MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  noinfbnd2lem1 Structured version   Visualization version   GIF version

Theorem noinfbnd2lem1 27679
Description: Bounding law from below when a set of surreals has a minimum. (Contributed by Scott Fenton, 9-Aug-2024.)
Assertion
Ref Expression
noinfbnd2lem1 (((𝑈𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏) → ¬ (𝑈 ∪ {⟨dom 𝑈, 1o⟩}) <s (𝑍 ↾ suc dom 𝑈))
Distinct variable groups:   𝐵,𝑏   𝑈,𝑏   𝑍,𝑏
Allowed substitution hints:   𝐵(𝑦)   𝑈(𝑦)   𝑉(𝑦,𝑏)   𝑍(𝑦)

Proof of Theorem noinfbnd2lem1
Dummy variables 𝑞 𝑝 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq2 5147 . . 3 (𝑏 = 𝑈 → (𝑍 <s 𝑏𝑍 <s 𝑈))
2 simp3 1135 . . 3 (((𝑈𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏) → ∀𝑏𝐵 𝑍 <s 𝑏)
3 simp1l 1194 . . 3 (((𝑈𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏) → 𝑈𝐵)
41, 2, 3rspcdva 3603 . 2 (((𝑈𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏) → 𝑍 <s 𝑈)
5 simpl21 1248 . . . . . . . . . . 11 ((((𝑈𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) → 𝐵 No )
6 simpl1l 1221 . . . . . . . . . . 11 ((((𝑈𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) → 𝑈𝐵)
75, 6sseldd 3973 . . . . . . . . . 10 ((((𝑈𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) → 𝑈 No )
8 nodmon 27599 . . . . . . . . . 10 (𝑈 No → dom 𝑈 ∈ On)
97, 8syl 17 . . . . . . . . 9 ((((𝑈𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) → dom 𝑈 ∈ On)
10 onelon 6389 . . . . . . . . 9 ((dom 𝑈 ∈ On ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} ∈ dom 𝑈) → {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} ∈ On)
119, 10sylan 578 . . . . . . . 8 (((((𝑈𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} ∈ dom 𝑈) → {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} ∈ On)
12 simpr 483 . . . . . . . . . . . 12 ((((((𝑈𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} ∈ dom 𝑈) ∧ 𝑞 {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)}) → 𝑞 {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)})
13 simplr 767 . . . . . . . . . . . 12 ((((((𝑈𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} ∈ dom 𝑈) ∧ 𝑞 {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)}) → {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} ∈ dom 𝑈)
149adantr 479 . . . . . . . . . . . . . 14 (((((𝑈𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} ∈ dom 𝑈) → dom 𝑈 ∈ On)
1514adantr 479 . . . . . . . . . . . . 13 ((((((𝑈𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} ∈ dom 𝑈) ∧ 𝑞 {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)}) → dom 𝑈 ∈ On)
16 ontr1 6410 . . . . . . . . . . . . 13 (dom 𝑈 ∈ On → ((𝑞 {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} ∈ dom 𝑈) → 𝑞 ∈ dom 𝑈))
1715, 16syl 17 . . . . . . . . . . . 12 ((((((𝑈𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} ∈ dom 𝑈) ∧ 𝑞 {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)}) → ((𝑞 {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} ∈ dom 𝑈) → 𝑞 ∈ dom 𝑈))
1812, 13, 17mp2and 697 . . . . . . . . . . 11 ((((((𝑈𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} ∈ dom 𝑈) ∧ 𝑞 {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)}) → 𝑞 ∈ dom 𝑈)
1918fvresd 6911 . . . . . . . . . 10 ((((((𝑈𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} ∈ dom 𝑈) ∧ 𝑞 {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)}) → ((𝑍 ↾ dom 𝑈)‘𝑞) = (𝑍𝑞))
20 onelon 6389 . . . . . . . . . . . . 13 (( {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} ∈ On ∧ 𝑞 {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)}) → 𝑞 ∈ On)
2111, 20sylan 578 . . . . . . . . . . . 12 ((((((𝑈𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} ∈ dom 𝑈) ∧ 𝑞 {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)}) → 𝑞 ∈ On)
22 fveq2 6891 . . . . . . . . . . . . . 14 (𝑥 = 𝑞 → (𝑈𝑥) = (𝑈𝑞))
23 fveq2 6891 . . . . . . . . . . . . . 14 (𝑥 = 𝑞 → (𝑍𝑥) = (𝑍𝑞))
