| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3expd | Structured version Visualization version GIF version | ||
| Description: Exportation deduction for triple conjunction. (Contributed by NM, 26-Oct-2006.) |
| Ref | Expression |
|---|---|
| 3expd.1 | ⊢ (𝜑 → ((𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜏)) |
| Ref | Expression |
|---|---|
| 3expd | ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3expd.1 | . . . 4 ⊢ (𝜑 → ((𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜏)) | |
| 2 | 1 | com12 32 | . . 3 ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜃) → (𝜑 → 𝜏)) |
| 3 | 2 | 3exp 1119 | . 2 ⊢ (𝜓 → (𝜒 → (𝜃 → (𝜑 → 𝜏)))) |
| 4 | 3 | com4r 94 | 1 ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: 3exp2 1355 exp516 1357 3impexp 1359 smogt 8297 axdc3lem4 10366 axcclem 10370 caubnd 15284 coprmprod 16590 catidd 17604 mulgnnass 19006 numedglnl 29107 mclsind 35545 fscgr 36056 cvrat4 39425 3dim1 39449 3dim2 39450 llnle 39500 lplnle 39522 llncvrlpln2 39539 lplncvrlvol2 39597 pmaple 39743 paddasslem14 39815 paddasslem15 39816 osumcllem11N 39948 cdlemeg46gfre 40514 cdlemk33N 40891 dia2dimlem6 41051 lclkrlem2y 41513 rexlimdv3d 42659 relexpmulnn 43685 3impexpbicom 44457 icceuelpart 47424 grlimgrtri 47991 |
| Copyright terms: Public domain | W3C validator |