MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nolt02o Structured version   Visualization version   GIF version

Theorem nolt02o 27614
Description: Given 𝐴 less-than 𝐵, equal to 𝐵 up to 𝑋, and undefined at 𝑋, then 𝐵(𝑋) = 2o. (Contributed by Scott Fenton, 6-Dec-2021.)
Assertion
Ref Expression
nolt02o (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐴𝑋) = ∅) → (𝐵𝑋) = 2o)

Proof of Theorem nolt02o
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp11 1204 . . . . 5 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐴𝑋) = ∅) → 𝐴 No )
2 sltso 27595 . . . . . 6 <s Or No
3 sonr 5573 . . . . . 6 (( <s Or No 𝐴 No ) → ¬ 𝐴 <s 𝐴)
42, 3mpan 690 . . . . 5 (𝐴 No → ¬ 𝐴 <s 𝐴)
51, 4syl 17 . . . 4 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐴𝑋) = ∅) → ¬ 𝐴 <s 𝐴)
6 simp2r 1201 . . . . 5 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐴𝑋) = ∅) → 𝐴 <s 𝐵)
7 breq2 5114 . . . . 5 (𝐴 = 𝐵 → (𝐴 <s 𝐴𝐴 <s 𝐵))
86, 7syl5ibrcom 247 . . . 4 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐴𝑋) = ∅) → (𝐴 = 𝐵𝐴 <s 𝐴))
95, 8mtod 198 . . 3 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐴𝑋) = ∅) → ¬ 𝐴 = 𝐵)
10 simpl2l 1227 . . . 4 ((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐴𝑋) = ∅) ∧ (𝐵𝑋) = ∅) → (𝐴𝑋) = (𝐵𝑋))
11 simpl11 1249 . . . . . 6 ((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐴𝑋) = ∅) ∧ (𝐵𝑋) = ∅) → 𝐴 No )
12 nofun 27568 . . . . . 6 (𝐴 No → Fun 𝐴)
13 funrel 6536 . . . . . 6 (Fun 𝐴 → Rel 𝐴)
1411, 12, 133syl 18 . . . . 5 ((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐴𝑋) = ∅) ∧ (𝐵𝑋) = ∅) → Rel 𝐴)
15 simpl13 1251 . . . . . 6 ((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐴𝑋) = ∅) ∧ (𝐵𝑋) = ∅) → 𝑋 ∈ On)
16 simpl3 1194 . . . . . 6 ((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐴𝑋) = ∅) ∧ (𝐵𝑋) = ∅) → (𝐴𝑋) = ∅)
17 nolt02olem 27613 . . . . . 6 ((𝐴 No 𝑋 ∈ On ∧ (𝐴𝑋) = ∅) → dom 𝐴𝑋)
1811, 15, 16, 17syl3anc 1373 . . . . 5 ((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐴𝑋) = ∅) ∧ (𝐵𝑋) = ∅) → dom 𝐴𝑋)
19 relssres 5996 . . . . 5 ((Rel 𝐴 ∧ dom 𝐴𝑋) → (𝐴𝑋) = 𝐴)
2014, 18, 19syl2anc 584 . . . 4 ((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐴𝑋) = ∅) ∧ (𝐵𝑋) = ∅) → (𝐴𝑋) = 𝐴)