2422, 23neeq12d 2992 . . . . . . . . . . . . 13 (𝑥 = 𝑞 → ((𝑈𝑥) ≠ (𝑍𝑥) ↔ (𝑈𝑞) ≠ (𝑍𝑞)))
2524onnminsb 7799 . . . . . . . . . . . 12 (𝑞 ∈ On → (𝑞 {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} → ¬ (𝑈𝑞) ≠ (𝑍𝑞)))
2621, 12, 25sylc 65 . . . . . . . . . . 11 ((((((𝑈𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} ∈ dom 𝑈) ∧ 𝑞 {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)}) → ¬ (𝑈𝑞) ≠ (𝑍𝑞))
27 df-ne 2931 . . . . . . . . . . . 12 ((𝑈𝑞) ≠ (𝑍𝑞) ↔ ¬ (𝑈𝑞) = (𝑍𝑞))
2827con2bii 356 . . . . . . . . . . 11 ((𝑈𝑞) = (𝑍𝑞) ↔ ¬ (𝑈𝑞) ≠ (𝑍𝑞))
2926, 28sylibr 233 . . . . . . . . . 10 ((((((𝑈𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} ∈ dom 𝑈) ∧ 𝑞 {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)}) → (𝑈𝑞) = (𝑍𝑞))
3019, 29eqtr4d 2768 . . . . . . . . 9 ((((((𝑈𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} ∈ dom 𝑈) ∧ 𝑞 {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)}) → ((𝑍 ↾ dom 𝑈)‘𝑞) = (𝑈𝑞))
3130ralrimiva 3136 . . . . . . . 8 (((((𝑈𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} ∈ dom 𝑈) → ∀𝑞 {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} ((𝑍 ↾ dom 𝑈)‘𝑞) = (𝑈𝑞))
32 simpr 483 . . . . . . . . . 10 (((((𝑈𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} ∈ dom 𝑈) → {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} ∈ dom 𝑈)
3332fvresd 6911 . . . . . . . . 9 (((((𝑈𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} ∈ dom 𝑈) → ((𝑍 ↾ dom 𝑈)‘ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)}) = (𝑍 {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)}))
34 simplr 767 . . . . . . . . . . 11 (((((𝑈𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} ∈ dom 𝑈) → 𝑍 <s 𝑈)
35 simpl23 1250 . . . . . . . . . . . 12 ((((𝑈𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) → 𝑍 No )
367adantr 479 . . . . . . . . . . . 12 (((((𝑈𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} ∈ dom 𝑈) → 𝑈 No )
37 sltval2 27605 . . . . . . . . . . . 12 ((𝑍 No 𝑈 No ) → (𝑍 <s 𝑈 ↔ (𝑍 {𝑥 ∈ On ∣ (𝑍𝑥) ≠ (𝑈𝑥)}){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝑈 {𝑥 ∈ On ∣ (𝑍𝑥) ≠ (𝑈𝑥)})))
3835, 36, 37syl2an2r 683 . . . . . . . . . . 11 (((((𝑈𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} ∈ dom 𝑈) → (𝑍 <s 𝑈 ↔ (𝑍 {𝑥 ∈ On ∣ (𝑍𝑥) ≠ (𝑈𝑥)}){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝑈 {𝑥 ∈ On ∣ (𝑍𝑥) ≠ (𝑈𝑥)})))
3934, 38mpbid 231 . . . . . . . . . 10 (((((𝑈𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} ∈ dom 𝑈) → (𝑍 {𝑥 ∈ On ∣ (𝑍𝑥) ≠ (𝑈𝑥)}){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝑈 {𝑥 ∈ On ∣ (𝑍𝑥) ≠ (𝑈𝑥)}))
40 necom 2984 . . . . . . . . . . . . 13 ((𝑈𝑥) ≠ (𝑍𝑥) ↔ (𝑍𝑥) ≠ (𝑈𝑥))
4140rabbii 3425 . . . . . . . . . . . 12 {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} = {𝑥 ∈ On ∣ (𝑍𝑥) ≠ (𝑈𝑥)}
4241inteqi 4948 . . . . . . . . . . 11 {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} = {𝑥 ∈ On ∣ (𝑍𝑥) ≠ (𝑈𝑥)}
4342fveq2i 6894 . . . . . . . . . 10 (𝑍 {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)}) = (𝑍 {𝑥 ∈ On ∣ (𝑍𝑥) ≠ (𝑈𝑥)})
4442fveq2i 6894 . . . . . . . . . 10 (𝑈 {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)}) = (𝑈 {𝑥 ∈ On ∣ (𝑍𝑥) ≠ (𝑈𝑥)})
4539, 43, 443brtr4g 5177 . . . . . . . . 9 (((((𝑈𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} ∈ dom 𝑈) → (𝑍 {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)}){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝑈 {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)}))
4633, 45eqbrtrd 5165 . . . . . . . 8 (((((𝑈𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} ∈ dom 𝑈) → ((𝑍 ↾ dom 𝑈)‘ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)}){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝑈 {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)}))
47 raleq 3312 . . . . . . . . . 10 (𝑝 = {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} → (∀𝑞𝑝 ((𝑍 ↾ dom 𝑈)‘𝑞) = (𝑈𝑞) ↔ ∀𝑞 {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} ((𝑍 ↾ dom 𝑈)‘𝑞) = (𝑈𝑞)))
