Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cgsexg | Structured version Visualization version GIF version |
Description: Implicit substitution inference for general classes. (Contributed by NM, 26-Aug-2007.) |
Ref | Expression |
---|---|
cgsexg.1 | ⊢ (𝑥 = 𝐴 → 𝜒) |
cgsexg.2 | ⊢ (𝜒 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
cgsexg | ⊢ (𝐴 ∈ 𝑉 → (∃𝑥(𝜒 ∧ 𝜑) ↔ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cgsexg.2 | . . . 4 ⊢ (𝜒 → (𝜑 ↔ 𝜓)) | |
2 | 1 | biimpa 476 | . . 3 ⊢ ((𝜒 ∧ 𝜑) → 𝜓) |
3 | 2 | exlimiv 1934 | . 2 ⊢ (∃𝑥(𝜒 ∧ 𝜑) → 𝜓) |
4 | elisset 2820 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → ∃𝑥 𝑥 = 𝐴) | |
5 | cgsexg.1 | . . . . 5 ⊢ (𝑥 = 𝐴 → 𝜒) | |
6 | 5 | eximi 1838 | . . . 4 ⊢ (∃𝑥 𝑥 = 𝐴 → ∃𝑥𝜒) |
7 | 4, 6 | syl 17 | . . 3 ⊢ (𝐴 ∈ 𝑉 → ∃𝑥𝜒) |
8 | 1 | biimprcd 249 | . . . . 5 ⊢ (𝜓 → (𝜒 → 𝜑)) |
9 | 8 | ancld 550 | . . . 4 ⊢ (𝜓 → (𝜒 → (𝜒 ∧ 𝜑))) |
10 | 9 | eximdv 1921 | . . 3 ⊢ (𝜓 → (∃𝑥𝜒 → ∃𝑥(𝜒 ∧ 𝜑))) |
11 | 7, 10 | syl5com 31 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝜓 → ∃𝑥(𝜒 ∧ 𝜑))) |
12 | 3, 11 | impbid2 225 | 1 ⊢ (𝐴 ∈ 𝑉 → (∃𝑥(𝜒 ∧ 𝜑) ↔ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∃wex 1783 ∈ wcel 2108 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-clel 2817 |
This theorem is referenced by: ceqsexgv 3576 |
Copyright terms: Public domain | W3C validator |