Step | Hyp | Ref
| Expression |
1 | | simpl2 1190 |
. . . . . 6
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝑋 ∈ On) ∧ ((𝐴 ↾ 𝑋) = (𝐵 ↾ 𝑋) ∧ (𝐴‘𝑋) = 2o)) → 𝐵 ∈ No
) |
2 | | nofv 33787 |
. . . . . 6
⊢ (𝐵 ∈
No → ((𝐵‘𝑋) = ∅ ∨ (𝐵‘𝑋) = 1o ∨ (𝐵‘𝑋) = 2o)) |
3 | 1, 2 | syl 17 |
. . . . 5
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝑋 ∈ On) ∧ ((𝐴 ↾ 𝑋) = (𝐵 ↾ 𝑋) ∧ (𝐴‘𝑋) = 2o)) → ((𝐵‘𝑋) = ∅ ∨ (𝐵‘𝑋) = 1o ∨ (𝐵‘𝑋) = 2o)) |
4 | | 3orel3 33557 |
. . . . 5
⊢ (¬
(𝐵‘𝑋) = 2o → (((𝐵‘𝑋) = ∅ ∨ (𝐵‘𝑋) = 1o ∨ (𝐵‘𝑋) = 2o) → ((𝐵‘𝑋) = ∅ ∨ (𝐵‘𝑋) = 1o))) |
5 | 3, 4 | syl5com 31 |
. . . 4
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝑋 ∈ On) ∧ ((𝐴 ↾ 𝑋) = (𝐵 ↾ 𝑋) ∧ (𝐴‘𝑋) = 2o)) → (¬ (𝐵‘𝑋) = 2o → ((𝐵‘𝑋) = ∅ ∨ (𝐵‘𝑋) = 1o))) |
6 | | simp13 1203 |
. . . . . . 7
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝑋 ∈ On) ∧ ((𝐴 ↾ 𝑋) = (𝐵 ↾ 𝑋) ∧ (𝐴‘𝑋) = 2o) ∧ ((𝐵‘𝑋) = ∅ ∨ (𝐵‘𝑋) = 1o)) → 𝑋 ∈ On) |
7 | | fveq1 6755 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ↾ 𝑋) = (𝐵 ↾ 𝑋) → ((𝐴 ↾ 𝑋)‘𝑦) = ((𝐵 ↾ 𝑋)‘𝑦)) |
8 | 7 | eqcomd 2744 |
. . . . . . . . . . . 12
⊢ ((𝐴 ↾ 𝑋) = (𝐵 ↾ 𝑋) → ((𝐵 ↾ 𝑋)‘𝑦) = ((𝐴 ↾ 𝑋)‘𝑦)) |
9 | 8 | adantr 480 |
. . . . . . . . . . 11
⊢ (((𝐴 ↾ 𝑋) = (𝐵 ↾ 𝑋) ∧ 𝑦 ∈ 𝑋) → ((𝐵 ↾ 𝑋)‘𝑦) = ((𝐴 ↾ 𝑋)‘𝑦)) |
10 | | simpr 484 |
. . . . . . . . . . . 12
⊢ (((𝐴 ↾ 𝑋) = (𝐵 ↾ 𝑋) ∧ 𝑦 ∈ 𝑋) → 𝑦 ∈ 𝑋) |
11 | 10 | fvresd 6776 |
. . . . . . . . . . 11
⊢ (((𝐴 ↾ 𝑋) = (𝐵 ↾ 𝑋) ∧ 𝑦 ∈ 𝑋) → ((𝐵 ↾ 𝑋)‘𝑦) = (𝐵‘𝑦)) |
12 | 10 | fvresd 6776 |
. . . . . . . . . . 11
⊢ (((𝐴 ↾ 𝑋) = (𝐵 ↾ 𝑋) ∧ 𝑦 ∈ 𝑋) → ((𝐴 ↾ 𝑋)‘𝑦) = (𝐴‘𝑦)) |