48 fveq2 6891 . . . . . . . . . . 11 (𝑝 = {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} → ((𝑍 ↾ dom 𝑈)‘𝑝) = ((𝑍 ↾ dom 𝑈)‘ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)}))
49 fveq2 6891 . . . . . . . . . . 11 (𝑝 = {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} → (𝑈𝑝) = (𝑈 {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)}))
5048, 49breq12d 5156 . . . . . . . . . 10 (𝑝 = {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} → (((𝑍 ↾ dom 𝑈)‘𝑝){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝑈𝑝) ↔ ((𝑍 ↾ dom 𝑈)‘ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)}){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝑈 {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)})))
5147, 50anbi12d 630 . . . . . . . . 9 (𝑝 = {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} → ((∀𝑞𝑝 ((𝑍 ↾ dom 𝑈)‘𝑞) = (𝑈𝑞) ∧ ((𝑍 ↾ dom 𝑈)‘𝑝){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝑈𝑝)) ↔ (∀𝑞 {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} ((𝑍 ↾ dom 𝑈)‘𝑞) = (𝑈𝑞) ∧ ((𝑍 ↾ dom 𝑈)‘ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)}){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝑈 {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)}))))
5251rspcev 3602 . . . . . . . 8 (( {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} ∈ On ∧ (∀𝑞 {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} ((𝑍 ↾ dom 𝑈)‘𝑞) = (𝑈𝑞) ∧ ((𝑍 ↾ dom 𝑈)‘ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)}){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝑈 {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)}))) → ∃𝑝 ∈ On (∀𝑞𝑝 ((𝑍 ↾ dom 𝑈)‘𝑞) = (𝑈𝑞) ∧ ((𝑍 ↾ dom 𝑈)‘𝑝){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝑈𝑝)))
5311, 31, 46, 52syl12anc 835 . . . . . . 7 (((((𝑈𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} ∈ dom 𝑈) → ∃𝑝 ∈ On (∀𝑞𝑝 ((𝑍 ↾ dom 𝑈)‘𝑞) = (𝑈𝑞) ∧ ((𝑍 ↾ dom 𝑈)‘𝑝){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝑈𝑝)))
54 noreson 27609 . . . . . . . . 9 ((𝑍 No ∧ dom 𝑈 ∈ On) → (𝑍 ↾ dom 𝑈) ∈ No )
5535, 9, 54syl2anc 582 . . . . . . . 8 ((((𝑈𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) → (𝑍 ↾ dom 𝑈) ∈ No )
56 sltval 27596 . . . . . . . 8 (((𝑍 ↾ dom 𝑈) ∈ No 𝑈 No ) → ((𝑍 ↾ dom 𝑈) <s 𝑈 ↔ ∃𝑝 ∈ On (∀𝑞𝑝 ((𝑍 ↾ dom 𝑈)‘𝑞) = (𝑈𝑞) ∧ ((𝑍 ↾ dom 𝑈)‘𝑝){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝑈𝑝))))
5755, 36, 56syl2an2r 683 . . . . . . 7 (((((𝑈𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} ∈ dom 𝑈) → ((𝑍 ↾ dom 𝑈) <s 𝑈 ↔ ∃𝑝 ∈ On (∀𝑞𝑝 ((𝑍 ↾ dom 𝑈)‘𝑞) = (𝑈𝑞) ∧ ((𝑍 ↾ dom 𝑈)‘𝑝){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝑈𝑝))))
5853, 57mpbird 256 . . . . . 6 (((((𝑈𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} ∈ dom 𝑈) → (𝑍 ↾ dom 𝑈) <s 𝑈)
59 sssucid 6444 . . . . . . 7 dom 𝑈 ⊆ suc dom 𝑈
60 resabs1 6006 . . . . . . 7 (dom 𝑈 ⊆ suc dom 𝑈 → ((𝑍 ↾ suc dom 𝑈) ↾ dom 𝑈) = (𝑍 ↾ dom 𝑈))
6159, 60mp1i 13 . . . . . 6 (((((𝑈𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} ∈ dom 𝑈) → ((𝑍 ↾ suc dom 𝑈) ↾ dom 𝑈) = (𝑍 ↾ dom 𝑈))
62 resundir 5994 . . . . . . 7 ((𝑈 ∪ {⟨dom 𝑈, 1o⟩}) ↾ dom 𝑈) = ((𝑈 ↾ dom 𝑈) ∪ ({⟨dom 𝑈, 1o⟩} ↾ dom 𝑈))
63 nofun 27598 . . . . . . . . . . . . 13 (𝑈 No → Fun 𝑈)
647, 63syl 17 . . . . . . . . . . . 12 ((((𝑈𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) → Fun 𝑈)
65 funrel 6564 . . . . . . . . . . . 12 (Fun 𝑈 → Rel 𝑈)
6664, 65syl 17 . . . . . . . . . . 11 ((((𝑈𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) → Rel 𝑈)
6766adantr 479 . . . . . . . . . 10 (((((𝑈𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} ∈ dom 𝑈) → Rel 𝑈)
68 resdm 6025 . . . . . . . . . 10 (Rel 𝑈 → (𝑈 ↾ dom 𝑈) = 𝑈)
6967, 68syl 17 . . . . . . . . 9 (((((𝑈𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} ∈ dom 𝑈) → (𝑈 ↾ dom 𝑈) = 𝑈)
70 nodmord 27602 . . . . . . . . . . . . 13 (𝑈 No → Ord dom 𝑈)