21 simpl12 1250 . . . . . 6 ((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐴𝑋) = ∅) ∧ (𝐵𝑋) = ∅) → 𝐵 No )
22 nofun 27568 . . . . . 6 (𝐵 No → Fun 𝐵)
23 funrel 6536 . . . . . 6 (Fun 𝐵 → Rel 𝐵)
2421, 22, 233syl 18 . . . . 5 ((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐴𝑋) = ∅) ∧ (𝐵𝑋) = ∅) → Rel 𝐵)
25 simpr 484 . . . . . 6 ((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐴𝑋) = ∅) ∧ (𝐵𝑋) = ∅) → (𝐵𝑋) = ∅)
26 nolt02olem 27613 . . . . . 6 ((𝐵 No 𝑋 ∈ On ∧ (𝐵𝑋) = ∅) → dom 𝐵𝑋)
2721, 15, 25, 26syl3anc 1373 . . . . 5 ((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐴𝑋) = ∅) ∧ (𝐵𝑋) = ∅) → dom 𝐵𝑋)
28 relssres 5996 . . . . 5 ((Rel 𝐵 ∧ dom 𝐵𝑋) → (𝐵𝑋) = 𝐵)
2924, 27, 28syl2anc 584 . . . 4 ((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐴𝑋) = ∅) ∧ (𝐵𝑋) = ∅) → (𝐵𝑋) = 𝐵)
3010, 20, 293eqtr3d 2773 . . 3 ((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐴𝑋) = ∅) ∧ (𝐵𝑋) = ∅) → 𝐴 = 𝐵)
319, 30mtand 815 . 2 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐴𝑋) = ∅) → ¬ (𝐵𝑋) = ∅)
32 simp12 1205 . . . . . 6 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐴𝑋) = ∅) → 𝐵 No )
33 sltval 27566 . . . . . 6 ((𝐴 No 𝐵 No ) → (𝐴 <s 𝐵 ↔ ∃𝑥 ∈ On (∀𝑦𝑥 (𝐴𝑦) = (𝐵𝑦) ∧ (𝐴𝑥){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐵𝑥))))
341, 32, 33syl2anc 584 . . . . 5 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐴𝑋) = ∅) → (𝐴 <s 𝐵 ↔ ∃𝑥 ∈ On (∀𝑦𝑥 (𝐴𝑦) = (𝐵𝑦) ∧ (𝐴𝑥){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐵𝑥))))
356, 34mpbid 232 . . . 4 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐴𝑋) = ∅) → ∃𝑥 ∈ On (∀𝑦𝑥 (𝐴𝑦) = (𝐵𝑦) ∧ (𝐴𝑥){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐵𝑥)))
36 df-an 396 . . . . . 6 ((∀𝑦𝑥 (𝐴𝑦) = (𝐵𝑦) ∧ (𝐴𝑥){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐵𝑥)) ↔ ¬ (∀𝑦𝑥 (𝐴𝑦) = (𝐵𝑦) → ¬ (𝐴𝑥){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐵𝑥)))
3736rexbii 3077 . . . . 5 (∃𝑥 ∈ On (∀𝑦𝑥 (𝐴𝑦) = (𝐵𝑦) ∧ (𝐴𝑥){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐵𝑥)) ↔ ∃𝑥 ∈ On ¬ (∀𝑦𝑥 (𝐴𝑦) = (𝐵𝑦) → ¬ (𝐴𝑥){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐵𝑥)))
38 rexnal 3083 . . . . 5 (∃𝑥 ∈ On ¬ (∀𝑦𝑥 (𝐴𝑦) = (𝐵𝑦) → ¬ (𝐴𝑥){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐵𝑥)) ↔ ¬ ∀𝑥 ∈ On (∀𝑦𝑥 (𝐴𝑦) = (𝐵𝑦) → ¬ (𝐴𝑥){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐵𝑥)))
