MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3expd Structured version   Visualization version   GIF version

Theorem 3expd 1352
Description: Exportation deduction for triple conjunction. (Contributed by NM, 26-Oct-2006.)
Hypothesis
Ref Expression
3expd.1 (𝜑 → ((𝜓𝜒𝜃) → 𝜏))
Assertion
Ref Expression
3expd (𝜑 → (𝜓 → (𝜒 → (𝜃𝜏))))

Proof of Theorem 3expd
StepHypRef Expression
1 3expd.1 . . . 4 (𝜑 → ((𝜓𝜒𝜃) → 𝜏))
21com12 32 . . 3 ((𝜓𝜒𝜃) → (𝜑𝜏))
323exp 1118 . 2 (𝜓 → (𝜒 → (𝜃 → (𝜑𝜏))))
43com4r 94 1 (𝜑 → (𝜓 → (𝜒 → (𝜃𝜏))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088
This theorem is referenced by:  3exp2  1353  exp516  1355  3impexp  1357  smogt  8405  axdc3lem4  10490  axcclem  10494  caubnd  15393  coprmprod  16694  catidd  17724  mulgnnass  19139  numedglnl  29175  mclsind  35554  fscgr  36061  cvrat4  39425  3dim1  39449  3dim2  39450  llnle  39500  lplnle  39522  llncvrlpln2  39539  lplncvrlvol2  39597  pmaple  39743  paddasslem14  39815  paddasslem15  39816  osumcllem11N  39948  cdlemeg46gfre  40514  cdlemk33N  40891  dia2dimlem6  41051  lclkrlem2y  41513  rexlimdv3d  42670  relexpmulnn  43698  3impexpbicom  44476  icceuelpart  47360  grlimgrtri  47898
  Copyright terms: Public domain W3C validator