717, 70syl 17 . . . . . . . . . . . 12 ((((𝑈𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) → Ord dom 𝑈)
7271adantr 479 . . . . . . . . . . 11 (((((𝑈𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} ∈ dom 𝑈) → Ord dom 𝑈)
73 ordirr 6382 . . . . . . . . . . 11 (Ord dom 𝑈 → ¬ dom 𝑈 ∈ dom 𝑈)
7472, 73syl 17 . . . . . . . . . 10 (((((𝑈𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} ∈ dom 𝑈) → ¬ dom 𝑈 ∈ dom 𝑈)
75 1oex 8493 . . . . . . . . . . 11 1o ∈ V
7675snres0 6297 . . . . . . . . . 10 (({⟨dom 𝑈, 1o⟩} ↾ dom 𝑈) = ∅ ↔ ¬ dom 𝑈 ∈ dom 𝑈)
7774, 76sylibr 233 . . . . . . . . 9 (((((𝑈𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} ∈ dom 𝑈) → ({⟨dom 𝑈, 1o⟩} ↾ dom 𝑈) = ∅)
7869, 77uneq12d 4157 . . . . . . . 8 (((((𝑈𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} ∈ dom 𝑈) → ((𝑈 ↾ dom 𝑈) ∪ ({⟨dom 𝑈, 1o⟩} ↾ dom 𝑈)) = (𝑈 ∪ ∅))
79 un0 4386 . . . . . . . 8 (𝑈 ∪ ∅) = 𝑈
8078, 79eqtrdi 2781 . . . . . . 7 (((((𝑈𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} ∈ dom 𝑈) → ((𝑈 ↾ dom 𝑈) ∪ ({⟨dom 𝑈, 1o⟩} ↾ dom 𝑈)) = 𝑈)
8162, 80eqtrid 2777 . . . . . 6 (((((𝑈𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} ∈ dom 𝑈) → ((𝑈 ∪ {⟨dom 𝑈, 1o⟩}) ↾ dom 𝑈) = 𝑈)
8258, 61, 813brtr4d 5175 . . . . 5 (((((𝑈𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} ∈ dom 𝑈) → ((𝑍 ↾ suc dom 𝑈) ↾ dom 𝑈) <s ((𝑈 ∪ {⟨dom 𝑈, 1o⟩}) ↾ dom 𝑈))
83 onsucb 7817 . . . . . . . . 9 (dom 𝑈 ∈ On ↔ suc dom 𝑈 ∈ On)
849, 83sylib 217 . . . . . . . 8 ((((𝑈𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) → suc dom 𝑈 ∈ On)
85 noreson 27609 . . . . . . . 8 ((𝑍 No ∧ suc dom 𝑈 ∈ On) → (𝑍 ↾ suc dom 𝑈) ∈ No )
8635, 84, 85syl2anc 582 . . . . . . 7 ((((𝑈𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) → (𝑍 ↾ suc dom 𝑈) ∈ No )
8786adantr 479 . . . . . 6 (((((𝑈𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} ∈ dom 𝑈) → (𝑍 ↾ suc dom 𝑈) ∈ No )
8875prid1 4762 . . . . . . . . 9 1o ∈ {1o, 2o}
8988noextend 27615 . . . . . . . 8 (𝑈 No → (𝑈 ∪ {⟨dom 𝑈, 1o⟩}) ∈ No )
907, 89syl 17 . . . . . . 7 ((((𝑈𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) → (𝑈 ∪ {⟨dom 𝑈, 1o⟩}) ∈ No )
9190adantr 479 . . . . . 6 (((((𝑈𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} ∈ dom 𝑈) → (𝑈 ∪ {⟨dom 𝑈, 1o⟩}) ∈ No )
92 sltres 27611 . . . . . 6 (((𝑍 ↾ suc dom 𝑈) ∈ No ∧ (𝑈 ∪ {⟨dom 𝑈, 1o⟩}) ∈ No ∧ dom 𝑈 ∈ On) → (((𝑍 ↾ suc dom 𝑈) ↾ dom 𝑈) <s ((𝑈 ∪ {⟨dom 𝑈, 1o⟩}) ↾ dom 𝑈) → (𝑍 ↾ suc dom 𝑈) <s (𝑈 ∪ {⟨dom 𝑈, 1o⟩})))
9387, 91, 14, 92syl3anc 1368 . . . . 5 (((((𝑈𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} ∈ dom 𝑈) → (((𝑍 ↾ suc dom 𝑈) ↾ dom 𝑈) <s ((𝑈 ∪ {⟨dom 𝑈, 1o⟩}) ↾ dom 𝑈) → (𝑍 ↾ suc dom 𝑈) <s (𝑈 ∪ {⟨dom 𝑈, 1o⟩})))
9482, 93mpd 15 . . . 4 (((((𝑈𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} ∈ dom 𝑈) → (𝑍 ↾ suc dom 𝑈) <s (𝑈 ∪ {⟨dom 𝑈, 1o⟩}))
95 sltso 27625 . . . . . 6 <s Or No
96 soasym 5615 . . . . . 6 (( <s Or No ∧ ((𝑍 ↾ suc dom 𝑈) ∈ No ∧ (𝑈 ∪ {⟨dom 𝑈, 1o⟩}) ∈ No )) → ((𝑍 ↾ suc dom 𝑈) <s (𝑈 ∪ {⟨dom 𝑈, 1o⟩}) → ¬ (𝑈 ∪ {⟨dom 𝑈, 1o⟩}) <s (𝑍 ↾ suc dom 𝑈)))
9795, 96mpan 688 . . . . 5 (((𝑍 ↾ suc dom 𝑈) ∈ No ∧ (𝑈 ∪ {⟨dom 𝑈, 1o⟩}) ∈ No ) → ((𝑍 ↾ suc dom 𝑈) <s (𝑈 ∪ {⟨dom 𝑈, 1o⟩}) → ¬ (𝑈 ∪ {⟨dom 𝑈, 1o⟩}) <s (𝑍 ↾ suc dom 𝑈)))
9886, 91, 97syl2an2r 683 . . . 4 (((((𝑈𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} ∈ dom 𝑈) → ((𝑍 ↾ suc dom 𝑈) <s (𝑈 ∪ {⟨dom 𝑈, 1o⟩}) → ¬ (𝑈 ∪ {⟨dom 𝑈, 1o⟩}) <s (𝑍 ↾ suc dom 𝑈)))
9994, 98mpd 15 . . 3 (((((𝑈𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} ∈ dom 𝑈) → ¬ (𝑈 ∪ {⟨dom 𝑈, 1o⟩}) <s (𝑍 ↾ suc dom 𝑈))
100 sonr 5607 . . . . . 6 (( <s Or No ∧ (𝑈 ∪ {⟨dom 𝑈, 1o⟩}) ∈ No ) → ¬ (𝑈 ∪ {⟨dom 𝑈, 1o⟩}) <s (𝑈 ∪ {⟨dom 𝑈, 1o⟩}))
10195, 90, 100sylancr 585 . . . . 5 ((((𝑈𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) → ¬ (𝑈 ∪ {⟨dom 𝑈, 1o⟩}) <s (𝑈 ∪ {⟨dom 𝑈, 1o⟩}))
102101adantr 479 . . . 4 (((((𝑈𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} = dom 𝑈) → ¬ (𝑈 ∪ {⟨dom 𝑈, 1o⟩}) <s (𝑈 ∪ {⟨dom 𝑈, 1o⟩}))
