MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3mix2 Structured version   Visualization version   GIF version

Theorem 3mix2 1332
Description: Introduction in triple disjunction. (Contributed by NM, 4-Apr-1995.)
Assertion
Ref Expression
3mix2 (𝜑 → (𝜓𝜑𝜒))

Proof of Theorem 3mix2
StepHypRef Expression
1 3mix1 1331 . 2 (𝜑 → (𝜑𝜒𝜓))
2 3orrot 1091 . 2 ((𝜓𝜑𝜒) ↔ (𝜑𝜒𝜓))
31, 2sylibr 234 1 (𝜑 → (𝜓𝜑𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3o 1085
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-or 848  df-3or 1087
This theorem is referenced by:  3mix2i  1335  3mix2d  1338  3jaobOLD  1429  tppreqb  4769  tpres  7175  onzsl  7822  sornom  10230  nnz  12550  nn0le2is012  12598  hash1to3  14457  cshwshashlem1  17066  zabsle1  27207  ostth  27550  nolesgn2o  27583  nogesgn1o  27585  sltsolem1  27587  nosep1o  27593  nosep2o  27594  nodenselem8  27603  fnwe2lem3  43041  dfxlim2v  45845
  Copyright terms: Public domain W3C validator