MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nolt02o Structured version   Visualization version   GIF version

Theorem nolt02o 27755
Description: Given 𝐴 less-than 𝐵, equal to 𝐵 up to 𝑋, and undefined at 𝑋, then 𝐵(𝑋) = 2o. (Contributed by Scott Fenton, 6-Dec-2021.)
Assertion
Ref Expression
nolt02o (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐴𝑋) = ∅) → (𝐵𝑋) = 2o)

Proof of Theorem nolt02o
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp11 1202 . . . . 5 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐴𝑋) = ∅) → 𝐴 No )
2 sltso 27736 . . . . . 6 <s Or No
3 sonr 5621 . . . . . 6 (( <s Or No 𝐴 No ) → ¬ 𝐴 <s 𝐴)
42, 3mpan 690 . . . . 5 (𝐴 No → ¬ 𝐴 <s 𝐴)
51, 4syl 17 . . . 4 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐴𝑋) = ∅) → ¬ 𝐴 <s 𝐴)
6 simp2r 1199 . . . . 5 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐴𝑋) = ∅) → 𝐴 <s 𝐵)
7 breq2 5152 . . . . 5 (𝐴 = 𝐵 → (𝐴 <s 𝐴𝐴 <s 𝐵))
86, 7syl5ibrcom 247 . . . 4 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐴𝑋) = ∅) → (𝐴 = 𝐵𝐴 <s 𝐴))
95, 8mtod 198 . . 3 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐴𝑋) = ∅) → ¬ 𝐴 = 𝐵)
10 simpl2l 1225 . . . 4 ((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐴𝑋) = ∅) ∧ (𝐵𝑋) = ∅) → (𝐴𝑋) = (𝐵𝑋))
11 simpl11 1247 . . . . . 6 ((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐴𝑋) = ∅) ∧ (𝐵𝑋) = ∅) → 𝐴 No )
12 nofun 27709 . . . . . 6 (𝐴 No → Fun 𝐴)
13 funrel 6585 . . . . . 6 (Fun 𝐴 → Rel 𝐴)
1411, 12, 133syl 18 . . . . 5 ((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐴𝑋) = ∅) ∧ (𝐵𝑋) = ∅) → Rel 𝐴)
15 simpl13 1249 . . . . . 6 ((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐴𝑋) = ∅) ∧ (𝐵𝑋) = ∅) → 𝑋 ∈ On)
16 simpl3 1192 . . . . . 6 ((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐴𝑋) = ∅) ∧ (𝐵𝑋) = ∅) → (𝐴𝑋) = ∅)
17 nolt02olem 27754 . . . . . 6 ((𝐴 No 𝑋 ∈ On ∧ (𝐴𝑋) = ∅) → dom 𝐴𝑋)
1811, 15, 16, 17syl3anc 1370 . . . . 5 ((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐴𝑋) = ∅) ∧ (𝐵𝑋) = ∅) → dom 𝐴𝑋)
19 relssres 6042 . . . . 5 ((Rel 𝐴 ∧ dom 𝐴𝑋) → (𝐴𝑋) = 𝐴)
2014, 18, 19syl2anc 584 . . . 4 ((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐴𝑋) = ∅) ∧ (𝐵𝑋) = ∅) → (𝐴𝑋) = 𝐴)
