MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3expd Structured version   Visualization version   GIF version

Theorem 3expd 1354
Description: Exportation deduction for triple conjunction. (Contributed by NM, 26-Oct-2006.)
Hypothesis
Ref Expression
3expd.1 (𝜑 → ((𝜓𝜒𝜃) → 𝜏))
Assertion
Ref Expression
3expd (𝜑 → (𝜓 → (𝜒 → (𝜃𝜏))))

Proof of Theorem 3expd
StepHypRef Expression
1 3expd.1 . . . 4 (𝜑 → ((𝜓𝜒𝜃) → 𝜏))
21com12 32 . . 3 ((𝜓𝜒𝜃) → (𝜑𝜏))
323exp 1119 . 2 (𝜓 → (𝜒 → (𝜃 → (𝜑𝜏))))
43com4r 94 1 (𝜑 → (𝜓 → (𝜒 → (𝜃𝜏))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088
This theorem is referenced by:  3exp2  1355  exp516  1357  3impexp  1359  smogt  8379  axdc3lem4  10465  axcclem  10469  caubnd  15375  coprmprod  16678  catidd  17690  mulgnnass  19090  numedglnl  29069  mclsind  35538  fscgr  36044  cvrat4  39408  3dim1  39432  3dim2  39433  llnle  39483  lplnle  39505  llncvrlpln2  39522  lplncvrlvol2  39580  pmaple  39726  paddasslem14  39798  paddasslem15  39799  osumcllem11N  39931  cdlemeg46gfre  40497  cdlemk33N  40874  dia2dimlem6  41034  lclkrlem2y  41496  rexlimdv3d  42653  relexpmulnn  43680  3impexpbicom  44453  icceuelpart  47398  grlimgrtri  47956
  Copyright terms: Public domain W3C validator