![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3expd | Structured version Visualization version GIF version |
Description: Exportation deduction for triple conjunction. (Contributed by NM, 26-Oct-2006.) |
Ref | Expression |
---|---|
3expd.1 | ⊢ (𝜑 → ((𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜏)) |
Ref | Expression |
---|---|
3expd | ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3expd.1 | . . . 4 ⊢ (𝜑 → ((𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜏)) | |
2 | 1 | com12 32 | . . 3 ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜃) → (𝜑 → 𝜏)) |
3 | 2 | 3exp 1118 | . 2 ⊢ (𝜓 → (𝜒 → (𝜃 → (𝜑 → 𝜏)))) |
4 | 3 | com4r 94 | 1 ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1086 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 df-3an 1088 |
This theorem is referenced by: 3exp2 1353 exp516 1355 3impexp 1357 smogt 8373 axdc3lem4 10454 axcclem 10458 caubnd 15312 coprmprod 16605 catidd 17631 mulgnnass 19032 numedglnl 28837 mclsind 35025 fscgr 35522 cvrat4 38778 3dim1 38802 3dim2 38803 llnle 38853 lplnle 38875 llncvrlpln2 38892 lplncvrlvol2 38950 pmaple 39096 paddasslem14 39168 paddasslem15 39169 osumcllem11N 39301 cdlemeg46gfre 39867 cdlemk33N 40244 dia2dimlem6 40404 lclkrlem2y 40866 rexlimdv3d 41884 relexpmulnn 42923 3impexpbicom 43703 icceuelpart 46563 |
Copyright terms: Public domain | W3C validator |