21 simpl12 1248 . . . . . 6 ((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐴𝑋) = ∅) ∧ (𝐵𝑋) = ∅) → 𝐵 No )
22 nofun 27709 . . . . . 6 (𝐵 No → Fun 𝐵)
23 funrel 6585 . . . . . 6 (Fun 𝐵 → Rel 𝐵)
2421, 22, 233syl 18 . . . . 5 ((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐴𝑋) = ∅) ∧ (𝐵𝑋) = ∅) → Rel 𝐵)
25 simpr 484 . . . . . 6 ((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐴𝑋) = ∅) ∧ (𝐵𝑋) = ∅) → (𝐵𝑋) = ∅)
26 nolt02olem 27754 . . . . . 6 ((𝐵 No 𝑋 ∈ On ∧ (𝐵𝑋) = ∅) → dom 𝐵𝑋)
2721, 15, 25, 26syl3anc 1370 . . . . 5 ((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐴𝑋) = ∅) ∧ (𝐵𝑋) = ∅) → dom 𝐵𝑋)
28 relssres 6042 . . . . 5 ((Rel 𝐵 ∧ dom 𝐵𝑋) → (𝐵𝑋) = 𝐵)
2924, 27, 28syl2anc 584 . . . 4 ((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐴𝑋) = ∅) ∧ (𝐵𝑋) = ∅) → (𝐵𝑋) = 𝐵)
3010, 20, 293eqtr3d 2783 . . 3 ((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐴𝑋) = ∅) ∧ (𝐵𝑋) = ∅) → 𝐴 = 𝐵)
319, 30mtand 816 . 2 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐴𝑋) = ∅) → ¬ (𝐵𝑋) = ∅)
32 simp12 1203 . . . . . 6 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐴𝑋) = ∅) → 𝐵 No )
33 sltval 27707 . . . . . 6 ((𝐴 No 𝐵 No ) → (𝐴 <s 𝐵 ↔ ∃𝑥 ∈ On (∀𝑦𝑥 (𝐴𝑦) = (𝐵𝑦) ∧ (𝐴𝑥){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐵𝑥))))
341, 32, 33syl2anc 584 . . . . 5 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐴𝑋) = ∅) → (𝐴 <s 𝐵 ↔ ∃𝑥 ∈ On (∀𝑦𝑥 (𝐴𝑦) = (𝐵𝑦) ∧ (𝐴𝑥){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐵𝑥))))
356, 34mpbid 232 . . . 4 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐴𝑋) = ∅) → ∃𝑥 ∈ On (∀𝑦𝑥 (𝐴𝑦) = (𝐵𝑦) ∧ (𝐴𝑥){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐵𝑥)))
36 df-an 396 . . . . . 6 ((∀𝑦𝑥 (𝐴𝑦) = (𝐵𝑦) ∧ (𝐴𝑥){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐵𝑥)) ↔ ¬ (∀𝑦𝑥 (𝐴𝑦) = (𝐵𝑦) → ¬ (𝐴𝑥){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐵𝑥)))
3736rexbii 3092 . . . . 5 (∃𝑥 ∈ On (∀𝑦𝑥 (𝐴𝑦) = (𝐵𝑦) ∧ (𝐴𝑥){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐵𝑥)) ↔ ∃𝑥 ∈ On ¬ (∀𝑦𝑥 (𝐴𝑦) = (𝐵𝑦) → ¬ (𝐴𝑥){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐵𝑥)))
38 rexnal 3098 . . . . 5 (∃𝑥 ∈ On ¬ (∀𝑦𝑥 (𝐴𝑦) = (𝐵𝑦) → ¬ (𝐴𝑥){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐵𝑥)) ↔ ¬ ∀𝑥 ∈ On (∀𝑦𝑥 (𝐴𝑦) = (𝐵𝑦) → ¬ (𝐴𝑥){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐵𝑥)))
