Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nolt02o Structured version   Visualization version   GIF version

Theorem nolt02o 33898
Description: Given 𝐴 less than 𝐵, equal to 𝐵 up to 𝑋, and undefined at 𝑋, then 𝐵(𝑋) = 2o. (Contributed by Scott Fenton, 6-Dec-2021.)
Assertion
Ref Expression
nolt02o (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐴𝑋) = ∅) → (𝐵𝑋) = 2o)

Proof of Theorem nolt02o
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp11 1202 . . . . 5 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐴𝑋) = ∅) → 𝐴 No )
2 sltso 33879 . . . . . 6 <s Or No
3 sonr 5526 . . . . . 6 (( <s Or No 𝐴 No ) → ¬ 𝐴 <s 𝐴)
42, 3mpan 687 . . . . 5 (𝐴 No → ¬ 𝐴 <s 𝐴)
51, 4syl 17 . . . 4 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐴𝑋) = ∅) → ¬ 𝐴 <s 𝐴)
6 simp2r 1199 . . . . 5 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐴𝑋) = ∅) → 𝐴 <s 𝐵)
7 breq2 5078 . . . . 5 (𝐴 = 𝐵 → (𝐴 <s 𝐴𝐴 <s 𝐵))
86, 7syl5ibrcom 246 . . . 4 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐴𝑋) = ∅) → (𝐴 = 𝐵𝐴 <s 𝐴))
95, 8mtod 197 . . 3 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐴𝑋) = ∅) → ¬ 𝐴 = 𝐵)
10 simpl2l 1225 . . . 4 ((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐴𝑋) = ∅) ∧ (𝐵𝑋) = ∅) → (𝐴𝑋) = (𝐵𝑋))
11 simpl11 1247 . . . . . 6 ((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐴𝑋) = ∅) ∧ (𝐵𝑋) = ∅) → 𝐴 No )
12 nofun 33852 . . . . . 6 (𝐴 No → Fun 𝐴)
13 funrel 6451 . . . . . 6 (Fun 𝐴 → Rel 𝐴)
1411, 12, 133syl 18 . . . . 5 ((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐴𝑋) = ∅) ∧ (𝐵𝑋) = ∅) → Rel 𝐴)
15 simpl13 1249 . . . . . 6 ((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐴𝑋) = ∅) ∧ (𝐵𝑋) = ∅) → 𝑋 ∈ On)
16 simpl3 1192 . . . . . 6 ((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐴𝑋) = ∅) ∧ (𝐵𝑋) = ∅) → (𝐴𝑋) = ∅)
17 nolt02olem 33897 . . . . . 6 ((𝐴 No 𝑋 ∈ On ∧ (𝐴𝑋) = ∅) → dom 𝐴𝑋)
1811, 15, 16, 17syl3anc 1370 . . . . 5 ((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐴𝑋) = ∅) ∧ (𝐵𝑋) = ∅) → dom 𝐴𝑋)
19 relssres 5932 . . . . 5 ((Rel 𝐴 ∧ dom 𝐴𝑋) → (𝐴𝑋) = 𝐴)
2014, 18, 19syl2anc 584 . . . 4 ((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐴𝑋) = ∅) ∧ (𝐵𝑋) = ∅) → (𝐴𝑋) = 𝐴)
