Step | Hyp | Ref
| Expression |
1 | | breq2 5078 |
. . 3
⊢ (𝑏 = 𝑈 → (𝑍 <s 𝑏 ↔ 𝑍 <s 𝑈)) |
2 | | simp3 1137 |
. . 3
⊢ (((𝑈 ∈ 𝐵 ∧ ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No )
∧ ∀𝑏 ∈
𝐵 𝑍 <s 𝑏) → ∀𝑏 ∈ 𝐵 𝑍 <s 𝑏) |
3 | | simp1l 1196 |
. . 3
⊢ (((𝑈 ∈ 𝐵 ∧ ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No )
∧ ∀𝑏 ∈
𝐵 𝑍 <s 𝑏) → 𝑈 ∈ 𝐵) |
4 | 1, 2, 3 | rspcdva 3562 |
. 2
⊢ (((𝑈 ∈ 𝐵 ∧ ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No )
∧ ∀𝑏 ∈
𝐵 𝑍 <s 𝑏) → 𝑍 <s 𝑈) |
5 | | simpl21 1250 |
. . . . . . . . . . 11
⊢ ((((𝑈 ∈ 𝐵 ∧ ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No )
∧ ∀𝑏 ∈
𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) → 𝐵 ⊆ No
) |
6 | | simpl1l 1223 |
. . . . . . . . . . 11
⊢ ((((𝑈 ∈ 𝐵 ∧ ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No )
∧ ∀𝑏 ∈
𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) → 𝑈 ∈ 𝐵) |
7 | 5, 6 | sseldd 3922 |
. . . . . . . . . 10
⊢ ((((𝑈 ∈ 𝐵 ∧ ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No )
∧ ∀𝑏 ∈
𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) → 𝑈 ∈ No
) |
8 | | nodmon 33853 |
. . . . . . . . . 10
⊢ (𝑈 ∈
No → dom 𝑈
∈ On) |
9 | 7, 8 | syl 17 |
. . . . . . . . 9
⊢ ((((𝑈 ∈ 𝐵 ∧ ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No )
∧ ∀𝑏 ∈
𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) → dom 𝑈 ∈ On) |
10 | | onelon 6291 |
. . . . . . . . 9
⊢ ((dom
𝑈 ∈ On ∧ ∩ {𝑥
∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} ∈ dom 𝑈) → ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} ∈ On) |
11 | 9, 10 | sylan 580 |
. . . . . . . 8
⊢
(((((𝑈 ∈ 𝐵 ∧ ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No )
∧ ∀𝑏 ∈
𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) ∧ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} ∈ dom 𝑈) → ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} ∈ On) |
12 | | simpr 485 |
. . . . . . . . . . . 12
⊢
((((((𝑈 ∈ 𝐵 ∧ ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No )
∧ ∀𝑏 ∈
𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) ∧ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} ∈ dom 𝑈) ∧ 𝑞 ∈ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)}) → 𝑞 ∈ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)}) |
13 | | simplr 766 |
. . . . . . . . . . . 12
⊢
((((((𝑈 ∈ 𝐵 ∧ ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No )
∧ ∀𝑏 ∈
𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) ∧ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} ∈ dom 𝑈) ∧ 𝑞 ∈ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)}) → ∩
{𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} ∈ dom 𝑈) |
14 | 9 | adantr 481 |
. . . . . . . . . . . . . 14
⊢
(((((𝑈 ∈ 𝐵 ∧ ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No )
∧ ∀𝑏 ∈
𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) ∧ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} ∈ dom 𝑈) → dom 𝑈 ∈ On) |
15 | 14 | adantr 481 |
. . . . . . . . . . . . 13
⊢
((((((𝑈 ∈ 𝐵 ∧ ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No )
∧ ∀𝑏 ∈
𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) ∧ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} ∈ dom 𝑈) ∧ 𝑞 ∈ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)}) → dom 𝑈 ∈ On) |
16 | | ontr1 6312 |
. . . . . . . . . . . . 13
⊢ (dom
𝑈 ∈ On → ((𝑞 ∈ ∩ {𝑥
∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} ∧ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} ∈ dom 𝑈) → 𝑞 ∈ dom 𝑈)) |
17 | 15, 16 | syl 17 |
. . . . . . . . . . . 12
⊢
((((((𝑈 ∈ 𝐵 ∧ ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No )
∧ ∀𝑏 ∈
𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) ∧ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} ∈ dom 𝑈) ∧ 𝑞 ∈ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)}) → ((𝑞 ∈ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} ∧ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} ∈ dom 𝑈) → 𝑞 ∈ dom 𝑈)) |
18 | 12, 13, 17 | mp2and 696 |
. . . . . . . . . . 11
⊢
((((((𝑈 ∈ 𝐵 ∧ ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No )
∧ ∀𝑏 ∈
𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) ∧ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} ∈ dom 𝑈) ∧ 𝑞 ∈ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)}) → 𝑞 ∈ dom 𝑈) |
19 | 18 | fvresd 6794 |
. . . . . . . . . 10
⊢
((((((𝑈 ∈ 𝐵 ∧ ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No )
∧ ∀𝑏 ∈
𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) ∧ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} ∈ dom 𝑈) ∧ 𝑞 ∈ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)}) → ((𝑍 ↾ dom 𝑈)‘𝑞) = (𝑍‘𝑞)) |
20 | | onelon 6291 |
. . . . . . . . . . . . 13
⊢ ((∩ {𝑥
∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} ∈ On ∧ 𝑞 ∈ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)}) → 𝑞 ∈ On) |
21 | 11, 20 | sylan 580 |
. . . . . . . . . . . 12
⊢
((((((𝑈 ∈ 𝐵 ∧ ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No )
∧ ∀𝑏 ∈
𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) ∧ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} ∈ dom 𝑈) ∧ 𝑞 ∈ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)}) → 𝑞 ∈ On) |
22 | | fveq2 6774 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = 𝑞 → (𝑈‘𝑥) = (𝑈‘𝑞)) |
23 | | fveq2 6774 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = 𝑞 → (𝑍‘𝑥) = (𝑍‘𝑞)) |
24 | 22, 23 | neeq12d 3005 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑞 → ((𝑈‘𝑥) ≠ (𝑍‘𝑥) ↔ (𝑈‘𝑞) ≠ (𝑍‘𝑞))) |
25 | 24 | onnminsb 7649 |
. . . . . . . . . . . 12
⊢ (𝑞 ∈ On → (𝑞 ∈ ∩ {𝑥
∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} → ¬ (𝑈‘𝑞) ≠ (𝑍‘𝑞))) |
26 | 21, 12, 25 | sylc 65 |
. . . . . . . . . . 11
⊢
((((((𝑈 ∈ 𝐵 ∧ ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No )
∧ ∀𝑏 ∈
𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) ∧ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} ∈ dom 𝑈) ∧ 𝑞 ∈ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)}) → ¬ (𝑈‘𝑞) ≠ (𝑍‘𝑞)) |
27 | | df-ne 2944 |
. . . . . . . . . . . 12
⊢ ((𝑈‘𝑞) ≠ (𝑍‘𝑞) ↔ ¬ (𝑈‘𝑞) = (𝑍‘𝑞)) |
28 | 27 | con2bii 358 |
. . . . . . . . . . 11
⊢ ((𝑈‘𝑞) = (𝑍‘𝑞) ↔ ¬ (𝑈‘𝑞) ≠ (𝑍‘𝑞)) |
29 | 26, 28 | sylibr 233 |
. . . . . . . . . 10
⊢
((((((𝑈 ∈ 𝐵 ∧ ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No )
∧ ∀𝑏 ∈
𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) ∧ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} ∈ dom 𝑈) ∧ 𝑞 ∈ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)}) → (𝑈‘𝑞) = (𝑍‘𝑞)) |
30 | 19, 29 | eqtr4d 2781 |
. . . . . . . . 9
⊢
((((((𝑈 ∈ 𝐵 ∧ ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No )
∧ ∀𝑏 ∈
𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) ∧ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} ∈ dom 𝑈) ∧ 𝑞 ∈ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)}) → ((𝑍 ↾ dom 𝑈)‘𝑞) = (𝑈‘𝑞)) |
31 | 30 | ralrimiva 3103 |
. . . . . . . 8
⊢
(((((𝑈 ∈ 𝐵 ∧ ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No )
∧ ∀𝑏 ∈
𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) ∧ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} ∈ dom 𝑈) → ∀𝑞 ∈ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} ((𝑍 ↾ dom 𝑈)‘𝑞) = (𝑈‘𝑞)) |
32 | | simpr 485 |
. . . . . . . . . 10
⊢
(((((𝑈 ∈ 𝐵 ∧ ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No )
∧ ∀𝑏 ∈
𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) ∧ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} ∈ dom 𝑈) → ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} ∈ dom 𝑈) |
33 | 32 | fvresd 6794 |
. . . . . . . . 9
⊢
(((((𝑈 ∈ 𝐵 ∧ ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No )
∧ ∀𝑏 ∈
𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) ∧ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} ∈ dom 𝑈) → ((𝑍 ↾ dom 𝑈)‘∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)}) = (𝑍‘∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)})) |
34 | | simplr 766 |
. . . . . . . . . . 11
⊢
(((((𝑈 ∈ 𝐵 ∧ ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No )
∧ ∀𝑏 ∈
𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) ∧ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} ∈ dom 𝑈) → 𝑍 <s 𝑈) |
35 | | simpl23 1252 |
. . . . . . . . . . . 12
⊢ ((((𝑈 ∈ 𝐵 ∧ ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No )
∧ ∀𝑏 ∈
𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) → 𝑍 ∈ No
) |
36 | 7 | adantr 481 |
. . . . . . . . . . . 12
⊢
(((((𝑈 ∈ 𝐵 ∧ ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No )
∧ ∀𝑏 ∈
𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) ∧ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} ∈ dom 𝑈) → 𝑈 ∈ No
) |
37 | | sltval2 33859 |
. . . . . . . . . . . 12
⊢ ((𝑍 ∈
No ∧ 𝑈 ∈
No ) → (𝑍 <s 𝑈 ↔ (𝑍‘∩ {𝑥 ∈ On ∣ (𝑍‘𝑥) ≠ (𝑈‘𝑥)}){〈1o, ∅〉,
〈1o, 2o〉, 〈∅, 2o〉}
(𝑈‘∩ {𝑥
∈ On ∣ (𝑍‘𝑥) ≠ (𝑈‘𝑥)}))) |
38 | 35, 36, 37 | syl2an2r 682 |
. . . . . . . . . . 11
⊢
(((((𝑈 ∈ 𝐵 ∧ ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No )
∧ ∀𝑏 ∈
𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) ∧ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} ∈ dom 𝑈) → (𝑍 <s 𝑈 ↔ (𝑍‘∩ {𝑥 ∈ On ∣ (𝑍‘𝑥) ≠ (𝑈‘𝑥)}){〈1o, ∅〉,
〈1o, 2o〉, 〈∅, 2o〉}
(𝑈‘∩ {𝑥
∈ On ∣ (𝑍‘𝑥) ≠ (𝑈‘𝑥)}))) |
39 | 34, 38 | mpbid 231 |
. . . . . . . . . 10
⊢
(((((𝑈 ∈ 𝐵 ∧ ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No )
∧ ∀𝑏 ∈
𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) ∧ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} ∈ dom 𝑈) → (𝑍‘∩ {𝑥 ∈ On ∣ (𝑍‘𝑥) ≠ (𝑈‘𝑥)}){〈1o, ∅〉,
〈1o, 2o〉, 〈∅, 2o〉}
(𝑈‘∩ {𝑥
∈ On ∣ (𝑍‘𝑥) ≠ (𝑈‘𝑥)})) |
40 | | necom 2997 |
. . . . . . . . . . . . 13
⊢ ((𝑈‘𝑥) ≠ (𝑍‘𝑥) ↔ (𝑍‘𝑥) ≠ (𝑈‘𝑥)) |
41 | 40 | rabbii 3408 |
. . . . . . . . . . . 12
⊢ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} = {𝑥 ∈ On ∣ (𝑍‘𝑥) ≠ (𝑈‘𝑥)} |
42 | 41 | inteqi 4883 |
. . . . . . . . . . 11
⊢ ∩ {𝑥
∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} = ∩ {𝑥 ∈ On ∣ (𝑍‘𝑥) ≠ (𝑈‘𝑥)} |
43 | 42 | fveq2i 6777 |
. . . . . . . . . 10
⊢ (𝑍‘∩ {𝑥
∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)}) = (𝑍‘∩ {𝑥 ∈ On ∣ (𝑍‘𝑥) ≠ (𝑈‘𝑥)}) |
44 | 42 | fveq2i 6777 |
. . . . . . . . . 10
⊢ (𝑈‘∩ {𝑥
∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)}) = (𝑈‘∩ {𝑥 ∈ On ∣ (𝑍‘𝑥) ≠ (𝑈‘𝑥)}) |
45 | 39, 43, 44 | 3brtr4g 5108 |
. . . . . . . . 9
⊢
(((((𝑈 ∈ 𝐵 ∧ ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No )
∧ ∀𝑏 ∈
𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) ∧ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} ∈ dom 𝑈) → (𝑍‘∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)}){〈1o, ∅〉,
〈1o, 2o〉, 〈∅, 2o〉}
(𝑈‘∩ {𝑥
∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)})) |
46 | 33, 45 | eqbrtrd 5096 |
. . . . . . . 8
⊢
(((((𝑈 ∈ 𝐵 ∧ ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No )
∧ ∀𝑏 ∈
𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) ∧ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} ∈ dom 𝑈) → ((𝑍 ↾ dom 𝑈)‘∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)}){〈1o, ∅〉,
〈1o, 2o〉, 〈∅, 2o〉}
(𝑈‘∩ {𝑥
∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)})) |
47 | | raleq 3342 |
. . . . . . . . . 10
⊢ (𝑝 = ∩
{𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} → (∀𝑞 ∈ 𝑝 ((𝑍 ↾ dom 𝑈)‘𝑞) = (𝑈‘𝑞) ↔ ∀𝑞 ∈ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} ((𝑍 ↾ dom 𝑈)‘𝑞) = (𝑈‘𝑞))) |
48 | | fveq2 6774 |
. . . . . . . . . . 11
⊢ (𝑝 = ∩
{𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} → ((𝑍 ↾ dom 𝑈)‘𝑝) = ((𝑍 ↾ dom 𝑈)‘∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)})) |
49 | | fveq2 6774 |
. . . . . . . . . . 11
