![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3mix2 | Structured version Visualization version GIF version |
Description: Introduction in triple disjunction. (Contributed by NM, 4-Apr-1995.) |
Ref | Expression |
---|---|
3mix2 | ⊢ (𝜑 → (𝜓 ∨ 𝜑 ∨ 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3mix1 1329 | . 2 ⊢ (𝜑 → (𝜑 ∨ 𝜒 ∨ 𝜓)) | |
2 | 3orrot 1091 | . 2 ⊢ ((𝜓 ∨ 𝜑 ∨ 𝜒) ↔ (𝜑 ∨ 𝜒 ∨ 𝜓)) | |
3 | 1, 2 | sylibr 233 | 1 ⊢ (𝜑 → (𝜓 ∨ 𝜑 ∨ 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ w3o 1085 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-or 845 df-3or 1087 |
This theorem is referenced by: 3mix2i 1333 3mix2d 1336 3jaob 1425 tppreqb 4808 tpres 7204 onzsl 7839 sornom 10278 nnz 12586 nn0le2is012 12633 hash1to3 14459 cshwshashlem1 17036 zabsle1 27142 ostth 27485 nolesgn2o 27517 nogesgn1o 27519 sltsolem1 27521 nosep1o 27527 nosep2o 27528 nodenselem8 27537 fnwe2lem3 42257 dfxlim2v 45022 |
Copyright terms: Public domain | W3C validator |