21 simpl12 1248 . . . . . 6 ((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐴𝑋) = ∅) ∧ (𝐵𝑋) = ∅) → 𝐵 No )
22 nofun 33852 . . . . . 6 (𝐵 No → Fun 𝐵)
23 funrel 6451 . . . . . 6 (Fun 𝐵 → Rel 𝐵)
2421, 22, 233syl 18 . . . . 5 ((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐴𝑋) = ∅) ∧ (𝐵𝑋) = ∅) → Rel 𝐵)
25 simpr 485 . . . . . 6 ((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐴𝑋) = ∅) ∧ (𝐵𝑋) = ∅) → (𝐵𝑋) = ∅)
26 nolt02olem 33897 . . . . . 6 ((𝐵 No 𝑋 ∈ On ∧ (𝐵𝑋) = ∅) → dom 𝐵𝑋)
2721, 15, 25, 26syl3anc 1370 . . . . 5 ((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐴𝑋) = ∅) ∧ (𝐵𝑋) = ∅) → dom 𝐵𝑋)
28 relssres 5932 . . . . 5 ((Rel 𝐵 ∧ dom 𝐵𝑋) → (𝐵𝑋) = 𝐵)
2924, 27, 28syl2anc 584 . . . 4 ((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐴𝑋) = ∅) ∧ (𝐵𝑋) = ∅) → (𝐵𝑋) = 𝐵)
3010, 20, 293eqtr3d 2786 . . 3 ((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐴𝑋) = ∅) ∧ (𝐵𝑋) = ∅) → 𝐴 = 𝐵)
319, 30mtand 813 . 2 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐴𝑋) = ∅) → ¬ (𝐵𝑋) = ∅)
32 simp12 1203 . . . . . 6 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐴𝑋) = ∅) → 𝐵 No )
33 sltval 33850 . . . . . 6 ((𝐴 No 𝐵 No ) → (𝐴 <s 𝐵 ↔ ∃𝑥 ∈ On (∀𝑦𝑥 (𝐴𝑦) = (𝐵𝑦) ∧ (𝐴𝑥){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐵𝑥))))
341, 32, 33syl2anc 584 . . . . 5 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐴𝑋) = ∅) → (𝐴 <s 𝐵 ↔ ∃𝑥 ∈ On (∀𝑦𝑥 (𝐴𝑦) = (𝐵𝑦) ∧ (𝐴𝑥){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐵𝑥))))
356, 34mpbid 231 . . . 4 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐴𝑋) = ∅) → ∃𝑥 ∈ On (∀𝑦𝑥 (𝐴𝑦) = (𝐵𝑦) ∧ (𝐴𝑥){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐵𝑥)))
36 df-an 397 . . . . . 6 ((∀𝑦𝑥 (𝐴𝑦) = (𝐵𝑦) ∧ (𝐴𝑥){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐵𝑥)) ↔ ¬ (∀𝑦𝑥 (𝐴𝑦) = (𝐵𝑦) → ¬ (𝐴𝑥){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐵𝑥)))
3736rexbii 3181 . . . . 5 (∃𝑥 ∈ On (∀𝑦𝑥 (𝐴𝑦) = (𝐵𝑦) ∧ (𝐴𝑥){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐵𝑥)) ↔ ∃𝑥 ∈ On ¬ (∀𝑦𝑥 (𝐴𝑦) = (𝐵𝑦) → ¬ (𝐴𝑥){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐵𝑥)))
38 rexnal 3169 . . . . 5 (∃𝑥 ∈ On ¬ (∀𝑦𝑥 (𝐴𝑦) = (𝐵𝑦) → ¬ (𝐴𝑥){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐵𝑥)) ↔ ¬ ∀𝑥 ∈ On (∀𝑦𝑥 (𝐴𝑦) = (𝐵𝑦) → ¬ (𝐴𝑥){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐵𝑥)))