3937, 38bitri 275 . . . 4 (∃𝑥 ∈ On (∀𝑦𝑥 (𝐴𝑦) = (𝐵𝑦) ∧ (𝐴𝑥){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐵𝑥)) ↔ ¬ ∀𝑥 ∈ On (∀𝑦𝑥 (𝐴𝑦) = (𝐵𝑦) → ¬ (𝐴𝑥){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐵𝑥)))
4035, 39sylib 218 . . 3 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐴𝑋) = ∅) → ¬ ∀𝑥 ∈ On (∀𝑦𝑥 (𝐴𝑦) = (𝐵𝑦) → ¬ (𝐴𝑥){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐵𝑥)))
41 1oex 8515 . . . . . . . . . . . 12 1o ∈ V
4241prid1 4767 . . . . . . . . . . 11 1o ∈ {1o, 2o}
4342nosgnn0i 27719 . . . . . . . . . 10 ∅ ≠ 1o
4443neii 2940 . . . . . . . . 9 ¬ ∅ = 1o
45 simpll3 1213 . . . . . . . . . 10 (((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐴𝑋) = ∅) ∧ (𝐵𝑋) = 1o) ∧ (𝑥 ∈ On ∧ ∀𝑦𝑥 (𝐴𝑦) = (𝐵𝑦))) → (𝐴𝑋) = ∅)
46 simplr 769 . . . . . . . . . 10 (((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐴𝑋) = ∅) ∧ (𝐵𝑋) = 1o) ∧ (𝑥 ∈ On ∧ ∀𝑦𝑥 (𝐴𝑦) = (𝐵𝑦))) → (𝐵𝑋) = 1o)
47 eqeq1 2739 . . . . . . . . . . . . 13 ((𝐴𝑋) = (𝐵𝑋) → ((𝐴𝑋) = ∅ ↔ (𝐵𝑋) = ∅))
4847anbi1d 631 . . . . . . . . . . . 12 ((𝐴𝑋) = (𝐵𝑋) → (((𝐴𝑋) = ∅ ∧ (𝐵𝑋) = 1o) ↔ ((𝐵𝑋) = ∅ ∧ (𝐵𝑋) = 1o)))
49 eqtr2 2759 . . . . . . . . . . . 12 (((𝐵𝑋) = ∅ ∧ (𝐵𝑋) = 1o) → ∅ = 1o)
5048, 49biimtrdi 253 . . . . . . . . . . 11 ((𝐴𝑋) = (𝐵𝑋) → (((𝐴𝑋) = ∅ ∧ (𝐵𝑋) = 1o) → ∅ = 1o))
5150com12 32 . . . . . . . . . 10 (((𝐴𝑋) = ∅ ∧ (𝐵𝑋) = 1o) → ((𝐴𝑋) = (𝐵𝑋) → ∅ = 1o))
5245, 46, 51syl2anc 584 . . . . . . . . 9 (((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐴𝑋) = ∅) ∧ (𝐵𝑋) = 1o) ∧ (𝑥 ∈ On ∧ ∀𝑦𝑥 (𝐴𝑦) = (𝐵𝑦))) → ((𝐴𝑋) = (𝐵𝑋) → ∅ = 1o))
5344, 52mtoi 199 . . . . . . . 8 (((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐴𝑋) = ∅) ∧ (𝐵𝑋) = 1o) ∧ (𝑥 ∈ On ∧ ∀𝑦𝑥 (𝐴𝑦) = (𝐵𝑦))) → ¬ (𝐴𝑋) = (𝐵𝑋))
54 simpr 484 . . . . . . . . 9 ((((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐴𝑋) = ∅) ∧ (𝐵𝑋) = 1o) ∧ (𝑥 ∈ On ∧ ∀𝑦𝑥 (𝐴𝑦) = (𝐵𝑦))) ∧ 𝑋𝑥) → 𝑋𝑥)
55 simplrr 778 . . . . . . . . 9 ((((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐴𝑋) = ∅) ∧ (𝐵𝑋) = 1o) ∧ (𝑥 ∈ On ∧ ∀𝑦𝑥 (𝐴𝑦) = (𝐵𝑦))) ∧ 𝑋𝑥) → ∀𝑦𝑥 (𝐴𝑦) = (𝐵𝑦))
56 fveq2 6907 . . . . . . . . . . 11 (𝑦 = 𝑋 → (𝐴𝑦) = (𝐴𝑋))
57 fveq2 6907 . . . . . . . . . . 11 (𝑦 = 𝑋 → (𝐵𝑦) = (𝐵𝑋))
