MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3expd Structured version   Visualization version   GIF version

Theorem 3expd 1353
Description: Exportation deduction for triple conjunction. (Contributed by NM, 26-Oct-2006.)
Hypothesis
Ref Expression
3expd.1 (𝜑 → ((𝜓𝜒𝜃) → 𝜏))
Assertion
Ref Expression
3expd (𝜑 → (𝜓 → (𝜒 → (𝜃𝜏))))

Proof of Theorem 3expd
StepHypRef Expression
1 3expd.1 . . . 4 (𝜑 → ((𝜓𝜒𝜃) → 𝜏))
21com12 32 . . 3 ((𝜓𝜒𝜃) → (𝜑𝜏))
323exp 1119 . 2 (𝜓 → (𝜒 → (𝜃 → (𝜑𝜏))))
43com4r 94 1 (𝜑 → (𝜓 → (𝜒 → (𝜃𝜏))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1087
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1089
This theorem is referenced by:  3exp2  1354  exp516  1356  3impexp  1358  smogt  8423  axdc3lem4  10522  axcclem  10526  caubnd  15407  coprmprod  16708  catidd  17738  mulgnnass  19149  numedglnl  29179  mclsind  35538  fscgr  36044  cvrat4  39400  3dim1  39424  3dim2  39425  llnle  39475  lplnle  39497  llncvrlpln2  39514  lplncvrlvol2  39572  pmaple  39718  paddasslem14  39790  paddasslem15  39791  osumcllem11N  39923  cdlemeg46gfre  40489  cdlemk33N  40866  dia2dimlem6  41026  lclkrlem2y  41488  rexlimdv3d  42639  relexpmulnn  43671  3impexpbicom  44450  icceuelpart  47310  grlimgrtri  47820
  Copyright terms: Public domain W3C validator