Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 3jca | Structured version Visualization version GIF version |
Description: Join consequents with conjunction. (Contributed by NM, 9-Apr-1994.) |
Ref | Expression |
---|---|
3jca.1 | ⊢ (𝜑 → 𝜓) |
3jca.2 | ⊢ (𝜑 → 𝜒) |
3jca.3 | ⊢ (𝜑 → 𝜃) |
Ref | Expression |
---|---|
3jca | ⊢ (𝜑 → (𝜓 ∧ 𝜒 ∧ 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3jca.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
2 | 3jca.2 | . . 3 ⊢ (𝜑 → 𝜒) | |
3 | 3jca.3 | . . 3 ⊢ (𝜑 → 𝜃) | |
4 | 1, 2, 3 | jca31 515 | . 2 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) ∧ 𝜃)) |
5 | df-3an 1088 | . 2 ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜃) ↔ ((𝜓 ∧ 𝜒) ∧ 𝜃)) | |
6 | 4, 5 | sylibr 233 | 1 ⊢ (𝜑 → (𝜓 ∧ 𝜒 ∧ 𝜃)) |
Copyright terms: Public domain | W3C validator |