⊢ (𝑝 = ∩
{𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} → (𝑈‘𝑝) = (𝑈‘∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)})) |
50 | 48, 49 | breq12d 5087 |
. . . . . . . . . 10
⊢ (𝑝 = ∩
{𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} → (((𝑍 ↾ dom 𝑈)‘𝑝){〈1o, ∅〉,
〈1o, 2o〉, 〈∅, 2o〉}
(𝑈‘𝑝) ↔ ((𝑍 ↾ dom 𝑈)‘∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)}){〈1o, ∅〉,
〈1o, 2o〉, 〈∅, 2o〉}
(𝑈‘∩ {𝑥
∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)}))) |
51 | 47, 50 | anbi12d 631 |
. . . . . . . . 9
⊢ (𝑝 = ∩
{𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} → ((∀𝑞 ∈ 𝑝 ((𝑍 ↾ dom 𝑈)‘𝑞) = (𝑈‘𝑞) ∧ ((𝑍 ↾ dom 𝑈)‘𝑝){〈1o, ∅〉,
〈1o, 2o〉, 〈∅, 2o〉}
(𝑈‘𝑝)) ↔ (∀𝑞 ∈ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} ((𝑍 ↾ dom 𝑈)‘𝑞) = (𝑈‘𝑞) ∧ ((𝑍 ↾ dom 𝑈)‘∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)}){〈1o, ∅〉,
〈1o, 2o〉, 〈∅, 2o〉}
(𝑈‘∩ {𝑥
∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)})))) |
52 | 51 | rspcev 3561 |
. . . . . . . 8
⊢ ((∩ {𝑥
∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} ∈ On ∧ (∀𝑞 ∈ ∩ {𝑥
∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} ((𝑍 ↾ dom 𝑈)‘𝑞) = (𝑈‘𝑞) ∧ ((𝑍 ↾ dom 𝑈)‘∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)}){〈1o, ∅〉,
〈1o, 2o〉, 〈∅, 2o〉}
(𝑈‘∩ {𝑥
∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)}))) → ∃𝑝 ∈ On (∀𝑞 ∈ 𝑝 ((𝑍 ↾ dom 𝑈)‘𝑞) = (𝑈‘𝑞) ∧ ((𝑍 ↾ dom 𝑈)‘𝑝){〈1o, ∅〉,
〈1o, 2o〉, 〈∅, 2o〉}
(𝑈‘𝑝))) |
53 | 11, 31, 46, 52 | syl12anc 834 |
. . . . . . 7
⊢
(((((𝑈 ∈ 𝐵 ∧ ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No )
∧ ∀𝑏 ∈
𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) ∧ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} ∈ dom 𝑈) → ∃𝑝 ∈ On (∀𝑞 ∈ 𝑝 ((𝑍 ↾ dom 𝑈)‘𝑞) = (𝑈‘𝑞) ∧ ((𝑍 ↾ dom 𝑈)‘𝑝){〈1o, ∅〉,
〈1o, 2o〉, 〈∅, 2o〉}
(𝑈‘𝑝))) |
54 | | noreson 33863 |
. . . . . . . . 9
⊢ ((𝑍 ∈
No ∧ dom 𝑈
∈ On) → (𝑍
↾ dom 𝑈) ∈ No ) |
55 | 35, 9, 54 | syl2anc 584 |
. . . . . . . 8
⊢ ((((𝑈 ∈ 𝐵 ∧ ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No )
∧ ∀𝑏 ∈
𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) → (𝑍 ↾ dom 𝑈) ∈ No
) |
56 | | sltval 33850 |
. . . . . . . 8
⊢ (((𝑍 ↾ dom 𝑈) ∈ No
∧ 𝑈 ∈ No ) → ((𝑍 ↾ dom 𝑈) <s 𝑈 ↔ ∃𝑝 ∈ On (∀𝑞 ∈ 𝑝 ((𝑍 ↾ dom 𝑈)‘𝑞) = (𝑈‘𝑞) ∧ ((𝑍 ↾ dom 𝑈)‘𝑝){〈1o, ∅〉,
〈1o, 2o〉, 〈∅, 2o〉}
(𝑈‘𝑝)))) |
57 | 55, 36, 56 | syl2an2r 682 |
. . . . . . 7
⊢
(((((𝑈 ∈ 𝐵 ∧ ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No )
∧ ∀𝑏 ∈
𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) ∧ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} ∈ dom 𝑈) → ((𝑍 ↾ dom 𝑈) <s 𝑈 ↔ ∃𝑝 ∈ On (∀𝑞 ∈ 𝑝 ((𝑍 ↾ dom 𝑈)‘𝑞) = (𝑈‘𝑞) ∧ ((𝑍 ↾ dom 𝑈)‘𝑝){〈1o, ∅〉,
〈1o, 2o〉, 〈∅, 2o〉}
(𝑈‘𝑝)))) |
58 | 53, 57 | mpbird 256 |
. . . . . 6
⊢
(((((𝑈 ∈ 𝐵 ∧ ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No )
∧ ∀𝑏 ∈
𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) ∧ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} ∈ dom 𝑈) → (𝑍 ↾ dom 𝑈) <s 𝑈) |
59 | | sssucid 6343 |
. . . . . . 7
⊢ dom 𝑈 ⊆ suc dom 𝑈 |
60 | | resabs1 5921 |
. . . . . . 7
⊢ (dom
𝑈 ⊆ suc dom 𝑈 → ((𝑍 ↾ suc dom 𝑈) ↾ dom 𝑈) = (𝑍 ↾ dom 𝑈)) |
61 | 59, 60 | mp1i 13 |
. . . . . 6
⊢
(((((𝑈 ∈ 𝐵 ∧ ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No )
∧ ∀𝑏 ∈
𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) ∧ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} ∈ dom 𝑈) → ((𝑍 ↾ suc dom 𝑈) ↾ dom 𝑈) = (𝑍 ↾ dom 𝑈)) |
62 | | resundir 5906 |
. . . . . . 7
⊢ ((𝑈 ∪ {〈dom 𝑈, 1o〉}) ↾
dom 𝑈) = ((𝑈 ↾ dom 𝑈) ∪ ({〈dom 𝑈, 1o〉} ↾ dom 𝑈)) |
63 | | nofun 33852 |
. . . . . . . . . . . . 13
⊢ (𝑈 ∈
No → Fun 𝑈) |
64 | 7, 63 | syl 17 |
. . . . . . . . . . . 12
⊢ ((((𝑈 ∈ 𝐵 ∧ ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No )
∧ ∀𝑏 ∈
𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) → Fun 𝑈) |
65 | | funrel 6451 |
. . . . . . . . . . . 12
⊢ (Fun
𝑈 → Rel 𝑈) |
66 | 64, 65 | syl 17 |
. . . . . . . . . . 11
⊢ ((((𝑈 ∈ 𝐵 ∧ ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No )
∧ ∀𝑏 ∈
𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) → Rel 𝑈) |
67 | 66 | adantr 481 |
. . . . . . . . . 10
⊢
(((((𝑈 ∈ 𝐵 ∧ ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No )
∧ ∀𝑏 ∈
𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) ∧ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} ∈ dom 𝑈) → Rel 𝑈) |
68 | | resdm 5936 |
. . . . . . . . . 10
⊢ (Rel
𝑈 → (𝑈 ↾ dom 𝑈) = 𝑈) |
69 | 67, 68 | syl 17 |
. . . . . . . . 9
⊢
(((((𝑈 ∈ 𝐵 ∧ ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No )
∧ ∀𝑏 ∈
𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) ∧ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} ∈ dom 𝑈) → (𝑈 ↾ dom 𝑈) = 𝑈) |
70 | | nodmord 33856 |
. . . . . . . . . . . . 13
⊢ (𝑈 ∈
No → Ord dom 𝑈) |
71 | 7, 70 | syl 17 |
. . . . . . . . . . . 12
⊢ ((((𝑈 ∈ 𝐵 ∧ ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No )
∧ ∀𝑏 ∈
𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) → Ord dom 𝑈) |
72 | 71 | adantr 481 |
. . . . . . . . . . 11
⊢
(((((𝑈 ∈ 𝐵 ∧ ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No )
∧ ∀𝑏 ∈
𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) ∧ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} ∈ dom 𝑈) → Ord dom 𝑈) |
73 | | ordirr 6284 |
. . . . . . . . . . 11
⊢ (Ord dom
𝑈 → ¬ dom 𝑈 ∈ dom 𝑈) |
74 | 72, 73 | syl 17 |
. . . . . . . . . 10
⊢
(((((𝑈 ∈ 𝐵 ∧ ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No )
∧ ∀𝑏 ∈
𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) ∧ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} ∈ dom 𝑈) → ¬ dom 𝑈 ∈ dom 𝑈) |
75 | | 1oex 8307 |
. . . . . . . . . . 11
⊢
1o ∈ V |
76 | 75 | snres0 33675 |
. . . . . . . . . 10
⊢
(({〈dom 𝑈,
1o〉} ↾ dom 𝑈) = ∅ ↔ ¬ dom 𝑈 ∈ dom 𝑈) |
77 | 74, 76 | sylibr 233 |
. . . . . . . . 9
