| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3mix2 | Structured version Visualization version GIF version | ||
| Description: Introduction in triple disjunction. (Contributed by NM, 4-Apr-1995.) |
| Ref | Expression |
|---|---|
| 3mix2 | ⊢ (𝜑 → (𝜓 ∨ 𝜑 ∨ 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3mix1 1331 | . 2 ⊢ (𝜑 → (𝜑 ∨ 𝜒 ∨ 𝜓)) | |
| 2 | 3orrot 1091 | . 2 ⊢ ((𝜓 ∨ 𝜑 ∨ 𝜒) ↔ (𝜑 ∨ 𝜒 ∨ 𝜓)) | |
| 3 | 1, 2 | sylibr 234 | 1 ⊢ (𝜑 → (𝜓 ∨ 𝜑 ∨ 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∨ w3o 1085 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-or 848 df-3or 1087 |
| This theorem is referenced by: 3mix2i 1335 3mix2d 1338 3jaobOLD 1429 tppreqb 4756 tpres 7137 onzsl 7779 sornom 10171 nnz 12492 nn0le2is012 12540 hash1to3 14399 cshwshashlem1 17007 zabsle1 27205 ostth 27548 nolesgn2o 27581 nogesgn1o 27583 sltsolem1 27585 nosep1o 27591 nosep2o 27592 nodenselem8 27601 fnwe2lem3 43025 dfxlim2v 45828 |
| Copyright terms: Public domain | W3C validator |