| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3expd | Structured version Visualization version GIF version | ||
| Description: Exportation deduction for triple conjunction. (Contributed by NM, 26-Oct-2006.) |
| Ref | Expression |
|---|---|
| 3expd.1 | ⊢ (𝜑 → ((𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜏)) |
| Ref | Expression |
|---|---|
| 3expd | ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3expd.1 | . . . 4 ⊢ (𝜑 → ((𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜏)) | |
| 2 | 1 | com12 32 | . . 3 ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜃) → (𝜑 → 𝜏)) |
| 3 | 2 | 3exp 1119 | . 2 ⊢ (𝜓 → (𝜒 → (𝜃 → (𝜑 → 𝜏)))) |
| 4 | 3 | com4r 94 | 1 ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: 3exp2 1355 exp516 1357 3impexp 1359 smogt 8336 axdc3lem4 10406 axcclem 10410 caubnd 15325 coprmprod 16631 catidd 17641 mulgnnass 19041 numedglnl 29071 mclsind 35557 fscgr 36068 cvrat4 39437 3dim1 39461 3dim2 39462 llnle 39512 lplnle 39534 llncvrlpln2 39551 lplncvrlvol2 39609 pmaple 39755 paddasslem14 39827 paddasslem15 39828 osumcllem11N 39960 cdlemeg46gfre 40526 cdlemk33N 40903 dia2dimlem6 41063 lclkrlem2y 41525 rexlimdv3d 42671 relexpmulnn 43698 3impexpbicom 44470 icceuelpart 47437 grlimgrtri 47995 |
| Copyright terms: Public domain | W3C validator |