Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  noinfbnd1lem6 Structured version   Visualization version   GIF version

Theorem noinfbnd1lem6 33577
Description: Lemma for noinfbnd1 33578. Establish a hard lower bound when there is no minimum. (Contributed by Scott Fenton, 9-Aug-2024.)
Hypothesis
Ref Expression
noinfbnd1.1 𝑇 = if(∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥, ((𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∪ {⟨dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥), 1o⟩}), (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))))
Assertion
Ref Expression
noinfbnd1lem6 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ 𝑈𝐵) → 𝑇 <s (𝑈 ↾ dom 𝑇))
Distinct variable groups:   𝐵,𝑔,𝑢,𝑣,𝑥,𝑦   𝑣,𝑈   𝑥,𝑢,𝑦   𝑔,𝑉   𝑥,𝑣,𝑦,𝑈
Allowed substitution hints:   𝑇(𝑥,𝑦,𝑣,𝑢,𝑔)   𝑈(𝑢,𝑔)   𝑉(𝑥,𝑦,𝑣,𝑢)

Proof of Theorem noinfbnd1lem6
StepHypRef Expression
1 simp2l 1200 . . . . . 6 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ 𝑈𝐵) → 𝐵 No )
2 simp3 1139 . . . . . 6 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ 𝑈𝐵) → 𝑈𝐵)
31, 2sseldd 3879 . . . . 5 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ 𝑈𝐵) → 𝑈 No )
4 nofv 33506 . . . . 5 (𝑈 No → ((𝑈‘dom 𝑇) = ∅ ∨ (𝑈‘dom 𝑇) = 1o ∨ (𝑈‘dom 𝑇) = 2o))
53, 4syl 17 . . . 4 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ 𝑈𝐵) → ((𝑈‘dom 𝑇) = ∅ ∨ (𝑈‘dom 𝑇) = 1o ∨ (𝑈‘dom 𝑇) = 2o))
6 3oran 1110 . . . 4 (((𝑈‘dom 𝑇) = ∅ ∨ (𝑈‘dom 𝑇) = 1o ∨ (𝑈‘dom 𝑇) = 2o) ↔ ¬ (¬ (𝑈‘dom 𝑇) = ∅ ∧ ¬ (𝑈‘dom 𝑇) = 1o ∧ ¬ (𝑈‘dom 𝑇) = 2o))
75, 6sylib 221 . . 3 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ 𝑈𝐵) → ¬ (¬ (𝑈‘dom 𝑇) = ∅ ∧ ¬ (𝑈‘dom 𝑇) = 1o ∧ ¬ (𝑈‘dom 𝑇) = 2o))
8 simpl1 1192 . . . . . 6 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ 𝑈𝐵) ∧ 𝑇 = (𝑈 ↾ dom 𝑇)) → ¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥)
9 simpl2 1193 . . . . . 6 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ 𝑈𝐵) ∧ 𝑇 = (𝑈 ↾ dom 𝑇)) → (𝐵 No 𝐵𝑉))
10 simpl3 1194 . . . . . 6 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ 𝑈𝐵) ∧ 𝑇 = (𝑈 ↾ dom 𝑇)) → 𝑈𝐵)
11 simpr 488 . . . . . . 7 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ 𝑈𝐵) ∧ 𝑇 = (𝑈 ↾ dom 𝑇)) → 𝑇 = (𝑈 ↾ dom 𝑇))
1211eqcomd 2745 . . . . . 6 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ 𝑈𝐵) ∧ 𝑇 = (𝑈 ↾ dom 𝑇)) → (𝑈 ↾ dom 𝑇) = 𝑇)
13 noinfbnd1.1 . . . . . . 7 𝑇 = if(∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥, ((𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∪ {⟨dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥), 1o⟩}), (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))))
1413noinfbnd1lem4 33575 . . . . . 6 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) → (𝑈‘dom 𝑇) ≠ ∅)
158, 9, 10, 12, 14syl112anc 1375 . . . . 5 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ 𝑈𝐵) ∧ 𝑇 = (𝑈 ↾ dom 𝑇)) → (𝑈‘dom 𝑇) ≠ ∅)
1615neneqd 2940 . . . 4 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ 𝑈𝐵) ∧ 𝑇 = (𝑈 ↾ dom 𝑇)) → ¬ (𝑈‘dom 𝑇) = ∅)
1713noinfbnd1lem3 33574 . . . . . 6 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) → (𝑈‘dom 𝑇) ≠ 1o)
188, 9, 10, 12, 17syl112anc 1375 . . . . 5 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ 𝑈𝐵) ∧ 𝑇 = (𝑈 ↾ dom 𝑇)) → (𝑈‘dom 𝑇) ≠ 1o)
1918neneqd 2940 . . . 4 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ 𝑈𝐵) ∧ 𝑇 = (𝑈 ↾ dom 𝑇)) → ¬ (𝑈‘dom 𝑇) = 1o)
