Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nosupbnd1lem6 Structured version   Visualization version   GIF version

Theorem nosupbnd1lem6 33326
Description: Lemma for nosupbnd1 33327. Establish a hard upper bound when there is no maximum. (Contributed by Scott Fenton, 6-Dec-2021.)
Hypothesis
Ref Expression
nosupbnd1.1 𝑆 = if(∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦, ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2o⟩}), (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))))
Assertion
Ref Expression
nosupbnd1lem6 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ 𝑈𝐴) → (𝑈 ↾ dom 𝑆) <s 𝑆)
Distinct variable groups:   𝐴,𝑔,𝑢,𝑣,𝑥,𝑦   𝑢,𝑈,𝑣   𝑥,𝑢,𝑦,𝑣
Allowed substitution hints:   𝑆(𝑥,𝑦,𝑣,𝑢,𝑔)   𝑈(𝑥,𝑦,𝑔)

Proof of Theorem nosupbnd1lem6
StepHypRef Expression
1 simp2l 1196 . . . . . 6 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ 𝑈𝐴) → 𝐴 No )
2 simp3 1135 . . . . . 6 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ 𝑈𝐴) → 𝑈𝐴)
31, 2sseldd 3916 . . . . 5 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ 𝑈𝐴) → 𝑈 No )
4 nofv 33277 . . . . 5 (𝑈 No → ((𝑈‘dom 𝑆) = ∅ ∨ (𝑈‘dom 𝑆) = 1o ∨ (𝑈‘dom 𝑆) = 2o))
53, 4syl 17 . . . 4 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ 𝑈𝐴) → ((𝑈‘dom 𝑆) = ∅ ∨ (𝑈‘dom 𝑆) = 1o ∨ (𝑈‘dom 𝑆) = 2o))
6 3oran 1106 . . . 4 (((𝑈‘dom 𝑆) = ∅ ∨ (𝑈‘dom 𝑆) = 1o ∨ (𝑈‘dom 𝑆) = 2o) ↔ ¬ (¬ (𝑈‘dom 𝑆) = ∅ ∧ ¬ (𝑈‘dom 𝑆) = 1o ∧ ¬ (𝑈‘dom 𝑆) = 2o))
75, 6sylib 221 . . 3 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ 𝑈𝐴) → ¬ (¬ (𝑈‘dom 𝑆) = ∅ ∧ ¬ (𝑈‘dom 𝑆) = 1o ∧ ¬ (𝑈‘dom 𝑆) = 2o))
8 simpl1 1188 . . . . . 6 (((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ 𝑈𝐴) ∧ (𝑈 ↾ dom 𝑆) = 𝑆) → ¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)
9 simpl2 1189 . . . . . 6 (((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ 𝑈𝐴) ∧ (𝑈 ↾ dom 𝑆) = 𝑆) → (𝐴 No 𝐴 ∈ V))
10 simpl3 1190 . . . . . 6 (((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ 𝑈𝐴) ∧ (𝑈 ↾ dom 𝑆) = 𝑆) → 𝑈𝐴)
11 simpr 488 . . . . . 6 (((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ 𝑈𝐴) ∧ (𝑈 ↾ dom 𝑆) = 𝑆) → (𝑈 ↾ dom 𝑆) = 𝑆)
12 nosupbnd1.1 . . . . . . 7 𝑆 = if(∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦, ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2o⟩}), (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))))
1312nosupbnd1lem4 33324 . . . . . 6 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) → (𝑈‘dom 𝑆) ≠ ∅)
148, 9, 10, 11, 13syl112anc 1371 . . . . 5 (((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ 𝑈𝐴) ∧ (𝑈 ↾ dom 𝑆) = 𝑆) → (𝑈‘dom 𝑆) ≠ ∅)
1514neneqd 2992 . . . 4 (((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ 𝑈𝐴) ∧ (𝑈 ↾ dom 𝑆) = 𝑆) → ¬ (𝑈‘dom 𝑆) = ∅)
1612nosupbnd1lem5 33325 . . . . . 6 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) → (𝑈‘dom 𝑆) ≠ 1o)
