𝜑))) |
| 12 | 3, 11 | impbid2 226 | 1 ⊢ (𝐴 ∈ 𝑉 → (∃𝑥(𝜒 ∧ 𝜑) ↔ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2109 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2715 df-clel 2810 |
| This theorem is referenced by: ceqsexgv 3638 |
| Copyright terms: Public domain | W3C validator |