5856, 57eqeq12d 2751 . . . . . . . . . 10 (𝑦 = 𝑋 → ((𝐴𝑦) = (𝐵𝑦) ↔ (𝐴𝑋) = (𝐵𝑋)))
5958rspcv 3618 . . . . . . . . 9 (𝑋𝑥 → (∀𝑦𝑥 (𝐴𝑦) = (𝐵𝑦) → (𝐴𝑋) = (𝐵𝑋)))
6054, 55, 59sylc 65 . . . . . . . 8 ((((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐴𝑋) = ∅) ∧ (𝐵𝑋) = 1o) ∧ (𝑥 ∈ On ∧ ∀𝑦𝑥 (𝐴𝑦) = (𝐵𝑦))) ∧ 𝑋𝑥) → (𝐴𝑋) = (𝐵𝑋))
6153, 60mtand 816 . . . . . . 7 (((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐴𝑋) = ∅) ∧ (𝐵𝑋) = 1o) ∧ (𝑥 ∈ On ∧ ∀𝑦𝑥 (𝐴𝑦) = (𝐵𝑦))) → ¬ 𝑋𝑥)
62 simprl 771 . . . . . . . 8 (((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐴𝑋) = ∅) ∧ (𝐵𝑋) = 1o) ∧ (𝑥 ∈ On ∧ ∀𝑦𝑥 (𝐴𝑦) = (𝐵𝑦))) → 𝑥 ∈ On)
63 simpl13 1249 . . . . . . . . 9 ((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐴𝑋) = ∅) ∧ (𝐵𝑋) = 1o) → 𝑋 ∈ On)
6463adantr 480 . . . . . . . 8 (((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐴𝑋) = ∅) ∧ (𝐵𝑋) = 1o) ∧ (𝑥 ∈ On ∧ ∀𝑦𝑥 (𝐴𝑦) = (𝐵𝑦))) → 𝑋 ∈ On)
65 ontri1 6420 . . . . . . . 8 ((𝑥 ∈ On ∧ 𝑋 ∈ On) → (𝑥𝑋 ↔ ¬ 𝑋𝑥))
6662, 64, 65syl2anc 584 . . . . . . 7 (((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐴𝑋) = ∅) ∧ (𝐵𝑋) = 1o) ∧ (𝑥 ∈ On ∧ ∀𝑦𝑥 (𝐴𝑦) = (𝐵𝑦))) → (𝑥𝑋 ↔ ¬ 𝑋𝑥))
6761, 66mpbird 257 . . . . . 6 (((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐴𝑋) = ∅) ∧ (𝐵𝑋) = 1o) ∧ (𝑥 ∈ On ∧ ∀𝑦𝑥 (𝐴𝑦) = (𝐵𝑦))) → 𝑥𝑋)
68 onsseleq 6427 . . . . . . . 8 ((𝑥 ∈ On ∧ 𝑋 ∈ On) → (𝑥𝑋 ↔ (𝑥𝑋𝑥 = 𝑋)))
6962, 64, 68syl2anc 584 . . . . . . 7 (((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐴𝑋) = ∅) ∧ (𝐵𝑋) = 1o) ∧ (𝑥 ∈ On ∧ ∀𝑦𝑥 (𝐴𝑦) = (𝐵𝑦))) → (𝑥𝑋 ↔ (𝑥𝑋𝑥 = 𝑋)))
70 eqtr2 2759 . . . . . . . . . . . . . 14 ((((𝐴𝑋)‘𝑥) = ∅ ∧ ((𝐴𝑋)‘𝑥) = 1o) → ∅ = 1o)
7170ancoms 458 . . . . . . . . . . . . 13 ((((𝐴𝑋)‘𝑥) = 1o ∧ ((𝐴𝑋)‘𝑥) = ∅) → ∅ = 1o)
7244, 71mto 197 . . . . . . . . . . . 12 ¬ (((𝐴𝑋)‘𝑥) = 1o ∧ ((𝐴𝑋)‘𝑥) = ∅)
73 df-1o 8505 . . . . . . . . . . . . . . . 16 1o = suc ∅
74 df-2o 8506 . . . . . . . . . . . . . . . 16 2o = suc 1o
7573, 74eqeq12i 2753 . . . . . . . . . . . . . . 15 (1o = 2o ↔ suc ∅ = suc 1o)
76 0elon 6440 . . . . . . . . . . . . . . . 16 ∅ ∈ On
77 1on 8517 . . . . . . . . . . . . . . . 16 1o ∈ On
78 suc11 6493 . . . . . . . . . . . . . . . 16 ((∅ ∈ On ∧ 1o ∈ On) → (suc ∅ = suc 1o ↔ ∅ = 1o))