3937, 38bitri 275 . . . 4 (∃𝑥 ∈ On (∀𝑦𝑥 (𝐴𝑦) = (𝐵𝑦) ∧ (𝐴𝑥){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐵𝑥)) ↔ ¬ ∀𝑥 ∈ On (∀𝑦𝑥 (𝐴𝑦) = (𝐵𝑦) → ¬ (𝐴𝑥){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐵𝑥)))
4035, 39sylib 218 . . 3 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐴𝑋) = ∅) → ¬ ∀𝑥 ∈ On (∀𝑦𝑥 (𝐴𝑦) = (𝐵𝑦) → ¬ (𝐴𝑥){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐵𝑥)))
41 1oex 8447 . . . . . . . . . . . 12 1o ∈ V
4241prid1 4729 . . . . . . . . . . 11 1o ∈ {1o, 2o}
4342nosgnn0i 27578 . . . . . . . . . 10 ∅ ≠ 1o
4443neii 2928 . . . . . . . . 9 ¬ ∅ = 1o
45 simpll3 1215 . . . . . . . . . 10 (((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐴𝑋) = ∅) ∧ (𝐵𝑋) = 1o) ∧ (𝑥 ∈ On ∧ ∀𝑦𝑥 (𝐴𝑦) = (𝐵𝑦))) → (𝐴𝑋) = ∅)
46 simplr 768 . . . . . . . . . 10 (((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐴𝑋) = ∅) ∧ (𝐵𝑋) = 1o) ∧ (𝑥 ∈ On ∧ ∀𝑦𝑥 (𝐴𝑦) = (𝐵𝑦))) → (𝐵𝑋) = 1o)
47 eqeq1 2734 . . . . . . . . . . . . 13 ((𝐴𝑋) = (𝐵𝑋) → ((𝐴𝑋) = ∅ ↔ (𝐵𝑋) = ∅))
4847anbi1d 631 . . . . . . . . . . . 12 ((𝐴𝑋) = (𝐵𝑋) → (((𝐴𝑋) = ∅ ∧ (𝐵𝑋) = 1o) ↔ ((𝐵𝑋) = ∅ ∧ (𝐵𝑋) = 1o)))
49 eqtr2 2751 . . . . . . . . . . . 12 (((𝐵𝑋) = ∅ ∧ (𝐵𝑋) = 1o) → ∅ = 1o)
5048, 49biimtrdi 253 . . . . . . . . . . 11 ((𝐴𝑋) = (𝐵𝑋) → (((𝐴𝑋) = ∅ ∧ (𝐵𝑋) = 1o) → ∅ = 1o))
5150com12 32 . . . . . . . . . 10 (((𝐴𝑋) = ∅ ∧ (𝐵𝑋) = 1o) → ((𝐴𝑋) = (𝐵𝑋) → ∅ = 1o))
5245, 46, 51syl2anc 584 . . . . . . . . 9 (((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐴𝑋) = ∅) ∧ (𝐵𝑋) = 1o) ∧ (𝑥 ∈ On ∧ ∀𝑦𝑥 (𝐴𝑦) = (𝐵𝑦))) → ((𝐴𝑋) = (𝐵𝑋) → ∅ = 1o))
5344, 52mtoi 199 . . . . . . . 8 (((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐴𝑋) = ∅) ∧ (𝐵𝑋) = 1o) ∧ (𝑥 ∈ On ∧ ∀𝑦𝑥 (𝐴𝑦) = (𝐵𝑦))) → ¬ (𝐴𝑋) = (𝐵𝑋))
54 simpr 484 . . . . . . . . 9 ((((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐴𝑋) = ∅) ∧ (𝐵𝑋) = 1o) ∧ (𝑥 ∈ On ∧ ∀𝑦𝑥 (𝐴𝑦) = (𝐵𝑦))) ∧ 𝑋𝑥) → 𝑋𝑥)
55 simplrr 777 . . . . . . . . 9 ((((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐴𝑋) = ∅) ∧ (𝐵𝑋) = 1o) ∧ (𝑥 ∈ On ∧ ∀𝑦𝑥 (𝐴𝑦) = (𝐵𝑦))) ∧ 𝑋𝑥) → ∀𝑦𝑥 (𝐴𝑦) = (𝐵𝑦))
56 fveq2 6861 . . . . . . . . . . 11 (𝑦 = 𝑋 → (𝐴𝑦) = (𝐴𝑋))
