Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  noinfbnd2lem1 Structured version   Visualization version   GIF version

Theorem noinfbnd2lem1 33530
Description: Bounding law from below when a set of surreals has a minimum. (Contributed by Scott Fenton, 9-Aug-2024.)
Assertion
Ref Expression
noinfbnd2lem1 (((𝑈𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏) → ¬ (𝑈 ∪ {⟨dom 𝑈, 1o⟩}) <s (𝑍 ↾ suc dom 𝑈))
Distinct variable groups:   𝐵,𝑏   𝑈,𝑏   𝑍,𝑏
Allowed substitution hints:   𝐵(𝑦)   𝑈(𝑦)   𝑉(𝑦,𝑏)   𝑍(𝑦)

Proof of Theorem noinfbnd2lem1
Dummy variables 𝑞 𝑝 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq2 5040 . . 3 (𝑏 = 𝑈 → (𝑍 <s 𝑏𝑍 <s 𝑈))
2 simp3 1135 . . 3 (((𝑈𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏) → ∀𝑏𝐵 𝑍 <s 𝑏)
3 simp1l 1194 . . 3 (((𝑈𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏) → 𝑈𝐵)
41, 2, 3rspcdva 3545 . 2 (((𝑈𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏) → 𝑍 <s 𝑈)
5 simpl21 1248 . . . . . . . . . . 11 ((((𝑈𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) → 𝐵 No )
6 simpl1l 1221 . . . . . . . . . . 11 ((((𝑈𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) → 𝑈𝐵)
75, 6sseldd 3895 . . . . . . . . . 10 ((((𝑈𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) → 𝑈 No )
8 nodmon 33450 . . . . . . . . . 10 (𝑈 No → dom 𝑈 ∈ On)
97, 8syl 17 . . . . . . . . 9 ((((𝑈𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) → dom 𝑈 ∈ On)
10 onelon 6199 . . . . . . . . 9 ((dom 𝑈 ∈ On ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} ∈ dom 𝑈) → {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} ∈ On)
119, 10sylan 583 . . . . . . . 8 (((((𝑈𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} ∈ dom 𝑈) → {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} ∈ On)
12 simpr 488 . . . . . . . . . . . 12 ((((((𝑈𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} ∈ dom 𝑈) ∧ 𝑞 {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)}) → 𝑞 {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)})
13 simplr 768 . . . . . . . . . . . 12 ((((((𝑈𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} ∈ dom 𝑈) ∧ 𝑞 {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)}) → {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} ∈ dom 𝑈)
149adantr 484 . . . . . . . . . . . . . 14 (((((𝑈𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} ∈ dom 𝑈) → dom 𝑈 ∈ On)
1514adantr 484 . . . . . . . . . . . . 13 ((((((𝑈𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} ∈ dom 𝑈) ∧ 𝑞 {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)}) → dom 𝑈 ∈ On)
16 ontr1 6220 . . . . . . . . . . . . 13 (dom 𝑈 ∈ On → ((𝑞 {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} ∈ dom 𝑈) → 𝑞 ∈ dom 𝑈))
1715, 16syl 17 . . . . . . . . . . . 12 ((((((𝑈𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} ∈ dom 𝑈) ∧ 𝑞 {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)}) → ((𝑞 {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} ∈ dom 𝑈) → 𝑞 ∈ dom 𝑈))
1812, 13, 17mp2and 698 . . . . . . . . . . 11 ((((((𝑈𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} ∈ dom 𝑈) ∧ 𝑞 {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)}) → 𝑞 ∈ dom 𝑈)
1918fvresd 6683 . . . . . . . . . 10 ((((((𝑈𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} ∈ dom 𝑈) ∧ 𝑞 {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)}) → ((𝑍 ↾ dom 𝑈)‘𝑞) = (𝑍𝑞))
20 onelon 6199 . . . . . . . . . . . . 13 (( {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} ∈ On ∧ 𝑞 {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)}) → 𝑞 ∈ On)
2111, 20sylan 583 . . . . . . . . . . . 12 ((((((𝑈𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} ∈ dom 𝑈) ∧ 𝑞 {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)}) → 𝑞 ∈ On)
22 fveq2 6663 . . . . . . . . . . . . . 14 (𝑥 = 𝑞 → (𝑈𝑥) = (𝑈𝑞))
23 fveq2 6663 . . . . . . . . . . . . . 14 (𝑥 = 𝑞 → (𝑍𝑥) = (𝑍𝑞))