3937, 38bitri 274 . . . 4 (∃𝑥 ∈ On (∀𝑦𝑥 (𝐴𝑦) = (𝐵𝑦) ∧ (𝐴𝑥){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐵𝑥)) ↔ ¬ ∀𝑥 ∈ On (∀𝑦𝑥 (𝐴𝑦) = (𝐵𝑦) → ¬ (𝐴𝑥){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐵𝑥)))
4035, 39sylib 217 . . 3 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐴𝑋) = ∅) → ¬ ∀𝑥 ∈ On (∀𝑦𝑥 (𝐴𝑦) = (𝐵𝑦) → ¬ (𝐴𝑥){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐵𝑥)))
41 1oex 8307 . . . . . . . . . . . 12 1o ∈ V
4241prid1 4698 . . . . . . . . . . 11 1o ∈ {1o, 2o}
4342nosgnn0i 33862 . . . . . . . . . 10 ∅ ≠ 1o
4443neii 2945 . . . . . . . . 9 ¬ ∅ = 1o
45 simpll3 1213 . . . . . . . . . 10 (((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐴𝑋) = ∅) ∧ (𝐵𝑋) = 1o) ∧ (𝑥 ∈ On ∧ ∀𝑦𝑥 (𝐴𝑦) = (𝐵𝑦))) → (𝐴𝑋) = ∅)
46 simplr 766 . . . . . . . . . 10 (((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐴𝑋) = ∅) ∧ (𝐵𝑋) = 1o) ∧ (𝑥 ∈ On ∧ ∀𝑦𝑥 (𝐴𝑦) = (𝐵𝑦))) → (𝐵𝑋) = 1o)
47 eqeq1 2742 . . . . . . . . . . . . 13 ((𝐴𝑋) = (𝐵𝑋) → ((𝐴𝑋) = ∅ ↔ (𝐵𝑋) = ∅))
4847anbi1d 630 . . . . . . . . . . . 12 ((𝐴𝑋) = (𝐵𝑋) → (((𝐴𝑋) = ∅ ∧ (𝐵𝑋) = 1o) ↔ ((𝐵𝑋) = ∅ ∧ (𝐵𝑋) = 1o)))
49 eqtr2 2762 . . . . . . . . . . . 12 (((𝐵𝑋) = ∅ ∧ (𝐵𝑋) = 1o) → ∅ = 1o)
5048, 49syl6bi 252 . . . . . . . . . . 11 ((𝐴𝑋) = (𝐵𝑋) → (((𝐴𝑋) = ∅ ∧ (𝐵𝑋) = 1o) → ∅ = 1o))
5150com12 32 . . . . . . . . . 10 (((𝐴𝑋) = ∅ ∧ (𝐵𝑋) = 1o) → ((𝐴𝑋) = (𝐵𝑋) → ∅ = 1o))
5245, 46, 51syl2anc 584 . . . . . . . . 9 (((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐴𝑋) = ∅) ∧ (𝐵𝑋) = 1o) ∧ (𝑥 ∈ On ∧ ∀𝑦𝑥 (𝐴𝑦) = (𝐵𝑦))) → ((𝐴𝑋) = (𝐵𝑋) → ∅ = 1o))
5344, 52mtoi 198 . . . . . . . 8 (((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐴𝑋) = ∅) ∧ (𝐵𝑋) = 1o) ∧ (𝑥 ∈ On ∧ ∀𝑦𝑥 (𝐴𝑦) = (𝐵𝑦))) → ¬ (𝐴𝑋) = (𝐵𝑋))
54 simpr 485 . . . . . . . . 9 ((((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐴𝑋) = ∅) ∧ (𝐵𝑋) = 1o) ∧ (𝑥 ∈ On ∧ ∀𝑦𝑥 (𝐴𝑦) = (𝐵𝑦))) ∧ 𝑋𝑥) → 𝑋𝑥)
55 simplrr 775 . . . . . . . . 9 ((((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐴𝑋) = ∅) ∧ (𝐵𝑋) = 1o) ∧ (𝑥 ∈ On ∧ ∀𝑦𝑥 (𝐴𝑦) = (𝐵𝑦))) ∧ 𝑋𝑥) → ∀𝑦𝑥 (𝐴𝑦) = (𝐵𝑦))
56 fveq2 6774 . . . . . . . . . . 11 (𝑦 = 𝑋 → (𝐴𝑦) = (𝐴𝑋))
