![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3expd | Structured version Visualization version GIF version |
Description: Exportation deduction for triple conjunction. (Contributed by NM, 26-Oct-2006.) |
Ref | Expression |
---|---|
3expd.1 | ⊢ (𝜑 → ((𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜏)) |
Ref | Expression |
---|---|
3expd | ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3expd.1 | . . . 4 ⊢ (𝜑 → ((𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜏)) | |
2 | 1 | com12 32 | . . 3 ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜃) → (𝜑 → 𝜏)) |
3 | 2 | 3exp 1119 | . 2 ⊢ (𝜓 → (𝜒 → (𝜃 → (𝜑 → 𝜏)))) |
4 | 3 | com4r 94 | 1 ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1087 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1089 |
This theorem is referenced by: 3exp2 1354 exp516 1356 3impexp 1358 smogt 8423 axdc3lem4 10522 axcclem 10526 caubnd 15407 coprmprod 16708 catidd 17738 mulgnnass 19149 numedglnl 29179 mclsind 35538 fscgr 36044 cvrat4 39400 3dim1 39424 3dim2 39425 llnle 39475 lplnle 39497 llncvrlpln2 39514 lplncvrlvol2 39572 pmaple 39718 paddasslem14 39790 paddasslem15 39791 osumcllem11N 39923 cdlemeg46gfre 40489 cdlemk33N 40866 dia2dimlem6 41026 lclkrlem2y 41488 rexlimdv3d 42639 relexpmulnn 43671 3impexpbicom 44450 icceuelpart 47310 grlimgrtri 47820 |
Copyright terms: Public domain | W3C validator |