| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > biimpcd | Structured version Visualization version GIF version | ||
| Description: Deduce a commuted implication from a logical equivalence. (Contributed by NM, 3-May-1994.) (Proof shortened by Wolf Lammen, 22-Sep-2013.) |
| Ref | Expression |
|---|---|
| biimpcd.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| biimpcd | ⊢ (𝜓 → (𝜑 → 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . 2 ⊢ (𝜓 → 𝜓) | |
| 2 | biimpcd.1 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 3 | 1, 2 | syl5ibcom 245 | 1 ⊢ (𝜓 → (𝜑 → 𝜒)) |
| Copyright terms: Public domain | W3C validator |