MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3mix2 Structured version   Visualization version   GIF version

Theorem 3mix2 1329
Description: Introduction in triple disjunction. (Contributed by NM, 4-Apr-1995.)
Assertion
Ref Expression
3mix2 (𝜑 → (𝜓𝜑𝜒))

Proof of Theorem 3mix2
StepHypRef Expression
1 3mix1 1328 . 2 (𝜑 → (𝜑𝜒𝜓))
2 3orrot 1090 . 2 ((𝜓𝜑𝜒) ↔ (𝜑𝜒𝜓))
31, 2sylibr 233 1 (𝜑 → (𝜓𝜑𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3o 1084
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-or 844  df-3or 1086
This theorem is referenced by:  3mix2i  1332  3mix2d  1335  3jaob  1424  tppreqb  4735  tpres  7058  onzsl  7668  sornom  9964  nnssz  12270  nn0le2is012  12314  hash1to3  14133  cshwshashlem1  16725  zabsle1  26349  ostth  26692  nolesgn2o  33801  nogesgn1o  33803  sltsolem1  33805  nosep1o  33811  nosep2o  33812  nodenselem8  33821  fnwe2lem3  40793  dfxlim2v  43278
  Copyright terms: Public domain W3C validator