![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3expd | Structured version Visualization version GIF version |
Description: Exportation deduction for triple conjunction. (Contributed by NM, 26-Oct-2006.) |
Ref | Expression |
---|---|
3expd.1 | ⊢ (𝜑 → ((𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜏)) |
Ref | Expression |
---|---|
3expd | ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3expd.1 | . . . 4 ⊢ (𝜑 → ((𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜏)) | |
2 | 1 | com12 32 | . . 3 ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜃) → (𝜑 → 𝜏)) |
3 | 2 | 3exp 1118 | . 2 ⊢ (𝜓 → (𝜒 → (𝜃 → (𝜑 → 𝜏)))) |
4 | 3 | com4r 94 | 1 ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1086 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
This theorem is referenced by: 3exp2 1353 exp516 1355 3impexp 1357 smogt 8405 axdc3lem4 10490 axcclem 10494 caubnd 15393 coprmprod 16694 catidd 17724 mulgnnass 19139 numedglnl 29175 mclsind 35554 fscgr 36061 cvrat4 39425 3dim1 39449 3dim2 39450 llnle 39500 lplnle 39522 llncvrlpln2 39539 lplncvrlvol2 39597 pmaple 39743 paddasslem14 39815 paddasslem15 39816 osumcllem11N 39948 cdlemeg46gfre 40514 cdlemk33N 40891 dia2dimlem6 41051 lclkrlem2y 41513 rexlimdv3d 42670 relexpmulnn 43698 3impexpbicom 44476 icceuelpart 47360 grlimgrtri 47898 |
Copyright terms: Public domain | W3C validator |