57 fveq2 6774 . . . . . . . . . . 11 (𝑦 = 𝑋 → (𝐵𝑦) = (𝐵𝑋))
5856, 57eqeq12d 2754 . . . . . . . . . 10 (𝑦 = 𝑋 → ((𝐴𝑦) = (𝐵𝑦) ↔ (𝐴𝑋) = (𝐵𝑋)))
5958rspcv 3557 . . . . . . . . 9 (𝑋𝑥 → (∀𝑦𝑥 (𝐴𝑦) = (𝐵𝑦) → (𝐴𝑋) = (𝐵𝑋)))
6054, 55, 59sylc 65 . . . . . . . 8 ((((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐴𝑋) = ∅) ∧ (𝐵𝑋) = 1o) ∧ (𝑥 ∈ On ∧ ∀𝑦𝑥 (𝐴𝑦) = (𝐵𝑦))) ∧ 𝑋𝑥) → (𝐴𝑋) = (𝐵𝑋))
6153, 60mtand 813 . . . . . . 7 (((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐴𝑋) = ∅) ∧ (𝐵𝑋) = 1o) ∧ (𝑥 ∈ On ∧ ∀𝑦𝑥 (𝐴𝑦) = (𝐵𝑦))) → ¬ 𝑋𝑥)
62 simprl 768 . . . . . . . 8 (((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐴𝑋) = ∅) ∧ (𝐵𝑋) = 1o) ∧ (𝑥 ∈ On ∧ ∀𝑦𝑥 (𝐴𝑦) = (𝐵𝑦))) → 𝑥 ∈ On)
63 simpl13 1249 . . . . . . . . 9 ((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐴𝑋) = ∅) ∧ (𝐵𝑋) = 1o) → 𝑋 ∈ On)
6463adantr 481 . . . . . . . 8 (((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐴𝑋) = ∅) ∧ (𝐵𝑋) = 1o) ∧ (𝑥 ∈ On ∧ ∀𝑦𝑥 (𝐴𝑦) = (𝐵𝑦))) → 𝑋 ∈ On)
65 ontri1 6300 . . . . . . . 8 ((𝑥 ∈ On ∧ 𝑋 ∈ On) → (𝑥𝑋 ↔ ¬ 𝑋𝑥))
6662, 64, 65syl2anc 584 . . . . . . 7 (((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐴𝑋) = ∅) ∧ (𝐵𝑋) = 1o) ∧ (𝑥 ∈ On ∧ ∀𝑦𝑥 (𝐴𝑦) = (𝐵𝑦))) → (𝑥𝑋 ↔ ¬ 𝑋𝑥))
6761, 66mpbird 256 . . . . . 6 (((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐴𝑋) = ∅) ∧ (𝐵𝑋) = 1o) ∧ (𝑥 ∈ On ∧ ∀𝑦𝑥 (𝐴𝑦) = (𝐵𝑦))) → 𝑥𝑋)
68 onsseleq 6307 . . . . . . . 8 ((𝑥 ∈ On ∧ 𝑋 ∈ On) → (𝑥𝑋 ↔ (𝑥𝑋𝑥 = 𝑋)))
6962, 64, 68syl2anc 584 . . . . . . 7 (((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐴𝑋) = ∅) ∧ (𝐵𝑋) = 1o) ∧ (𝑥 ∈ On ∧ ∀𝑦𝑥 (𝐴𝑦) = (𝐵𝑦))) → (𝑥𝑋 ↔ (𝑥𝑋𝑥 = 𝑋)))
70 eqtr2 2762 . . . . . . . . . . . . . 14 ((((𝐴𝑋)‘𝑥) = ∅ ∧ ((𝐴𝑋)‘𝑥) = 1o) → ∅ = 1o)
7170ancoms 459 . . . . . . . . . . . . 13 ((((𝐴𝑋)‘𝑥) = 1o ∧ ((𝐴𝑋)‘𝑥) = ∅) → ∅ = 1o)
7244, 71mto 196 . . . . . . . . . . . 12 ¬ (((𝐴𝑋)‘𝑥) = 1o ∧ ((𝐴𝑋)‘𝑥) = ∅)
73 df-1o 8297 . . . . . . . . . . . . . . . 16 1o = suc ∅
74 df-2o 8298 . . . . . . . . . . . . . . . 16 2o = suc 1o
7573, 74eqeq12i 2756 . . . . . . . . . . . . . . 15 (1o = 2o ↔ suc ∅ = suc 1o)
76 0elon 6319 . . . . . . . . . . . . . . . 16 ∅ ∈ On
77 1on 8309 . . . . . . . . . . . . . . . 16 1o ∈ On
78 suc11 6369 . . . . . . . . . . . . . . . 16 ((∅ ∈ On ∧ 1o ∈ On) → (suc ∅ = suc 1o ↔ ∅ = 1o))
