MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  noinfbnd1lem6 Structured version   Visualization version   GIF version

Theorem noinfbnd1lem6 27220
Description: Lemma for noinfbnd1 27221. Establish a hard lower bound when there is no minimum. (Contributed by Scott Fenton, 9-Aug-2024.)
Hypothesis
Ref Expression
noinfbnd1.1 𝑇 = if(∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥, ((𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∪ {⟨dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥), 1o⟩}), (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))))
Assertion
Ref Expression
noinfbnd1lem6 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ 𝑈𝐵) → 𝑇 <s (𝑈 ↾ dom 𝑇))
Distinct variable groups:   𝐵,𝑔,𝑢,𝑣,𝑥,𝑦   𝑣,𝑈   𝑥,𝑢,𝑦   𝑔,𝑉   𝑥,𝑣,𝑦,𝑈
Allowed substitution hints:   𝑇(𝑥,𝑦,𝑣,𝑢,𝑔)   𝑈(𝑢,𝑔)   𝑉(𝑥,𝑦,𝑣,𝑢)

Proof of Theorem noinfbnd1lem6
StepHypRef Expression
1 simp2l 1199 . . . . . 6 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ 𝑈𝐵) → 𝐵 No )
2 simp3 1138 . . . . . 6 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ 𝑈𝐵) → 𝑈𝐵)
31, 2sseldd 3982 . . . . 5 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ 𝑈𝐵) → 𝑈 No )
4 nofv 27149 . . . . 5 (𝑈 No → ((𝑈‘dom 𝑇) = ∅ ∨ (𝑈‘dom 𝑇) = 1o ∨ (𝑈‘dom 𝑇) = 2o))
53, 4syl 17 . . . 4 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ 𝑈𝐵) → ((𝑈‘dom 𝑇) = ∅ ∨ (𝑈‘dom 𝑇) = 1o ∨ (𝑈‘dom 𝑇) = 2o))
6 3oran 1109 . . . 4 (((𝑈‘dom 𝑇) = ∅ ∨ (𝑈‘dom 𝑇) = 1o ∨ (𝑈‘dom 𝑇) = 2o) ↔ ¬ (¬ (𝑈‘dom 𝑇) = ∅ ∧ ¬ (𝑈‘dom 𝑇) = 1o ∧ ¬ (𝑈‘dom 𝑇) = 2o))
75, 6sylib 217 . . 3 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ 𝑈𝐵) → ¬ (¬ (𝑈‘dom 𝑇) = ∅ ∧ ¬ (𝑈‘dom 𝑇) = 1o ∧ ¬ (𝑈‘dom 𝑇) = 2o))
8 simpl1 1191 . . . . . 6 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ 𝑈𝐵) ∧ 𝑇 = (𝑈 ↾ dom 𝑇)) → ¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥)
9 simpl2 1192 . . . . . 6 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ 𝑈𝐵) ∧ 𝑇 = (𝑈 ↾ dom 𝑇)) → (𝐵 No 𝐵𝑉))
10 simpl3 1193 . . . . . 6 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ 𝑈𝐵) ∧ 𝑇 = (𝑈 ↾ dom 𝑇)) → 𝑈𝐵)
11 simpr 485 . . . . . . 7 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ 𝑈𝐵) ∧ 𝑇 = (𝑈 ↾ dom 𝑇)) → 𝑇 = (𝑈 ↾ dom 𝑇))
1211eqcomd 2738 . . . . . 6 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ 𝑈𝐵) ∧ 𝑇 = (𝑈 ↾ dom 𝑇)) → (𝑈 ↾ dom 𝑇) = 𝑇)
13 noinfbnd1.1 . . . . . . 7 𝑇 = if(∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥, ((𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∪ {⟨dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥), 1o⟩}), (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))))
1413noinfbnd1lem4 27218 . . . . . 6 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) → (𝑈‘dom 𝑇) ≠ ∅)
158, 9, 10, 12, 14syl112anc 1374 . . . . 5 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ 𝑈𝐵) ∧ 𝑇 = (𝑈 ↾ dom 𝑇)) → (𝑈‘dom 𝑇) ≠ ∅)
1615neneqd 2945 . . . 4 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ 𝑈𝐵) ∧ 𝑇 = (𝑈 ↾ dom 𝑇)) → ¬ (𝑈‘dom 𝑇) = ∅)
