MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  noinfbnd1lem6 Structured version   Visualization version   GIF version

Theorem noinfbnd1lem6 27640
Description: Lemma for noinfbnd1 27641. Establish a hard lower bound when there is no minimum. (Contributed by Scott Fenton, 9-Aug-2024.)
Hypothesis
Ref Expression
noinfbnd1.1 𝑇 = if(∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥, ((𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∪ {⟨dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥), 1o⟩}), (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))))
Assertion
Ref Expression
noinfbnd1lem6 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ 𝑈𝐵) → 𝑇 <s (𝑈 ↾ dom 𝑇))
Distinct variable groups:   𝐵,𝑔,𝑢,𝑣,𝑥,𝑦   𝑣,𝑈   𝑔,𝑉   𝑥,𝑈,𝑦
Allowed substitution hints:   𝑇(𝑥,𝑦,𝑣,𝑢,𝑔)   𝑈(𝑢,𝑔)   𝑉(𝑥,𝑦,𝑣,𝑢)

Proof of Theorem noinfbnd1lem6
StepHypRef Expression
1 simp2l 1200 . . . . . 6 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ 𝑈𝐵) → 𝐵 No )
2 simp3 1138 . . . . . 6 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ 𝑈𝐵) → 𝑈𝐵)
31, 2sseldd 3947 . . . . 5 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ 𝑈𝐵) → 𝑈 No )
4 nofv 27569 . . . . 5 (𝑈 No → ((𝑈‘dom 𝑇) = ∅ ∨ (𝑈‘dom 𝑇) = 1o ∨ (𝑈‘dom 𝑇) = 2o))
53, 4syl 17 . . . 4 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ 𝑈𝐵) → ((𝑈‘dom 𝑇) = ∅ ∨ (𝑈‘dom 𝑇) = 1o ∨ (𝑈‘dom 𝑇) = 2o))
6 3oran 1108 . . . 4 (((𝑈‘dom 𝑇) = ∅ ∨ (𝑈‘dom 𝑇) = 1o ∨ (𝑈‘dom 𝑇) = 2o) ↔ ¬ (¬ (𝑈‘dom 𝑇) = ∅ ∧ ¬ (𝑈‘dom 𝑇) = 1o ∧ ¬ (𝑈‘dom 𝑇) = 2o))
75, 6sylib 218 . . 3 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ 𝑈𝐵) → ¬ (¬ (𝑈‘dom 𝑇) = ∅ ∧ ¬ (𝑈‘dom 𝑇) = 1o ∧ ¬ (𝑈‘dom 𝑇) = 2o))
8 simpl1 1192 . . . . . 6 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ 𝑈𝐵) ∧ 𝑇 = (𝑈 ↾ dom 𝑇)) → ¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥)
9 simpl2 1193 . . . . . 6 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ 𝑈𝐵) ∧ 𝑇 = (𝑈 ↾ dom 𝑇)) → (𝐵 No 𝐵𝑉))
10 simpl3 1194 . . . . . 6 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ 𝑈𝐵) ∧ 𝑇 = (𝑈 ↾ dom 𝑇)) → 𝑈𝐵)
11 simpr 484 . . . . . . 7 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ 𝑈𝐵) ∧ 𝑇 = (𝑈 ↾ dom 𝑇)) → 𝑇 = (𝑈 ↾ dom 𝑇))
1211eqcomd 2735 . . . . . 6 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ 𝑈𝐵) ∧ 𝑇 = (𝑈 ↾ dom 𝑇)) → (𝑈 ↾ dom 𝑇) = 𝑇)
13 noinfbnd1.1 . . . . . . 7 𝑇 = if(∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥, ((𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∪ {⟨dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥), 1o⟩}), (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))))
1413noinfbnd1lem4 27638 . . . . . 6 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) → (𝑈‘dom 𝑇) ≠ ∅)
158, 9, 10, 12, 14syl112anc 1376 . . . . 5 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ 𝑈𝐵) ∧ 𝑇 = (𝑈 ↾ dom 𝑇)) → (𝑈‘dom 𝑇) ≠ ∅)
1615neneqd 2930 . . . 4 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ 𝑈𝐵) ∧ 𝑇 = (𝑈 ↾ dom 𝑇)) → ¬ (𝑈‘dom 𝑇) = ∅)
