MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nosupbnd1lem6 Structured version   Visualization version   GIF version

Theorem nosupbnd1lem6 27659
Description: Lemma for nosupbnd1 27660. Establish a hard upper bound when there is no maximum. (Contributed by Scott Fenton, 6-Dec-2021.)
Hypothesis
Ref Expression
nosupbnd1.1 𝑆 = if(∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦, ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2o⟩}), (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))))
Assertion
Ref Expression
nosupbnd1lem6 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ 𝑈𝐴) → (𝑈 ↾ dom 𝑆) <s 𝑆)
Distinct variable groups:   𝐴,𝑔,𝑢,𝑣,𝑥,𝑦   𝑢,𝑈,𝑣   𝑥,𝑢,𝑦,𝑣
Allowed substitution hints:   𝑆(𝑥,𝑦,𝑣,𝑢,𝑔)   𝑈(𝑥,𝑦,𝑔)

Proof of Theorem nosupbnd1lem6
StepHypRef Expression
1 simp2l 1196 . . . . . 6 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ 𝑈𝐴) → 𝐴 No )
2 simp3 1135 . . . . . 6 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ 𝑈𝐴) → 𝑈𝐴)
31, 2sseldd 3974 . . . . 5 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ 𝑈𝐴) → 𝑈 No )
4 nofv 27603 . . . . 5 (𝑈 No → ((𝑈‘dom 𝑆) = ∅ ∨ (𝑈‘dom 𝑆) = 1o ∨ (𝑈‘dom 𝑆) = 2o))
53, 4syl 17 . . . 4 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ 𝑈𝐴) → ((𝑈‘dom 𝑆) = ∅ ∨ (𝑈‘dom 𝑆) = 1o ∨ (𝑈‘dom 𝑆) = 2o))
6 3oran 1106 . . . 4 (((𝑈‘dom 𝑆) = ∅ ∨ (𝑈‘dom 𝑆) = 1o ∨ (𝑈‘dom 𝑆) = 2o) ↔ ¬ (¬ (𝑈‘dom 𝑆) = ∅ ∧ ¬ (𝑈‘dom 𝑆) = 1o ∧ ¬ (𝑈‘dom 𝑆) = 2o))
75, 6sylib 217 . . 3 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ 𝑈𝐴) → ¬ (¬ (𝑈‘dom 𝑆) = ∅ ∧ ¬ (𝑈‘dom 𝑆) = 1o ∧ ¬ (𝑈‘dom 𝑆) = 2o))
8 simpl1 1188 . . . . . 6 (((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ 𝑈𝐴) ∧ (𝑈 ↾ dom 𝑆) = 𝑆) → ¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)
9 simpl2 1189 . . . . . 6 (((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ 𝑈𝐴) ∧ (𝑈 ↾ dom 𝑆) = 𝑆) → (𝐴 No 𝐴 ∈ V))
10 simpl3 1190 . . . . . 6 (((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ 𝑈𝐴) ∧ (𝑈 ↾ dom 𝑆) = 𝑆) → 𝑈𝐴)
11 simpr 483 . . . . . 6 (((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ 𝑈𝐴) ∧ (𝑈 ↾ dom 𝑆) = 𝑆) → (𝑈 ↾ dom 𝑆) = 𝑆)
12 nosupbnd1.1 . . . . . . 7 𝑆 = if(∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦, ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2o⟩}), (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))))
1312nosupbnd1lem4 27657 . . . . . 6 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) → (𝑈‘dom 𝑆) ≠ ∅)
148, 9, 10, 11, 13syl112anc 1371 . . . . 5 (((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ 𝑈𝐴) ∧ (𝑈 ↾ dom 𝑆) = 𝑆) → (𝑈‘dom 𝑆) ≠ ∅)
1514neneqd 2935 . . . 4 (((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ 𝑈𝐴) ∧ (𝑈 ↾ dom 𝑆) = 𝑆) → ¬ (𝑈‘dom 𝑆) = ∅)
1612nosupbnd1lem5 27658 . . . . . 6 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) → (𝑈‘dom 𝑆) ≠ 1o)
178, 9, 10, 11, 16syl112anc 1371 . . . . 5 (((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ 𝑈𝐴) ∧ (𝑈 ↾ dom 𝑆) = 𝑆) → (𝑈‘dom 𝑆) ≠ 1o)
1817neneqd 2935 . . . 4 (((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ 𝑈𝐴) ∧ (𝑈 ↾ dom 𝑆) = 𝑆) → ¬ (𝑈‘dom 𝑆) = 1o)
