MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nosupbnd1lem6 Structured version   Visualization version   GIF version

Theorem nosupbnd1lem6 27776
Description: Lemma for nosupbnd1 27777. Establish a hard upper bound when there is no maximum. (Contributed by Scott Fenton, 6-Dec-2021.)
Hypothesis
Ref Expression
nosupbnd1.1 𝑆 = if(∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦, ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2o⟩}), (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))))
Assertion
Ref Expression
nosupbnd1lem6 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ 𝑈𝐴) → (𝑈 ↾ dom 𝑆) <s 𝑆)
Distinct variable groups:   𝐴,𝑔,𝑢,𝑣,𝑥,𝑦   𝑢,𝑈,𝑣   𝑥,𝑢,𝑦,𝑣
Allowed substitution hints:   𝑆(𝑥,𝑦,𝑣,𝑢,𝑔)   𝑈(𝑥,𝑦,𝑔)

Proof of Theorem nosupbnd1lem6
StepHypRef Expression
1 simp2l 1199 . . . . . 6 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ 𝑈𝐴) → 𝐴 No )
2 simp3 1138 . . . . . 6 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ 𝑈𝐴) → 𝑈𝐴)
31, 2sseldd 4009 . . . . 5 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ 𝑈𝐴) → 𝑈 No )
4 nofv 27720 . . . . 5 (𝑈 No → ((𝑈‘dom 𝑆) = ∅ ∨ (𝑈‘dom 𝑆) = 1o ∨ (𝑈‘dom 𝑆) = 2o))
53, 4syl 17 . . . 4 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ 𝑈𝐴) → ((𝑈‘dom 𝑆) = ∅ ∨ (𝑈‘dom 𝑆) = 1o ∨ (𝑈‘dom 𝑆) = 2o))
6 3oran 1109 . . . 4 (((𝑈‘dom 𝑆) = ∅ ∨ (𝑈‘dom 𝑆) = 1o ∨ (𝑈‘dom 𝑆) = 2o) ↔ ¬ (¬ (𝑈‘dom 𝑆) = ∅ ∧ ¬ (𝑈‘dom 𝑆) = 1o ∧ ¬ (𝑈‘dom 𝑆) = 2o))
75, 6sylib 218 . . 3 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ 𝑈𝐴) → ¬ (¬ (𝑈‘dom 𝑆) = ∅ ∧ ¬ (𝑈‘dom 𝑆) = 1o ∧ ¬ (𝑈‘dom 𝑆) = 2o))
8 simpl1 1191 . . . . . 6 (((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ 𝑈𝐴) ∧ (𝑈 ↾ dom 𝑆) = 𝑆) → ¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)
9 simpl2 1192 . . . . . 6 (((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ 𝑈𝐴) ∧ (𝑈 ↾ dom 𝑆) = 𝑆) → (𝐴 No 𝐴 ∈ V))
10 simpl3 1193 . . . . . 6 (((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ 𝑈𝐴) ∧ (𝑈 ↾ dom 𝑆) = 𝑆) → 𝑈𝐴)
11 simpr 484 . . . . . 6 (((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ 𝑈𝐴) ∧ (𝑈 ↾ dom 𝑆) = 𝑆) → (𝑈 ↾ dom 𝑆) = 𝑆)
12 nosupbnd1.1 . . . . . . 7 𝑆 = if(∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦, ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2o⟩}), (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))))
1312nosupbnd1lem4 27774 . . . . . 6 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) → (𝑈‘dom 𝑆) ≠ ∅)
148, 9, 10, 11, 13syl112anc 1374 . . . . 5 (((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ 𝑈𝐴) ∧ (𝑈 ↾ dom 𝑆) = 𝑆) → (𝑈‘dom 𝑆) ≠ ∅)
1514neneqd 2951 . . . 4 (((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ 𝑈𝐴) ∧ (𝑈 ↾ dom 𝑆) = 𝑆) → ¬ (𝑈‘dom 𝑆) = ∅)
1612nosupbnd1lem5 27775 . . . . . 6 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) → (𝑈‘dom 𝑆) ≠ 1o)