13 | 9, 11, 12 | 3eqtr3d 2786 |
. . . . . . . . . 10
⊢ (((𝐴 ↾ 𝑋) = (𝐵 ↾ 𝑋) ∧ 𝑦 ∈ 𝑋) → (𝐵‘𝑦) = (𝐴‘𝑦)) |
14 | 13 | ralrimiva 3107 |
. . . . . . . . 9
⊢ ((𝐴 ↾ 𝑋) = (𝐵 ↾ 𝑋) → ∀𝑦 ∈ 𝑋 (𝐵‘𝑦) = (𝐴‘𝑦)) |
15 | 14 | adantr 480 |
. . . . . . . 8
⊢ (((𝐴 ↾ 𝑋) = (𝐵 ↾ 𝑋) ∧ (𝐴‘𝑋) = 2o) → ∀𝑦 ∈ 𝑋 (𝐵‘𝑦) = (𝐴‘𝑦)) |
16 | 15 | 3ad2ant2 1132 |
. . . . . . 7
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝑋 ∈ On) ∧ ((𝐴 ↾ 𝑋) = (𝐵 ↾ 𝑋) ∧ (𝐴‘𝑋) = 2o) ∧ ((𝐵‘𝑋) = ∅ ∨ (𝐵‘𝑋) = 1o)) → ∀𝑦 ∈ 𝑋 (𝐵‘𝑦) = (𝐴‘𝑦)) |
17 | | simprr 769 |
. . . . . . . . . . . . 13
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝑋 ∈ On) ∧ ((𝐴 ↾ 𝑋) = (𝐵 ↾ 𝑋) ∧ (𝐴‘𝑋) = 2o)) → (𝐴‘𝑋) = 2o) |
18 | 17 | a1d 25 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝑋 ∈ On) ∧ ((𝐴 ↾ 𝑋) = (𝐵 ↾ 𝑋) ∧ (𝐴‘𝑋) = 2o)) → ((𝐵‘𝑋) = ∅ → (𝐴‘𝑋) = 2o)) |
19 | 18 | ancld 550 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝑋 ∈ On) ∧ ((𝐴 ↾ 𝑋) = (𝐵 ↾ 𝑋) ∧ (𝐴‘𝑋) = 2o)) → ((𝐵‘𝑋) = ∅ → ((𝐵‘𝑋) = ∅ ∧ (𝐴‘𝑋) = 2o))) |
20 | 17 | a1d 25 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝑋 ∈ On) ∧ ((𝐴 ↾ 𝑋) = (𝐵 ↾ 𝑋) ∧ (𝐴‘𝑋) = 2o)) → ((𝐵‘𝑋) = 1o → (𝐴‘𝑋) = 2o)) |
21 | 20 | ancld 550 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝑋 ∈ On) ∧ ((𝐴 ↾ 𝑋) = (𝐵 ↾ 𝑋) ∧ (𝐴‘𝑋) = 2o)) → ((𝐵‘𝑋) = 1o → ((𝐵‘𝑋) = 1o ∧ (𝐴‘𝑋) = 2o))) |
22 | 19, 21 | orim12d 961 |
. . . . . . . . . 10
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝑋 ∈ On) ∧ ((𝐴 ↾ 𝑋) = (𝐵 ↾ 𝑋) ∧ (𝐴‘𝑋) = 2o)) → (((𝐵‘𝑋) = ∅ ∨ (𝐵‘𝑋) = 1o) → (((𝐵‘𝑋) = ∅ ∧ (𝐴‘𝑋) = 2o) ∨ ((𝐵‘𝑋) = 1o ∧ (𝐴‘𝑋) = 2o)))) |
23 | 22 | 3impia 1115 |
