Proof of Theorem noinfbnd1lem6
Step | Hyp | Ref
| Expression |
1 | | simp2l 1197 |
. . . . . 6
⊢ ((¬
∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ 𝑉) ∧ 𝑈 ∈ 𝐵) → 𝐵 ⊆ No
) |
2 | | simp3 1136 |
. . . . . 6
⊢ ((¬
∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ 𝑉) ∧ 𝑈 ∈ 𝐵) → 𝑈 ∈ 𝐵) |
3 | 1, 2 | sseldd 3918 |
. . . . 5
⊢ ((¬
∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ 𝑉) ∧ 𝑈 ∈ 𝐵) → 𝑈 ∈ No
) |
4 | | nofv 33787 |
. . . . 5
⊢ (𝑈 ∈
No → ((𝑈‘dom 𝑇) = ∅ ∨ (𝑈‘dom 𝑇) = 1o ∨ (𝑈‘dom 𝑇) = 2o)) |
5 | 3, 4 | syl 17 |
. . . 4
⊢ ((¬
∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ 𝑉) ∧ 𝑈 ∈ 𝐵) → ((𝑈‘dom 𝑇) = ∅ ∨ (𝑈‘dom 𝑇) = 1o ∨ (𝑈‘dom 𝑇) = 2o)) |
6 | | 3oran 1107 |
. . . 4
⊢ (((𝑈‘dom 𝑇) = ∅ ∨ (𝑈‘dom 𝑇) = 1o ∨ (𝑈‘dom 𝑇) = 2o) ↔ ¬ (¬
(𝑈‘dom 𝑇) = ∅ ∧ ¬ (𝑈‘dom 𝑇) = 1o ∧ ¬ (𝑈‘dom 𝑇) = 2o)) |
7 | 5, 6 | sylib 217 |
. . 3
⊢ ((¬
∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ 𝑉) ∧ 𝑈 ∈ 𝐵) → ¬ (¬ (𝑈‘dom 𝑇) = ∅ ∧ ¬ (𝑈‘dom 𝑇) = 1o ∧ ¬ (𝑈‘dom 𝑇) = 2o)) |
8 | | simpl1 1189 |
. . . . . 6
⊢ (((¬
∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ 𝑉) ∧ 𝑈 ∈ 𝐵) ∧ 𝑇 = (𝑈 ↾ dom 𝑇)) → ¬ ∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥) |
9 | | simpl2 1190 |
. . . . . 6
⊢ (((¬
∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ 𝑉) ∧ 𝑈 ∈ 𝐵) ∧ 𝑇 = (𝑈 ↾ dom 𝑇)) → (𝐵 ⊆ No
∧ 𝐵 ∈ 𝑉)) |
10 | | simpl3 1191 |
. . . . . 6
⊢ (((¬
∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ 𝑉) ∧ 𝑈 ∈ 𝐵) ∧ 𝑇 = (𝑈 ↾ dom 𝑇)) → 𝑈 ∈ 𝐵) |
11 | | simpr 484 |
. . . . . . 7
⊢ (((¬
∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ 𝑉) ∧ 𝑈 ∈ 𝐵) ∧ 𝑇 = (𝑈 ↾ dom 𝑇)) → 𝑇 = (𝑈 ↾ dom 𝑇)) |
12 | 11 | eqcomd 2744 |
. . . . . 6
⊢ (((¬
∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ 𝑉) ∧ 𝑈 ∈ 𝐵) ∧ 𝑇 = (𝑈 ↾ dom 𝑇)) → (𝑈 ↾ dom 𝑇) = 𝑇) |
13 | | noinfbnd1.1 |
. . . . . . 7
⊢ 𝑇 = if(∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥, ((℩𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥) ∪ {〈dom (℩𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥), 1o〉}), (𝑔 ∈ {𝑦 ∣ ∃𝑢 ∈ 𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥∃𝑢 ∈ 𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑥)))) |
14 | 13 | noinfbnd1lem4 33856 |
. . . . . 6
⊢ ((¬
∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ 𝑉) ∧ (𝑈 ∈ 𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) → (𝑈‘dom 𝑇) ≠ ∅) |
15 | 8, 9, 10, 12, 14 | syl112anc 1372 |
. . . . 5
⊢ (((¬
∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ 𝑉) ∧ 𝑈 ∈ 𝐵) ∧ 𝑇 = (𝑈 ↾ dom 𝑇)) → (𝑈‘dom 𝑇) ≠ ∅) |
16 | 15 | neneqd 2947 |
. . . 4
⊢ (((¬
∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ 𝑉) ∧ 𝑈 ∈ 𝐵) ∧ 𝑇 = (𝑈 ↾ dom 𝑇)) → ¬ (𝑈‘dom 𝑇) = ∅) |