2422, 23neeq12d 3012 . . . . . . . . . . . . 13 (𝑥 = 𝑞 → ((𝑈𝑥) ≠ (𝑍𝑥) ↔ (𝑈𝑞) ≠ (𝑍𝑞)))
2524onnminsb 7524 . . . . . . . . . . . 12 (𝑞 ∈ On → (𝑞 {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} → ¬ (𝑈𝑞) ≠ (𝑍𝑞)))
2621, 12, 25sylc 65 . . . . . . . . . . 11 ((((((𝑈𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} ∈ dom 𝑈) ∧ 𝑞 {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)}) → ¬ (𝑈𝑞) ≠ (𝑍𝑞))
27 df-ne 2952 . . . . . . . . . . . 12 ((𝑈𝑞) ≠ (𝑍𝑞) ↔ ¬ (𝑈𝑞) = (𝑍𝑞))
2827con2bii 361 . . . . . . . . . . 11 ((𝑈𝑞) = (𝑍𝑞) ↔ ¬ (𝑈𝑞) ≠ (𝑍𝑞))
2926, 28sylibr 237 . . . . . . . . . 10 ((((((𝑈𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} ∈ dom 𝑈) ∧ 𝑞 {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)}) → (𝑈𝑞) = (𝑍𝑞))
3019, 29eqtr4d 2796 . . . . . . . . 9 ((((((𝑈𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} ∈ dom 𝑈) ∧ 𝑞 {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)}) → ((𝑍 ↾ dom 𝑈)‘𝑞) = (𝑈𝑞))
3130ralrimiva 3113 . . . . . . . 8 (((((𝑈𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} ∈ dom 𝑈) → ∀𝑞 {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} ((𝑍 ↾ dom 𝑈)‘𝑞) = (𝑈𝑞))
32 simpr 488 . . . . . . . . . 10 (((((𝑈𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} ∈ dom 𝑈) → {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} ∈ dom 𝑈)
3332fvresd 6683 . . . . . . . . 9 (((((𝑈𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} ∈ dom 𝑈) → ((𝑍 ↾ dom 𝑈)‘ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)}) = (𝑍 {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)}))
34 simplr 768 . . . . . . . . . . 11 (((((𝑈𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} ∈ dom 𝑈) → 𝑍 <s 𝑈)
35 simpl23 1250 . . . . . . . . . . . 12 ((((𝑈𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) → 𝑍 No )
367adantr 484 . . . . . . . . . . . 12 (((((𝑈𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} ∈ dom 𝑈) → 𝑈 No )
37 sltval2 33456 . . . . . . . . . . . 12 ((𝑍 No 𝑈 No ) → (𝑍 <s 𝑈 ↔ (𝑍 {𝑥 ∈ On ∣ (𝑍𝑥) ≠ (𝑈𝑥)}){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝑈 {𝑥 ∈ On ∣ (𝑍𝑥) ≠ (𝑈𝑥)})))
3835, 36, 37syl2an2r 684 . . . . . . . . . . 11 (((((𝑈𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} ∈ dom 𝑈) → (𝑍 <s 𝑈 ↔ (𝑍 {𝑥 ∈ On ∣ (𝑍𝑥) ≠ (𝑈𝑥)}){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝑈 {𝑥 ∈ On ∣ (𝑍𝑥) ≠ (𝑈𝑥)})))
3934, 38mpbid 235 . . . . . . . . . 10 (((((𝑈𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} ∈ dom 𝑈) → (𝑍 {𝑥 ∈ On ∣ (𝑍𝑥) ≠ (𝑈𝑥)}){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝑈 {𝑥 ∈ On ∣ (𝑍𝑥) ≠ (𝑈𝑥)}))
40 necom 3004 . . . . . . . . . . . . 13 ((𝑈𝑥) ≠ (𝑍𝑥) ↔ (𝑍𝑥) ≠ (𝑈𝑥))
4140rabbii 3385 . . . . . . . . . . . 12 {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} = {𝑥 ∈ On ∣ (𝑍𝑥) ≠ (𝑈𝑥)}
4241inteqi 4845 . . . . . . . . . . 11 {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} = {𝑥 ∈ On ∣ (𝑍𝑥) ≠ (𝑈𝑥)}
4342fveq2i 6666 . . . . . . . . . 10 (𝑍 {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)}) = (𝑍 {𝑥 ∈ On ∣ (𝑍𝑥) ≠ (𝑈𝑥)})
4442fveq2i 6666 . . . . . . . . . 10 (𝑈 {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)}) = (𝑈 {𝑥 ∈ On ∣ (𝑍𝑥) ≠ (𝑈𝑥)})
4539, 43, 443brtr4g 5070 . . . . . . . . 9 (((((𝑈𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} ∈ dom 𝑈) → (𝑍 {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)}){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝑈 {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)}))
4633, 45eqbrtrd 5058 . . . . . . . 8 (((((𝑈𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} ∈ dom 𝑈) → ((𝑍 ↾ dom 𝑈)‘ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)}){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝑈 {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)}))
47 raleq 3323 . . . . . . . . . 10 (𝑝 = {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} → (∀𝑞𝑝 ((𝑍 ↾ dom 𝑈)‘𝑞) = (𝑈𝑞) ↔ ∀𝑞 {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} ((𝑍 ↾ dom 𝑈)‘𝑞) = (𝑈𝑞)))