7976, 77, 78mp2an 689 . . . . . . . . . . . . . . 15 (suc ∅ = suc 1o ↔ ∅ = 1o)
8075, 79bitri 274 . . . . . . . . . . . . . 14 (1o = 2o ↔ ∅ = 1o)
8143, 80nemtbir 3040 . . . . . . . . . . . . 13 ¬ 1o = 2o
82 eqtr2 2762 . . . . . . . . . . . . 13 ((((𝐴𝑋)‘𝑥) = 1o ∧ ((𝐴𝑋)‘𝑥) = 2o) → 1o = 2o)
8381, 82mto 196 . . . . . . . . . . . 12 ¬ (((𝐴𝑋)‘𝑥) = 1o ∧ ((𝐴𝑋)‘𝑥) = 2o)
84 2on 8311 . . . . . . . . . . . . . . . . 17 2o ∈ On
8584elexi 3451 . . . . . . . . . . . . . . . 16 2o ∈ V
8685prid2 4699 . . . . . . . . . . . . . . 15 2o ∈ {1o, 2o}
8786nosgnn0i 33862 . . . . . . . . . . . . . 14 ∅ ≠ 2o
8887neii 2945 . . . . . . . . . . . . 13 ¬ ∅ = 2o
89 eqtr2 2762 . . . . . . . . . . . . 13 ((((𝐴𝑋)‘𝑥) = ∅ ∧ ((𝐴𝑋)‘𝑥) = 2o) → ∅ = 2o)
9088, 89mto 196 . . . . . . . . . . . 12 ¬ (((𝐴𝑋)‘𝑥) = ∅ ∧ ((𝐴𝑋)‘𝑥) = 2o)
9172, 83, 903pm3.2i 1338 . . . . . . . . . . 11 (¬ (((𝐴𝑋)‘𝑥) = 1o ∧ ((𝐴𝑋)‘𝑥) = ∅) ∧ ¬ (((𝐴𝑋)‘𝑥) = 1o ∧ ((𝐴𝑋)‘𝑥) = 2o) ∧ ¬ (((𝐴𝑋)‘𝑥) = ∅ ∧ ((𝐴𝑋)‘𝑥) = 2o))
92 fvex 6787 . . . . . . . . . . . . . 14 ((𝐴𝑋)‘𝑥) ∈ V
9392, 92brtp 33717 . . . . . . . . . . . . 13 (((𝐴𝑋)‘𝑥){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} ((𝐴𝑋)‘𝑥) ↔ ((((𝐴𝑋)‘𝑥) = 1o ∧ ((𝐴𝑋)‘𝑥) = ∅) ∨ (((𝐴𝑋)‘𝑥) = 1o ∧ ((𝐴𝑋)‘𝑥) = 2o) ∨ (((𝐴𝑋)‘𝑥) = ∅ ∧ ((𝐴𝑋)‘𝑥) = 2o)))
94 3oran 1108 . . . . . . . . . . . . 13 (((((𝐴𝑋)‘𝑥) = 1o ∧ ((𝐴𝑋)‘𝑥) = ∅) ∨ (((𝐴𝑋)‘𝑥) = 1o ∧ ((𝐴𝑋)‘𝑥) = 2o) ∨ (((𝐴𝑋)‘𝑥) = ∅ ∧ ((𝐴𝑋)‘𝑥) = 2o)) ↔ ¬ (¬ (((𝐴𝑋)‘𝑥) = 1o ∧ ((𝐴𝑋)‘𝑥) = ∅) ∧ ¬ (((𝐴𝑋)‘𝑥) = 1o ∧ ((𝐴𝑋)‘𝑥) = 2o) ∧ ¬ (((𝐴𝑋)‘𝑥) = ∅ ∧ ((𝐴𝑋)‘𝑥) = 2o)))
9593, 94bitri 274 . . . . . . . . . . . 12 (((𝐴𝑋)‘𝑥){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} ((𝐴𝑋)‘𝑥) ↔ ¬ (¬ (((𝐴𝑋)‘𝑥) = 1o ∧ ((𝐴𝑋)‘𝑥) = ∅) ∧ ¬ (((𝐴𝑋)‘𝑥) = 1o ∧ ((𝐴𝑋)‘𝑥) = 2o) ∧ ¬ (((𝐴𝑋)‘𝑥) = ∅ ∧ ((𝐴𝑋)‘𝑥) = 2o)))
9695con2bii 358 . . . . . . . . . . 11 ((¬ (((𝐴𝑋)‘𝑥) = 1o ∧ ((𝐴𝑋)‘𝑥) = ∅) ∧ ¬ (((𝐴𝑋)‘𝑥) = 1o ∧ ((𝐴𝑋)‘𝑥) = 2o) ∧ ¬ (((𝐴𝑋)‘𝑥) = ∅ ∧ ((𝐴𝑋)‘𝑥) = 2o)) ↔ ¬ ((𝐴𝑋)‘𝑥){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} ((𝐴𝑋)‘𝑥))
9791, 96mpbi 229 . . . . . . . . . 10 ¬ ((𝐴𝑋)‘𝑥){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} ((𝐴𝑋)‘𝑥)
98 simpl2l 1225 . . . . . . . . . . . . 13 ((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐴𝑋) = ∅) ∧ (𝐵𝑋) = 1o) → (𝐴𝑋) = (𝐵𝑋))
