MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  noinfbnd1lem6 Structured version   Visualization version   GIF version

Theorem noinfbnd1lem6 27648
Description: Lemma for noinfbnd1 27649. Establish a hard lower bound when there is no minimum. (Contributed by Scott Fenton, 9-Aug-2024.)
Hypothesis
Ref Expression
noinfbnd1.1 𝑇 = if(∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥, ((𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∪ {⟨dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥), 1o⟩}), (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))))
Assertion
Ref Expression
noinfbnd1lem6 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ 𝑈𝐵) → 𝑇 <s (𝑈 ↾ dom 𝑇))
Distinct variable groups:   𝐵,𝑔,𝑢,𝑣,𝑥,𝑦   𝑣,𝑈   𝑥,𝑢,𝑦   𝑔,𝑉   𝑥,𝑣,𝑦,𝑈
Allowed substitution hints:   𝑇(𝑥,𝑦,𝑣,𝑢,𝑔)   𝑈(𝑢,𝑔)   𝑉(𝑥,𝑦,𝑣,𝑢)

Proof of Theorem noinfbnd1lem6
StepHypRef Expression
1 simp2l 1197 . . . . . 6 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ 𝑈𝐵) → 𝐵 No )
2 simp3 1136 . . . . . 6 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ 𝑈𝐵) → 𝑈𝐵)
31, 2sseldd 3979 . . . . 5 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ 𝑈𝐵) → 𝑈 No )
4 nofv 27577 . . . . 5 (𝑈 No → ((𝑈‘dom 𝑇) = ∅ ∨ (𝑈‘dom 𝑇) = 1o ∨ (𝑈‘dom 𝑇) = 2o))
53, 4syl 17 . . . 4 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ 𝑈𝐵) → ((𝑈‘dom 𝑇) = ∅ ∨ (𝑈‘dom 𝑇) = 1o ∨ (𝑈‘dom 𝑇) = 2o))
6 3oran 1107 . . . 4 (((𝑈‘dom 𝑇) = ∅ ∨ (𝑈‘dom 𝑇) = 1o ∨ (𝑈‘dom 𝑇) = 2o) ↔ ¬ (¬ (𝑈‘dom 𝑇) = ∅ ∧ ¬ (𝑈‘dom 𝑇) = 1o ∧ ¬ (𝑈‘dom 𝑇) = 2o))
75, 6sylib 217 . . 3 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ 𝑈𝐵) → ¬ (¬ (𝑈‘dom 𝑇) = ∅ ∧ ¬ (𝑈‘dom 𝑇) = 1o ∧ ¬ (𝑈‘dom 𝑇) = 2o))
8 simpl1 1189 . . . . . 6 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ 𝑈𝐵) ∧ 𝑇 = (𝑈 ↾ dom 𝑇)) → ¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥)
9 simpl2 1190 . . . . . 6 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ 𝑈𝐵) ∧ 𝑇 = (𝑈 ↾ dom 𝑇)) → (𝐵 No 𝐵𝑉))
10 simpl3 1191 . . . . . 6 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ 𝑈𝐵) ∧ 𝑇 = (𝑈 ↾ dom 𝑇)) → 𝑈𝐵)
11 simpr 484 . . . . . . 7 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ 𝑈𝐵) ∧ 𝑇 = (𝑈 ↾ dom 𝑇)) → 𝑇 = (𝑈 ↾ dom 𝑇))
1211eqcomd 2733 . . . . . 6 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ 𝑈𝐵) ∧ 𝑇 = (𝑈 ↾ dom 𝑇)) → (𝑈 ↾ dom 𝑇) = 𝑇)
13 noinfbnd1.1 . . . . . . 7 𝑇 = if(∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥, ((𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∪ {⟨dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥), 1o⟩}), (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))))
1413noinfbnd1lem4 27646 . . . . . 6 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) → (𝑈‘dom 𝑇) ≠ ∅)
158, 9, 10, 12, 14syl112anc 1372 . . . . 5 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ 𝑈𝐵) ∧ 𝑇 = (𝑈 ↾ dom 𝑇)) → (𝑈‘dom 𝑇) ≠ ∅)
1615neneqd 2940 . . . 4 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ 𝑈𝐵) ∧ 𝑇 = (𝑈 ↾ dom 𝑇)) → ¬ (𝑈‘dom 𝑇) = ∅)
1713noinfbnd1lem3 27645 . . . . . 6 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) → (𝑈‘dom 𝑇) ≠ 1o)
