| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3mix2 | Structured version Visualization version GIF version | ||
| Description: Introduction in triple disjunction. (Contributed by NM, 4-Apr-1995.) |
| Ref | Expression |
|---|---|
| 3mix2 | ⊢ (𝜑 → (𝜓 ∨ 𝜑 ∨ 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3mix1 1331 | . 2 ⊢ (𝜑 → (𝜑 ∨ 𝜒 ∨ 𝜓)) | |
| 2 | 3orrot 1091 | . 2 ⊢ ((𝜓 ∨ 𝜑 ∨ 𝜒) ↔ (𝜑 ∨ 𝜒 ∨ 𝜓)) | |
| 3 | 1, 2 | sylibr 234 | 1 ⊢ (𝜑 → (𝜓 ∨ 𝜑 ∨ 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∨ w3o 1085 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-or 848 df-3or 1087 |
| This theorem is referenced by: 3mix2i 1335 3mix2d 1338 3jaobOLD 1429 tppreqb 4765 tpres 7157 onzsl 7802 sornom 10206 nnz 12526 nn0le2is012 12574 hash1to3 14433 cshwshashlem1 17042 zabsle1 27240 ostth 27583 nolesgn2o 27616 nogesgn1o 27618 sltsolem1 27620 nosep1o 27626 nosep2o 27627 nodenselem8 27636 fnwe2lem3 43034 dfxlim2v 45838 |
| Copyright terms: Public domain | W3C validator |