MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3expd Structured version   Visualization version   GIF version

Theorem 3expd 1352
Description: Exportation deduction for triple conjunction. (Contributed by NM, 26-Oct-2006.)
Hypothesis
Ref Expression
3expd.1 (𝜑 → ((𝜓𝜒𝜃) → 𝜏))
Assertion
Ref Expression
3expd (𝜑 → (𝜓 → (𝜒 → (𝜃𝜏))))

Proof of Theorem 3expd
StepHypRef Expression
1 3expd.1 . . . 4 (𝜑 → ((𝜓𝜒𝜃) → 𝜏))
21com12 32 . . 3 ((𝜓𝜒𝜃) → (𝜑𝜏))
323exp 1118 . 2 (𝜓 → (𝜒 → (𝜃 → (𝜑𝜏))))
43com4r 94 1 (𝜑 → (𝜓 → (𝜒 → (𝜃𝜏))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 396  df-3an 1088
This theorem is referenced by:  3exp2  1353  exp516  1355  3impexp  1357  smogt  8373  axdc3lem4  10454  axcclem  10458  caubnd  15312  coprmprod  16605  catidd  17631  mulgnnass  19032  numedglnl  28837  mclsind  35025  fscgr  35522  cvrat4  38778  3dim1  38802  3dim2  38803  llnle  38853  lplnle  38875  llncvrlpln2  38892  lplncvrlvol2  38950  pmaple  39096  paddasslem14  39168  paddasslem15  39169  osumcllem11N  39301  cdlemeg46gfre  39867  cdlemk33N  40244  dia2dimlem6  40404  lclkrlem2y  40866  rexlimdv3d  41884  relexpmulnn  42923  3impexpbicom  43703  icceuelpart  46563
  Copyright terms: Public domain W3C validator