57 fveq2 6861 . . . . . . . . . . 11 (𝑦 = 𝑋 → (𝐵𝑦) = (𝐵𝑋))
5856, 57eqeq12d 2746 . . . . . . . . . 10 (𝑦 = 𝑋 → ((𝐴𝑦) = (𝐵𝑦) ↔ (𝐴𝑋) = (𝐵𝑋)))
5958rspcv 3587 . . . . . . . . 9 (𝑋𝑥 → (∀𝑦𝑥 (𝐴𝑦) = (𝐵𝑦) → (𝐴𝑋) = (𝐵𝑋)))
6054, 55, 59sylc 65 . . . . . . . 8 ((((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐴𝑋) = ∅) ∧ (𝐵𝑋) = 1o) ∧ (𝑥 ∈ On ∧ ∀𝑦𝑥 (𝐴𝑦) = (𝐵𝑦))) ∧ 𝑋𝑥) → (𝐴𝑋) = (𝐵𝑋))
6153, 60mtand 815 . . . . . . 7 (((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐴𝑋) = ∅) ∧ (𝐵𝑋) = 1o) ∧ (𝑥 ∈ On ∧ ∀𝑦𝑥 (𝐴𝑦) = (𝐵𝑦))) → ¬ 𝑋𝑥)
62 simprl 770 . . . . . . . 8 (((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐴𝑋) = ∅) ∧ (𝐵𝑋) = 1o) ∧ (𝑥 ∈ On ∧ ∀𝑦𝑥 (𝐴𝑦) = (𝐵𝑦))) → 𝑥 ∈ On)
63 simpl13 1251 . . . . . . . . 9 ((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐴𝑋) = ∅) ∧ (𝐵𝑋) = 1o) → 𝑋 ∈ On)
6463adantr 480 . . . . . . . 8 (((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐴𝑋) = ∅) ∧ (𝐵𝑋) = 1o) ∧ (𝑥 ∈ On ∧ ∀𝑦𝑥 (𝐴𝑦) = (𝐵𝑦))) → 𝑋 ∈ On)
65 ontri1 6369 . . . . . . . 8 ((𝑥 ∈ On ∧ 𝑋 ∈ On) → (𝑥𝑋 ↔ ¬ 𝑋𝑥))
6662, 64, 65syl2anc 584 . . . . . . 7 (((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐴𝑋) = ∅) ∧ (𝐵𝑋) = 1o) ∧ (𝑥 ∈ On ∧ ∀𝑦𝑥 (𝐴𝑦) = (𝐵𝑦))) → (𝑥𝑋 ↔ ¬ 𝑋𝑥))
6761, 66mpbird 257 . . . . . 6 (((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐴𝑋) = ∅) ∧ (𝐵𝑋) = 1o) ∧ (𝑥 ∈ On ∧ ∀𝑦𝑥 (𝐴𝑦) = (𝐵𝑦))) → 𝑥𝑋)
68 onsseleq 6376 . . . . . . . 8 ((𝑥 ∈ On ∧ 𝑋 ∈ On) → (𝑥𝑋 ↔ (𝑥𝑋𝑥 = 𝑋)))
6962, 64, 68syl2anc 584 . . . . . . 7 (((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐴𝑋) = ∅) ∧ (𝐵𝑋) = 1o) ∧ (𝑥 ∈ On ∧ ∀𝑦𝑥 (𝐴𝑦) = (𝐵𝑦))) → (𝑥𝑋 ↔ (𝑥𝑋𝑥 = 𝑋)))
70 eqtr2 2751 . . . . . . . . . . . . . 14 ((((𝐴𝑋)‘𝑥) = ∅ ∧ ((𝐴𝑋)‘𝑥) = 1o) → ∅ = 1o)
7170ancoms 458 . . . . . . . . . . . . 13 ((((𝐴𝑋)‘𝑥) = 1o ∧ ((𝐴𝑋)‘𝑥) = ∅) → ∅ = 1o)
7244, 71mto 197 . . . . . . . . . . . 12 ¬ (((𝐴𝑋)‘𝑥) = 1o ∧ ((𝐴𝑋)‘𝑥) = ∅)
73 df-1o 8437 . . . . . . . . . . . . . . . 16 1o = suc ∅
74 df-2o 8438 . . . . . . . . . . . . . . . 16 2o = suc 1o
7573, 74eqeq12i 2748 . . . . . . . . . . . . . . 15 (1o = 2o ↔ suc ∅ = suc 1o)
76 0elon 6390 . . . . . . . . . . . . . . . 16 ∅ ∈ On
77 1on 8449 . . . . . . . . . . . . . . . 16 1o ∈ On
78 suc11 6444 . . . . . . . . . . . . . . . 16 ((∅ ∈ On ∧ 1o ∈ On) → (suc ∅ = suc 1o ↔ ∅ = 1o))