188, 9, 10, 12, 17syl112anc 1372 . . . . 5 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ 𝑈𝐵) ∧ 𝑇 = (𝑈 ↾ dom 𝑇)) → (𝑈‘dom 𝑇) ≠ 1o)
1918neneqd 2940 . . . 4 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ 𝑈𝐵) ∧ 𝑇 = (𝑈 ↾ dom 𝑇)) → ¬ (𝑈‘dom 𝑇) = 1o)
2013noinfbnd1lem5 27647 . . . . . 6 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) → (𝑈‘dom 𝑇) ≠ 2o)
218, 9, 10, 12, 20syl112anc 1372 . . . . 5 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ 𝑈𝐵) ∧ 𝑇 = (𝑈 ↾ dom 𝑇)) → (𝑈‘dom 𝑇) ≠ 2o)
2221neneqd 2940 . . . 4 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ 𝑈𝐵) ∧ 𝑇 = (𝑈 ↾ dom 𝑇)) → ¬ (𝑈‘dom 𝑇) = 2o)
2316, 19, 223jca 1126 . . 3 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ 𝑈𝐵) ∧ 𝑇 = (𝑈 ↾ dom 𝑇)) → (¬ (𝑈‘dom 𝑇) = ∅ ∧ ¬ (𝑈‘dom 𝑇) = 1o ∧ ¬ (𝑈‘dom 𝑇) = 2o))
247, 23mtand 815 . 2 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ 𝑈𝐵) → ¬ 𝑇 = (𝑈 ↾ dom 𝑇))
2513noinfbnd1lem1 27643 . 2 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ 𝑈𝐵) → ¬ (𝑈 ↾ dom 𝑇) <s 𝑇)
2613noinfno 27638 . . . 4 ((𝐵 No 𝐵𝑉) → 𝑇 No )
27263ad2ant2 1132 . . 3 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ 𝑈𝐵) → 𝑇 No )
28 nodmon 27570 . . . . 5 (𝑇 No → dom 𝑇 ∈ On)
2927, 28syl 17 . . . 4 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ 𝑈𝐵) → dom 𝑇 ∈ On)
30 noreson 27580 . . . 4 ((𝑈 No ∧ dom 𝑇 ∈ On) → (𝑈 ↾ dom 𝑇) ∈ No )
313, 29, 30syl2anc 583 . . 3 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ 𝑈𝐵) → (𝑈 ↾ dom 𝑇) ∈ No )
32 sltso 27596 . . . 4 <s Or No
33 solin 5609 . . . 4 (( <s Or No ∧ (𝑇 No ∧ (𝑈 ↾ dom 𝑇) ∈ No )) → (𝑇 <s (𝑈 ↾ dom 𝑇) ∨ 𝑇 = (𝑈 ↾ dom 𝑇) ∨ (𝑈 ↾ dom 𝑇) <s 𝑇))
3432, 33mpan 689 . . 3 ((𝑇 No ∧ (𝑈 ↾ dom 𝑇) ∈ No ) → (𝑇 <s (𝑈 ↾ dom 𝑇) ∨ 𝑇 = (𝑈 ↾ dom 𝑇) ∨ (𝑈 ↾ dom 𝑇) <s 𝑇))
3527, 31, 34syl2anc 583 . 2 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ 𝑈𝐵) → (𝑇 <s (𝑈 ↾ dom 𝑇) ∨ 𝑇 = (𝑈 ↾ dom 𝑇) ∨ (𝑈 ↾ dom 𝑇) <s 𝑇))
3624, 25, 35ecase23d 1470 1 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ 𝑈𝐵) → 𝑇 <s (𝑈 ↾ dom 𝑇))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3o 1084  w3a 1085   = wceq 1534  wcel 2099  {cab 2704  wne 2935  wral 3056  wrex 3065  cun 3942  wss 3944  c0 4318  ifcif 4524  {csn 4624  cop 4630   class class class wbr 5142  cmpt 5225   Or wor 5583  dom cdm 5672  cres 5674  Oncon0 6363  suc csuc 6365  cio 6492  cfv 6542  crio 7369  1oc1o 8473  2oc2o 8474   No csur 27560   <s cslt 27561
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-rep 5279  ax-sep 5293  ax-nul 5300  ax-pr 5423  ax-un 7734
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2936  df-ral 3057  df-rex 3066  df-rmo 3371  df-reu 3372  df-rab 3428  df-v 3471  df-sbc 3775  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3963  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-tp 4629  df-op 4631  df-uni 4904  df-int 4945  df-iun 4993  df-br 5143  df-opab 5205  df-mpt 5226  df-tr 5260  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-ord 6366  df-on 6367  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7370  df-1o 8480  df-2o 8481  df-no 27563  df-slt 27564  df-bday 27565
This theorem is referenced by:  noinfbnd1  27649
  Copyright terms: Public domain W3C validator