48 fveq2 6663 . . . . . . . . . . 11 (𝑝 = {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} → ((𝑍 ↾ dom 𝑈)‘𝑝) = ((𝑍 ↾ dom 𝑈)‘ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)}))
49 fveq2 6663 . . . . . . . . . . 11 (𝑝 = {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} → (𝑈𝑝) = (𝑈 {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)}))
5048, 49breq12d 5049 . . . . . . . . . 10 (𝑝 = {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} → (((𝑍 ↾ dom 𝑈)‘𝑝){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝑈𝑝) ↔ ((𝑍 ↾ dom 𝑈)‘ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)}){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝑈 {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)})))
5147, 50anbi12d 633 . . . . . . . . 9 (𝑝 = {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} → ((∀𝑞𝑝 ((𝑍 ↾ dom 𝑈)‘𝑞) = (𝑈𝑞) ∧ ((𝑍 ↾ dom 𝑈)‘𝑝){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝑈𝑝)) ↔ (∀𝑞 {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} ((𝑍 ↾ dom 𝑈)‘𝑞) = (𝑈𝑞) ∧ ((𝑍 ↾ dom 𝑈)‘ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)}){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝑈 {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)}))))
5251rspcev 3543 . . . . . . . 8 (( {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} ∈ On ∧ (∀𝑞 {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} ((𝑍 ↾ dom 𝑈)‘𝑞) = (𝑈𝑞) ∧ ((𝑍 ↾ dom 𝑈)‘ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)}){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝑈 {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)}))) → ∃𝑝 ∈ On (∀𝑞𝑝 ((𝑍 ↾ dom 𝑈)‘𝑞) = (𝑈𝑞) ∧ ((𝑍 ↾ dom 𝑈)‘𝑝){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝑈𝑝)))
5311, 31, 46, 52syl12anc 835 . . . . . . 7 (((((𝑈𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} ∈ dom 𝑈) → ∃𝑝 ∈ On (∀𝑞𝑝 ((𝑍 ↾ dom 𝑈)‘𝑞) = (𝑈𝑞) ∧ ((𝑍 ↾ dom 𝑈)‘𝑝){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝑈𝑝)))
54 noreson 33460 . . . . . . . . 9 ((𝑍 No ∧ dom 𝑈 ∈ On) → (𝑍 ↾ dom 𝑈) ∈ No )
5535, 9, 54syl2anc 587 . . . . . . . 8 ((((𝑈𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) → (𝑍 ↾ dom 𝑈) ∈ No )
56 sltval 33447 . . . . . . . 8 (((𝑍 ↾ dom 𝑈) ∈ No 𝑈 No ) → ((𝑍 ↾ dom 𝑈) <s 𝑈 ↔ ∃𝑝 ∈ On (∀𝑞𝑝 ((𝑍 ↾ dom 𝑈)‘𝑞) = (𝑈𝑞) ∧ ((𝑍 ↾ dom 𝑈)‘𝑝){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝑈𝑝))))
5755, 36, 56syl2an2r 684 . . . . . . 7 (((((𝑈𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} ∈ dom 𝑈) → ((𝑍 ↾ dom 𝑈) <s 𝑈 ↔ ∃𝑝 ∈ On (∀𝑞𝑝 ((𝑍 ↾ dom 𝑈)‘𝑞) = (𝑈𝑞) ∧ ((𝑍 ↾ dom 𝑈)‘𝑝){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝑈𝑝))))
5853, 57mpbird 260 . . . . . 6 (((((𝑈𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} ∈ dom 𝑈) → (𝑍 ↾ dom 𝑈) <s 𝑈)
59 sssucid 6251 . . . . . . 7 dom 𝑈 ⊆ suc dom 𝑈
60 resabs1 5858 . . . . . . 7 (dom 𝑈 ⊆ suc dom 𝑈 → ((𝑍 ↾ suc dom 𝑈) ↾ dom 𝑈) = (𝑍 ↾ dom 𝑈))
6159, 60mp1i 13 . . . . . 6 (((((𝑈𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} ∈ dom 𝑈) → ((𝑍 ↾ suc dom 𝑈) ↾ dom 𝑈) = (𝑍 ↾ dom 𝑈))
62 resundir 5843 . . . . . . 7 ((𝑈 ∪ {⟨dom 𝑈, 1o⟩}) ↾ dom 𝑈) = ((𝑈 ↾ dom 𝑈) ∪ ({⟨dom 𝑈, 1o⟩} ↾ dom 𝑈))
63 nofun 33449 . . . . . . . . . . . . 13 (𝑈 No → Fun 𝑈)
647, 63syl 17 . . . . . . . . . . . 12 ((((𝑈𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) → Fun 𝑈)
65 funrel 6357 . . . . . . . . . . . 12 (Fun 𝑈 → Rel 𝑈)
6664, 65syl 17 . . . . . . . . . . 11 ((((𝑈𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) → Rel 𝑈)
6766adantr 484 . . . . . . . . . 10 (((((𝑈𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} ∈ dom 𝑈) → Rel 𝑈)
68 resdm 5873 . . . . . . . . . 10 (Rel 𝑈 → (𝑈 ↾ dom 𝑈) = 𝑈)
6967, 68syl 17 . . . . . . . . 9 (((((𝑈𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} ∈ dom 𝑈) → (𝑈 ↾ dom 𝑈) = 𝑈)
70 nodmord 33453 . . . . . . . . . . . . 13 (𝑈 No → Ord dom 𝑈)
717, 70syl 17 . . . . . . . . . . . 12 ((((𝑈𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) → Ord dom 𝑈)