7976, 77, 78mp2an 692 . . . . . . . . . . . . . . 15 (suc ∅ = suc 1o ↔ ∅ = 1o)
8075, 79bitri 275 . . . . . . . . . . . . . 14 (1o = 2o ↔ ∅ = 1o)
8143, 80nemtbir 3022 . . . . . . . . . . . . 13 ¬ 1o = 2o
82 eqtr2 2751 . . . . . . . . . . . . 13 ((((𝐴𝑋)‘𝑥) = 1o ∧ ((𝐴𝑋)‘𝑥) = 2o) → 1o = 2o)
8381, 82mto 197 . . . . . . . . . . . 12 ¬ (((𝐴𝑋)‘𝑥) = 1o ∧ ((𝐴𝑋)‘𝑥) = 2o)
84 2on 8450 . . . . . . . . . . . . . . . . 17 2o ∈ On
8584elexi 3473 . . . . . . . . . . . . . . . 16 2o ∈ V
8685prid2 4730 . . . . . . . . . . . . . . 15 2o ∈ {1o, 2o}
8786nosgnn0i 27578 . . . . . . . . . . . . . 14 ∅ ≠ 2o
8887neii 2928 . . . . . . . . . . . . 13 ¬ ∅ = 2o
89 eqtr2 2751 . . . . . . . . . . . . 13 ((((𝐴𝑋)‘𝑥) = ∅ ∧ ((𝐴𝑋)‘𝑥) = 2o) → ∅ = 2o)
9088, 89mto 197 . . . . . . . . . . . 12 ¬ (((𝐴𝑋)‘𝑥) = ∅ ∧ ((𝐴𝑋)‘𝑥) = 2o)
9172, 83, 903pm3.2i 1340 . . . . . . . . . . 11 (¬ (((𝐴𝑋)‘𝑥) = 1o ∧ ((𝐴𝑋)‘𝑥) = ∅) ∧ ¬ (((𝐴𝑋)‘𝑥) = 1o ∧ ((𝐴𝑋)‘𝑥) = 2o) ∧ ¬ (((𝐴𝑋)‘𝑥) = ∅ ∧ ((𝐴𝑋)‘𝑥) = 2o))
92 fvex 6874 . . . . . . . . . . . . . 14 ((𝐴𝑋)‘𝑥) ∈ V
9392, 92brtp 5486 . . . . . . . . . . . . 13 (((𝐴𝑋)‘𝑥){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} ((𝐴𝑋)‘𝑥) ↔ ((((𝐴𝑋)‘𝑥) = 1o ∧ ((𝐴𝑋)‘𝑥) = ∅) ∨ (((𝐴𝑋)‘𝑥) = 1o ∧ ((𝐴𝑋)‘𝑥) = 2o) ∨ (((𝐴𝑋)‘𝑥) = ∅ ∧ ((𝐴𝑋)‘𝑥) = 2o)))
94 3oran 1108 . . . . . . . . . . . . 13 (((((𝐴𝑋)‘𝑥) = 1o ∧ ((𝐴𝑋)‘𝑥) = ∅) ∨ (((𝐴𝑋)‘𝑥) = 1o ∧ ((𝐴𝑋)‘𝑥) = 2o) ∨ (((𝐴𝑋)‘𝑥) = ∅ ∧ ((𝐴𝑋)‘𝑥) = 2o)) ↔ ¬ (¬ (((𝐴𝑋)‘𝑥) = 1o ∧ ((𝐴𝑋)‘𝑥) = ∅) ∧ ¬ (((𝐴𝑋)‘𝑥) = 1o ∧ ((𝐴𝑋)‘𝑥) = 2o) ∧ ¬ (((𝐴𝑋)‘𝑥) = ∅ ∧ ((𝐴𝑋)‘𝑥) = 2o)))
9593, 94bitri 275 . . . . . . . . . . . 12 (((𝐴𝑋)‘𝑥){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} ((𝐴𝑋)‘𝑥) ↔ ¬ (¬ (((𝐴𝑋)‘𝑥) = 1o ∧ ((𝐴𝑋)‘𝑥) = ∅) ∧ ¬ (((𝐴𝑋)‘𝑥) = 1o ∧ ((𝐴𝑋)‘𝑥) = 2o) ∧ ¬ (((𝐴𝑋)‘𝑥) = ∅ ∧ ((𝐴𝑋)‘𝑥) = 2o)))
9695con2bii 357 . . . . . . . . . . 11 ((¬ (((𝐴𝑋)‘𝑥) = 1o ∧ ((𝐴𝑋)‘𝑥) = ∅) ∧ ¬ (((𝐴𝑋)‘𝑥) = 1o ∧ ((𝐴𝑋)‘𝑥) = 2o) ∧ ¬ (((𝐴𝑋)‘𝑥) = ∅ ∧ ((𝐴𝑋)‘𝑥) = 2o)) ↔ ¬ ((𝐴𝑋)‘𝑥){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} ((𝐴𝑋)‘𝑥))
9791, 96mpbi 230 . . . . . . . . . 10 ¬ ((𝐴𝑋)‘𝑥){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} ((𝐴𝑋)‘𝑥)
98 simpl2l 1227 . . . . . . . . . . . . 13 ((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐴𝑋) = ∅) ∧ (𝐵𝑋) = 1o) → (𝐴𝑋) = (𝐵𝑋))