1713noinfbnd1lem3 27637 . . . . . 6 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) → (𝑈‘dom 𝑇) ≠ 1o)
188, 9, 10, 12, 17syl112anc 1376 . . . . 5 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ 𝑈𝐵) ∧ 𝑇 = (𝑈 ↾ dom 𝑇)) → (𝑈‘dom 𝑇) ≠ 1o)
1918neneqd 2930 . . . 4 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ 𝑈𝐵) ∧ 𝑇 = (𝑈 ↾ dom 𝑇)) → ¬ (𝑈‘dom 𝑇) = 1o)
2013noinfbnd1lem5 27639 . . . . . 6 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) → (𝑈‘dom 𝑇) ≠ 2o)
218, 9, 10, 12, 20syl112anc 1376 . . . . 5 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ 𝑈𝐵) ∧ 𝑇 = (𝑈 ↾ dom 𝑇)) → (𝑈‘dom 𝑇) ≠ 2o)
2221neneqd 2930 . . . 4 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ 𝑈𝐵) ∧ 𝑇 = (𝑈 ↾ dom 𝑇)) → ¬ (𝑈‘dom 𝑇) = 2o)
2316, 19, 223jca 1128 . . 3 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ 𝑈𝐵) ∧ 𝑇 = (𝑈 ↾ dom 𝑇)) → (¬ (𝑈‘dom 𝑇) = ∅ ∧ ¬ (𝑈‘dom 𝑇) = 1o ∧ ¬ (𝑈‘dom 𝑇) = 2o))
247, 23mtand 815 . 2 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ 𝑈𝐵) → ¬ 𝑇 = (𝑈 ↾ dom 𝑇))
2513noinfbnd1lem1 27635 . 2 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ 𝑈𝐵) → ¬ (𝑈 ↾ dom 𝑇) <s 𝑇)
2613noinfno 27630 . . . 4 ((𝐵 No 𝐵𝑉) → 𝑇 No )
27263ad2ant2 1134 . . 3 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ 𝑈𝐵) → 𝑇 No )
28 nodmon 27562 . . . . 5 (𝑇 No → dom 𝑇 ∈ On)
2927, 28syl 17 . . . 4 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ 𝑈𝐵) → dom 𝑇 ∈ On)
30 noreson 27572 . . . 4 ((𝑈 No ∧ dom 𝑇 ∈ On) → (𝑈 ↾ dom 𝑇) ∈ No )
313, 29, 30syl2anc 584 . . 3 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ 𝑈𝐵) → (𝑈 ↾ dom 𝑇) ∈ No )
32 sltso 27588 . . . 4 <s Or No
33 solin 5573 . . . 4 (( <s Or No ∧ (𝑇 No ∧ (𝑈 ↾ dom 𝑇) ∈ No )) → (𝑇 <s (𝑈 ↾ dom 𝑇) ∨ 𝑇 = (𝑈 ↾ dom 𝑇) ∨ (𝑈 ↾ dom 𝑇) <s 𝑇))
3432, 33mpan 690 . . 3 ((𝑇 No ∧ (𝑈 ↾ dom 𝑇) ∈ No ) → (𝑇 <s (𝑈 ↾ dom 𝑇) ∨ 𝑇 = (𝑈 ↾ dom 𝑇) ∨ (𝑈 ↾ dom 𝑇) <s 𝑇))
3527, 31, 34syl2anc 584 . 2 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ 𝑈𝐵) → (𝑇 <s (𝑈 ↾ dom 𝑇) ∨ 𝑇 = (𝑈 ↾ dom 𝑇) ∨ (𝑈 ↾ dom 𝑇) <s 𝑇))
3624, 25, 35ecase23d 1475 1 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ 𝑈𝐵) → 𝑇 <s (𝑈 ↾ dom 𝑇))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3o 1085  w3a 1086   = wceq 1540  wcel 2109  {cab 2707  wne 2925  wral 3044  wrex 3053  cun 3912  wss 3914  c0 4296  ifcif 4488  {csn 4589  cop 4595   class class class wbr 5107  cmpt 5188   Or wor 5545  dom cdm 5638  cres 5640  Oncon0 6332  suc csuc 6334  cio 6462  cfv 6511  crio 7343  1oc1o 8427  2oc2o 8428   No csur 27551   <s cslt 27552
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-int 4911  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-ord 6335  df-on 6336  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-fo 6517  df-fv 6519  df-riota 7344  df-1o 8434  df-2o 8435  df-no 27554  df-slt 27555  df-bday 27556
This theorem is referenced by:  noinfbnd1  27641
  Copyright terms: Public domain W3C validator