103 df-suc 6370 . . . . . . . 8 suc dom 𝑈 = (dom 𝑈 ∪ {dom 𝑈})
104103reseq2i 5976 . . . . . . 7 (𝑍 ↾ suc dom 𝑈) = (𝑍 ↾ (dom 𝑈 ∪ {dom 𝑈}))
105 resundi 5993 . . . . . . 7 (𝑍 ↾ (dom 𝑈 ∪ {dom 𝑈})) = ((𝑍 ↾ dom 𝑈) ∪ (𝑍 ↾ {dom 𝑈}))
106104, 105eqtri 2753 . . . . . 6 (𝑍 ↾ suc dom 𝑈) = ((𝑍 ↾ dom 𝑈) ∪ (𝑍 ↾ {dom 𝑈}))
107 dmres 6011 . . . . . . . . 9 dom (𝑍 ↾ dom 𝑈) = (dom 𝑈 ∩ dom 𝑍)
10842eqeq1i 2730 . . . . . . . . . . . . 13 ( {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} = dom 𝑈 {𝑥 ∈ On ∣ (𝑍𝑥) ≠ (𝑈𝑥)} = dom 𝑈)
109108biimpi 215 . . . . . . . . . . . 12 ( {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} = dom 𝑈 {𝑥 ∈ On ∣ (𝑍𝑥) ≠ (𝑈𝑥)} = dom 𝑈)
110109adantl 480 . . . . . . . . . . 11 (((((𝑈𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} = dom 𝑈) → {𝑥 ∈ On ∣ (𝑍𝑥) ≠ (𝑈𝑥)} = dom 𝑈)
11135adantr 479 . . . . . . . . . . . 12 (((((𝑈𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} = dom 𝑈) → 𝑍 No )
1127adantr 479 . . . . . . . . . . . 12 (((((𝑈𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} = dom 𝑈) → 𝑈 No )
113 simp23 1205 . . . . . . . . . . . . . . . . . 18 (((𝑈𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏) → 𝑍 No )
114 sonr 5607 . . . . . . . . . . . . . . . . . 18 (( <s Or No 𝑍 No ) → ¬ 𝑍 <s 𝑍)
11595, 113, 114sylancr 585 . . . . . . . . . . . . . . . . 17 (((𝑈𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏) → ¬ 𝑍 <s 𝑍)
116 breq2 5147 . . . . . . . . . . . . . . . . . 18 (𝑈 = 𝑍 → (𝑍 <s 𝑈𝑍 <s 𝑍))
117116notbid 317 . . . . . . . . . . . . . . . . 17 (𝑈 = 𝑍 → (¬ 𝑍 <s 𝑈 ↔ ¬ 𝑍 <s 𝑍))
118115, 117syl5ibrcom 246 . . . . . . . . . . . . . . . 16 (((𝑈𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏) → (𝑈 = 𝑍 → ¬ 𝑍 <s 𝑈))
119118necon2ad 2945 . . . . . . . . . . . . . . 15 (((𝑈𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏) → (𝑍 <s 𝑈𝑈𝑍))
120119imp 405 . . . . . . . . . . . . . 14 ((((𝑈𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) → 𝑈𝑍)
121120necomd 2986 . . . . . . . . . . . . 13 ((((𝑈𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) → 𝑍𝑈)
122121adantr 479 . . . . . . . . . . . 12 (((((𝑈𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} = dom 𝑈) → 𝑍𝑈)
123 nosepssdm 27635 . . . . . . . . . . . 12 ((𝑍 No 𝑈 No 𝑍𝑈) → {𝑥 ∈ On ∣ (𝑍𝑥) ≠ (𝑈𝑥)} ⊆ dom 𝑍)
124111, 112, 122, 123syl3anc 1368 . . . . . . . . . . 11 (((((𝑈𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} = dom 𝑈) → {𝑥 ∈ On ∣ (𝑍𝑥) ≠ (𝑈𝑥)} ⊆ dom 𝑍)
125110, 124eqsstrrd 4012 . . . . . . . . . 10 (((((𝑈𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} = dom 𝑈) → dom 𝑈 ⊆ dom 𝑍)
126 dfss2 3958 . . . . . . . . . 10 (dom 𝑈 ⊆ dom 𝑍 ↔ (dom 𝑈 ∩ dom 𝑍) = dom 𝑈)
127125, 126sylib 217 . . . . . . . . 9 (((((𝑈𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} = dom 𝑈) → (dom 𝑈 ∩ dom 𝑍) = dom 𝑈)
128107, 127eqtrid 2777 . . . . . . . 8 (((((𝑈𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} = dom 𝑈) → dom (𝑍 ↾ dom 𝑈) = dom 𝑈)
129128eleq2d 2811 . . . . . . . . . 10 (((((𝑈𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} = dom 𝑈) → (𝑞 ∈ dom (𝑍 ↾ dom 𝑈) ↔ 𝑞 ∈ dom 𝑈))
130 simpr 483 . . . . . . . . . . . . 13 ((((((𝑈𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} = dom 𝑈) ∧ 𝑞 ∈ dom 𝑈) → 𝑞 ∈ dom 𝑈)
131130fvresd 6911 . . . . . . . . . . . 12 ((((((𝑈𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} = dom 𝑈) ∧ 𝑞 ∈ dom 𝑈) → ((𝑍 ↾ dom 𝑈)‘𝑞) = (𝑍𝑞))
132112, 8syl 17 . . . . . . . . . . . . . . 15 (((((𝑈𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} = dom 𝑈) → dom 𝑈 ∈ On)
133 onelon 6389 . . . . . . . . . . . . . . 15 ((dom 𝑈 ∈ On ∧ 𝑞 ∈ dom 𝑈) → 𝑞 ∈ On)
134132, 133sylan 578 . . . . . . . . . . . . . 14 ((((((𝑈𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} = dom 𝑈) ∧ 𝑞 ∈ dom 𝑈) → 𝑞 ∈ On)
135 simpr 483 . . . . . . . . . . . . . . . 16 (((((𝑈𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} = dom 𝑈) → {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} = dom 𝑈)