9998adantr 481 . . . . . . . . . . . 12 (((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐴𝑋) = ∅) ∧ (𝐵𝑋) = 1o) ∧ (𝑥 ∈ On ∧ ∀𝑦𝑥 (𝐴𝑦) = (𝐵𝑦))) → (𝐴𝑋) = (𝐵𝑋))
10099fveq1d 6776 . . . . . . . . . . 11 (((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐴𝑋) = ∅) ∧ (𝐵𝑋) = 1o) ∧ (𝑥 ∈ On ∧ ∀𝑦𝑥 (𝐴𝑦) = (𝐵𝑦))) → ((𝐴𝑋)‘𝑥) = ((𝐵𝑋)‘𝑥))
101100breq2d 5086 . . . . . . . . . 10 (((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐴𝑋) = ∅) ∧ (𝐵𝑋) = 1o) ∧ (𝑥 ∈ On ∧ ∀𝑦𝑥 (𝐴𝑦) = (𝐵𝑦))) → (((𝐴𝑋)‘𝑥){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} ((𝐴𝑋)‘𝑥) ↔ ((𝐴𝑋)‘𝑥){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} ((𝐵𝑋)‘𝑥)))
10297, 101mtbii 326 . . . . . . . . 9 (((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐴𝑋) = ∅) ∧ (𝐵𝑋) = 1o) ∧ (𝑥 ∈ On ∧ ∀𝑦𝑥 (𝐴𝑦) = (𝐵𝑦))) → ¬ ((𝐴𝑋)‘𝑥){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} ((𝐵𝑋)‘𝑥))
103 fvres 6793 . . . . . . . . . . 11 (𝑥𝑋 → ((𝐴𝑋)‘𝑥) = (𝐴𝑥))
104 fvres 6793 . . . . . . . . . . 11 (𝑥𝑋 → ((𝐵𝑋)‘𝑥) = (𝐵𝑥))
105103, 104breq12d 5087 . . . . . . . . . 10 (𝑥𝑋 → (((𝐴𝑋)‘𝑥){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} ((𝐵𝑋)‘𝑥) ↔ (𝐴𝑥){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐵𝑥)))
106105notbid 318 . . . . . . . . 9 (𝑥𝑋 → (¬ ((𝐴𝑋)‘𝑥){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} ((𝐵𝑋)‘𝑥) ↔ ¬ (𝐴𝑥){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐵𝑥)))
107102, 106syl5ibcom 244 . . . . . . . 8 (((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐴𝑋) = ∅) ∧ (𝐵𝑋) = 1o) ∧ (𝑥 ∈ On ∧ ∀𝑦𝑥 (𝐴𝑦) = (𝐵𝑦))) → (𝑥𝑋 → ¬ (𝐴𝑥){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐵𝑥)))
10844intnanr 488 . . . . . . . . . . . 12 ¬ (∅ = 1o ∧ 1o = ∅)
10944intnanr 488 . . . . . . . . . . . 12 ¬ (∅ = 1o ∧ 1o = 2o)
11081intnan 487 . . . . . . . . . . . 12 ¬ (∅ = ∅ ∧ 1o = 2o)
111108, 109, 1103pm3.2i 1338 . . . . . . . . . . 11 (¬ (∅ = 1o ∧ 1o = ∅) ∧ ¬ (∅ = 1o ∧ 1o = 2o) ∧ ¬ (∅ = ∅ ∧ 1o = 2o))
112 0ex 5231 . . . . . . . . . . . . . 14 ∅ ∈ V
113112, 41brtp 33717 . . . . . . . . . . . . 13 (∅{⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩}1o ↔ ((∅ = 1o ∧ 1o = ∅) ∨ (∅ = 1o ∧ 1o = 2o) ∨ (∅ = ∅ ∧ 1o = 2o)))