7976, 77, 78mp2an 692 . . . . . . . . . . . . . . 15 (suc ∅ = suc 1o ↔ ∅ = 1o)
8075, 79bitri 275 . . . . . . . . . . . . . 14 (1o = 2o ↔ ∅ = 1o)
8143, 80nemtbir 3036 . . . . . . . . . . . . 13 ¬ 1o = 2o
82 eqtr2 2759 . . . . . . . . . . . . 13 ((((𝐴𝑋)‘𝑥) = 1o ∧ ((𝐴𝑋)‘𝑥) = 2o) → 1o = 2o)
8381, 82mto 197 . . . . . . . . . . . 12 ¬ (((𝐴𝑋)‘𝑥) = 1o ∧ ((𝐴𝑋)‘𝑥) = 2o)
84 2on 8519 . . . . . . . . . . . . . . . . 17 2o ∈ On
8584elexi 3501 . . . . . . . . . . . . . . . 16 2o ∈ V
8685prid2 4768 . . . . . . . . . . . . . . 15 2o ∈ {1o, 2o}
8786nosgnn0i 27719 . . . . . . . . . . . . . 14 ∅ ≠ 2o
8887neii 2940 . . . . . . . . . . . . 13 ¬ ∅ = 2o
89 eqtr2 2759 . . . . . . . . . . . . 13 ((((𝐴𝑋)‘𝑥) = ∅ ∧ ((𝐴𝑋)‘𝑥) = 2o) → ∅ = 2o)
9088, 89mto 197 . . . . . . . . . . . 12 ¬ (((𝐴𝑋)‘𝑥) = ∅ ∧ ((𝐴𝑋)‘𝑥) = 2o)
9172, 83, 903pm3.2i 1338 . . . . . . . . . . 11 (¬ (((𝐴𝑋)‘𝑥) = 1o ∧ ((𝐴𝑋)‘𝑥) = ∅) ∧ ¬ (((𝐴𝑋)‘𝑥) = 1o ∧ ((𝐴𝑋)‘𝑥) = 2o) ∧ ¬ (((𝐴𝑋)‘𝑥) = ∅ ∧ ((𝐴𝑋)‘𝑥) = 2o))
92 fvex 6920 . . . . . . . . . . . . . 14 ((𝐴𝑋)‘𝑥) ∈ V
9392, 92brtp 5533 . . . . . . . . . . . . 13 (((𝐴𝑋)‘𝑥){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} ((𝐴𝑋)‘𝑥) ↔ ((((𝐴𝑋)‘𝑥) = 1o ∧ ((𝐴𝑋)‘𝑥) = ∅) ∨ (((𝐴𝑋)‘𝑥) = 1o ∧ ((𝐴𝑋)‘𝑥) = 2o) ∨ (((𝐴𝑋)‘𝑥) = ∅ ∧ ((𝐴𝑋)‘𝑥) = 2o)))
94 3oran 1108 . . . . . . . . . . . . 13 (((((𝐴𝑋)‘𝑥) = 1o ∧ ((𝐴𝑋)‘𝑥) = ∅) ∨ (((𝐴𝑋)‘𝑥) = 1o ∧ ((𝐴𝑋)‘𝑥) = 2o) ∨ (((𝐴𝑋)‘𝑥) = ∅ ∧ ((𝐴𝑋)‘𝑥) = 2o)) ↔ ¬ (¬ (((𝐴𝑋)‘𝑥) = 1o ∧ ((𝐴𝑋)‘𝑥) = ∅) ∧ ¬ (((𝐴𝑋)‘𝑥) = 1o ∧ ((𝐴𝑋)‘𝑥) = 2o) ∧ ¬ (((𝐴𝑋)‘𝑥) = ∅ ∧ ((𝐴𝑋)‘𝑥) = 2o)))
9593, 94bitri 275 . . . . . . . . . . . 12 (((𝐴𝑋)‘𝑥){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} ((𝐴𝑋)‘𝑥) ↔ ¬ (¬ (((𝐴𝑋)‘𝑥) = 1o ∧ ((𝐴𝑋)‘𝑥) = ∅) ∧ ¬ (((𝐴𝑋)‘𝑥) = 1o ∧ ((𝐴𝑋)‘𝑥) = 2o) ∧ ¬ (((𝐴𝑋)‘𝑥) = ∅ ∧ ((𝐴𝑋)‘𝑥) = 2o)))
9695con2bii 357 . . . . . . . . . . 11 ((¬ (((𝐴𝑋)‘𝑥) = 1o ∧ ((𝐴𝑋)‘𝑥) = ∅) ∧ ¬ (((𝐴𝑋)‘𝑥) = 1o ∧ ((𝐴𝑋)‘𝑥) = 2o) ∧ ¬ (((𝐴𝑋)‘𝑥) = ∅ ∧ ((𝐴𝑋)‘𝑥) = 2o)) ↔ ¬ ((𝐴𝑋)‘𝑥){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} ((𝐴𝑋)‘𝑥))
9791, 96mpbi 230 . . . . . . . . . 10 ¬ ((𝐴𝑋)‘𝑥){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} ((𝐴𝑋)‘𝑥)
98 simpl2l 1225 . . . . . . . . . . . . 13 ((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐴𝑋) = ∅) ∧ (𝐵𝑋) = 1o) → (𝐴𝑋) = (𝐵𝑋))
