Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 3mix2 | Structured version Visualization version GIF version |
Description: Introduction in triple disjunction. (Contributed by NM, 4-Apr-1995.) |
Ref | Expression |
---|---|
3mix2 | ⊢ (𝜑 → (𝜓 ∨ 𝜑 ∨ 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3mix1 1331 | . 2 ⊢ (𝜑 → (𝜑 ∨ 𝜒 ∨ 𝜓)) | |
2 | 3orrot 1093 | . 2 ⊢ ((𝜓 ∨ 𝜑 ∨ 𝜒) ↔ (𝜑 ∨ 𝜒 ∨ 𝜓)) | |
3 | 1, 2 | sylibr 237 | 1 ⊢ (𝜑 → (𝜓 ∨ 𝜑 ∨ 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ w3o 1087 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 210 df-or 847 df-3or 1089 |
This theorem is referenced by: 3mix2i 1335 3mix2d 1338 3jaob 1427 tppreqb 4703 tpres 6985 onzsl 7592 sornom 9789 nnssz 12095 nn0le2is012 12139 hash1to3 13955 cshwshashlem1 16544 zabsle1 26044 ostth 26387 nolesgn2o 33529 nogesgn1o 33531 sltsolem1 33533 nosep1o 33539 nosep2o 33540 nodenselem8 33549 fnwe2lem3 40489 dfxlim2v 42970 |
Copyright terms: Public domain | W3C validator |