7271adantr 484 . . . . . . . . . . 11 (((((𝑈𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} ∈ dom 𝑈) → Ord dom 𝑈)
73 ordirr 6192 . . . . . . . . . . 11 (Ord dom 𝑈 → ¬ dom 𝑈 ∈ dom 𝑈)
7472, 73syl 17 . . . . . . . . . 10 (((((𝑈𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} ∈ dom 𝑈) → ¬ dom 𝑈 ∈ dom 𝑈)
75 1oex 8126 . . . . . . . . . . 11 1o ∈ V
7675snres0 33205 . . . . . . . . . 10 (({⟨dom 𝑈, 1o⟩} ↾ dom 𝑈) = ∅ ↔ ¬ dom 𝑈 ∈ dom 𝑈)
7774, 76sylibr 237 . . . . . . . . 9 (((((𝑈𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} ∈ dom 𝑈) → ({⟨dom 𝑈, 1o⟩} ↾ dom 𝑈) = ∅)
7869, 77uneq12d 4071 . . . . . . . 8 (((((𝑈𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} ∈ dom 𝑈) → ((𝑈 ↾ dom 𝑈) ∪ ({⟨dom 𝑈, 1o⟩} ↾ dom 𝑈)) = (𝑈 ∪ ∅))
79 un0 4289 . . . . . . . 8 (𝑈 ∪ ∅) = 𝑈
8078, 79eqtrdi 2809 . . . . . . 7 (((((𝑈𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} ∈ dom 𝑈) → ((𝑈 ↾ dom 𝑈) ∪ ({⟨dom 𝑈, 1o⟩} ↾ dom 𝑈)) = 𝑈)
8162, 80syl5eq 2805 . . . . . 6 (((((𝑈𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} ∈ dom 𝑈) → ((𝑈 ∪ {⟨dom 𝑈, 1o⟩}) ↾ dom 𝑈) = 𝑈)
8258, 61, 813brtr4d 5068 . . . . 5 (((((𝑈𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} ∈ dom 𝑈) → ((𝑍 ↾ suc dom 𝑈) ↾ dom 𝑈) <s ((𝑈 ∪ {⟨dom 𝑈, 1o⟩}) ↾ dom 𝑈))
83 sucelon 7537 . . . . . . . . 9 (dom 𝑈 ∈ On ↔ suc dom 𝑈 ∈ On)
849, 83sylib 221 . . . . . . . 8 ((((𝑈𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) → suc dom 𝑈 ∈ On)
85 noreson 33460 . . . . . . . 8 ((𝑍 No ∧ suc dom 𝑈 ∈ On) → (𝑍 ↾ suc dom 𝑈) ∈ No )
8635, 84, 85syl2anc 587 . . . . . . 7 ((((𝑈𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) → (𝑍 ↾ suc dom 𝑈) ∈ No )
8786adantr 484 . . . . . 6 (((((𝑈𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} ∈ dom 𝑈) → (𝑍 ↾ suc dom 𝑈) ∈ No )
8875prid1 4658 . . . . . . . . 9 1o ∈ {1o, 2o}
8988noextend 33466 . . . . . . . 8 (𝑈 No → (𝑈 ∪ {⟨dom 𝑈, 1o⟩}) ∈ No )
907, 89syl 17 . . . . . . 7 ((((𝑈𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) → (𝑈 ∪ {⟨dom 𝑈, 1o⟩}) ∈ No )
9190adantr 484 . . . . . 6 (((((𝑈𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} ∈ dom 𝑈) → (𝑈 ∪ {⟨dom 𝑈, 1o⟩}) ∈ No )
92 sltres 33462 . . . . . 6 (((𝑍 ↾ suc dom 𝑈) ∈ No ∧ (𝑈 ∪ {⟨dom 𝑈, 1o⟩}) ∈ No ∧ dom 𝑈 ∈ On) → (((𝑍 ↾ suc dom 𝑈) ↾ dom 𝑈) <s ((𝑈 ∪ {⟨dom 𝑈, 1o⟩}) ↾ dom 𝑈) → (𝑍 ↾ suc dom 𝑈) <s (𝑈 ∪ {⟨dom 𝑈, 1o⟩})))
9387, 91, 14, 92syl3anc 1368 . . . . 5 (((((𝑈𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} ∈ dom 𝑈) → (((𝑍 ↾ suc dom 𝑈) ↾ dom 𝑈) <s ((𝑈 ∪ {⟨dom 𝑈, 1o⟩}) ↾ dom 𝑈) → (𝑍 ↾ suc dom 𝑈) <s (𝑈 ∪ {⟨dom 𝑈, 1o⟩})))
9482, 93mpd 15 . . . 4 (((((𝑈𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} ∈ dom 𝑈) → (𝑍 ↾ suc dom 𝑈) <s (𝑈 ∪ {⟨dom 𝑈, 1o⟩}))
95 sltso 33476 . . . . . 6 <s Or No
96 soasym 5477 . . . . . 6 (( <s Or No ∧ ((𝑍 ↾ suc dom 𝑈) ∈ No ∧ (𝑈 ∪ {⟨dom 𝑈, 1o⟩}) ∈ No )) → ((𝑍 ↾ suc dom 𝑈) <s (𝑈 ∪ {⟨dom 𝑈, 1o⟩}) → ¬ (𝑈 ∪ {⟨dom 𝑈, 1o⟩}) <s (𝑍 ↾ suc dom 𝑈)))
9795, 96mpan 689 . . . . 5 (((𝑍 ↾ suc dom 𝑈) ∈ No ∧ (𝑈 ∪ {⟨dom 𝑈, 1o⟩}) ∈ No ) → ((𝑍 ↾ suc dom 𝑈) <s (𝑈 ∪ {⟨dom 𝑈, 1o⟩}) → ¬ (𝑈 ∪ {⟨dom 𝑈, 1o⟩}) <s (𝑍 ↾ suc dom 𝑈)))
9886, 91, 97syl2an2r 684 . . . 4 (((((𝑈𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} ∈ dom 𝑈) → ((𝑍 ↾ suc dom 𝑈) <s (𝑈 ∪ {⟨dom 𝑈, 1o⟩}) → ¬ (𝑈 ∪ {⟨dom 𝑈, 1o⟩}) <s (𝑍 ↾ suc dom 𝑈)))
9994, 98mpd 15 . . 3 (((((𝑈𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} ∈ dom 𝑈) → ¬ (𝑈 ∪ {⟨dom 𝑈, 1o⟩}) <s (𝑍 ↾ suc dom 𝑈))
100 sonr 5469 . . . . . 6 (( <s Or No ∧ (𝑈 ∪ {⟨dom 𝑈, 1o⟩}) ∈ No ) → ¬ (𝑈 ∪ {⟨dom 𝑈, 1o⟩}) <s (𝑈 ∪ {⟨dom 𝑈, 1o⟩}))
10195, 90, 100sylancr 590 . . . . 5 ((((𝑈𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) → ¬ (𝑈 ∪ {⟨dom 𝑈, 1o⟩}) <s (𝑈 ∪ {⟨dom 𝑈, 1o⟩}))
102101adantr 484 . . . 4 (((((𝑈𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} = dom 𝑈) → ¬ (𝑈 ∪ {⟨dom 𝑈, 1o⟩}) <s (𝑈 ∪ {⟨dom 𝑈, 1o⟩}))
103 df-suc 6180 . . . . . . . 8 suc dom 𝑈 = (dom 𝑈 ∪ {dom 𝑈})