⊢
(((((𝑈 ∈ 𝐵 ∧ ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No )
∧ ∀𝑏 ∈
𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) ∧ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} ∈ dom 𝑈) → ({〈dom 𝑈, 1o〉} ↾ dom 𝑈) = ∅) |
78 | 69, 77 | uneq12d 4098 |
. . . . . . . 8
⊢
(((((𝑈 ∈ 𝐵 ∧ ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No )
∧ ∀𝑏 ∈
𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) ∧ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} ∈ dom 𝑈) → ((𝑈 ↾ dom 𝑈) ∪ ({〈dom 𝑈, 1o〉} ↾ dom 𝑈)) = (𝑈 ∪ ∅)) |
79 | | un0 4324 |
. . . . . . . 8
⊢ (𝑈 ∪ ∅) = 𝑈 |
80 | 78, 79 | eqtrdi 2794 |
. . . . . . 7
⊢
(((((𝑈 ∈ 𝐵 ∧ ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No )
∧ ∀𝑏 ∈
𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) ∧ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} ∈ dom 𝑈) → ((𝑈 ↾ dom 𝑈) ∪ ({〈dom 𝑈, 1o〉} ↾ dom 𝑈)) = 𝑈) |
81 | 62, 80 | eqtrid 2790 |
. . . . . 6
⊢
(((((𝑈 ∈ 𝐵 ∧ ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No )
∧ ∀𝑏 ∈
𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) ∧ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} ∈ dom 𝑈) → ((𝑈 ∪ {〈dom 𝑈, 1o〉}) ↾ dom 𝑈) = 𝑈) |
82 | 58, 61, 81 | 3brtr4d 5106 |
. . . . 5
⊢
(((((𝑈 ∈ 𝐵 ∧ ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No )
∧ ∀𝑏 ∈
𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) ∧ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} ∈ dom 𝑈) → ((𝑍 ↾ suc dom 𝑈) ↾ dom 𝑈) <s ((𝑈 ∪ {〈dom 𝑈, 1o〉}) ↾ dom 𝑈)) |
83 | | sucelon 7664 |
. . . . . . . . 9
⊢ (dom
𝑈 ∈ On ↔ suc dom
𝑈 ∈
On) |
84 | 9, 83 | sylib 217 |
. . . . . . . 8
⊢ ((((𝑈 ∈ 𝐵 ∧ ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No )
∧ ∀𝑏 ∈
𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) → suc dom 𝑈 ∈ On) |
85 | | noreson 33863 |
. . . . . . . 8
⊢ ((𝑍 ∈
No ∧ suc dom 𝑈
∈ On) → (𝑍
↾ suc dom 𝑈) ∈
No ) |
86 | 35, 84, 85 | syl2anc 584 |
. . . . . . 7
⊢ ((((𝑈 ∈ 𝐵 ∧ ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No )
∧ ∀𝑏 ∈
𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) → (𝑍 ↾ suc dom 𝑈) ∈ No
) |
87 | 86 | adantr 481 |
. . . . . 6
⊢
(((((𝑈 ∈ 𝐵 ∧ ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No )
∧ ∀𝑏 ∈
𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) ∧ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} ∈ dom 𝑈) → (𝑍 ↾ suc dom 𝑈) ∈ No
) |
88 | 75 | prid1 4698 |
. . . . . . . . 9
⊢
1o ∈ {1o, 2o} |
89 | 88 | noextend 33869 |
. . . . . . . 8
⊢ (𝑈 ∈
No → (𝑈 ∪
{〈dom 𝑈,
1o〉}) ∈ No
) |
90 | 7, 89 | syl 17 |
. . . . . . 7
⊢ ((((𝑈 ∈ 𝐵 ∧ ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No )
∧ ∀𝑏 ∈
𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) → (𝑈 ∪ {〈dom 𝑈, 1o〉}) ∈ No ) |
91 | 90 | adantr 481 |
. . . . . 6
⊢
(((((𝑈 ∈ 𝐵 ∧ ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No )
∧ ∀𝑏 ∈
𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) ∧ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} ∈ dom 𝑈) → (𝑈 ∪ {〈dom 𝑈, 1o〉}) ∈ No ) |
92 | | sltres 33865 |
. . . . . 6
⊢ (((𝑍 ↾ suc dom 𝑈) ∈
No ∧ (𝑈 ∪
{〈dom 𝑈,
1o〉}) ∈ No ∧ dom 𝑈 ∈ On) → (((𝑍 ↾ suc dom 𝑈) ↾ dom 𝑈) <s ((𝑈 ∪ {〈dom 𝑈, 1o〉}) ↾ dom 𝑈) → (𝑍 ↾ suc dom 𝑈) <s (𝑈 ∪ {〈dom 𝑈, 1o〉}))) |
93 | 87, 91, 14, 92 | syl3anc 1370 |
. . . . 5
⊢
(((((𝑈 ∈ 𝐵 ∧ ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No )
∧ ∀𝑏 ∈
𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) ∧ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} ∈ dom 𝑈) → (((𝑍 ↾ suc dom 𝑈) ↾ dom 𝑈) <s ((𝑈 ∪ {〈dom 𝑈, 1o〉}) ↾ dom 𝑈) → (𝑍 ↾ suc dom 𝑈) <s (𝑈 ∪ {〈dom 𝑈, 1o〉}))) |
94 | 82, 93 | mpd 15 |
. . . 4
⊢
(((((𝑈 ∈ 𝐵 ∧ ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No )
∧ ∀𝑏 ∈
𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) ∧ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} ∈ dom 𝑈) → (𝑍 ↾ suc dom 𝑈) <s (𝑈 ∪ {〈dom 𝑈, 1o〉})) |
95 | | sltso 33879 |
. . . . . 6
⊢ <s Or
No |
96 | | soasym 5534 |
. . . . . 6
⊢ (( <s
Or No ∧ ((𝑍 ↾ suc dom 𝑈) ∈ No
∧ (𝑈 ∪ {〈dom
𝑈, 1o〉})
∈ No )) → ((𝑍 ↾ suc dom 𝑈) <s (𝑈 ∪ {〈dom 𝑈, 1o〉}) → ¬ (𝑈 ∪ {〈dom 𝑈, 1o〉}) <s
(𝑍 ↾ suc dom 𝑈))) |
97 | 95, 96 | mpan 687 |
. . . . 5
⊢ (((𝑍 ↾ suc dom 𝑈) ∈
No ∧ (𝑈 ∪
{〈dom 𝑈,
1o〉}) ∈ No ) → ((𝑍 ↾ suc dom 𝑈) <s (𝑈 ∪ {〈dom 𝑈, 1o〉}) → ¬ (𝑈 ∪ {〈dom 𝑈, 1o〉}) <s
(𝑍 ↾ suc dom 𝑈))) |
98 | 86, 91, 97 | syl2an2r 682 |
. . . 4
⊢
(((((𝑈 ∈ 𝐵 ∧ ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No )
∧ ∀𝑏 ∈
𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) ∧ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} ∈ dom 𝑈) → ((𝑍 ↾ suc dom 𝑈) <s (𝑈 ∪ {〈dom 𝑈, 1o〉}) → ¬ (𝑈 ∪ {〈dom 𝑈, 1o〉}) <s
(𝑍 ↾ suc dom 𝑈))) |
99 | 94, 98 | mpd 15 |
. . 3
⊢
(((((𝑈 ∈ 𝐵 ∧ ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No )
∧ ∀𝑏 ∈
𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) ∧ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} ∈ dom 𝑈) → ¬ (𝑈 ∪ {〈dom 𝑈, 1o〉}) <s (𝑍 ↾ suc dom 𝑈)) |
100 | | sonr 5526 |
. . . . . 6
⊢ (( <s
Or No ∧ (𝑈 ∪ {〈dom 𝑈, 1o〉}) ∈ No ) → ¬ (𝑈 ∪ {〈dom 𝑈, 1o〉}) <s (𝑈 ∪ {〈dom 𝑈,
1o〉})) |
101 | 95, 90, 100 | sylancr 587 |
. . . . 5
⊢ ((((𝑈 ∈ 𝐵 ∧ ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No )
∧ ∀𝑏 ∈
𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) → ¬ (𝑈 ∪ {〈dom 𝑈, 1o〉}) <s (𝑈 ∪ {〈dom 𝑈,
1o〉})) |
102 | 101 | adantr 481 |
. . . 4
⊢
(((((𝑈 ∈ 𝐵 ∧ ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No )
∧ ∀𝑏 ∈
𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) ∧ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} = dom 𝑈) → ¬ (𝑈 ∪ {〈dom 𝑈, 1o〉}) <s (𝑈 ∪ {〈dom 𝑈,
1o〉})) |
103 | | df-suc 6272 |
. . . . . . . 8
⊢ suc dom
𝑈 = (dom 𝑈 ∪ {dom 𝑈}) |
104 | 103 | reseq2i 5888 |
. . . . . . 7
⊢ (𝑍 ↾ suc dom 𝑈) = (𝑍 ↾ (dom 𝑈 ∪ {dom 𝑈})) |
105 | | resundi 5905 |
. . . . . . 7