9998adantr 480 . . . . . . . . . . . 12 (((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐴𝑋) = ∅) ∧ (𝐵𝑋) = 1o) ∧ (𝑥 ∈ On ∧ ∀𝑦𝑥 (𝐴𝑦) = (𝐵𝑦))) → (𝐴𝑋) = (𝐵𝑋))
10099fveq1d 6863 . . . . . . . . . . 11 (((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐴𝑋) = ∅) ∧ (𝐵𝑋) = 1o) ∧ (𝑥 ∈ On ∧ ∀𝑦𝑥 (𝐴𝑦) = (𝐵𝑦))) → ((𝐴𝑋)‘𝑥) = ((𝐵𝑋)‘𝑥))
101100breq2d 5122 . . . . . . . . . 10 (((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐴𝑋) = ∅) ∧ (𝐵𝑋) = 1o) ∧ (𝑥 ∈ On ∧ ∀𝑦𝑥 (𝐴𝑦) = (𝐵𝑦))) → (((𝐴𝑋)‘𝑥){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} ((𝐴𝑋)‘𝑥) ↔ ((𝐴𝑋)‘𝑥){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} ((𝐵𝑋)‘𝑥)))
10297, 101mtbii 326 . . . . . . . . 9 (((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐴𝑋) = ∅) ∧ (𝐵𝑋) = 1o) ∧ (𝑥 ∈ On ∧ ∀𝑦𝑥 (𝐴𝑦) = (𝐵𝑦))) → ¬ ((𝐴𝑋)‘𝑥){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} ((𝐵𝑋)‘𝑥))
103 fvres 6880 . . . . . . . . . . 11 (𝑥𝑋 → ((𝐴𝑋)‘𝑥) = (𝐴𝑥))
104 fvres 6880 . . . . . . . . . . 11 (𝑥𝑋 → ((𝐵𝑋)‘𝑥) = (𝐵𝑥))
105103, 104breq12d 5123 . . . . . . . . . 10 (𝑥𝑋 → (((𝐴𝑋)‘𝑥){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} ((𝐵𝑋)‘𝑥) ↔ (𝐴𝑥){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐵𝑥)))
106105notbid 318 . . . . . . . . 9 (𝑥𝑋 → (¬ ((𝐴𝑋)‘𝑥){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} ((𝐵𝑋)‘𝑥) ↔ ¬ (𝐴𝑥){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐵𝑥)))
107102, 106syl5ibcom 245 . . . . . . . 8 (((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐴𝑋) = ∅) ∧ (𝐵𝑋) = 1o) ∧ (𝑥 ∈ On ∧ ∀𝑦𝑥 (𝐴𝑦) = (𝐵𝑦))) → (𝑥𝑋 → ¬ (𝐴𝑥){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐵𝑥)))
10844intnanr 487 . . . . . . . . . . . 12 ¬ (∅ = 1o ∧ 1o = ∅)
10944intnanr 487 . . . . . . . . . . . 12 ¬ (∅ = 1o ∧ 1o = 2o)
11081intnan 486 . . . . . . . . . . . 12 ¬ (∅ = ∅ ∧ 1o = 2o)
111108, 109, 1103pm3.2i 1340 . . . . . . . . . . 11 (¬ (∅ = 1o ∧ 1o = ∅) ∧ ¬ (∅ = 1o ∧ 1o = 2o) ∧ ¬ (∅ = ∅ ∧ 1o = 2o))
112 0ex 5265 . . . . . . . . . . . . . 14 ∅ ∈ V
113112, 41brtp 5486 . . . . . . . . . . . . 13 (∅{⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩}1o ↔ ((∅ = 1o ∧ 1o = ∅) ∨ (∅ = 1o ∧ 1o = 2o) ∨ (∅ = ∅ ∧ 1o = 2o)))