136135eleq2d 2811 . . . . . . . . . . . . . . 15 (((((𝑈𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} = dom 𝑈) → (𝑞 {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} ↔ 𝑞 ∈ dom 𝑈))
137136biimpar 476 . . . . . . . . . . . . . 14 ((((((𝑈𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} = dom 𝑈) ∧ 𝑞 ∈ dom 𝑈) → 𝑞 {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)})
138134, 137, 25sylc 65 . . . . . . . . . . . . 13 ((((((𝑈𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} = dom 𝑈) ∧ 𝑞 ∈ dom 𝑈) → ¬ (𝑈𝑞) ≠ (𝑍𝑞))
139 nesym 2987 . . . . . . . . . . . . . 14 ((𝑈𝑞) ≠ (𝑍𝑞) ↔ ¬ (𝑍𝑞) = (𝑈𝑞))
140139con2bii 356 . . . . . . . . . . . . 13 ((𝑍𝑞) = (𝑈𝑞) ↔ ¬ (𝑈𝑞) ≠ (𝑍𝑞))
141138, 140sylibr 233 . . . . . . . . . . . 12 ((((((𝑈𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} = dom 𝑈) ∧ 𝑞 ∈ dom 𝑈) → (𝑍𝑞) = (𝑈𝑞))
142131, 141eqtrd 2765 . . . . . . . . . . 11 ((((((𝑈𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} = dom 𝑈) ∧ 𝑞 ∈ dom 𝑈) → ((𝑍 ↾ dom 𝑈)‘𝑞) = (𝑈𝑞))
143142ex 411 . . . . . . . . . 10 (((((𝑈𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} = dom 𝑈) → (𝑞 ∈ dom 𝑈 → ((𝑍 ↾ dom 𝑈)‘𝑞) = (𝑈𝑞)))
144129, 143sylbid 239 . . . . . . . . 9 (((((𝑈𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} = dom 𝑈) → (𝑞 ∈ dom (𝑍 ↾ dom 𝑈) → ((𝑍 ↾ dom 𝑈)‘𝑞) = (𝑈𝑞)))
145144ralrimiv 3135 . . . . . . . 8 (((((𝑈𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} = dom 𝑈) → ∀𝑞 ∈ dom (𝑍 ↾ dom 𝑈)((𝑍 ↾ dom 𝑈)‘𝑞) = (𝑈𝑞))
146 nofun 27598 . . . . . . . . . . 11 (𝑍 No → Fun 𝑍)
147111, 146syl 17 . . . . . . . . . 10 (((((𝑈𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} = dom 𝑈) → Fun 𝑍)
148147funresd 6590 . . . . . . . . 9 (((((𝑈𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} = dom 𝑈) → Fun (𝑍 ↾ dom 𝑈))
14964adantr 479 . . . . . . . . 9 (((((𝑈𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} = dom 𝑈) → Fun 𝑈)
150 eqfunfv 7039 . . . . . . . . 9 ((Fun (𝑍 ↾ dom 𝑈) ∧ Fun 𝑈) → ((𝑍 ↾ dom 𝑈) = 𝑈 ↔ (dom (𝑍 ↾ dom 𝑈) = dom 𝑈 ∧ ∀𝑞 ∈ dom (𝑍 ↾ dom 𝑈)((𝑍 ↾ dom 𝑈)‘𝑞) = (𝑈𝑞))))
151148, 149, 150syl2anc 582 . . . . . . . 8 (((((𝑈𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} = dom 𝑈) → ((𝑍 ↾ dom 𝑈) = 𝑈 ↔ (dom (𝑍 ↾ dom 𝑈) = dom 𝑈 ∧ ∀𝑞 ∈ dom (𝑍 ↾ dom 𝑈)((𝑍 ↾ dom 𝑈)‘𝑞) = (𝑈𝑞))))
152128, 145, 151mpbir2and 711 . . . . . . 7 (((((𝑈𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} = dom 𝑈) → (𝑍 ↾ dom 𝑈) = 𝑈)
15335, 146syl 17 . . . . . . . . . 10 ((((𝑈𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) → Fun 𝑍)
154153funfnd 6578 . . . . . . . . 9 ((((𝑈𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) → 𝑍 Fn dom 𝑍)
155112, 70syl 17 . . . . . . . . . . . . . . . 16 (((((𝑈𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} = dom 𝑈) → Ord dom 𝑈)
156155, 73syl 17 . . . . . . . . . . . . . . 15 (((((𝑈𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} = dom 𝑈) → ¬ dom 𝑈 ∈ dom 𝑈)
157 ndmfv 6926 . . . . . . . . . . . . . . . 16 (¬ dom 𝑈 ∈ dom 𝑈 → (𝑈‘dom 𝑈) = ∅)
158 2on0 8499 . . . . . . . . . . . . . . . . . . 19 2o ≠ ∅
159158necomi 2985 . . . . . . . . . . . . . . . . . 18 ∅ ≠ 2o
160 neeq1 2993 . . . . . . . . . . . . . . . . . 18 ((𝑈‘dom 𝑈) = ∅ → ((𝑈‘dom 𝑈) ≠ 2o ↔ ∅ ≠ 2o))
161159, 160mpbiri 257 . . . . . . . . . . . . . . . . 17 ((𝑈‘dom 𝑈) = ∅ → (𝑈‘dom 𝑈) ≠ 2o)
162161neneqd 2935 . . . . . . . . . . . . . . . 16 ((𝑈‘dom 𝑈) = ∅ → ¬ (𝑈‘dom 𝑈) = 2o)
163157, 162syl 17 . . . . . . . . . . . . . . 15 (¬ dom 𝑈 ∈ dom 𝑈 → ¬ (𝑈‘dom 𝑈) = 2o)
164156, 163syl 17 . . . . . . . . . . . . . 14 (((((𝑈𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} = dom 𝑈) → ¬ (𝑈‘dom 𝑈) = 2o)
165164intnand 487 . . . . . . . . . . . . 13 (((((𝑈𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} = dom 𝑈) → ¬ ((𝑍‘dom 𝑈) = ∅ ∧ (𝑈‘dom 𝑈) = 2o))