104103reseq2i 5825 . . . . . . 7 (𝑍 ↾ suc dom 𝑈) = (𝑍 ↾ (dom 𝑈 ∪ {dom 𝑈}))
105 resundi 5842 . . . . . . 7 (𝑍 ↾ (dom 𝑈 ∪ {dom 𝑈})) = ((𝑍 ↾ dom 𝑈) ∪ (𝑍 ↾ {dom 𝑈}))
106104, 105eqtri 2781 . . . . . 6 (𝑍 ↾ suc dom 𝑈) = ((𝑍 ↾ dom 𝑈) ∪ (𝑍 ↾ {dom 𝑈}))
107 dmres 5850 . . . . . . . . 9 dom (𝑍 ↾ dom 𝑈) = (dom 𝑈 ∩ dom 𝑍)
10842eqeq1i 2763 . . . . . . . . . . . . 13 ( {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} = dom 𝑈 {𝑥 ∈ On ∣ (𝑍𝑥) ≠ (𝑈𝑥)} = dom 𝑈)
109108biimpi 219 . . . . . . . . . . . 12 ( {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} = dom 𝑈 {𝑥 ∈ On ∣ (𝑍𝑥) ≠ (𝑈𝑥)} = dom 𝑈)
110109adantl 485 . . . . . . . . . . 11 (((((𝑈𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} = dom 𝑈) → {𝑥 ∈ On ∣ (𝑍𝑥) ≠ (𝑈𝑥)} = dom 𝑈)
11135adantr 484 . . . . . . . . . . . 12 (((((𝑈𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} = dom 𝑈) → 𝑍 No )
1127adantr 484 . . . . . . . . . . . 12 (((((𝑈𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} = dom 𝑈) → 𝑈 No )
113 simp23 1205 . . . . . . . . . . . . . . . . . 18 (((𝑈𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏) → 𝑍 No )
114 sonr 5469 . . . . . . . . . . . . . . . . . 18 (( <s Or No 𝑍 No ) → ¬ 𝑍 <s 𝑍)
11595, 113, 114sylancr 590 . . . . . . . . . . . . . . . . 17 (((𝑈𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏) → ¬ 𝑍 <s 𝑍)
116 breq2 5040 . . . . . . . . . . . . . . . . . 18 (𝑈 = 𝑍 → (𝑍 <s 𝑈𝑍 <s 𝑍))
117116notbid 321 . . . . . . . . . . . . . . . . 17 (𝑈 = 𝑍 → (¬ 𝑍 <s 𝑈 ↔ ¬ 𝑍 <s 𝑍))
118115, 117syl5ibrcom 250 . . . . . . . . . . . . . . . 16 (((𝑈𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏) → (𝑈 = 𝑍 → ¬ 𝑍 <s 𝑈))
119118necon2ad 2966 . . . . . . . . . . . . . . 15 (((𝑈𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏) → (𝑍 <s 𝑈𝑈𝑍))
120119imp 410 . . . . . . . . . . . . . 14 ((((𝑈𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) → 𝑈𝑍)
121120necomd 3006 . . . . . . . . . . . . 13 ((((𝑈𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) → 𝑍𝑈)
122121adantr 484 . . . . . . . . . . . 12 (((((𝑈𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} = dom 𝑈) → 𝑍𝑈)
123 nosepssdm 33486 . . . . . . . . . . . 12 ((𝑍 No 𝑈 No 𝑍𝑈) → {𝑥 ∈ On ∣ (𝑍𝑥) ≠ (𝑈𝑥)} ⊆ dom 𝑍)
124111, 112, 122, 123syl3anc 1368 . . . . . . . . . . 11 (((((𝑈𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} = dom 𝑈) → {𝑥 ∈ On ∣ (𝑍𝑥) ≠ (𝑈𝑥)} ⊆ dom 𝑍)
125110, 124eqsstrrd 3933 . . . . . . . . . 10 (((((𝑈𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} = dom 𝑈) → dom 𝑈 ⊆ dom 𝑍)
126 df-ss 3877 . . . . . . . . . 10 (dom 𝑈 ⊆ dom 𝑍 ↔ (dom 𝑈 ∩ dom 𝑍) = dom 𝑈)
127125, 126sylib 221 . . . . . . . . 9 (((((𝑈𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} = dom 𝑈) → (dom 𝑈 ∩ dom 𝑍) = dom 𝑈)
128107, 127syl5eq 2805 . . . . . . . 8 (((((𝑈𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} = dom 𝑈) → dom (𝑍 ↾ dom 𝑈) = dom 𝑈)
129128eleq2d 2837 . . . . . . . . . 10 (((((𝑈𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} = dom 𝑈) → (𝑞 ∈ dom (𝑍 ↾ dom 𝑈) ↔ 𝑞 ∈ dom 𝑈))
130 simpr 488 . . . . . . . . . . . . 13 ((((((𝑈𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} = dom 𝑈) ∧ 𝑞 ∈ dom 𝑈) → 𝑞 ∈ dom 𝑈)
131130fvresd 6683 . . . . . . . . . . . 12 ((((((𝑈𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} = dom 𝑈) ∧ 𝑞 ∈ dom 𝑈) → ((𝑍 ↾ dom 𝑈)‘𝑞) = (𝑍𝑞))
132112, 8syl 17 . . . . . . . . . . . . . . 15 (((((𝑈𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} = dom 𝑈) → dom 𝑈 ∈ On)
133 onelon 6199 . . . . . . . . . . . . . . 15 ((dom 𝑈 ∈ On ∧ 𝑞 ∈ dom 𝑈) → 𝑞 ∈ On)
134132, 133sylan 583 . . . . . . . . . . . . . 14 ((((((𝑈𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} = dom 𝑈) ∧ 𝑞 ∈ dom 𝑈) → 𝑞 ∈ On)
135 simpr 488 . . . . . . . . . . . . . . . 16 (((((𝑈𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} = dom 𝑈) → {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} = dom 𝑈)