1713noinfbnd1lem3 27217 . . . . . 6 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) → (𝑈‘dom 𝑇) ≠ 1o)
188, 9, 10, 12, 17syl112anc 1374 . . . . 5 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ 𝑈𝐵) ∧ 𝑇 = (𝑈 ↾ dom 𝑇)) → (𝑈‘dom 𝑇) ≠ 1o)
1918neneqd 2945 . . . 4 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ 𝑈𝐵) ∧ 𝑇 = (𝑈 ↾ dom 𝑇)) → ¬ (𝑈‘dom 𝑇) = 1o)
2013noinfbnd1lem5 27219 . . . . . 6 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) → (𝑈‘dom 𝑇) ≠ 2o)
218, 9, 10, 12, 20syl112anc 1374 . . . . 5 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ 𝑈𝐵) ∧ 𝑇 = (𝑈 ↾ dom 𝑇)) → (𝑈‘dom 𝑇) ≠ 2o)
2221neneqd 2945 . . . 4 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ 𝑈𝐵) ∧ 𝑇 = (𝑈 ↾ dom 𝑇)) → ¬ (𝑈‘dom 𝑇) = 2o)
2316, 19, 223jca 1128 . . 3 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ 𝑈𝐵) ∧ 𝑇 = (𝑈 ↾ dom 𝑇)) → (¬ (𝑈‘dom 𝑇) = ∅ ∧ ¬ (𝑈‘dom 𝑇) = 1o ∧ ¬ (𝑈‘dom 𝑇) = 2o))
247, 23mtand 814 . 2 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ 𝑈𝐵) → ¬ 𝑇 = (𝑈 ↾ dom 𝑇))
2513noinfbnd1lem1 27215 . 2 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ 𝑈𝐵) → ¬ (𝑈 ↾ dom 𝑇) <s 𝑇)
2613noinfno 27210 . . . 4 ((𝐵 No 𝐵𝑉) → 𝑇 No )
27263ad2ant2 1134 . . 3 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ 𝑈𝐵) → 𝑇 No )
28 nodmon 27142 . . . . 5 (𝑇 No → dom 𝑇 ∈ On)
2927, 28syl 17 . . . 4 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ 𝑈𝐵) → dom 𝑇 ∈ On)
30 noreson 27152 . . . 4 ((𝑈 No ∧ dom 𝑇 ∈ On) → (𝑈 ↾ dom 𝑇) ∈ No )
313, 29, 30syl2anc 584 . . 3 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ 𝑈𝐵) → (𝑈 ↾ dom 𝑇) ∈ No )
32 sltso 27168 . . . 4 <s Or No
33 solin 5612 . . . 4 (( <s Or No ∧ (𝑇 No ∧ (𝑈 ↾ dom 𝑇) ∈ No )) → (𝑇 <s (𝑈 ↾ dom 𝑇) ∨ 𝑇 = (𝑈 ↾ dom 𝑇) ∨ (𝑈 ↾ dom 𝑇) <s 𝑇))
3432, 33mpan 688 . . 3 ((𝑇 No ∧ (𝑈 ↾ dom 𝑇) ∈ No ) → (𝑇 <s (𝑈 ↾ dom 𝑇) ∨ 𝑇 = (𝑈 ↾ dom 𝑇) ∨ (𝑈 ↾ dom 𝑇) <s 𝑇))
3527, 31, 34syl2anc 584 . 2 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ 𝑈𝐵) → (𝑇 <s (𝑈 ↾ dom 𝑇) ∨ 𝑇 = (𝑈 ↾ dom 𝑇) ∨ (𝑈 ↾ dom 𝑇) <s 𝑇))
3624, 25, 35ecase23d 1473 1 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ 𝑈𝐵) → 𝑇 <s (𝑈 ↾ dom 𝑇))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  w3o 1086  w3a 1087   = wceq 1541  wcel 2106  {cab 2709  wne 2940  wral 3061  wrex 3070  cun 3945  wss 3947  c0 4321  ifcif 4527  {csn 4627  cop 4633   class class class wbr 5147  cmpt 5230   Or wor 5586  dom cdm 5675  cres 5677  Oncon0 6361  suc csuc 6363  cio 6490  cfv 6540  crio 7360  1oc1o 8455  2oc2o 8456   No csur 27132   <s cslt 27133
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pr 5426  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-tp 4632  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-ord 6364  df-on 6365  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7361  df-1o 8462  df-2o 8463  df-no 27135  df-slt 27136  df-bday 27137
This theorem is referenced by:  noinfbnd1  27221
  Copyright terms: Public domain W3C validator