⊢ (𝑍 ↾ (dom 𝑈 ∪ {dom 𝑈})) = ((𝑍 ↾ dom 𝑈) ∪ (𝑍 ↾ {dom 𝑈})) |
106 | 104, 105 | eqtri 2766 |
. . . . . 6
⊢ (𝑍 ↾ suc dom 𝑈) = ((𝑍 ↾ dom 𝑈) ∪ (𝑍 ↾ {dom 𝑈})) |
107 | | dmres 5913 |
. . . . . . . . 9
⊢ dom
(𝑍 ↾ dom 𝑈) = (dom 𝑈 ∩ dom 𝑍) |
108 | 42 | eqeq1i 2743 |
. . . . . . . . . . . . 13
⊢ (∩ {𝑥
∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} = dom 𝑈 ↔ ∩ {𝑥 ∈ On ∣ (𝑍‘𝑥) ≠ (𝑈‘𝑥)} = dom 𝑈) |
109 | 108 | biimpi 215 |
. . . . . . . . . . . 12
⊢ (∩ {𝑥
∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} = dom 𝑈 → ∩ {𝑥 ∈ On ∣ (𝑍‘𝑥) ≠ (𝑈‘𝑥)} = dom 𝑈) |
110 | 109 | adantl 482 |
. . . . . . . . . . 11
⊢
(((((𝑈 ∈ 𝐵 ∧ ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No )
∧ ∀𝑏 ∈
𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) ∧ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} = dom 𝑈) → ∩ {𝑥 ∈ On ∣ (𝑍‘𝑥) ≠ (𝑈‘𝑥)} = dom 𝑈) |
111 | 35 | adantr 481 |
. . . . . . . . . . . 12
⊢
(((((𝑈 ∈ 𝐵 ∧ ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No )
∧ ∀𝑏 ∈
𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) ∧ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} = dom 𝑈) → 𝑍 ∈ No
) |
112 | 7 | adantr 481 |
. . . . . . . . . . . 12
⊢
(((((𝑈 ∈ 𝐵 ∧ ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No )
∧ ∀𝑏 ∈
𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) ∧ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} = dom 𝑈) → 𝑈 ∈ No
) |
113 | | simp23 1207 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑈 ∈ 𝐵 ∧ ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No )
∧ ∀𝑏 ∈
𝐵 𝑍 <s 𝑏) → 𝑍 ∈ No
) |
114 | | sonr 5526 |
. . . . . . . . . . . . . . . . . 18
⊢ (( <s
Or No ∧ 𝑍 ∈ No )
→ ¬ 𝑍 <s 𝑍) |
115 | 95, 113, 114 | sylancr 587 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑈 ∈ 𝐵 ∧ ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No )
∧ ∀𝑏 ∈
𝐵 𝑍 <s 𝑏) → ¬ 𝑍 <s 𝑍) |
116 | | breq2 5078 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑈 = 𝑍 → (𝑍 <s 𝑈 ↔ 𝑍 <s 𝑍)) |
117 | 116 | notbid 318 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑈 = 𝑍 → (¬ 𝑍 <s 𝑈 ↔ ¬ 𝑍 <s 𝑍)) |
118 | 115, 117 | syl5ibrcom 246 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑈 ∈ 𝐵 ∧ ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No )
∧ ∀𝑏 ∈
𝐵 𝑍 <s 𝑏) → (𝑈 = 𝑍 → ¬ 𝑍 <s 𝑈)) |
119 | 118 | necon2ad 2958 |
. . . . . . . . . . . . . . 15
⊢ (((𝑈 ∈ 𝐵 ∧ ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No )
∧ ∀𝑏 ∈
𝐵 𝑍 <s 𝑏) → (𝑍 <s 𝑈 → 𝑈 ≠ 𝑍)) |
120 | 119 | imp 407 |
. . . . . . . . . . . . . 14
⊢ ((((𝑈 ∈ 𝐵 ∧ ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No )
∧ ∀𝑏 ∈
𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) → 𝑈 ≠ 𝑍) |
121 | 120 | necomd 2999 |
. . . . . . . . . . . . 13
⊢ ((((𝑈 ∈ 𝐵 ∧ ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No )
∧ ∀𝑏 ∈
𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) → 𝑍 ≠ 𝑈) |
122 | 121 | adantr 481 |
. . . . . . . . . . . 12
⊢
(((((𝑈 ∈ 𝐵 ∧ ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No )
∧ ∀𝑏 ∈
𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) ∧ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} = dom 𝑈) → 𝑍 ≠ 𝑈) |
123 | | nosepssdm 33889 |
. . . . . . . . . . . 12
⊢ ((𝑍 ∈
No ∧ 𝑈 ∈
No ∧ 𝑍 ≠ 𝑈) → ∩ {𝑥 ∈ On ∣ (𝑍‘𝑥) ≠ (𝑈‘𝑥)} ⊆ dom 𝑍) |
124 | 111, 112,
122, 123 | syl3anc 1370 |
. . . . . . . . . . 11
⊢
(((((𝑈 ∈ 𝐵 ∧ ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No )
∧ ∀𝑏 ∈
𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) ∧ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} = dom 𝑈) → ∩ {𝑥 ∈ On ∣ (𝑍‘𝑥) ≠ (𝑈‘𝑥)} ⊆ dom 𝑍) |
125 | 110, 124 | eqsstrrd 3960 |
. . . . . . . . . 10
⊢
(((((𝑈 ∈ 𝐵 ∧ ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No )
∧ ∀𝑏 ∈
𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) ∧ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} = dom 𝑈) → dom 𝑈 ⊆ dom 𝑍) |
126 | | df-ss 3904 |
. . . . . . . . . 10
⊢ (dom
𝑈 ⊆ dom 𝑍 ↔ (dom 𝑈 ∩ dom 𝑍) = dom 𝑈) |
127 | 125, 126 | sylib 217 |
. . . . . . . . 9
⊢
(((((𝑈 ∈ 𝐵 ∧ ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No )
∧ ∀𝑏 ∈
𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) ∧ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} = dom 𝑈) → (dom 𝑈 ∩ dom 𝑍) = dom 𝑈) |
128 | 107, 127 | eqtrid 2790 |
. . . . . . . 8
⊢
(((((𝑈 ∈ 𝐵 ∧ ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No )
∧ ∀𝑏 ∈
𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) ∧ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} = dom 𝑈) → dom (𝑍 ↾ dom 𝑈) = dom 𝑈) |
129 | 128 | eleq2d 2824 |
. . . . . . . . . 10
⊢
(((((𝑈 ∈ 𝐵 ∧ ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No )
∧ ∀𝑏 ∈
𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) ∧ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} = dom 𝑈) → (𝑞 ∈ dom (𝑍 ↾ dom 𝑈) ↔ 𝑞 ∈ dom 𝑈)) |
130 | | simpr 485 |
. . . . . . . . . . . . 13
⊢
((((((𝑈 ∈ 𝐵 ∧ ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No )
∧ ∀𝑏 ∈
𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) ∧ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} = dom 𝑈) ∧ 𝑞 ∈ dom 𝑈) → 𝑞 ∈ dom 𝑈) |
131 | 130 | fvresd 6794 |
. . . . . . . . . . . 12
⊢
((((((𝑈 ∈ 𝐵 ∧ ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No )
∧ ∀𝑏 ∈
𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) ∧ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} = dom 𝑈) ∧ 𝑞 ∈ dom 𝑈) → ((𝑍 ↾ dom 𝑈)‘𝑞) = (𝑍‘𝑞)) |
132 | 112, 8 | syl 17 |
. . . . . . . . . . . . . . 15
⊢
(((((𝑈 ∈ 𝐵 ∧ ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No )
∧ ∀𝑏 ∈
𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) ∧ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} = dom 𝑈) → dom 𝑈 ∈ On) |
133 | | onelon 6291 |
. . . . . . . . . . . . . . 15
⊢ ((dom
𝑈 ∈ On ∧ 𝑞 ∈ dom 𝑈) → 𝑞 ∈ On) |
