MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3expd Structured version   Visualization version   GIF version

Theorem 3expd 1350
Description: Exportation deduction for triple conjunction. (Contributed by NM, 26-Oct-2006.)
Hypothesis
Ref Expression
3expd.1 (𝜑 → ((𝜓𝜒𝜃) → 𝜏))
Assertion
Ref Expression
3expd (𝜑 → (𝜓 → (𝜒 → (𝜃𝜏))))

Proof of Theorem 3expd
StepHypRef Expression
1 3expd.1 . . . 4 (𝜑 → ((𝜓𝜒𝜃) → 𝜏))
21com12 32 . . 3 ((𝜓𝜒𝜃) → (𝜑𝜏))
323exp 1116 . 2 (𝜓 → (𝜒 → (𝜃 → (𝜑𝜏))))
43com4r 94 1 (𝜑 → (𝜓 → (𝜒 → (𝜃𝜏))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1084
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 210  df-an 400  df-3an 1086
This theorem is referenced by:  3exp2  1351  exp516  1353  3impexp  1355  smogt  8019  axdc3lem4  9918  axcclem  9922  caubnd  14771  coprmprod  16062  catidd  17014  mulgnnass  18334  numedglnl  27041  mclsind  33052  fscgr  33957  cvrat4  37045  3dim1  37069  3dim2  37070  llnle  37120  lplnle  37142  llncvrlpln2  37159  lplncvrlvol2  37217  pmaple  37363  paddasslem14  37435  paddasslem15  37436  osumcllem11N  37568  cdlemeg46gfre  38134  cdlemk33N  38511  dia2dimlem6  38671  lclkrlem2y  39133  rexlimdv3d  40025  relexpmulnn  40811  3impexpbicom  41586  icceuelpart  44349
  Copyright terms: Public domain W3C validator