| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3mix2 | Structured version Visualization version GIF version | ||
| Description: Introduction in triple disjunction. (Contributed by NM, 4-Apr-1995.) |
| Ref | Expression |
|---|---|
| 3mix2 | ⊢ (𝜑 → (𝜓 ∨ 𝜑 ∨ 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3mix1 1330 | . 2 ⊢ (𝜑 → (𝜑 ∨ 𝜒 ∨ 𝜓)) | |
| 2 | 3orrot 1091 | . 2 ⊢ ((𝜓 ∨ 𝜑 ∨ 𝜒) ↔ (𝜑 ∨ 𝜒 ∨ 𝜓)) | |
| 3 | 1, 2 | sylibr 234 | 1 ⊢ (𝜑 → (𝜓 ∨ 𝜑 ∨ 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∨ w3o 1085 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-or 848 df-3or 1087 |
| This theorem is referenced by: 3mix2i 1334 3mix2d 1337 3jaobOLD 1428 tppreqb 4787 tpres 7204 onzsl 7850 sornom 10300 nnz 12618 nn0le2is012 12666 hash1to3 14514 cshwshashlem1 17116 zabsle1 27295 ostth 27638 nolesgn2o 27671 nogesgn1o 27673 sltsolem1 27675 nosep1o 27681 nosep2o 27682 nodenselem8 27691 fnwe2lem3 43009 dfxlim2v 45807 |
| Copyright terms: Public domain | W3C validator |