134 | 132, 133 | sylan 580 |
. . . . . . . . . . . . . 14
⊢
((((((𝑈 ∈ 𝐵 ∧ ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No )
∧ ∀𝑏 ∈
𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) ∧ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} = dom 𝑈) ∧ 𝑞 ∈ dom 𝑈) → 𝑞 ∈ On) |
135 | | simpr 485 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝑈 ∈ 𝐵 ∧ ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No )
∧ ∀𝑏 ∈
𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) ∧ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} = dom 𝑈) → ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} = dom 𝑈) |
136 | 135 | eleq2d 2824 |
. . . . . . . . . . . . . . 15
⊢
(((((𝑈 ∈ 𝐵 ∧ ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No )
∧ ∀𝑏 ∈
𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) ∧ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} = dom 𝑈) → (𝑞 ∈ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} ↔ 𝑞 ∈ dom 𝑈)) |
137 | 136 | biimpar 478 |
. . . . . . . . . . . . . 14
⊢
((((((𝑈 ∈ 𝐵 ∧ ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No )
∧ ∀𝑏 ∈
𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) ∧ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} = dom 𝑈) ∧ 𝑞 ∈ dom 𝑈) → 𝑞 ∈ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)}) |
138 | 134, 137,
25 | sylc 65 |
. . . . . . . . . . . . 13
⊢
((((((𝑈 ∈ 𝐵 ∧ ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No )
∧ ∀𝑏 ∈
𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) ∧ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} = dom 𝑈) ∧ 𝑞 ∈ dom 𝑈) → ¬ (𝑈‘𝑞) ≠ (𝑍‘𝑞)) |
139 | | nesym 3000 |
. . . . . . . . . . . . . 14
⊢ ((𝑈‘𝑞) ≠ (𝑍‘𝑞) ↔ ¬ (𝑍‘𝑞) = (𝑈‘𝑞)) |
140 | 139 | con2bii 358 |
. . . . . . . . . . . . 13
⊢ ((𝑍‘𝑞) = (𝑈‘𝑞) ↔ ¬ (𝑈‘𝑞) ≠ (𝑍‘𝑞)) |
141 | 138, 140 | sylibr 233 |
. . . . . . . . . . . 12
⊢
((((((𝑈 ∈ 𝐵 ∧ ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No )
∧ ∀𝑏 ∈
𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) ∧ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} = dom 𝑈) ∧ 𝑞 ∈ dom 𝑈) → (𝑍‘𝑞) = (𝑈‘𝑞)) |
142 | 131, 141 | eqtrd 2778 |
. . . . . . . . . . 11
⊢
((((((𝑈 ∈ 𝐵 ∧ ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No )
∧ ∀𝑏 ∈
𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) ∧ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} = dom 𝑈) ∧ 𝑞 ∈ dom 𝑈) → ((𝑍 ↾ dom 𝑈)‘𝑞) = (𝑈‘𝑞)) |
143 | 142 | ex 413 |
. . . . . . . . . 10
⊢
(((((𝑈 ∈ 𝐵 ∧ ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No )
∧ ∀𝑏 ∈
𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) ∧ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} = dom 𝑈) → (𝑞 ∈ dom 𝑈 → ((𝑍 ↾ dom 𝑈)‘𝑞) = (𝑈‘𝑞))) |
144 | 129, 143 | sylbid 239 |
. . . . . . . . 9
⊢
(((((𝑈 ∈ 𝐵 ∧ ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No )
∧ ∀𝑏 ∈
𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) ∧ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} = dom 𝑈) → (𝑞 ∈ dom (𝑍 ↾ dom 𝑈) → ((𝑍 ↾ dom 𝑈)‘𝑞) = (𝑈‘𝑞))) |
145 | 144 | ralrimiv 3102 |
. . . . . . . 8
⊢
(((((𝑈 ∈ 𝐵 ∧ ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No )
∧ ∀𝑏 ∈
𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) ∧ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} = dom 𝑈) → ∀𝑞 ∈ dom (𝑍 ↾ dom 𝑈)((𝑍 ↾ dom 𝑈)‘𝑞) = (𝑈‘𝑞)) |
146 | | nofun 33852 |
. . . . . . . . . . 11
⊢ (𝑍 ∈
No → Fun 𝑍) |
147 | 111, 146 | syl 17 |
. . . . . . . . . 10
⊢
(((((𝑈 ∈ 𝐵 ∧ ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No )
∧ ∀𝑏 ∈
𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) ∧ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} = dom 𝑈) → Fun 𝑍) |
148 | 147 | funresd 6477 |
. . . . . . . . 9
⊢
(((((𝑈 ∈ 𝐵 ∧ ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No )
∧ ∀𝑏 ∈
𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) ∧ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} = dom 𝑈) → Fun (𝑍 ↾ dom 𝑈)) |
149 | 64 | adantr 481 |
. . . . . . . . 9
⊢
(((((𝑈 ∈ 𝐵 ∧ ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No )
∧ ∀𝑏 ∈
𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) ∧ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} = dom 𝑈) → Fun 𝑈) |
150 | | eqfunfv 6914 |
. . . . . . . . 9
⊢ ((Fun
(𝑍 ↾ dom 𝑈) ∧ Fun 𝑈) → ((𝑍 ↾ dom 𝑈) = 𝑈 ↔ (dom (𝑍 ↾ dom 𝑈) = dom 𝑈 ∧ ∀𝑞 ∈ dom (𝑍 ↾ dom 𝑈)((𝑍 ↾ dom 𝑈)‘𝑞) = (𝑈‘𝑞)))) |
151 | 148, 149,
150 | syl2anc 584 |
. . . . . . . 8
⊢
(((((𝑈 ∈ 𝐵 ∧ ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No )
∧ ∀𝑏 ∈
𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) ∧ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} = dom 𝑈) → ((𝑍 ↾ dom 𝑈) = 𝑈 ↔ (dom (𝑍 ↾ dom 𝑈) = dom 𝑈 ∧ ∀𝑞 ∈ dom (𝑍 ↾ dom 𝑈)((𝑍 ↾ dom 𝑈)‘𝑞) = (𝑈‘𝑞)))) |
152 | 128, 145,
151 | mpbir2and 710 |
. . . . . . 7
⊢
(((((𝑈 ∈ 𝐵 ∧ ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No )
∧ ∀𝑏 ∈
𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) ∧ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} = dom 𝑈) → (𝑍 ↾ dom 𝑈) = 𝑈) |
153 | 35, 146 | syl 17 |
. . . . . . . . . 10
⊢ ((((𝑈 ∈ 𝐵 ∧ ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No )
∧ ∀𝑏 ∈
𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) → Fun 𝑍) |
154 | 153 | funfnd 6465 |
. . . . . . . . 9
⊢ ((((𝑈 ∈ 𝐵 ∧ ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No )
∧ ∀𝑏 ∈
𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) → 𝑍 Fn dom 𝑍) |
155 | 112, 70 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝑈 ∈ 𝐵 ∧ ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No )
∧ ∀𝑏 ∈
𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) ∧ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} = dom 𝑈) → Ord dom 𝑈) |
156 | 155, 73 | syl 17 |
. . . . . . . . . . . . . . 15
⊢