17 | 13 | noinfbnd1lem3 33855 |
. . . . . 6
⊢ ((¬
∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ 𝑉) ∧ (𝑈 ∈ 𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) → (𝑈‘dom 𝑇) ≠ 1o) |
18 | 8, 9, 10, 12, 17 | syl112anc 1372 |
. . . . 5
⊢ (((¬
∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ 𝑉) ∧ 𝑈 ∈ 𝐵) ∧ 𝑇 = (𝑈 ↾ dom 𝑇)) → (𝑈‘dom 𝑇) ≠ 1o) |
19 | 18 | neneqd 2947 |
. . . 4
⊢ (((¬
∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ 𝑉) ∧ 𝑈 ∈ 𝐵) ∧ 𝑇 = (𝑈 ↾ dom 𝑇)) → ¬ (𝑈‘dom 𝑇) = 1o) |
20 | 13 | noinfbnd1lem5 33857 |
. . . . . 6
⊢ ((¬
∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ 𝑉) ∧ (𝑈 ∈ 𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) → (𝑈‘dom 𝑇) ≠ 2o) |
21 | 8, 9, 10, 12, 20 | syl112anc 1372 |
. . . . 5
⊢ (((¬
∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ 𝑉) ∧ 𝑈 ∈ 𝐵) ∧ 𝑇 = (𝑈 ↾ dom 𝑇)) → (𝑈‘dom 𝑇) ≠ 2o) |
22 | 21 | neneqd 2947 |
. . . 4
⊢ (((¬
∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ 𝑉) ∧ 𝑈 ∈ 𝐵) ∧ 𝑇 = (𝑈 ↾ dom 𝑇)) → ¬ (𝑈‘dom 𝑇) = 2o) |
23 | 16, 19, 22 | 3jca 1126 |
. . 3
⊢ (((¬
∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ 𝑉) ∧ 𝑈 ∈ 𝐵) ∧ 𝑇 = (𝑈 ↾ dom 𝑇)) → (¬ (𝑈‘dom 𝑇) = ∅ ∧ ¬ (𝑈‘dom 𝑇) = 1o ∧ ¬ (𝑈‘dom 𝑇) = 2o)) |
24 | 7, 23 | mtand 812 |
. 2
⊢ ((¬
∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ 𝑉) ∧ 𝑈 ∈ 𝐵) → ¬ 𝑇 = (𝑈 ↾ dom 𝑇)) |
25 | 13 | noinfbnd1lem1 33853 |
. 2
⊢ ((¬
∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ 𝑉) ∧ 𝑈 ∈ 𝐵) → ¬ (𝑈 ↾ dom 𝑇) <s 𝑇) |
26 | 13 | noinfno 33848 |
. . . 4
⊢ ((𝐵 ⊆
No ∧ 𝐵 ∈
𝑉) → 𝑇 ∈ No
) |
27 | 26 | 3ad2ant2 1132 |
. . 3
⊢ ((¬
∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ 𝑉) ∧ 𝑈 ∈ 𝐵) → 𝑇 ∈ No
) |
28 | | nodmon 33780 |
. . . . 5
⊢ (𝑇 ∈
No → dom 𝑇
∈ On) |
29 | 27, 28 | syl 17 |
. . . 4
⊢ ((¬
∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ 𝑉) ∧ 𝑈 ∈ 𝐵) → dom 𝑇 ∈ On) |
30 | | noreson 33790 |
. . . 4
⊢ ((𝑈 ∈
No ∧ dom 𝑇
∈ On) → (𝑈
↾ dom 𝑇) ∈ No ) |
31 | 3, 29, 30 | syl2anc 583 |
. . 3
⊢ ((¬
∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ 𝑉) ∧ 𝑈 ∈ 𝐵) → (𝑈 ↾ dom 𝑇) ∈ No
) |
32 | | sltso 33806 |
. . . 4
⊢ <s Or
No |
33 | | solin 5519 |
. . . 4
⊢ (( <s
Or No ∧ (𝑇 ∈ No
∧ (𝑈 ↾ dom 𝑇) ∈
No )) → (𝑇
<s (𝑈 ↾ dom 𝑇) ∨ 𝑇 = (𝑈 ↾ dom 𝑇) ∨ (𝑈 ↾ dom 𝑇) <s 𝑇)) |
34 | 32, 33 | mpan 686 |
. . 3
⊢ ((𝑇 ∈
No ∧ (𝑈 ↾
dom 𝑇) ∈ No ) → (𝑇 <s (𝑈 ↾ dom 𝑇) ∨ 𝑇 = (𝑈 ↾ dom 𝑇) ∨ (𝑈 ↾ dom 𝑇) <s 𝑇)) |
35 | 27, 31, 34 | syl2anc 583 |
. 2
⊢ ((¬
∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ 𝑉) ∧ 𝑈 ∈ 𝐵) → (𝑇 <s (𝑈 ↾ dom 𝑇) ∨ 𝑇 = (𝑈 ↾ dom 𝑇) ∨ (𝑈 ↾ dom 𝑇) <s 𝑇)) |
36 | 24, 25, 35 | ecase23d 1471 |
1
⊢ ((¬
∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ 𝑉) ∧ 𝑈 ∈ 𝐵) → 𝑇 <s (𝑈 ↾ dom 𝑇)) |