Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 3expd | Structured version Visualization version GIF version |
Description: Exportation deduction for triple conjunction. (Contributed by NM, 26-Oct-2006.) |
Ref | Expression |
---|---|
3expd.1 | ⊢ (𝜑 → ((𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜏)) |
Ref | Expression |
---|---|
3expd | ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3expd.1 | . . . 4 ⊢ (𝜑 → ((𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜏)) | |
2 | 1 | com12 32 | . . 3 ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜃) → (𝜑 → 𝜏)) |
3 | 2 | 3exp 1118 | . 2 ⊢ (𝜓 → (𝜒 → (𝜃 → (𝜑 → 𝜏)))) |
4 | 3 | com4r 94 | 1 ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1086 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 df-3an 1088 |
This theorem is referenced by: 3exp2 1353 exp516 1355 3impexp 1357 smogt 8198 axdc3lem4 10209 axcclem 10213 caubnd 15070 coprmprod 16366 catidd 17389 mulgnnass 18738 numedglnl 27514 mclsind 33532 fscgr 34382 cvrat4 37457 3dim1 37481 3dim2 37482 llnle 37532 lplnle 37554 llncvrlpln2 37571 lplncvrlvol2 37629 pmaple 37775 paddasslem14 37847 paddasslem15 37848 osumcllem11N 37980 cdlemeg46gfre 38546 cdlemk33N 38923 dia2dimlem6 39083 lclkrlem2y 39545 rexlimdv3d 40505 relexpmulnn 41317 3impexpbicom 42099 icceuelpart 44888 |
Copyright terms: Public domain | W3C validator |