| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3expd | Structured version Visualization version GIF version | ||
| Description: Exportation deduction for triple conjunction. (Contributed by NM, 26-Oct-2006.) |
| Ref | Expression |
|---|---|
| 3expd.1 | ⊢ (𝜑 → ((𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜏)) |
| Ref | Expression |
|---|---|
| 3expd | ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3expd.1 | . . . 4 ⊢ (𝜑 → ((𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜏)) | |
| 2 | 1 | com12 32 | . . 3 ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜃) → (𝜑 → 𝜏)) |
| 3 | 2 | 3exp 1119 | . 2 ⊢ (𝜓 → (𝜒 → (𝜃 → (𝜑 → 𝜏)))) |
| 4 | 3 | com4r 94 | 1 ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: 3exp2 1355 exp516 1357 3impexp 1359 smogt 8295 axdc3lem4 10353 axcclem 10357 caubnd 15270 coprmprod 16576 catidd 17590 mulgnnass 19026 numedglnl 29126 mclsind 35637 fscgr 36147 cvrat4 39565 3dim1 39589 3dim2 39590 llnle 39640 lplnle 39662 llncvrlpln2 39679 lplncvrlvol2 39737 pmaple 39883 paddasslem14 39955 paddasslem15 39956 osumcllem11N 40088 cdlemeg46gfre 40654 cdlemk33N 41031 dia2dimlem6 41191 lclkrlem2y 41653 rexlimdv3d 42803 relexpmulnn 43829 3impexpbicom 44600 icceuelpart 47563 grlimgrtri 48130 |
| Copyright terms: Public domain | W3C validator |