2013noinfbnd1lem5 33576 . . . . . 6 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) → (𝑈‘dom 𝑇) ≠ 2o)
218, 9, 10, 12, 20syl112anc 1375 . . . . 5 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ 𝑈𝐵) ∧ 𝑇 = (𝑈 ↾ dom 𝑇)) → (𝑈‘dom 𝑇) ≠ 2o)
2221neneqd 2940 . . . 4 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ 𝑈𝐵) ∧ 𝑇 = (𝑈 ↾ dom 𝑇)) → ¬ (𝑈‘dom 𝑇) = 2o)
2316, 19, 223jca 1129 . . 3 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ 𝑈𝐵) ∧ 𝑇 = (𝑈 ↾ dom 𝑇)) → (¬ (𝑈‘dom 𝑇) = ∅ ∧ ¬ (𝑈‘dom 𝑇) = 1o ∧ ¬ (𝑈‘dom 𝑇) = 2o))
247, 23mtand 816 . 2 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ 𝑈𝐵) → ¬ 𝑇 = (𝑈 ↾ dom 𝑇))
2513noinfbnd1lem1 33572 . 2 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ 𝑈𝐵) → ¬ (𝑈 ↾ dom 𝑇) <s 𝑇)
2613noinfno 33567 . . . 4 ((𝐵 No 𝐵𝑉) → 𝑇 No )
27263ad2ant2 1135 . . 3 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ 𝑈𝐵) → 𝑇 No )
28 nodmon 33499 . . . . 5 (𝑇 No → dom 𝑇 ∈ On)
2927, 28syl 17 . . . 4 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ 𝑈𝐵) → dom 𝑇 ∈ On)
30 noreson 33509 . . . 4 ((𝑈 No ∧ dom 𝑇 ∈ On) → (𝑈 ↾ dom 𝑇) ∈ No )
313, 29, 30syl2anc 587 . . 3 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ 𝑈𝐵) → (𝑈 ↾ dom 𝑇) ∈ No )
32 sltso 33525 . . . 4 <s Or No
33 solin 5468 . . . 4 (( <s Or No ∧ (𝑇 No ∧ (𝑈 ↾ dom 𝑇) ∈ No )) → (𝑇 <s (𝑈 ↾ dom 𝑇) ∨ 𝑇 = (𝑈 ↾ dom 𝑇) ∨ (𝑈 ↾ dom 𝑇) <s 𝑇))
3432, 33mpan 690 . . 3 ((𝑇 No ∧ (𝑈 ↾ dom 𝑇) ∈ No ) → (𝑇 <s (𝑈 ↾ dom 𝑇) ∨ 𝑇 = (𝑈 ↾ dom 𝑇) ∨ (𝑈 ↾ dom 𝑇) <s 𝑇))
3527, 31, 34syl2anc 587 . 2 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ 𝑈𝐵) → (𝑇 <s (𝑈 ↾ dom 𝑇) ∨ 𝑇 = (𝑈 ↾ dom 𝑇) ∨ (𝑈 ↾ dom 𝑇) <s 𝑇))
3624, 25, 35ecase23d 1474 1 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ 𝑈𝐵) → 𝑇 <s (𝑈 ↾ dom 𝑇))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 399  w3o 1087  w3a 1088   = wceq 1542  wcel 2114  {cab 2717  wne 2935  wral 3054  wrex 3055  cun 3842  wss 3844  c0 4212  ifcif 4415  {csn 4517  cop 4523   class class class wbr 5031  cmpt 5111   Or wor 5442  dom cdm 5526  cres 5528  Oncon0 6173  suc csuc 6175  cio 6296  cfv 6340  crio 7129  1oc1o 8127  2oc2o 8128   No csur 33489   <s cslt 33490
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2711  ax-rep 5155  ax-sep 5168  ax-nul 5175  ax-pr 5297  ax-un 7482
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2541  df-eu 2571  df-clab 2718  df-cleq 2731  df-clel 2812  df-nfc 2882  df-ne 2936  df-ral 3059  df-rex 3060  df-reu 3061  df-rmo 3062  df-rab 3063  df-v 3401  df-sbc 3682  df-csb 3792  df-dif 3847  df-un 3849  df-in 3851  df-ss 3861  df-pss 3863  df-nul 4213  df-if 4416  df-pw 4491  df-sn 4518  df-pr 4520  df-tp 4522  df-op 4524  df-uni 4798  df-int 4838  df-iun 4884  df-br 5032  df-opab 5094  df-mpt 5112  df-tr 5138  df-id 5430  df-eprel 5435  df-po 5443  df-so 5444  df-fr 5484  df-we 5486  df-xp 5532  df-rel 5533  df-cnv 5534  df-co 5535  df-dm 5536  df-rn 5537  df-res 5538  df-ima 5539  df-ord 6176  df-on 6177  df-suc 6179  df-iota 6298  df-fun 6342  df-fn 6343  df-f 6344  df-f1 6345  df-fo 6346  df-f1o 6347  df-fv 6348  df-riota 7130  df-1o 8134  df-2o 8135  df-no 33492  df-slt 33493  df-bday 33494
This theorem is referenced by:  noinfbnd1  33578
  Copyright terms: Public domain W3C validator