MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3mix2 Structured version   Visualization version   GIF version

Theorem 3mix2 1330
Description: Introduction in triple disjunction. (Contributed by NM, 4-Apr-1995.)
Assertion
Ref Expression
3mix2 (𝜑 → (𝜓𝜑𝜒))

Proof of Theorem 3mix2
StepHypRef Expression
1 3mix1 1329 . 2 (𝜑 → (𝜑𝜒𝜓))
2 3orrot 1091 . 2 ((𝜓𝜑𝜒) ↔ (𝜑𝜒𝜓))
31, 2sylibr 233 1 (𝜑 → (𝜓𝜑𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3o 1085
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-or 845  df-3or 1087
This theorem is referenced by:  3mix2i  1333  3mix2d  1336  3jaob  1425  tppreqb  4738  tpres  7076  onzsl  7693  sornom  10033  nnssz  12340  nn0le2is012  12384  hash1to3  14205  cshwshashlem1  16797  zabsle1  26444  ostth  26787  nolesgn2o  33874  nogesgn1o  33876  sltsolem1  33878  nosep1o  33884  nosep2o  33885  nodenselem8  33894  fnwe2lem3  40877  dfxlim2v  43388
  Copyright terms: Public domain W3C validator