114 3oran 1108 . . . . . . . . . . . . 13 (((∅ = 1o ∧ 1o = ∅) ∨ (∅ = 1o ∧ 1o = 2o) ∨ (∅ = ∅ ∧ 1o = 2o)) ↔ ¬ (¬ (∅ = 1o ∧ 1o = ∅) ∧ ¬ (∅ = 1o ∧ 1o = 2o) ∧ ¬ (∅ = ∅ ∧ 1o = 2o)))
115113, 114bitri 275 . . . . . . . . . . . 12 (∅{⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩}1o ↔ ¬ (¬ (∅ = 1o ∧ 1o = ∅) ∧ ¬ (∅ = 1o ∧ 1o = 2o) ∧ ¬ (∅ = ∅ ∧ 1o = 2o)))
116115con2bii 357 . . . . . . . . . . 11 ((¬ (∅ = 1o ∧ 1o = ∅) ∧ ¬ (∅ = 1o ∧ 1o = 2o) ∧ ¬ (∅ = ∅ ∧ 1o = 2o)) ↔ ¬ ∅{⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩}1o)
117111, 116mpbi 230 . . . . . . . . . 10 ¬ ∅{⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩}1o
11845, 46breq12d 5123 . . . . . . . . . 10 (((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐴𝑋) = ∅) ∧ (𝐵𝑋) = 1o) ∧ (𝑥 ∈ On ∧ ∀𝑦𝑥 (𝐴𝑦) = (𝐵𝑦))) → ((𝐴𝑋){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐵𝑋) ↔ ∅{⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩}1o))
119117, 118mtbiri 327 . . . . . . . . 9 (((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐴𝑋) = ∅) ∧ (𝐵𝑋) = 1o) ∧ (𝑥 ∈ On ∧ ∀𝑦𝑥 (𝐴𝑦) = (𝐵𝑦))) → ¬ (𝐴𝑋){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐵𝑋))
120 fveq2 6861 . . . . . . . . . . 11 (𝑥 = 𝑋 → (𝐴𝑥) = (𝐴𝑋))
121 fveq2 6861 . . . . . . . . . . 11 (𝑥 = 𝑋 → (𝐵𝑥) = (𝐵𝑋))
122120, 121breq12d 5123 . . . . . . . . . 10 (𝑥 = 𝑋 → ((𝐴𝑥){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐵𝑥) ↔ (𝐴𝑋){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐵𝑋)))
123122notbid 318 . . . . . . . . 9 (𝑥 = 𝑋 → (¬ (𝐴𝑥){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐵𝑥) ↔ ¬ (𝐴𝑋){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐵𝑋)))
124119, 123syl5ibrcom 247 . . . . . . . 8 (((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐴𝑋) = ∅) ∧ (𝐵𝑋) = 1o) ∧ (𝑥 ∈ On ∧ ∀𝑦𝑥 (𝐴𝑦) = (𝐵𝑦))) → (𝑥 = 𝑋 → ¬ (𝐴𝑥){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐵𝑥)))
125107, 124jaod 859 . . . . . . 7 (((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐴𝑋) = ∅) ∧ (𝐵𝑋) = 1o) ∧ (𝑥 ∈ On ∧ ∀𝑦𝑥 (𝐴𝑦) = (𝐵𝑦))) → ((𝑥𝑋𝑥 = 𝑋) → ¬ (𝐴𝑥){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐵𝑥)))
12669, 125sylbid 240 . . . . . 6 (((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐴𝑋) = ∅) ∧ (𝐵𝑋) = 1o) ∧ (𝑥 ∈ On ∧ ∀𝑦𝑥 (𝐴𝑦) = (𝐵𝑦))) → (𝑥𝑋 → ¬ (𝐴𝑥){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐵𝑥)))
