Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 3mix2 | Structured version Visualization version GIF version |
Description: Introduction in triple disjunction. (Contributed by NM, 4-Apr-1995.) |
Ref | Expression |
---|---|
3mix2 | ⊢ (𝜑 → (𝜓 ∨ 𝜑 ∨ 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3mix1 1329 | . 2 ⊢ (𝜑 → (𝜑 ∨ 𝜒 ∨ 𝜓)) | |
2 | 3orrot 1091 | . 2 ⊢ ((𝜓 ∨ 𝜑 ∨ 𝜒) ↔ (𝜑 ∨ 𝜒 ∨ 𝜓)) | |
3 | 1, 2 | sylibr 233 | 1 ⊢ (𝜑 → (𝜓 ∨ 𝜑 ∨ 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ w3o 1085 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-or 845 df-3or 1087 |
This theorem is referenced by: 3mix2i 1333 3mix2d 1336 3jaob 1425 tppreqb 4738 tpres 7076 onzsl 7693 sornom 10033 nnssz 12340 nn0le2is012 12384 hash1to3 14205 cshwshashlem1 16797 zabsle1 26444 ostth 26787 nolesgn2o 33874 nogesgn1o 33876 sltsolem1 33878 nosep1o 33884 nosep2o 33885 nodenselem8 33894 fnwe2lem3 40877 dfxlim2v 43388 |
Copyright terms: Public domain | W3C validator |