MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3mix2 Structured version   Visualization version   GIF version

Theorem 3mix2 1332
Description: Introduction in triple disjunction. (Contributed by NM, 4-Apr-1995.)
Assertion
Ref Expression
3mix2 (𝜑 → (𝜓𝜑𝜒))

Proof of Theorem 3mix2
StepHypRef Expression
1 3mix1 1331 . 2 (𝜑 → (𝜑𝜒𝜓))
2 3orrot 1091 . 2 ((𝜓𝜑𝜒) ↔ (𝜑𝜒𝜓))
31, 2sylibr 234 1 (𝜑 → (𝜓𝜑𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3o 1085
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-or 848  df-3or 1087
This theorem is referenced by:  3mix2i  1335  3mix2d  1338  3jaobOLD  1429  tppreqb  4777  tpres  7182  onzsl  7830  sornom  10248  nnz  12566  nn0le2is012  12614  hash1to3  14467  cshwshashlem1  17072  zabsle1  27214  ostth  27557  nolesgn2o  27590  nogesgn1o  27592  sltsolem1  27594  nosep1o  27600  nosep2o  27601  nodenselem8  27610  fnwe2lem3  43013  dfxlim2v  45818
  Copyright terms: Public domain W3C validator