178, 9, 10, 11, 16syl112anc 1371 . . . . 5 (((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ 𝑈𝐴) ∧ (𝑈 ↾ dom 𝑆) = 𝑆) → (𝑈‘dom 𝑆) ≠ 1o)
1817neneqd 2992 . . . 4 (((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ 𝑈𝐴) ∧ (𝑈 ↾ dom 𝑆) = 𝑆) → ¬ (𝑈‘dom 𝑆) = 1o)
1912nosupbnd1lem3 33323 . . . . . 6 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) → (𝑈‘dom 𝑆) ≠ 2o)
208, 9, 10, 11, 19syl112anc 1371 . . . . 5 (((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ 𝑈𝐴) ∧ (𝑈 ↾ dom 𝑆) = 𝑆) → (𝑈‘dom 𝑆) ≠ 2o)
2120neneqd 2992 . . . 4 (((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ 𝑈𝐴) ∧ (𝑈 ↾ dom 𝑆) = 𝑆) → ¬ (𝑈‘dom 𝑆) = 2o)
2215, 18, 213jca 1125 . . 3 (((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ 𝑈𝐴) ∧ (𝑈 ↾ dom 𝑆) = 𝑆) → (¬ (𝑈‘dom 𝑆) = ∅ ∧ ¬ (𝑈‘dom 𝑆) = 1o ∧ ¬ (𝑈‘dom 𝑆) = 2o))
237, 22mtand 815 . 2 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ 𝑈𝐴) → ¬ (𝑈 ↾ dom 𝑆) = 𝑆)
2412nosupbnd1lem1 33321 . 2 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ 𝑈𝐴) → ¬ 𝑆 <s (𝑈 ↾ dom 𝑆))
2512nosupno 33316 . . . . . 6 ((𝐴 No 𝐴 ∈ V) → 𝑆 No )
26253ad2ant2 1131 . . . . 5 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ 𝑈𝐴) → 𝑆 No )
27 nodmon 33270 . . . . 5 (𝑆 No → dom 𝑆 ∈ On)
2826, 27syl 17 . . . 4 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ 𝑈𝐴) → dom 𝑆 ∈ On)
29 noreson 33280 . . . 4 ((𝑈 No ∧ dom 𝑆 ∈ On) → (𝑈 ↾ dom 𝑆) ∈ No )
303, 28, 29syl2anc 587 . . 3 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ 𝑈𝐴) → (𝑈 ↾ dom 𝑆) ∈ No )
31 sltso 33294 . . . 4 <s Or No
32 solin 5462 . . . 4 (( <s Or No ∧ ((𝑈 ↾ dom 𝑆) ∈ No 𝑆 No )) → ((𝑈 ↾ dom 𝑆) <s 𝑆 ∨ (𝑈 ↾ dom 𝑆) = 𝑆𝑆 <s (𝑈 ↾ dom 𝑆)))
3331, 32mpan 689 . . 3 (((𝑈 ↾ dom 𝑆) ∈ No 𝑆 No ) → ((𝑈 ↾ dom 𝑆) <s 𝑆 ∨ (𝑈 ↾ dom 𝑆) = 𝑆𝑆 <s (𝑈 ↾ dom 𝑆)))
3430, 26, 33syl2anc 587 . 2 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ 𝑈𝐴) → ((𝑈 ↾ dom 𝑆) <s 𝑆 ∨ (𝑈 ↾ dom 𝑆) = 𝑆𝑆 <s (𝑈 ↾ dom 𝑆)))
3523, 24, 34ecase23d 1470 1 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ 𝑈𝐴) → (𝑈 ↾ dom 𝑆) <s 𝑆)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 399  w3o 1083  w3a 1084   = wceq 1538  wcel 2111  {cab 2776  wne 2987  wral 3106  wrex 3107  Vcvv 3441  cun 3879  wss 3881  c0 4243  ifcif 4425  {csn 4525  cop 4531   class class class wbr 5030  cmpt 5110   Or wor 5437  dom cdm 5519  cres 5521  Oncon0 6159  suc csuc 6161  cio 6281  cfv 6324  crio 7092  1oc1o 8078  2oc2o 8079   No csur 33260   <s cslt 33261
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-ord 6162  df-on 6163  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-1o 8085  df-2o 8086  df-no 33263  df-slt 33264  df-bday 33265
This theorem is referenced by:  nosupbnd1  33327
  Copyright terms: Public domain W3C validator