Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 3expd | Structured version Visualization version GIF version |
Description: Exportation deduction for triple conjunction. (Contributed by NM, 26-Oct-2006.) |
Ref | Expression |
---|---|
3expd.1 | ⊢ (𝜑 → ((𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜏)) |
Ref | Expression |
---|---|
3expd | ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3expd.1 | . . . 4 ⊢ (𝜑 → ((𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜏)) | |
2 | 1 | com12 32 | . . 3 ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜃) → (𝜑 → 𝜏)) |
3 | 2 | 3exp 1116 | . 2 ⊢ (𝜓 → (𝜒 → (𝜃 → (𝜑 → 𝜏)))) |
4 | 3 | com4r 94 | 1 ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1084 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 210 df-an 400 df-3an 1086 |
This theorem is referenced by: 3exp2 1351 exp516 1353 3impexp 1355 smogt 8019 axdc3lem4 9918 axcclem 9922 caubnd 14771 coprmprod 16062 catidd 17014 mulgnnass 18334 numedglnl 27041 mclsind 33052 fscgr 33957 cvrat4 37045 3dim1 37069 3dim2 37070 llnle 37120 lplnle 37142 llncvrlpln2 37159 lplncvrlvol2 37217 pmaple 37363 paddasslem14 37435 paddasslem15 37436 osumcllem11N 37568 cdlemeg46gfre 38134 cdlemk33N 38511 dia2dimlem6 38671 lclkrlem2y 39133 rexlimdv3d 40025 relexpmulnn 40811 3impexpbicom 41586 icceuelpart 44349 |
Copyright terms: Public domain | W3C validator |