136135eleq2d 2837 . . . . . . . . . . . . . . 15 (((((𝑈𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} = dom 𝑈) → (𝑞 {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} ↔ 𝑞 ∈ dom 𝑈))
137136biimpar 481 . . . . . . . . . . . . . 14 ((((((𝑈𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} = dom 𝑈) ∧ 𝑞 ∈ dom 𝑈) → 𝑞 {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)})
138134, 137, 25sylc 65 . . . . . . . . . . . . 13 ((((((𝑈𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} = dom 𝑈) ∧ 𝑞 ∈ dom 𝑈) → ¬ (𝑈𝑞) ≠ (𝑍𝑞))
139 nesym 3007 . . . . . . . . . . . . . 14 ((𝑈𝑞) ≠ (𝑍𝑞) ↔ ¬ (𝑍𝑞) = (𝑈𝑞))
140139con2bii 361 . . . . . . . . . . . . 13 ((𝑍𝑞) = (𝑈𝑞) ↔ ¬ (𝑈𝑞) ≠ (𝑍𝑞))
141138, 140sylibr 237 . . . . . . . . . . . 12 ((((((𝑈𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} = dom 𝑈) ∧ 𝑞 ∈ dom 𝑈) → (𝑍𝑞) = (𝑈𝑞))
142131, 141eqtrd 2793 . . . . . . . . . . 11 ((((((𝑈𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} = dom 𝑈) ∧ 𝑞 ∈ dom 𝑈) → ((𝑍 ↾ dom 𝑈)‘𝑞) = (𝑈𝑞))
143142ex 416 . . . . . . . . . 10 (((((𝑈𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} = dom 𝑈) → (𝑞 ∈ dom 𝑈 → ((𝑍 ↾ dom 𝑈)‘𝑞) = (𝑈𝑞)))
144129, 143sylbid 243 . . . . . . . . 9 (((((𝑈𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} = dom 𝑈) → (𝑞 ∈ dom (𝑍 ↾ dom 𝑈) → ((𝑍 ↾ dom 𝑈)‘𝑞) = (𝑈𝑞)))
145144ralrimiv 3112 . . . . . . . 8 (((((𝑈𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} = dom 𝑈) → ∀𝑞 ∈ dom (𝑍 ↾ dom 𝑈)((𝑍 ↾ dom 𝑈)‘𝑞) = (𝑈𝑞))
146 nofun 33449 . . . . . . . . . . 11 (𝑍 No → Fun 𝑍)
147111, 146syl 17 . . . . . . . . . 10 (((((𝑈𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} = dom 𝑈) → Fun 𝑍)
148147funresd 6383 . . . . . . . . 9 (((((𝑈𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} = dom 𝑈) → Fun (𝑍 ↾ dom 𝑈))
14964adantr 484 . . . . . . . . 9 (((((𝑈𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} = dom 𝑈) → Fun 𝑈)
150 eqfunfv 6803 . . . . . . . . 9 ((Fun (𝑍 ↾ dom 𝑈) ∧ Fun 𝑈) → ((𝑍 ↾ dom 𝑈) = 𝑈 ↔ (dom (𝑍 ↾ dom 𝑈) = dom 𝑈 ∧ ∀𝑞 ∈ dom (𝑍 ↾ dom 𝑈)((𝑍 ↾ dom 𝑈)‘𝑞) = (𝑈𝑞))))
151148, 149, 150syl2anc 587 . . . . . . . 8 (((((𝑈𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} = dom 𝑈) → ((𝑍 ↾ dom 𝑈) = 𝑈 ↔ (dom (𝑍 ↾ dom 𝑈) = dom 𝑈 ∧ ∀𝑞 ∈ dom (𝑍 ↾ dom 𝑈)((𝑍 ↾ dom 𝑈)‘𝑞) = (𝑈𝑞))))
152128, 145, 151mpbir2and 712 . . . . . . 7 (((((𝑈𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} = dom 𝑈) → (𝑍 ↾ dom 𝑈) = 𝑈)
15335, 146syl 17 . . . . . . . . . 10 ((((𝑈𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) → Fun 𝑍)
154153funfnd 6371 . . . . . . . . 9 ((((𝑈𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) → 𝑍 Fn dom 𝑍)
155112, 70syl 17 . . . . . . . . . . . . . . . 16 (((((𝑈𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} = dom 𝑈) → Ord dom 𝑈)
156155, 73syl 17 . . . . . . . . . . . . . . 15 (((((𝑈𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} = dom 𝑈) → ¬ dom 𝑈 ∈ dom 𝑈)
157 ndmfv 6693 . . . . . . . . . . . . . . . 16 (¬ dom 𝑈 ∈ dom 𝑈 → (𝑈‘dom 𝑈) = ∅)
158 2on0 8129 . . . . . . . . . . . . . . . . . . 19 2o ≠ ∅
159158necomi 3005 . . . . . . . . . . . . . . . . . 18 ∅ ≠ 2o
160 neeq1 3013 . . . . . . . . . . . . . . . . . 18 ((𝑈‘dom 𝑈) = ∅ → ((𝑈‘dom 𝑈) ≠ 2o ↔ ∅ ≠ 2o))
161159, 160mpbiri 261 . . . . . . . . . . . . . . . . 17 ((𝑈‘dom 𝑈) = ∅ → (𝑈‘dom 𝑈) ≠ 2o)
162161neneqd 2956 . . . . . . . . . . . . . . . 16 ((𝑈‘dom 𝑈) = ∅ → ¬ (𝑈‘dom 𝑈) = 2o)
163157, 162syl 17 . . . . . . . . . . . . . . 15 (¬ dom 𝑈 ∈ dom 𝑈 → ¬ (𝑈‘dom 𝑈) = 2o)
164156, 163syl 17 . . . . . . . . . . . . . 14 (((((𝑈𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} = dom 𝑈) → ¬ (𝑈‘dom 𝑈) = 2o)
165164intnand 492 . . . . . . . . . . . . 13 (((((𝑈𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} = dom 𝑈) → ¬ ((𝑍‘dom 𝑈) = ∅ ∧ (𝑈‘dom 𝑈) = 2o))
166 simpr 488 . . . . . . . . . . . . . . . . 17 ((((𝑈𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) → 𝑍 <s 𝑈)