9998adantr 480 . . . . . . . . . . . 12 (((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐴𝑋) = ∅) ∧ (𝐵𝑋) = 1o) ∧ (𝑥 ∈ On ∧ ∀𝑦𝑥 (𝐴𝑦) = (𝐵𝑦))) → (𝐴𝑋) = (𝐵𝑋))
10099fveq1d 6909 . . . . . . . . . . 11 (((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐴𝑋) = ∅) ∧ (𝐵𝑋) = 1o) ∧ (𝑥 ∈ On ∧ ∀𝑦𝑥 (𝐴𝑦) = (𝐵𝑦))) → ((𝐴𝑋)‘𝑥) = ((𝐵𝑋)‘𝑥))
101100breq2d 5160 . . . . . . . . . 10 (((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐴𝑋) = ∅) ∧ (𝐵𝑋) = 1o) ∧ (𝑥 ∈ On ∧ ∀𝑦𝑥 (𝐴𝑦) = (𝐵𝑦))) → (((𝐴𝑋)‘𝑥){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} ((𝐴𝑋)‘𝑥) ↔ ((𝐴𝑋)‘𝑥){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} ((𝐵𝑋)‘𝑥)))
10297, 101mtbii 326 . . . . . . . . 9 (((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐴𝑋) = ∅) ∧ (𝐵𝑋) = 1o) ∧ (𝑥 ∈ On ∧ ∀𝑦𝑥 (𝐴𝑦) = (𝐵𝑦))) → ¬ ((𝐴𝑋)‘𝑥){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} ((𝐵𝑋)‘𝑥))
103 fvres 6926 . . . . . . . . . . 11 (𝑥𝑋 → ((𝐴𝑋)‘𝑥) = (𝐴𝑥))
104 fvres 6926 . . . . . . . . . . 11 (𝑥𝑋 → ((𝐵𝑋)‘𝑥) = (𝐵𝑥))
105103, 104breq12d 5161 . . . . . . . . . 10 (𝑥𝑋 → (((𝐴𝑋)‘𝑥){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} ((𝐵𝑋)‘𝑥) ↔ (𝐴𝑥){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐵𝑥)))
106105notbid 318 . . . . . . . . 9 (𝑥𝑋 → (¬ ((𝐴𝑋)‘𝑥){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} ((𝐵𝑋)‘𝑥) ↔ ¬ (𝐴𝑥){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐵𝑥)))
107102, 106syl5ibcom 245 . . . . . . . 8 (((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐴𝑋) = ∅) ∧ (𝐵𝑋) = 1o) ∧ (𝑥 ∈ On ∧ ∀𝑦𝑥 (𝐴𝑦) = (𝐵𝑦))) → (𝑥𝑋 → ¬ (𝐴𝑥){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐵𝑥)))
10844intnanr 487 . . . . . . . . . . . 12 ¬ (∅ = 1o ∧ 1o = ∅)
10944intnanr 487 . . . . . . . . . . . 12 ¬ (∅ = 1o ∧ 1o = 2o)
11081intnan 486 . . . . . . . . . . . 12 ¬ (∅ = ∅ ∧ 1o = 2o)
111108, 109, 1103pm3.2i 1338 . . . . . . . . . . 11 (¬ (∅ = 1o ∧ 1o = ∅) ∧ ¬ (∅ = 1o ∧ 1o = 2o) ∧ ¬ (∅ = ∅ ∧ 1o = 2o))
112 0ex 5313 . . . . . . . . . . . . . 14 ∅ ∈ V
113112, 41brtp 5533 . . . . . . . . . . . . 13 (∅{⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩}1o ↔ ((∅ = 1o ∧ 1o = ∅) ∨ (∅ = 1o ∧ 1o = 2o) ∨ (∅ = ∅ ∧ 1o = 2o)))