178, 9, 10, 11, 16syl112anc 1374 . . . . 5 (((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ 𝑈𝐴) ∧ (𝑈 ↾ dom 𝑆) = 𝑆) → (𝑈‘dom 𝑆) ≠ 1o)
1817neneqd 2951 . . . 4 (((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ 𝑈𝐴) ∧ (𝑈 ↾ dom 𝑆) = 𝑆) → ¬ (𝑈‘dom 𝑆) = 1o)
1912nosupbnd1lem3 27773 . . . . . 6 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) → (𝑈‘dom 𝑆) ≠ 2o)
208, 9, 10, 11, 19syl112anc 1374 . . . . 5 (((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ 𝑈𝐴) ∧ (𝑈 ↾ dom 𝑆) = 𝑆) → (𝑈‘dom 𝑆) ≠ 2o)
2120neneqd 2951 . . . 4 (((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ 𝑈𝐴) ∧ (𝑈 ↾ dom 𝑆) = 𝑆) → ¬ (𝑈‘dom 𝑆) = 2o)
2215, 18, 213jca 1128 . . 3 (((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ 𝑈𝐴) ∧ (𝑈 ↾ dom 𝑆) = 𝑆) → (¬ (𝑈‘dom 𝑆) = ∅ ∧ ¬ (𝑈‘dom 𝑆) = 1o ∧ ¬ (𝑈‘dom 𝑆) = 2o))
237, 22mtand 815 . 2 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ 𝑈𝐴) → ¬ (𝑈 ↾ dom 𝑆) = 𝑆)
2412nosupbnd1lem1 27771 . 2 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ 𝑈𝐴) → ¬ 𝑆 <s (𝑈 ↾ dom 𝑆))
2512nosupno 27766 . . . . . 6 ((𝐴 No 𝐴 ∈ V) → 𝑆 No )
26253ad2ant2 1134 . . . . 5 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ 𝑈𝐴) → 𝑆 No )
27 nodmon 27713 . . . . 5 (𝑆 No → dom 𝑆 ∈ On)
2826, 27syl 17 . . . 4 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ 𝑈𝐴) → dom 𝑆 ∈ On)
29 noreson 27723 . . . 4 ((𝑈 No ∧ dom 𝑆 ∈ On) → (𝑈 ↾ dom 𝑆) ∈ No )
303, 28, 29syl2anc 583 . . 3 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ 𝑈𝐴) → (𝑈 ↾ dom 𝑆) ∈ No )
31 sltso 27739 . . . 4 <s Or No
32 solin 5634 . . . 4 (( <s Or No ∧ ((𝑈 ↾ dom 𝑆) ∈ No 𝑆 No )) → ((𝑈 ↾ dom 𝑆) <s 𝑆 ∨ (𝑈 ↾ dom 𝑆) = 𝑆𝑆 <s (𝑈 ↾ dom 𝑆)))
3331, 32mpan 689 . . 3 (((𝑈 ↾ dom 𝑆) ∈ No 𝑆 No ) → ((𝑈 ↾ dom 𝑆) <s 𝑆 ∨ (𝑈 ↾ dom 𝑆) = 𝑆𝑆 <s (𝑈 ↾ dom 𝑆)))
3430, 26, 33syl2anc 583 . 2 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ 𝑈𝐴) → ((𝑈 ↾ dom 𝑆) <s 𝑆 ∨ (𝑈 ↾ dom 𝑆) = 𝑆𝑆 <s (𝑈 ↾ dom 𝑆)))
3523, 24, 34ecase23d 1473 1 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ 𝑈𝐴) → (𝑈 ↾ dom 𝑆) <s 𝑆)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3o 1086  w3a 1087   = wceq 1537  wcel 2108  {cab 2717  wne 2946  wral 3067  wrex 3076  Vcvv 3488  cun 3974  wss 3976  c0 4352  ifcif 4548  {csn 4648  cop 4654   class class class wbr 5166  cmpt 5249   Or wor 5606  dom cdm 5700  cres 5702  Oncon0 6395  suc csuc 6397  cio 6523  cfv 6573  crio 7403  1oc1o 8515  2oc2o 8516   No csur 27702   <s cslt 27703
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-ord 6398  df-on 6399  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-fo 6579  df-fv 6581  df-riota 7404  df-1o 8522  df-2o 8523  df-no 27705  df-slt 27706  df-bday 27707
This theorem is referenced by:  nosupbnd1  27777
  Copyright terms: Public domain W3C validator