MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3mix2 Structured version   Visualization version   GIF version

Theorem 3mix2 1331
Description: Introduction in triple disjunction. (Contributed by NM, 4-Apr-1995.)
Assertion
Ref Expression
3mix2 (𝜑 → (𝜓𝜑𝜒))

Proof of Theorem 3mix2
StepHypRef Expression
1 3mix1 1330 . 2 (𝜑 → (𝜑𝜒𝜓))
2 3orrot 1092 . 2 ((𝜓𝜑𝜒) ↔ (𝜑𝜒𝜓))
31, 2sylibr 234 1 (𝜑 → (𝜓𝜑𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3o 1086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-or 847  df-3or 1088
This theorem is referenced by:  3mix2i  1334  3mix2d  1337  3jaobOLD  1427  tppreqb  4830  tpres  7238  onzsl  7883  sornom  10346  nnz  12660  nn0le2is012  12707  hash1to3  14541  cshwshashlem1  17143  zabsle1  27358  ostth  27701  nolesgn2o  27734  nogesgn1o  27736  sltsolem1  27738  nosep1o  27744  nosep2o  27745  nodenselem8  27754  fnwe2lem3  43009  dfxlim2v  45768
  Copyright terms: Public domain W3C validator