114 3oran 1108 . . . . . . . . . . . . 13 (((∅ = 1o ∧ 1o = ∅) ∨ (∅ = 1o ∧ 1o = 2o) ∨ (∅ = ∅ ∧ 1o = 2o)) ↔ ¬ (¬ (∅ = 1o ∧ 1o = ∅) ∧ ¬ (∅ = 1o ∧ 1o = 2o) ∧ ¬ (∅ = ∅ ∧ 1o = 2o)))
115113, 114bitri 275 . . . . . . . . . . . 12 (∅{⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩}1o ↔ ¬ (¬ (∅ = 1o ∧ 1o = ∅) ∧ ¬ (∅ = 1o ∧ 1o = 2o) ∧ ¬ (∅ = ∅ ∧ 1o = 2o)))
116115con2bii 357 . . . . . . . . . . 11 ((¬ (∅ = 1o ∧ 1o = ∅) ∧ ¬ (∅ = 1o ∧ 1o = 2o) ∧ ¬ (∅ = ∅ ∧ 1o = 2o)) ↔ ¬ ∅{⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩}1o)
117111, 116mpbi 230 . . . . . . . . . 10 ¬ ∅{⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩}1o
11845, 46breq12d 5161 . . . . . . . . . 10 (((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐴𝑋) = ∅) ∧ (𝐵𝑋) = 1o) ∧ (𝑥 ∈ On ∧ ∀𝑦𝑥 (𝐴𝑦) = (𝐵𝑦))) → ((𝐴𝑋){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐵𝑋) ↔ ∅{⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩}1o))
119117, 118mtbiri 327 . . . . . . . . 9 (((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐴𝑋) = ∅) ∧ (𝐵𝑋) = 1o) ∧ (𝑥 ∈ On ∧ ∀𝑦𝑥 (𝐴𝑦) = (𝐵𝑦))) → ¬ (𝐴𝑋){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐵𝑋))
120 fveq2 6907 . . . . . . . . . . 11 (𝑥 = 𝑋 → (𝐴𝑥) = (𝐴𝑋))
121 fveq2 6907 . . . . . . . . . . 11 (𝑥 = 𝑋 → (𝐵𝑥) = (𝐵𝑋))
122120, 121breq12d 5161 . . . . . . . . . 10 (𝑥 = 𝑋 → ((𝐴𝑥){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐵𝑥) ↔ (𝐴𝑋){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐵𝑋)))
123122notbid 318 . . . . . . . . 9 (𝑥 = 𝑋 → (¬ (𝐴𝑥){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐵𝑥) ↔ ¬ (𝐴𝑋){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐵𝑋)))
124119, 123syl5ibrcom 247 . . . . . . . 8 (((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐴𝑋) = ∅) ∧ (𝐵𝑋) = 1o) ∧ (𝑥 ∈ On ∧ ∀𝑦𝑥 (𝐴𝑦) = (𝐵𝑦))) → (𝑥 = 𝑋 → ¬ (𝐴𝑥){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐵𝑥)))
125107, 124jaod 859 . . . . . . 7 (((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐴𝑋) = ∅) ∧ (𝐵𝑋) = 1o) ∧ (𝑥 ∈ On ∧ ∀𝑦𝑥 (𝐴𝑦) = (𝐵𝑦))) → ((𝑥𝑋𝑥 = 𝑋) → ¬ (𝐴𝑥){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐵𝑥)))
12669, 125sylbid 240 . . . . . 6 (((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐴𝑋) = ∅) ∧ (𝐵𝑋) = 1o) ∧ (𝑥 ∈ On ∧ ∀𝑦𝑥 (𝐴𝑦) = (𝐵𝑦))) → (𝑥𝑋 → ¬ (𝐴𝑥){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐵𝑥)))