166 simpr 483 . . . . . . . . . . . . . . . . 17 ((((𝑈𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) → 𝑍 <s 𝑈)
16735, 7, 37syl2anc 582 . . . . . . . . . . . . . . . . 17 ((((𝑈𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) → (𝑍 <s 𝑈 ↔ (𝑍 {𝑥 ∈ On ∣ (𝑍𝑥) ≠ (𝑈𝑥)}){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝑈 {𝑥 ∈ On ∣ (𝑍𝑥) ≠ (𝑈𝑥)})))
168166, 167mpbid 231 . . . . . . . . . . . . . . . 16 ((((𝑈𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) → (𝑍 {𝑥 ∈ On ∣ (𝑍𝑥) ≠ (𝑈𝑥)}){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝑈 {𝑥 ∈ On ∣ (𝑍𝑥) ≠ (𝑈𝑥)}))
169168adantr 479 . . . . . . . . . . . . . . 15 (((((𝑈𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} = dom 𝑈) → (𝑍 {𝑥 ∈ On ∣ (𝑍𝑥) ≠ (𝑈𝑥)}){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝑈 {𝑥 ∈ On ∣ (𝑍𝑥) ≠ (𝑈𝑥)}))
170110fveq2d 6895 . . . . . . . . . . . . . . 15 (((((𝑈𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} = dom 𝑈) → (𝑍 {𝑥 ∈ On ∣ (𝑍𝑥) ≠ (𝑈𝑥)}) = (𝑍‘dom 𝑈))
171110fveq2d 6895 . . . . . . . . . . . . . . 15 (((((𝑈𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} = dom 𝑈) → (𝑈 {𝑥 ∈ On ∣ (𝑍𝑥) ≠ (𝑈𝑥)}) = (𝑈‘dom 𝑈))
172169, 170, 1713brtr3d 5174 . . . . . . . . . . . . . 14 (((((𝑈𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} = dom 𝑈) → (𝑍‘dom 𝑈){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝑈‘dom 𝑈))
173 fvex 6904 . . . . . . . . . . . . . . 15 (𝑍‘dom 𝑈) ∈ V
174 fvex 6904 . . . . . . . . . . . . . . 15 (𝑈‘dom 𝑈) ∈ V
175173, 174brtp 5519 . . . . . . . . . . . . . 14 ((𝑍‘dom 𝑈){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝑈‘dom 𝑈) ↔ (((𝑍‘dom 𝑈) = 1o ∧ (𝑈‘dom 𝑈) = ∅) ∨ ((𝑍‘dom 𝑈) = 1o ∧ (𝑈‘dom 𝑈) = 2o) ∨ ((𝑍‘dom 𝑈) = ∅ ∧ (𝑈‘dom 𝑈) = 2o)))
176172, 175sylib 217 . . . . . . . . . . . . 13 (((((𝑈𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} = dom 𝑈) → (((𝑍‘dom 𝑈) = 1o ∧ (𝑈‘dom 𝑈) = ∅) ∨ ((𝑍‘dom 𝑈) = 1o ∧ (𝑈‘dom 𝑈) = 2o) ∨ ((𝑍‘dom 𝑈) = ∅ ∧ (𝑈‘dom 𝑈) = 2o)))
177 3orel3 1481 . . . . . . . . . . . . 13 (¬ ((𝑍‘dom 𝑈) = ∅ ∧ (𝑈‘dom 𝑈) = 2o) → ((((𝑍‘dom 𝑈) = 1o ∧ (𝑈‘dom 𝑈) = ∅) ∨ ((𝑍‘dom 𝑈) = 1o ∧ (𝑈‘dom 𝑈) = 2o) ∨ ((𝑍‘dom 𝑈) = ∅ ∧ (𝑈‘dom 𝑈) = 2o)) → (((𝑍‘dom 𝑈) = 1o ∧ (𝑈‘dom 𝑈) = ∅) ∨ ((𝑍‘dom 𝑈) = 1o ∧ (𝑈‘dom 𝑈) = 2o))))
178165, 176, 177sylc 65 . . . . . . . . . . . 12 (((((𝑈𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} = dom 𝑈) → (((𝑍‘dom 𝑈) = 1o ∧ (𝑈‘dom 𝑈) = ∅) ∨ ((𝑍‘dom 𝑈) = 1o ∧ (𝑈‘dom 𝑈) = 2o)))
179 andi 1005 . . . . . . . . . . . 12 (((𝑍‘dom 𝑈) = 1o ∧ ((𝑈‘dom 𝑈) = ∅ ∨ (𝑈‘dom 𝑈) = 2o)) ↔ (((𝑍‘dom 𝑈) = 1o ∧ (𝑈‘dom 𝑈) = ∅) ∨ ((𝑍‘dom 𝑈) = 1o ∧ (𝑈‘dom 𝑈) = 2o)))
180178, 179sylibr 233 . . . . . . . . . . 11 (((((𝑈𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} = dom 𝑈) → ((𝑍‘dom 𝑈) = 1o ∧ ((𝑈‘dom 𝑈) = ∅ ∨ (𝑈‘dom 𝑈) = 2o)))
181180simpld 493 . . . . . . . . . 10 (((((𝑈𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} = dom 𝑈) → (𝑍‘dom 𝑈) = 1o)
182 ndmfv 6926 . . . . . . . . . . . 12 (¬ dom 𝑈 ∈ dom 𝑍 → (𝑍‘dom 𝑈) = ∅)
183 1n0 8505 . . . . . . . . . . . . . . 15 1o ≠ ∅
184183necomi 2985 . . . . . . . . . . . . . 14 ∅ ≠ 1o
185 neeq1 2993 . . . . . . . . . . . . . 14 ((𝑍‘dom 𝑈) = ∅ → ((𝑍‘dom 𝑈) ≠ 1o ↔ ∅ ≠ 1o))
186184, 185mpbiri 257 . . . . . . . . . . . . 13 ((𝑍‘dom 𝑈) = ∅ → (𝑍‘dom 𝑈) ≠ 1o)
187186neneqd 2935 . . . . . . . . . . . 12 ((𝑍‘dom 𝑈) = ∅ → ¬ (𝑍‘dom 𝑈) = 1o)
188182, 187syl 17 . . . . . . . . . . 11 (¬ dom 𝑈 ∈ dom 𝑍 → ¬ (𝑍‘dom 𝑈) = 1o)
189188con4i 114 . . . . . . . . . 10 ((𝑍‘dom 𝑈) = 1o → dom 𝑈 ∈ dom 𝑍)
190181, 189syl 17 . . . . . . . . 9 (((((𝑈𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} = dom 𝑈) → dom 𝑈 ∈ dom 𝑍)
191 fnressn 7162 . . . . . . . . 9 ((𝑍 Fn dom 𝑍 ∧ dom 𝑈 ∈ dom 𝑍) → (𝑍 ↾ {dom 𝑈}) = {⟨dom 𝑈, (𝑍‘dom 𝑈)⟩})
192154, 190, 191syl2an2r 683 . . . . . . . 8 (((((𝑈𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} = dom 𝑈) → (𝑍 ↾ {dom 𝑈}) = {⟨dom 𝑈, (𝑍‘dom 𝑈)⟩})
193181opeq2d 4876 . . . . . . . . 9 (((((𝑈𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} = dom 𝑈) → ⟨dom 𝑈, (𝑍‘dom 𝑈)⟩ = ⟨dom 𝑈, 1o⟩)
