Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 3expd | Structured version Visualization version GIF version |
Description: Exportation deduction for triple conjunction. (Contributed by NM, 26-Oct-2006.) |
Ref | Expression |
---|---|
3expd.1 | ⊢ (𝜑 → ((𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜏)) |
Ref | Expression |
---|---|
3expd | ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3expd.1 | . . . 4 ⊢ (𝜑 → ((𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜏)) | |
2 | 1 | com12 32 | . . 3 ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜃) → (𝜑 → 𝜏)) |
3 | 2 | 3exp 1117 | . 2 ⊢ (𝜓 → (𝜒 → (𝜃 → (𝜑 → 𝜏)))) |
4 | 3 | com4r 94 | 1 ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1085 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 df-3an 1087 |
This theorem is referenced by: 3exp2 1352 exp516 1354 3impexp 1356 smogt 8169 axdc3lem4 10140 axcclem 10144 caubnd 14998 coprmprod 16294 catidd 17306 mulgnnass 18653 numedglnl 27417 mclsind 33432 fscgr 34309 cvrat4 37384 3dim1 37408 3dim2 37409 llnle 37459 lplnle 37481 llncvrlpln2 37498 lplncvrlvol2 37556 pmaple 37702 paddasslem14 37774 paddasslem15 37775 osumcllem11N 37907 cdlemeg46gfre 38473 cdlemk33N 38850 dia2dimlem6 39010 lclkrlem2y 39472 rexlimdv3d 40421 relexpmulnn 41206 3impexpbicom 41988 icceuelpart 44776 |
Copyright terms: Public domain | W3C validator |