114 3oran 1108 . . . . . . . . . . . . 13 (((∅ = 1o ∧ 1o = ∅) ∨ (∅ = 1o ∧ 1o = 2o) ∨ (∅ = ∅ ∧ 1o = 2o)) ↔ ¬ (¬ (∅ = 1o ∧ 1o = ∅) ∧ ¬ (∅ = 1o ∧ 1o = 2o) ∧ ¬ (∅ = ∅ ∧ 1o = 2o)))
115113, 114bitri 274 . . . . . . . . . . . 12 (∅{⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩}1o ↔ ¬ (¬ (∅ = 1o ∧ 1o = ∅) ∧ ¬ (∅ = 1o ∧ 1o = 2o) ∧ ¬ (∅ = ∅ ∧ 1o = 2o)))
116115con2bii 358 . . . . . . . . . . 11 ((¬ (∅ = 1o ∧ 1o = ∅) ∧ ¬ (∅ = 1o ∧ 1o = 2o) ∧ ¬ (∅ = ∅ ∧ 1o = 2o)) ↔ ¬ ∅{⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩}1o)
117111, 116mpbi 229 . . . . . . . . . 10 ¬ ∅{⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩}1o
11845, 46breq12d 5087 . . . . . . . . . 10 (((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐴𝑋) = ∅) ∧ (𝐵𝑋) = 1o) ∧ (𝑥 ∈ On ∧ ∀𝑦𝑥 (𝐴𝑦) = (𝐵𝑦))) → ((𝐴𝑋){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐵𝑋) ↔ ∅{⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩}1o))
119117, 118mtbiri 327 . . . . . . . . 9 (((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐴𝑋) = ∅) ∧ (𝐵𝑋) = 1o) ∧ (𝑥 ∈ On ∧ ∀𝑦𝑥 (𝐴𝑦) = (𝐵𝑦))) → ¬ (𝐴𝑋){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐵𝑋))
120 fveq2 6774 . . . . . . . . . . 11 (𝑥 = 𝑋 → (𝐴𝑥) = (𝐴𝑋))
121 fveq2 6774 . . . . . . . . . . 11 (𝑥 = 𝑋 → (𝐵𝑥) = (𝐵𝑋))
122120, 121breq12d 5087 . . . . . . . . . 10 (𝑥 = 𝑋 → ((𝐴𝑥){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐵𝑥) ↔ (𝐴𝑋){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐵𝑋)))
123122notbid 318 . . . . . . . . 9 (𝑥 = 𝑋 → (¬ (𝐴𝑥){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐵𝑥) ↔ ¬ (𝐴𝑋){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐵𝑋)))
124119, 123syl5ibrcom 246 . . . . . . . 8 (((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐴𝑋) = ∅) ∧ (𝐵𝑋) = 1o) ∧ (𝑥 ∈ On ∧ ∀𝑦𝑥 (𝐴𝑦) = (𝐵𝑦))) → (𝑥 = 𝑋 → ¬ (𝐴𝑥){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐵𝑥)))
125107, 124jaod 856 . . . . . . 7 (((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐴𝑋) = ∅) ∧ (𝐵𝑋) = 1o) ∧ (𝑥 ∈ On ∧ ∀𝑦𝑥 (𝐴𝑦) = (𝐵𝑦))) → ((𝑥𝑋𝑥 = 𝑋) → ¬ (𝐴𝑥){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐵𝑥)))
12669, 125sylbid 239 . . . . . 6 (((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐴𝑋) = ∅) ∧ (𝐵𝑋) = 1o) ∧ (𝑥 ∈ On ∧ ∀𝑦𝑥 (𝐴𝑦) = (𝐵𝑦))) → (𝑥𝑋 → ¬ (𝐴𝑥){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐵𝑥)))