194193sneqd 4636 . . . . . . . 8 (((((𝑈𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} = dom 𝑈) → {⟨dom 𝑈, (𝑍‘dom 𝑈)⟩} = {⟨dom 𝑈, 1o⟩})
195192, 194eqtrd 2765 . . . . . . 7 (((((𝑈𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} = dom 𝑈) → (𝑍 ↾ {dom 𝑈}) = {⟨dom 𝑈, 1o⟩})
196152, 195uneq12d 4157 . . . . . 6 (((((𝑈𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} = dom 𝑈) → ((𝑍 ↾ dom 𝑈) ∪ (𝑍 ↾ {dom 𝑈})) = (𝑈 ∪ {⟨dom 𝑈, 1o⟩}))
197106, 196eqtrid 2777 . . . . 5 (((((𝑈𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} = dom 𝑈) → (𝑍 ↾ suc dom 𝑈) = (𝑈 ∪ {⟨dom 𝑈, 1o⟩}))
198197breq2d 5155 . . . 4 (((((𝑈𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} = dom 𝑈) → ((𝑈 ∪ {⟨dom 𝑈, 1o⟩}) <s (𝑍 ↾ suc dom 𝑈) ↔ (𝑈 ∪ {⟨dom 𝑈, 1o⟩}) <s (𝑈 ∪ {⟨dom 𝑈, 1o⟩})))
199102, 198mtbird 324 . . 3 (((((𝑈𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} = dom 𝑈) → ¬ (𝑈 ∪ {⟨dom 𝑈, 1o⟩}) <s (𝑍 ↾ suc dom 𝑈))
200 nosepssdm 27635 . . . . 5 ((𝑈 No 𝑍 No 𝑈𝑍) → {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} ⊆ dom 𝑈)
2017, 35, 120, 200syl3anc 1368 . . . 4 ((((𝑈𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) → {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} ⊆ dom 𝑈)
202 nosepon 27614 . . . . . 6 ((𝑈 No 𝑍 No 𝑈𝑍) → {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} ∈ On)
2037, 35, 120, 202syl3anc 1368 . . . . 5 ((((𝑈𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) → {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} ∈ On)
204 onsseleq 6405 . . . . 5 (( {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} ∈ On ∧ dom 𝑈 ∈ On) → ( {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} ⊆ dom 𝑈 ↔ ( {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} ∈ dom 𝑈 {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} = dom 𝑈)))
205203, 9, 204syl2anc 582 . . . 4 ((((𝑈𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) → ( {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} ⊆ dom 𝑈 ↔ ( {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} ∈ dom 𝑈 {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} = dom 𝑈)))
206201, 205mpbid 231 . . 3 ((((𝑈𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) → ( {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} ∈ dom 𝑈 {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} = dom 𝑈))
20799, 199, 206mpjaodan 956 . 2 ((((𝑈𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) → ¬ (𝑈 ∪ {⟨dom 𝑈, 1o⟩}) <s (𝑍 ↾ suc dom 𝑈))
2084, 207mpdan 685 1 (((𝑈𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏) → ¬ (𝑈 ∪ {⟨dom 𝑈, 1o⟩}) <s (𝑍 ↾ suc dom 𝑈))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 394  wo 845  w3o 1083  w3a 1084   = wceq 1533  wcel 2098  wne 2930  wral 3051  wrex 3060  {crab 3419  cun 3938  cin 3939  wss 3940  c0 4318  {csn 4624  {ctp 4628  cop 4630   cint 4944   class class class wbr 5143   Or wor 5583  dom cdm 5672  cres 5674  Rel wrel 5677  Ord word 6363  Oncon0 6364  suc csuc 6366  Fun wfun 6536   Fn wfn 6537  cfv 6542  1oc1o 8476  2oc2o 8477   No csur 27589   <s cslt 27590
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5280  ax-sep 5294  ax-nul 5301  ax-pr 5423  ax-un 7737
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-ral 3052  df-rex 3061  df-reu 3365  df-rab 3420  df-v 3465  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-pss 3960  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-tp 4629  df-op 4631  df-uni 4904  df-int 4945  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5227  df-tr 5261  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-ord 6367  df-on 6368  df-suc 6370  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-1o 8483  df-2o 8484  df-no 27592  df-slt 27593
This theorem is referenced by:  noinfbnd2  27680
  Copyright terms: Public domain W3C validator