1912nosupbnd1lem3 27656 . . . . . 6 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) → (𝑈‘dom 𝑆) ≠ 2o)
208, 9, 10, 11, 19syl112anc 1371 . . . . 5 (((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ 𝑈𝐴) ∧ (𝑈 ↾ dom 𝑆) = 𝑆) → (𝑈‘dom 𝑆) ≠ 2o)
2120neneqd 2935 . . . 4 (((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ 𝑈𝐴) ∧ (𝑈 ↾ dom 𝑆) = 𝑆) → ¬ (𝑈‘dom 𝑆) = 2o)
2215, 18, 213jca 1125 . . 3 (((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ 𝑈𝐴) ∧ (𝑈 ↾ dom 𝑆) = 𝑆) → (¬ (𝑈‘dom 𝑆) = ∅ ∧ ¬ (𝑈‘dom 𝑆) = 1o ∧ ¬ (𝑈‘dom 𝑆) = 2o))
237, 22mtand 814 . 2 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ 𝑈𝐴) → ¬ (𝑈 ↾ dom 𝑆) = 𝑆)
2412nosupbnd1lem1 27654 . 2 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ 𝑈𝐴) → ¬ 𝑆 <s (𝑈 ↾ dom 𝑆))
2512nosupno 27649 . . . . . 6 ((𝐴 No 𝐴 ∈ V) → 𝑆 No )
26253ad2ant2 1131 . . . . 5 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ 𝑈𝐴) → 𝑆 No )
27 nodmon 27596 . . . . 5 (𝑆 No → dom 𝑆 ∈ On)
2826, 27syl 17 . . . 4 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ 𝑈𝐴) → dom 𝑆 ∈ On)
29 noreson 27606 . . . 4 ((𝑈 No ∧ dom 𝑆 ∈ On) → (𝑈 ↾ dom 𝑆) ∈ No )
303, 28, 29syl2anc 582 . . 3 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ 𝑈𝐴) → (𝑈 ↾ dom 𝑆) ∈ No )
31 sltso 27622 . . . 4 <s Or No
32 solin 5610 . . . 4 (( <s Or No ∧ ((𝑈 ↾ dom 𝑆) ∈ No 𝑆 No )) → ((𝑈 ↾ dom 𝑆) <s 𝑆 ∨ (𝑈 ↾ dom 𝑆) = 𝑆𝑆 <s (𝑈 ↾ dom 𝑆)))
3331, 32mpan 688 . . 3 (((𝑈 ↾ dom 𝑆) ∈ No 𝑆 No ) → ((𝑈 ↾ dom 𝑆) <s 𝑆 ∨ (𝑈 ↾ dom 𝑆) = 𝑆𝑆 <s (𝑈 ↾ dom 𝑆)))
3430, 26, 33syl2anc 582 . 2 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ 𝑈𝐴) → ((𝑈 ↾ dom 𝑆) <s 𝑆 ∨ (𝑈 ↾ dom 𝑆) = 𝑆𝑆 <s (𝑈 ↾ dom 𝑆)))
3523, 24, 34ecase23d 1469 1 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ 𝑈𝐴) → (𝑈 ↾ dom 𝑆) <s 𝑆)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 394  w3o 1083  w3a 1084   = wceq 1533  wcel 2098  {cab 2702  wne 2930  wral 3051  wrex 3060  Vcvv 3463  cun 3939  wss 3941  c0 4319  ifcif 4525  {csn 4625  cop 4631   class class class wbr 5144  cmpt 5227   Or wor 5584  dom cdm 5673  cres 5675  Oncon0 6365  suc csuc 6367  cio 6493  cfv 6543  crio 7368  1oc1o 8473  2oc2o 8474   No csur 27586   <s cslt 27587
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5281  ax-sep 5295  ax-nul 5302  ax-pr 5424  ax-un 7735
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3887  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-pss 3961  df-nul 4320  df-if 4526  df-pw 4601  df-sn 4626  df-pr 4628  df-tp 4630  df-op 4632  df-uni 4905  df-int 4946  df-iun 4994  df-br 5145  df-opab 5207  df-mpt 5228  df-tr 5262  df-id 5571  df-eprel 5577  df-po 5585  df-so 5586  df-fr 5628  df-we 5630  df-xp 5679  df-rel 5680  df-cnv 5681  df-co 5682  df-dm 5683  df-rn 5684  df-res 5685  df-ima 5686  df-ord 6368  df-on 6369  df-suc 6371  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7369  df-1o 8480  df-2o 8481  df-no 27589  df-slt 27590  df-bday 27591
This theorem is referenced by:  nosupbnd1  27660
  Copyright terms: Public domain W3C validator