16735, 7, 37syl2anc 587 . . . . . . . . . . . . . . . . 17 ((((𝑈𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) → (𝑍 <s 𝑈 ↔ (𝑍 {𝑥 ∈ On ∣ (𝑍𝑥) ≠ (𝑈𝑥)}){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝑈 {𝑥 ∈ On ∣ (𝑍𝑥) ≠ (𝑈𝑥)})))
168166, 167mpbid 235 . . . . . . . . . . . . . . . 16 ((((𝑈𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) → (𝑍 {𝑥 ∈ On ∣ (𝑍𝑥) ≠ (𝑈𝑥)}){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝑈 {𝑥 ∈ On ∣ (𝑍𝑥) ≠ (𝑈𝑥)}))
169168adantr 484 . . . . . . . . . . . . . . 15 (((((𝑈𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} = dom 𝑈) → (𝑍 {𝑥 ∈ On ∣ (𝑍𝑥) ≠ (𝑈𝑥)}){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝑈 {𝑥 ∈ On ∣ (𝑍𝑥) ≠ (𝑈𝑥)}))
170110fveq2d 6667 . . . . . . . . . . . . . . 15 (((((𝑈𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} = dom 𝑈) → (𝑍 {𝑥 ∈ On ∣ (𝑍𝑥) ≠ (𝑈𝑥)}) = (𝑍‘dom 𝑈))
171110fveq2d 6667 . . . . . . . . . . . . . . 15 (((((𝑈𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} = dom 𝑈) → (𝑈 {𝑥 ∈ On ∣ (𝑍𝑥) ≠ (𝑈𝑥)}) = (𝑈‘dom 𝑈))
172169, 170, 1713brtr3d 5067 . . . . . . . . . . . . . 14 (((((𝑈𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} = dom 𝑈) → (𝑍‘dom 𝑈){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝑈‘dom 𝑈))
173 fvex 6676 . . . . . . . . . . . . . . 15 (𝑍‘dom 𝑈) ∈ V
174 fvex 6676 . . . . . . . . . . . . . . 15 (𝑈‘dom 𝑈) ∈ V
175173, 174brtp 33244 . . . . . . . . . . . . . 14 ((𝑍‘dom 𝑈){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝑈‘dom 𝑈) ↔ (((𝑍‘dom 𝑈) = 1o ∧ (𝑈‘dom 𝑈) = ∅) ∨ ((𝑍‘dom 𝑈) = 1o ∧ (𝑈‘dom 𝑈) = 2o) ∨ ((𝑍‘dom 𝑈) = ∅ ∧ (𝑈‘dom 𝑈) = 2o)))
176172, 175sylib 221 . . . . . . . . . . . . 13 (((((𝑈𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} = dom 𝑈) → (((𝑍‘dom 𝑈) = 1o ∧ (𝑈‘dom 𝑈) = ∅) ∨ ((𝑍‘dom 𝑈) = 1o ∧ (𝑈‘dom 𝑈) = 2o) ∨ ((𝑍‘dom 𝑈) = ∅ ∧ (𝑈‘dom 𝑈) = 2o)))
177 3orel3 33185 . . . . . . . . . . . . 13 (¬ ((𝑍‘dom 𝑈) = ∅ ∧ (𝑈‘dom 𝑈) = 2o) → ((((𝑍‘dom 𝑈) = 1o ∧ (𝑈‘dom 𝑈) = ∅) ∨ ((𝑍‘dom 𝑈) = 1o ∧ (𝑈‘dom 𝑈) = 2o) ∨ ((𝑍‘dom 𝑈) = ∅ ∧ (𝑈‘dom 𝑈) = 2o)) → (((𝑍‘dom 𝑈) = 1o ∧ (𝑈‘dom 𝑈) = ∅) ∨ ((𝑍‘dom 𝑈) = 1o ∧ (𝑈‘dom 𝑈) = 2o))))
178165, 176, 177sylc 65 . . . . . . . . . . . 12 (((((𝑈𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} = dom 𝑈) → (((𝑍‘dom 𝑈) = 1o ∧ (𝑈‘dom 𝑈) = ∅) ∨ ((𝑍‘dom 𝑈) = 1o ∧ (𝑈‘dom 𝑈) = 2o)))
179 andi 1005 . . . . . . . . . . . 12 (((𝑍‘dom 𝑈) = 1o ∧ ((𝑈‘dom 𝑈) = ∅ ∨ (𝑈‘dom 𝑈) = 2o)) ↔ (((𝑍‘dom 𝑈) = 1o ∧ (𝑈‘dom 𝑈) = ∅) ∨ ((𝑍‘dom 𝑈) = 1o ∧ (𝑈‘dom 𝑈) = 2o)))
180178, 179sylibr 237 . . . . . . . . . . 11 (((((𝑈𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} = dom 𝑈) → ((𝑍‘dom 𝑈) = 1o ∧ ((𝑈‘dom 𝑈) = ∅ ∨ (𝑈‘dom 𝑈) = 2o)))
181180simpld 498 . . . . . . . . . 10 (((((𝑈𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} = dom 𝑈) → (𝑍‘dom 𝑈) = 1o)
182 ndmfv 6693 . . . . . . . . . . . 12 (¬ dom 𝑈 ∈ dom 𝑍 → (𝑍‘dom 𝑈) = ∅)
183 1n0 8135 . . . . . . . . . . . . . . 15 1o ≠ ∅
184183necomi 3005 . . . . . . . . . . . . . 14 ∅ ≠ 1o
185 neeq1 3013 . . . . . . . . . . . . . 14 ((𝑍‘dom 𝑈) = ∅ → ((𝑍‘dom 𝑈) ≠ 1o ↔ ∅ ≠ 1o))
186184, 185mpbiri 261 . . . . . . . . . . . . 13 ((𝑍‘dom 𝑈) = ∅ → (𝑍‘dom 𝑈) ≠ 1o)
187186neneqd 2956 . . . . . . . . . . . 12 ((𝑍‘dom 𝑈) = ∅ → ¬ (𝑍‘dom 𝑈) = 1o)
188182, 187syl 17 . . . . . . . . . . 11 (¬ dom 𝑈 ∈ dom 𝑍 → ¬ (𝑍‘dom 𝑈) = 1o)
189188con4i 114 . . . . . . . . . 10 ((𝑍‘dom 𝑈) = 1o → dom 𝑈 ∈ dom 𝑍)
190181, 189syl 17 . . . . . . . . 9 (((((𝑈𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} = dom 𝑈) → dom 𝑈 ∈ dom 𝑍)
191 fnressn 6917 . . . . . . . . 9 ((𝑍 Fn dom 𝑍 ∧ dom 𝑈 ∈ dom 𝑍) → (𝑍 ↾ {dom 𝑈}) = {⟨dom 𝑈, (𝑍‘dom 𝑈)⟩})
192154, 190, 191syl2an2r 684 . . . . . . . 8 (((((𝑈𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} = dom 𝑈) → (𝑍 ↾ {dom 𝑈}) = {⟨dom 𝑈, (𝑍‘dom 𝑈)⟩})
193181opeq2d 4773 . . . . . . . . 9 (((((𝑈𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} = dom 𝑈) → ⟨dom 𝑈, (𝑍‘dom 𝑈)⟩ = ⟨dom 𝑈, 1o⟩)
194193sneqd 4537 . . . . . . . 8 (((((𝑈𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} = dom 𝑈) → {⟨dom 𝑈, (𝑍‘dom 𝑈)⟩} = {⟨dom 𝑈, 1o⟩})