(((((𝑈 ∈ 𝐵 ∧ ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No )
∧ ∀𝑏 ∈
𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) ∧ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} = dom 𝑈) → ¬ dom 𝑈 ∈ dom 𝑈) |
157 | | ndmfv 6804 |
. . . . . . . . . . . . . . . 16
⊢ (¬
dom 𝑈 ∈ dom 𝑈 → (𝑈‘dom 𝑈) = ∅) |
158 | | 2on0 8313 |
. . . . . . . . . . . . . . . . . . 19
⊢
2o ≠ ∅ |
159 | 158 | necomi 2998 |
. . . . . . . . . . . . . . . . . 18
⊢ ∅
≠ 2o |
160 | | neeq1 3006 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑈‘dom 𝑈) = ∅ → ((𝑈‘dom 𝑈) ≠ 2o ↔ ∅ ≠
2o)) |
161 | 159, 160 | mpbiri 257 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑈‘dom 𝑈) = ∅ → (𝑈‘dom 𝑈) ≠ 2o) |
162 | 161 | neneqd 2948 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑈‘dom 𝑈) = ∅ → ¬ (𝑈‘dom 𝑈) = 2o) |
163 | 157, 162 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (¬
dom 𝑈 ∈ dom 𝑈 → ¬ (𝑈‘dom 𝑈) = 2o) |
164 | 156, 163 | syl 17 |
. . . . . . . . . . . . . 14
⊢
(((((𝑈 ∈ 𝐵 ∧ ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No )
∧ ∀𝑏 ∈
𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) ∧ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} = dom 𝑈) → ¬ (𝑈‘dom 𝑈) = 2o) |
165 | 164 | intnand 489 |
. . . . . . . . . . . . 13
⊢
(((((𝑈 ∈ 𝐵 ∧ ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No )
∧ ∀𝑏 ∈
𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) ∧ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} = dom 𝑈) → ¬ ((𝑍‘dom 𝑈) = ∅ ∧ (𝑈‘dom 𝑈) = 2o)) |
166 | | simpr 485 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝑈 ∈ 𝐵 ∧ ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No )
∧ ∀𝑏 ∈
𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) → 𝑍 <s 𝑈) |
167 | 35, 7, 37 | syl2anc 584 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝑈 ∈ 𝐵 ∧ ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No )
∧ ∀𝑏 ∈
𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) → (𝑍 <s 𝑈 ↔ (𝑍‘∩ {𝑥 ∈ On ∣ (𝑍‘𝑥) ≠ (𝑈‘𝑥)}){〈1o, ∅〉,
〈1o, 2o〉, 〈∅, 2o〉}
(𝑈‘∩ {𝑥
∈ On ∣ (𝑍‘𝑥) ≠ (𝑈‘𝑥)}))) |
168 | 166, 167 | mpbid 231 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝑈 ∈ 𝐵 ∧ ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No )
∧ ∀𝑏 ∈
𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) → (𝑍‘∩ {𝑥 ∈ On ∣ (𝑍‘𝑥) ≠ (𝑈‘𝑥)}){〈1o, ∅〉,
〈1o, 2o〉, 〈∅, 2o〉}
(𝑈‘∩ {𝑥
∈ On ∣ (𝑍‘𝑥) ≠ (𝑈‘𝑥)})) |
169 | 168 | adantr 481 |
. . . . . . . . . . . . . . 15
⊢
(((((𝑈 ∈ 𝐵 ∧ ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No )
∧ ∀𝑏 ∈
𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) ∧ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} = dom 𝑈) → (𝑍‘∩ {𝑥 ∈ On ∣ (𝑍‘𝑥) ≠ (𝑈‘𝑥)}){〈1o, ∅〉,
〈1o, 2o〉, 〈∅, 2o〉}
(𝑈‘∩ {𝑥
∈ On ∣ (𝑍‘𝑥) ≠ (𝑈‘𝑥)})) |
170 | 110 | fveq2d 6778 |
. . . . . . . . . . . . . . 15
⊢
(((((𝑈 ∈ 𝐵 ∧ ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No )
∧ ∀𝑏 ∈
𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) ∧ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} = dom 𝑈) → (𝑍‘∩ {𝑥 ∈ On ∣ (𝑍‘𝑥) ≠ (𝑈‘𝑥)}) = (𝑍‘dom 𝑈)) |
171 | 110 | fveq2d 6778 |
. . . . . . . . . . . . . . 15
⊢
(((((𝑈 ∈ 𝐵 ∧ ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No )
∧ ∀𝑏 ∈
𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) ∧ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} = dom 𝑈) → (𝑈‘∩ {𝑥 ∈ On ∣ (𝑍‘𝑥) ≠ (𝑈‘𝑥)}) = (𝑈‘dom 𝑈)) |
172 | 169, 170,
171 | 3brtr3d 5105 |
. . . . . . . . . . . . . 14
⊢
(((((𝑈 ∈ 𝐵 ∧ ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No )
∧ ∀𝑏 ∈
𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) ∧ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} = dom 𝑈) → (𝑍‘dom 𝑈){〈1o, ∅〉,
〈1o, 2o〉, 〈∅, 2o〉}
(𝑈‘dom 𝑈)) |
173 | | fvex 6787 |
. . . . . . . . . . . . . . 15
⊢ (𝑍‘dom 𝑈) ∈ V |
174 | | fvex 6787 |
. . . . . . . . . . . . . . 15
⊢ (𝑈‘dom 𝑈) ∈ V |
175 | 173, 174 | brtp 33717 |
. . . . . . . . . . . . . 14
⊢ ((𝑍‘dom 𝑈){〈1o, ∅〉,
〈1o, 2o〉, 〈∅, 2o〉}
(𝑈‘dom 𝑈) ↔ (((𝑍‘dom 𝑈) = 1o ∧ (𝑈‘dom 𝑈) = ∅) ∨ ((𝑍‘dom 𝑈) = 1o ∧ (𝑈‘dom 𝑈) = 2o) ∨ ((𝑍‘dom 𝑈) = ∅ ∧ (𝑈‘dom 𝑈) = 2o))) |
176 | 172, 175 | sylib 217 |
. . . . . . . . . . . . 13
⊢
(((((𝑈 ∈ 𝐵 ∧ ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No )
∧ ∀𝑏 ∈
𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) ∧ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} = dom 𝑈) → (((𝑍‘dom 𝑈) = 1o ∧ (𝑈‘dom 𝑈) = ∅) ∨ ((𝑍‘dom 𝑈) = 1o ∧ (𝑈‘dom 𝑈) = 2o) ∨ ((𝑍‘dom 𝑈) = ∅ ∧ (𝑈‘dom 𝑈) = 2o))) |
177 | | 3orel3 1485 |
. . . . . . . . . . . . 13
⊢ (¬
((𝑍‘dom 𝑈) = ∅ ∧ (𝑈‘dom 𝑈) = 2o) → ((((𝑍‘dom 𝑈) = 1o ∧ (𝑈‘dom 𝑈) = ∅) ∨ ((𝑍‘dom 𝑈) = 1o ∧ (𝑈‘dom 𝑈) = 2o) ∨ ((𝑍‘dom 𝑈) = ∅ ∧ (𝑈‘dom 𝑈) = 2o)) → (((𝑍‘dom 𝑈) = 1o ∧ (𝑈‘dom 𝑈) = ∅) ∨ ((𝑍‘dom 𝑈) = 1o ∧ (𝑈‘dom 𝑈) = 2o)))) |
178 | 165, 176,
177 | sylc 65 |
. . . . . . . . . . . 12
⊢
(((((𝑈 ∈ 𝐵 ∧ ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No )
∧ ∀𝑏 ∈
𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) ∧ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} = dom 𝑈) → (((𝑍‘dom 𝑈) = 1o ∧ (𝑈‘dom 𝑈) = ∅) ∨ ((𝑍‘dom 𝑈) = 1o ∧ (𝑈‘dom 𝑈) = 2o))) |
179 | | andi 1005 |
. . . . . . . . . . . 12
⊢ (((𝑍‘dom 𝑈) = 1o ∧ ((𝑈‘dom 𝑈) = ∅ ∨ (𝑈‘dom 𝑈) = 2o)) ↔ (((𝑍‘dom 𝑈) = 1o ∧ (𝑈‘dom 𝑈) = ∅) ∨ ((𝑍‘dom 𝑈) = 1o ∧ (𝑈‘dom 𝑈) = 2o))) |
180 | 178, 179 | sylibr 233 |
. . . . . . . . . . 11
⊢
(((((𝑈 ∈ 𝐵 ∧ ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No )
∧ ∀𝑏 ∈
𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) ∧ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} = dom 𝑈) → ((𝑍‘dom 𝑈) = 1o ∧ ((𝑈‘dom 𝑈) = ∅ ∨ (𝑈‘dom 𝑈) = 2o))) |
181 | 180 | simpld 495 |
. . . . . . . . . 10
⊢
(((((𝑈 ∈ 𝐵 ∧ ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No )
∧ ∀𝑏 ∈
𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) ∧ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} = dom 𝑈) → (𝑍‘dom 𝑈) = 1o) |
