![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3mix2 | Structured version Visualization version GIF version |
Description: Introduction in triple disjunction. (Contributed by NM, 4-Apr-1995.) |
Ref | Expression |
---|---|
3mix2 | ⊢ (𝜑 → (𝜓 ∨ 𝜑 ∨ 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3mix1 1330 | . 2 ⊢ (𝜑 → (𝜑 ∨ 𝜒 ∨ 𝜓)) | |
2 | 3orrot 1092 | . 2 ⊢ ((𝜓 ∨ 𝜑 ∨ 𝜒) ↔ (𝜑 ∨ 𝜒 ∨ 𝜓)) | |
3 | 1, 2 | sylibr 234 | 1 ⊢ (𝜑 → (𝜓 ∨ 𝜑 ∨ 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ w3o 1086 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-or 847 df-3or 1088 |
This theorem is referenced by: 3mix2i 1334 3mix2d 1337 3jaobOLD 1427 tppreqb 4830 tpres 7238 onzsl 7883 sornom 10346 nnz 12660 nn0le2is012 12707 hash1to3 14541 cshwshashlem1 17143 zabsle1 27358 ostth 27701 nolesgn2o 27734 nogesgn1o 27736 sltsolem1 27738 nosep1o 27744 nosep2o 27745 nodenselem8 27754 fnwe2lem3 43009 dfxlim2v 45768 |
Copyright terms: Public domain | W3C validator |