| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3expd | Structured version Visualization version GIF version | ||
| Description: Exportation deduction for triple conjunction. (Contributed by NM, 26-Oct-2006.) |
| Ref | Expression |
|---|---|
| 3expd.1 | ⊢ (𝜑 → ((𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜏)) |
| Ref | Expression |
|---|---|
| 3expd | ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3expd.1 | . . . 4 ⊢ (𝜑 → ((𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜏)) | |
| 2 | 1 | com12 32 | . . 3 ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜃) → (𝜑 → 𝜏)) |
| 3 | 2 | 3exp 1119 | . 2 ⊢ (𝜓 → (𝜒 → (𝜃 → (𝜑 → 𝜏)))) |
| 4 | 3 | com4r 94 | 1 ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: 3exp2 1355 exp516 1357 3impexp 1359 smogt 8287 axdc3lem4 10344 axcclem 10348 caubnd 15266 coprmprod 16572 catidd 17586 mulgnnass 19022 numedglnl 29123 mclsind 35612 fscgr 36120 cvrat4 39488 3dim1 39512 3dim2 39513 llnle 39563 lplnle 39585 llncvrlpln2 39602 lplncvrlvol2 39660 pmaple 39806 paddasslem14 39878 paddasslem15 39879 osumcllem11N 40011 cdlemeg46gfre 40577 cdlemk33N 40954 dia2dimlem6 41114 lclkrlem2y 41576 rexlimdv3d 42722 relexpmulnn 43748 3impexpbicom 44519 icceuelpart 47473 grlimgrtri 48040 |
| Copyright terms: Public domain | W3C validator |