12767, 126mpd 15 . . . . 5 (((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐴𝑋) = ∅) ∧ (𝐵𝑋) = 1o) ∧ (𝑥 ∈ On ∧ ∀𝑦𝑥 (𝐴𝑦) = (𝐵𝑦))) → ¬ (𝐴𝑥){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐵𝑥))
128127expr 457 . . . 4 (((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐴𝑋) = ∅) ∧ (𝐵𝑋) = 1o) ∧ 𝑥 ∈ On) → (∀𝑦𝑥 (𝐴𝑦) = (𝐵𝑦) → ¬ (𝐴𝑥){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐵𝑥)))
129128ralrimiva 3103 . . 3 ((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐴𝑋) = ∅) ∧ (𝐵𝑋) = 1o) → ∀𝑥 ∈ On (∀𝑦𝑥 (𝐴𝑦) = (𝐵𝑦) → ¬ (𝐴𝑥){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐵𝑥)))
13040, 129mtand 813 . 2 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐴𝑋) = ∅) → ¬ (𝐵𝑋) = 1o)
131 nofv 33860 . . . 4 (𝐵 No → ((𝐵𝑋) = ∅ ∨ (𝐵𝑋) = 1o ∨ (𝐵𝑋) = 2o))
13232, 131syl 17 . . 3 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐴𝑋) = ∅) → ((𝐵𝑋) = ∅ ∨ (𝐵𝑋) = 1o ∨ (𝐵𝑋) = 2o))
133 3orrot 1091 . . . 4 (((𝐵𝑋) = ∅ ∨ (𝐵𝑋) = 1o ∨ (𝐵𝑋) = 2o) ↔ ((𝐵𝑋) = 1o ∨ (𝐵𝑋) = 2o ∨ (𝐵𝑋) = ∅))
134 3orrot 1091 . . . 4 (((𝐵𝑋) = 1o ∨ (𝐵𝑋) = 2o ∨ (𝐵𝑋) = ∅) ↔ ((𝐵𝑋) = 2o ∨ (𝐵𝑋) = ∅ ∨ (𝐵𝑋) = 1o))
135133, 134bitri 274 . . 3 (((𝐵𝑋) = ∅ ∨ (𝐵𝑋) = 1o ∨ (𝐵𝑋) = 2o) ↔ ((𝐵𝑋) = 2o ∨ (𝐵𝑋) = ∅ ∨ (𝐵𝑋) = 1o))
136132, 135sylib 217 . 2 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐴𝑋) = ∅) → ((𝐵𝑋) = 2o ∨ (𝐵𝑋) = ∅ ∨ (𝐵𝑋) = 1o))
13731, 130, 136ecase23d 1472 1 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐴𝑋) = ∅) → (𝐵𝑋) = 2o)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wo 844  w3o 1085  w3a 1086   = wceq 1539  wcel 2106  wral 3064  wrex 3065  wss 3887  c0 4256  {ctp 4565  cop 4567   class class class wbr 5074   Or wor 5502  dom cdm 5589  cres 5591  Rel wrel 5594  Oncon0 6266  suc csuc 6268  Fun wfun 6427  cfv 6433  1oc1o 8290  2oc2o 8291   No csur 33843   <s cslt 33844
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-ord 6269  df-on 6270  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-1o 8297  df-2o 8298  df-no 33846  df-slt 33847
This theorem is referenced by:  nosupbnd1lem4  33914
  Copyright terms: Public domain W3C validator