182 | | ndmfv 6804 |
. . . . . . . . . . . 12
⊢ (¬
dom 𝑈 ∈ dom 𝑍 → (𝑍‘dom 𝑈) = ∅) |
183 | | 1n0 8318 |
. . . . . . . . . . . . . . 15
⊢
1o ≠ ∅ |
184 | 183 | necomi 2998 |
. . . . . . . . . . . . . 14
⊢ ∅
≠ 1o |
185 | | neeq1 3006 |
. . . . . . . . . . . . . 14
⊢ ((𝑍‘dom 𝑈) = ∅ → ((𝑍‘dom 𝑈) ≠ 1o ↔ ∅ ≠
1o)) |
186 | 184, 185 | mpbiri 257 |
. . . . . . . . . . . . 13
⊢ ((𝑍‘dom 𝑈) = ∅ → (𝑍‘dom 𝑈) ≠ 1o) |
187 | 186 | neneqd 2948 |
. . . . . . . . . . . 12
⊢ ((𝑍‘dom 𝑈) = ∅ → ¬ (𝑍‘dom 𝑈) = 1o) |
188 | 182, 187 | syl 17 |
. . . . . . . . . . 11
⊢ (¬
dom 𝑈 ∈ dom 𝑍 → ¬ (𝑍‘dom 𝑈) = 1o) |
189 | 188 | con4i 114 |
. . . . . . . . . 10
⊢ ((𝑍‘dom 𝑈) = 1o → dom 𝑈 ∈ dom 𝑍) |
190 | 181, 189 | syl 17 |
. . . . . . . . 9
⊢
(((((𝑈 ∈ 𝐵 ∧ ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No )
∧ ∀𝑏 ∈
𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) ∧ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} = dom 𝑈) → dom 𝑈 ∈ dom 𝑍) |
191 | | fnressn 7030 |
. . . . . . . . 9
⊢ ((𝑍 Fn dom 𝑍 ∧ dom 𝑈 ∈ dom 𝑍) → (𝑍 ↾ {dom 𝑈}) = {〈dom 𝑈, (𝑍‘dom 𝑈)〉}) |
192 | 154, 190,
191 | syl2an2r 682 |
. . . . . . . 8
⊢
(((((𝑈 ∈ 𝐵 ∧ ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No )
∧ ∀𝑏 ∈
𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) ∧ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} = dom 𝑈) → (𝑍 ↾ {dom 𝑈}) = {〈dom 𝑈, (𝑍‘dom 𝑈)〉}) |
193 | 181 | opeq2d 4811 |
. . . . . . . . 9
⊢
(((((𝑈 ∈ 𝐵 ∧ ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No )
∧ ∀𝑏 ∈
𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) ∧ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} = dom 𝑈) → 〈dom 𝑈, (𝑍‘dom 𝑈)〉 = 〈dom 𝑈, 1o〉) |
194 | 193 | sneqd 4573 |
. . . . . . . 8
⊢
(((((𝑈 ∈ 𝐵 ∧ ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No )
∧ ∀𝑏 ∈
𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) ∧ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} = dom 𝑈) → {〈dom 𝑈, (𝑍‘dom 𝑈)〉} = {〈dom 𝑈, 1o〉}) |
195 | 192, 194 | eqtrd 2778 |
. . . . . . 7
⊢
(((((𝑈 ∈ 𝐵 ∧ ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No )
∧ ∀𝑏 ∈
𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) ∧ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} = dom 𝑈) → (𝑍 ↾ {dom 𝑈}) = {〈dom 𝑈, 1o〉}) |
196 | 152, 195 | uneq12d 4098 |
. . . . . 6
⊢
(((((𝑈 ∈ 𝐵 ∧ ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No )
∧ ∀𝑏 ∈
𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) ∧ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} = dom 𝑈) → ((𝑍 ↾ dom 𝑈) ∪ (𝑍 ↾ {dom 𝑈})) = (𝑈 ∪ {〈dom 𝑈, 1o〉})) |
197 | 106, 196 | eqtrid 2790 |
. . . . 5
⊢
(((((𝑈 ∈ 𝐵 ∧ ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No )
∧ ∀𝑏 ∈
𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) ∧ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} = dom 𝑈) → (𝑍 ↾ suc dom 𝑈) = (𝑈 ∪ {〈dom 𝑈, 1o〉})) |
198 | 197 | breq2d 5086 |
. . . 4
⊢
(((((𝑈 ∈ 𝐵 ∧ ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No )
∧ ∀𝑏 ∈
𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) ∧ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} = dom 𝑈) → ((𝑈 ∪ {〈dom 𝑈, 1o〉}) <s (𝑍 ↾ suc dom 𝑈) ↔ (𝑈 ∪ {〈dom 𝑈, 1o〉}) <s (𝑈 ∪ {〈dom 𝑈,
1o〉}))) |
199 | 102, 198 | mtbird 325 |
. . 3
⊢
(((((𝑈 ∈ 𝐵 ∧ ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No )
∧ ∀𝑏 ∈
𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) ∧ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} = dom 𝑈) → ¬ (𝑈 ∪ {〈dom 𝑈, 1o〉}) <s (𝑍 ↾ suc dom 𝑈)) |
200 | | nosepssdm 33889 |
. . . . 5
⊢ ((𝑈 ∈
No ∧ 𝑍 ∈
No ∧ 𝑈 ≠ 𝑍) → ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} ⊆ dom 𝑈) |
201 | 7, 35, 120, 200 | syl3anc 1370 |
. . . 4
⊢ ((((𝑈 ∈ 𝐵 ∧ ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No )
∧ ∀𝑏 ∈
𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) → ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} ⊆ dom 𝑈) |
202 | | nosepon 33868 |
. . . . . 6
⊢ ((𝑈 ∈
No ∧ 𝑍 ∈
No ∧ 𝑈 ≠ 𝑍) → ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} ∈ On) |
203 | 7, 35, 120, 202 | syl3anc 1370 |
. . . . 5
⊢ ((((𝑈 ∈ 𝐵 ∧ ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No )
∧ ∀𝑏 ∈
𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) → ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} ∈ On) |
204 | | onsseleq 6307 |
. . . . 5
⊢ ((∩ {𝑥
∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} ∈ On ∧ dom 𝑈 ∈ On) → (∩ {𝑥
∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} ⊆ dom 𝑈 ↔ (∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} ∈ dom 𝑈 ∨ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} = dom 𝑈))) |
205 | 203, 9, 204 | syl2anc 584 |
. . . 4
⊢ ((((𝑈 ∈ 𝐵 ∧ ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No )
∧ ∀𝑏 ∈
𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) → (∩
{𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} ⊆ dom 𝑈 ↔ (∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} ∈ dom 𝑈 ∨ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} = dom 𝑈))) |
206 | 201, 205 | mpbid 231 |
. . 3
⊢ ((((𝑈 ∈ 𝐵 ∧ ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No )
∧ ∀𝑏 ∈
𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) → (∩
{𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} ∈ dom 𝑈 ∨ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} = dom 𝑈)) |
207 | 99, 199, 206 | mpjaodan 956 |
. 2
⊢ ((((𝑈 ∈ 𝐵 ∧ ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No )
∧ ∀𝑏 ∈
𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) → ¬ (𝑈 ∪ {〈dom 𝑈, 1o〉}) <s (𝑍 ↾ suc dom 𝑈)) |
208 | 4, 207 | mpdan 684 |
1
⊢ (((𝑈 ∈ 𝐵 ∧ ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ No )
∧ ∀𝑏 ∈
𝐵 𝑍 <s 𝑏) → ¬ (𝑈 ∪ {〈dom 𝑈, 1o〉}) <s (𝑍 ↾ suc dom 𝑈)) |