195192, 194eqtrd 2793 . . . . . . 7 (((((𝑈𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} = dom 𝑈) → (𝑍 ↾ {dom 𝑈}) = {⟨dom 𝑈, 1o⟩})
196152, 195uneq12d 4071 . . . . . 6 (((((𝑈𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} = dom 𝑈) → ((𝑍 ↾ dom 𝑈) ∪ (𝑍 ↾ {dom 𝑈})) = (𝑈 ∪ {⟨dom 𝑈, 1o⟩}))
197106, 196syl5eq 2805 . . . . 5 (((((𝑈𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} = dom 𝑈) → (𝑍 ↾ suc dom 𝑈) = (𝑈 ∪ {⟨dom 𝑈, 1o⟩}))
198197breq2d 5048 . . . 4 (((((𝑈𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} = dom 𝑈) → ((𝑈 ∪ {⟨dom 𝑈, 1o⟩}) <s (𝑍 ↾ suc dom 𝑈) ↔ (𝑈 ∪ {⟨dom 𝑈, 1o⟩}) <s (𝑈 ∪ {⟨dom 𝑈, 1o⟩})))
199102, 198mtbird 328 . . 3 (((((𝑈𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} = dom 𝑈) → ¬ (𝑈 ∪ {⟨dom 𝑈, 1o⟩}) <s (𝑍 ↾ suc dom 𝑈))
200 nosepssdm 33486 . . . . 5 ((𝑈 No 𝑍 No 𝑈𝑍) → {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} ⊆ dom 𝑈)
2017, 35, 120, 200syl3anc 1368 . . . 4 ((((𝑈𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) → {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} ⊆ dom 𝑈)
202 nosepon 33465 . . . . . 6 ((𝑈 No 𝑍 No 𝑈𝑍) → {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} ∈ On)
2037, 35, 120, 202syl3anc 1368 . . . . 5 ((((𝑈𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) → {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} ∈ On)
204 onsseleq 6215 . . . . 5 (( {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} ∈ On ∧ dom 𝑈 ∈ On) → ( {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} ⊆ dom 𝑈 ↔ ( {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} ∈ dom 𝑈 {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} = dom 𝑈)))
205203, 9, 204syl2anc 587 . . . 4 ((((𝑈𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) → ( {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} ⊆ dom 𝑈 ↔ ( {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} ∈ dom 𝑈 {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} = dom 𝑈)))
206201, 205mpbid 235 . . 3 ((((𝑈𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) → ( {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} ∈ dom 𝑈 {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} = dom 𝑈))
20799, 199, 206mpjaodan 956 . 2 ((((𝑈𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏) ∧ 𝑍 <s 𝑈) → ¬ (𝑈 ∪ {⟨dom 𝑈, 1o⟩}) <s (𝑍 ↾ suc dom 𝑈))
2084, 207mpdan 686 1 (((𝑈𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦 <s 𝑈) ∧ (𝐵 No 𝐵𝑉𝑍 No ) ∧ ∀𝑏𝐵 𝑍 <s 𝑏) → ¬ (𝑈 ∪ {⟨dom 𝑈, 1o⟩}) <s (𝑍 ↾ suc dom 𝑈))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  wo 844  w3o 1083  w3a 1084   = wceq 1538  wcel 2111  wne 2951  wral 3070  wrex 3071  {crab 3074  cun 3858  cin 3859  wss 3860  c0 4227  {csn 4525  {ctp 4529  cop 4531   cint 4841   class class class wbr 5036   Or wor 5446  dom cdm 5528  cres 5530  Rel wrel 5533  Ord word 6173  Oncon0 6174  suc csuc 6176  Fun wfun 6334   Fn wfn 6335  cfv 6340  1oc1o 8111  2oc2o 8112   No csur 33440   <s cslt 33441
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-rep 5160  ax-sep 5173  ax-nul 5180  ax-pr 5302  ax-un 7465
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-ral 3075  df-rex 3076  df-reu 3077  df-rab 3079  df-v 3411  df-sbc 3699  df-csb 3808  df-dif 3863  df-un 3865  df-in 3867  df-ss 3877  df-pss 3879  df-nul 4228  df-if 4424  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4802  df-int 4842  df-iun 4888  df-br 5037  df-opab 5099  df-mpt 5117  df-tr 5143  df-id 5434  df-eprel 5439  df-po 5447  df-so 5448  df-fr 5487  df-we 5489  df-xp 5534  df-rel 5535  df-cnv 5536  df-co 5537  df-dm 5538  df-rn 5539  df-res 5540  df-ima 5541  df-ord 6177  df-on 6178  df-suc 6180  df-iota 6299  df-fun 6342  df-fn 6343  df-f 6344  df-f1 6345  df-fo 6346  df-f1o 6347  df-fv 6348  df-1o 8118  df-2o 8119  df-no 33443  df-slt 33444
This theorem is referenced by:  noinfbnd2  33531
  Copyright terms: Public domain W3C validator