| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3expd | Structured version Visualization version GIF version | ||
| Description: Exportation deduction for triple conjunction. (Contributed by NM, 26-Oct-2006.) |
| Ref | Expression |
|---|---|
| 3expd.1 | ⊢ (𝜑 → ((𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜏)) |
| Ref | Expression |
|---|---|
| 3expd | ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3expd.1 | . . . 4 ⊢ (𝜑 → ((𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜏)) | |
| 2 | 1 | com12 32 | . . 3 ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜃) → (𝜑 → 𝜏)) |
| 3 | 2 | 3exp 1119 | . 2 ⊢ (𝜓 → (𝜒 → (𝜃 → (𝜑 → 𝜏)))) |
| 4 | 3 | com4r 94 | 1 ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: 3exp2 1355 exp516 1357 3impexp 1359 smogt 8339 axdc3lem4 10413 axcclem 10417 caubnd 15332 coprmprod 16638 catidd 17648 mulgnnass 19048 numedglnl 29078 mclsind 35564 fscgr 36075 cvrat4 39444 3dim1 39468 3dim2 39469 llnle 39519 lplnle 39541 llncvrlpln2 39558 lplncvrlvol2 39616 pmaple 39762 paddasslem14 39834 paddasslem15 39835 osumcllem11N 39967 cdlemeg46gfre 40533 cdlemk33N 40910 dia2dimlem6 41070 lclkrlem2y 41532 rexlimdv3d 42678 relexpmulnn 43705 3impexpbicom 44477 icceuelpart 47441 grlimgrtri 47999 |
| Copyright terms: Public domain | W3C validator |