MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3mix2 Structured version   Visualization version   GIF version

Theorem 3mix2 1332
Description: Introduction in triple disjunction. (Contributed by NM, 4-Apr-1995.)
Assertion
Ref Expression
3mix2 (𝜑 → (𝜓𝜑𝜒))

Proof of Theorem 3mix2
StepHypRef Expression
1 3mix1 1331 . 2 (𝜑 → (𝜑𝜒𝜓))
2 3orrot 1093 . 2 ((𝜓𝜑𝜒) ↔ (𝜑𝜒𝜓))
31, 2sylibr 237 1 (𝜑 → (𝜓𝜑𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3o 1087
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 210  df-or 847  df-3or 1089
This theorem is referenced by:  3mix2i  1335  3mix2d  1338  3jaob  1427  tppreqb  4703  tpres  6985  onzsl  7592  sornom  9789  nnssz  12095  nn0le2is012  12139  hash1to3  13955  cshwshashlem1  16544  zabsle1  26044  ostth  26387  nolesgn2o  33529  nogesgn1o  33531  sltsolem1  33533  nosep1o  33539  nosep2o  33540  nodenselem8  33549  fnwe2lem3  40489  dfxlim2v  42970
  Copyright terms: Public domain W3C validator