12767, 126mpd 15 . . . . 5 (((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐴𝑋) = ∅) ∧ (𝐵𝑋) = 1o) ∧ (𝑥 ∈ On ∧ ∀𝑦𝑥 (𝐴𝑦) = (𝐵𝑦))) → ¬ (𝐴𝑥){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐵𝑥))
128127expr 456 . . . 4 (((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐴𝑋) = ∅) ∧ (𝐵𝑋) = 1o) ∧ 𝑥 ∈ On) → (∀𝑦𝑥 (𝐴𝑦) = (𝐵𝑦) → ¬ (𝐴𝑥){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐵𝑥)))
129128ralrimiva 3144 . . 3 ((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐴𝑋) = ∅) ∧ (𝐵𝑋) = 1o) → ∀𝑥 ∈ On (∀𝑦𝑥 (𝐴𝑦) = (𝐵𝑦) → ¬ (𝐴𝑥){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐵𝑥)))
13040, 129mtand 816 . 2 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐴𝑋) = ∅) → ¬ (𝐵𝑋) = 1o)
131 nofv 27717 . . . 4 (𝐵 No → ((𝐵𝑋) = ∅ ∨ (𝐵𝑋) = 1o ∨ (𝐵𝑋) = 2o))
13232, 131syl 17 . . 3 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐴𝑋) = ∅) → ((𝐵𝑋) = ∅ ∨ (𝐵𝑋) = 1o ∨ (𝐵𝑋) = 2o))
133 3orrot 1091 . . . 4 (((𝐵𝑋) = ∅ ∨ (𝐵𝑋) = 1o ∨ (𝐵𝑋) = 2o) ↔ ((𝐵𝑋) = 1o ∨ (𝐵𝑋) = 2o ∨ (𝐵𝑋) = ∅))
134 3orrot 1091 . . . 4 (((𝐵𝑋) = 1o ∨ (𝐵𝑋) = 2o ∨ (𝐵𝑋) = ∅) ↔ ((𝐵𝑋) = 2o ∨ (𝐵𝑋) = ∅ ∨ (𝐵𝑋) = 1o))
135133, 134bitri 275 . . 3 (((𝐵𝑋) = ∅ ∨ (𝐵𝑋) = 1o ∨ (𝐵𝑋) = 2o) ↔ ((𝐵𝑋) = 2o ∨ (𝐵𝑋) = ∅ ∨ (𝐵𝑋) = 1o))
136132, 135sylib 218 . 2 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐴𝑋) = ∅) → ((𝐵𝑋) = 2o ∨ (𝐵𝑋) = ∅ ∨ (𝐵𝑋) = 1o))
13731, 130, 136ecase23d 1472 1 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐴𝑋) = ∅) → (𝐵𝑋) = 2o)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3o 1085  w3a 1086   = wceq 1537  wcel 2106  wral 3059  wrex 3068  wss 3963  c0 4339  {ctp 4635  cop 4637   class class class wbr 5148   Or wor 5596  dom cdm 5689  cres 5691  Rel wrel 5694  Oncon0 6386  suc csuc 6388  Fun wfun 6557  cfv 6563  1oc1o 8498  2oc2o 8499   No csur 27699   <s cslt 27700
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-tp 4636  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-ord 6389  df-on 6390  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-fv 6571  df-1o 8505  df-2o 8506  df-no 27702  df-slt 27703
This theorem is referenced by:  nosupbnd1lem4  27771
  Copyright terms: Public domain W3C validator