12767, 126mpd 15 . . . . 5 (((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐴𝑋) = ∅) ∧ (𝐵𝑋) = 1o) ∧ (𝑥 ∈ On ∧ ∀𝑦𝑥 (𝐴𝑦) = (𝐵𝑦))) → ¬ (𝐴𝑥){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐵𝑥))
128127expr 456 . . . 4 (((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐴𝑋) = ∅) ∧ (𝐵𝑋) = 1o) ∧ 𝑥 ∈ On) → (∀𝑦𝑥 (𝐴𝑦) = (𝐵𝑦) → ¬ (𝐴𝑥){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐵𝑥)))
129128ralrimiva 3126 . . 3 ((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐴𝑋) = ∅) ∧ (𝐵𝑋) = 1o) → ∀𝑥 ∈ On (∀𝑦𝑥 (𝐴𝑦) = (𝐵𝑦) → ¬ (𝐴𝑥){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐵𝑥)))
13040, 129mtand 815 . 2 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐴𝑋) = ∅) → ¬ (𝐵𝑋) = 1o)
131 nofv 27576 . . . 4 (𝐵 No → ((𝐵𝑋) = ∅ ∨ (𝐵𝑋) = 1o ∨ (𝐵𝑋) = 2o))
13232, 131syl 17 . . 3 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐴𝑋) = ∅) → ((𝐵𝑋) = ∅ ∨ (𝐵𝑋) = 1o ∨ (𝐵𝑋) = 2o))
133 3orrot 1091 . . . 4 (((𝐵𝑋) = ∅ ∨ (𝐵𝑋) = 1o ∨ (𝐵𝑋) = 2o) ↔ ((𝐵𝑋) = 1o ∨ (𝐵𝑋) = 2o ∨ (𝐵𝑋) = ∅))
134 3orrot 1091 . . . 4 (((𝐵𝑋) = 1o ∨ (𝐵𝑋) = 2o ∨ (𝐵𝑋) = ∅) ↔ ((𝐵𝑋) = 2o ∨ (𝐵𝑋) = ∅ ∨ (𝐵𝑋) = 1o))
135133, 134bitri 275 . . 3 (((𝐵𝑋) = ∅ ∨ (𝐵𝑋) = 1o ∨ (𝐵𝑋) = 2o) ↔ ((𝐵𝑋) = 2o ∨ (𝐵𝑋) = ∅ ∨ (𝐵𝑋) = 1o))
136132, 135sylib 218 . 2 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐴𝑋) = ∅) → ((𝐵𝑋) = 2o ∨ (𝐵𝑋) = ∅ ∨ (𝐵𝑋) = 1o))
13731, 130, 136ecase23d 1475 1 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐴𝑋) = ∅) → (𝐵𝑋) = 2o)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3o 1085  w3a 1086   = wceq 1540  wcel 2109  wral 3045  wrex 3054  wss 3917  c0 4299  {ctp 4596  cop 4598   class class class wbr 5110   Or wor 5548  dom cdm 5641  cres 5643  Rel wrel 5646  Oncon0 6335  suc csuc 6337  Fun wfun 6508  cfv 6514  1oc1o 8430  2oc2o 8431   No csur 27558   <s cslt 27559
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-ord 6338  df-on 6339  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-fv 6522  df-1o 8437  df-2o 8438  df-no 27561  df-slt 27562
This theorem is referenced by:  nosupbnd1lem4  27630
  Copyright terms: Public domain W3C validator