| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3expd | Structured version Visualization version GIF version | ||
| Description: Exportation deduction for triple conjunction. (Contributed by NM, 26-Oct-2006.) |
| Ref | Expression |
|---|---|
| 3expd.1 | ⊢ (𝜑 → ((𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜏)) |
| Ref | Expression |
|---|---|
| 3expd | ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3expd.1 | . . . 4 ⊢ (𝜑 → ((𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜏)) | |
| 2 | 1 | com12 32 | . . 3 ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜃) → (𝜑 → 𝜏)) |
| 3 | 2 | 3exp 1119 | . 2 ⊢ (𝜓 → (𝜒 → (𝜃 → (𝜑 → 𝜏)))) |
| 4 | 3 | com4r 94 | 1 ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: 3exp2 1355 exp516 1357 3impexp 1359 smogt 8379 axdc3lem4 10465 axcclem 10469 caubnd 15375 coprmprod 16678 catidd 17690 mulgnnass 19090 numedglnl 29069 mclsind 35538 fscgr 36044 cvrat4 39408 3dim1 39432 3dim2 39433 llnle 39483 lplnle 39505 llncvrlpln2 39522 lplncvrlvol2 39580 pmaple 39726 paddasslem14 39798 paddasslem15 39799 osumcllem11N 39931 cdlemeg46gfre 40497 cdlemk33N 40874 dia2dimlem6 41034 lclkrlem2y 41496 rexlimdv3d 42653 relexpmulnn 43680 3impexpbicom 44453 icceuelpart 47398 grlimgrtri 47956 |
| Copyright terms: Public domain | W3C validator |