. . . . . . . . 9
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝑋 ∈ On) ∧ ((𝐴 ↾ 𝑋) = (𝐵 ↾ 𝑋) ∧ (𝐴‘𝑋) = 2o) ∧ ((𝐵‘𝑋) = ∅ ∨ (𝐵‘𝑋) = 1o)) → (((𝐵‘𝑋) = ∅ ∧ (𝐴‘𝑋) = 2o) ∨ ((𝐵‘𝑋) = 1o ∧ (𝐴‘𝑋) = 2o))) |
24 | | 3mix3 1330 |
. . . . . . . . . 10
⊢ (((𝐵‘𝑋) = ∅ ∧ (𝐴‘𝑋) = 2o) → (((𝐵‘𝑋) = 1o ∧ (𝐴‘𝑋) = ∅) ∨ ((𝐵‘𝑋) = 1o ∧ (𝐴‘𝑋) = 2o) ∨ ((𝐵‘𝑋) = ∅ ∧ (𝐴‘𝑋) = 2o))) |
25 | | 3mix2 1329 |
. . . . . . . . . 10
⊢ (((𝐵‘𝑋) = 1o ∧ (𝐴‘𝑋) = 2o) → (((𝐵‘𝑋) = 1o ∧ (𝐴‘𝑋) = ∅) ∨ ((𝐵‘𝑋) = 1o ∧ (𝐴‘𝑋) = 2o) ∨ ((𝐵‘𝑋) = ∅ ∧ (𝐴‘𝑋) = 2o))) |
26 | 24, 25 | jaoi 853 |
. . . . . . . . 9
⊢ ((((𝐵‘𝑋) = ∅ ∧ (𝐴‘𝑋) = 2o) ∨ ((𝐵‘𝑋) = 1o ∧ (𝐴‘𝑋) = 2o)) → (((𝐵‘𝑋) = 1o ∧ (𝐴‘𝑋) = ∅) ∨ ((𝐵‘𝑋) = 1o ∧ (𝐴‘𝑋) = 2o) ∨ ((𝐵‘𝑋) = ∅ ∧ (𝐴‘𝑋) = 2o))) |
27 | 23, 26 | syl 17 |
. . . . . . . 8
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝑋 ∈ On) ∧ ((𝐴 ↾ 𝑋) = (𝐵 ↾ 𝑋) ∧ (𝐴‘𝑋) = 2o) ∧ ((𝐵‘𝑋) = ∅ ∨ (𝐵‘𝑋) = 1o)) → (((𝐵‘𝑋) = 1o ∧ (𝐴‘𝑋) = ∅) ∨ ((𝐵‘𝑋) = 1o ∧ (𝐴‘𝑋) = 2o) ∨ ((𝐵‘𝑋) = ∅ ∧ (𝐴‘𝑋) = 2o))) |
28 | | fvex 6769 |
. . . . . . . . 9
⊢ (𝐵‘𝑋) ∈ V |
29 | | fvex 6769 |
. . . . . . . . 9
⊢ (𝐴‘𝑋) ∈ V |
30 | 28, 29 | brtp 33623 |
. . . . . . . 8
⊢ ((𝐵‘𝑋){〈1o, ∅〉,
〈1o, 2o〉, 〈∅, 2o〉}
(𝐴‘𝑋) ↔ (((𝐵‘𝑋) = 1o ∧ (𝐴‘𝑋) = ∅) ∨ ((𝐵‘𝑋) = 1o ∧ (𝐴‘𝑋) = 2o) ∨ ((𝐵‘𝑋) = ∅ ∧ (𝐴‘𝑋) = 2o))) |
31 | 27, 30 | sylibr 233 |
. . . . . . 7
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝑋 ∈ On) ∧ ((𝐴 ↾ 𝑋) = (𝐵 ↾ 𝑋) ∧ (𝐴‘𝑋) = 2o) ∧ ((𝐵‘𝑋) = ∅ ∨ (𝐵‘𝑋) = 1o)) → (𝐵‘𝑋){〈1o, ∅〉,
〈1o, 2o〉, 〈∅, 2o〉}
(𝐴‘𝑋)) |
32 | | raleq 3333 |
. . . . . . . . 9
⊢ (𝑥 = 𝑋 → (∀𝑦 ∈ 𝑥 (𝐵‘𝑦) = (𝐴‘𝑦) ↔ ∀𝑦 ∈ 𝑋 (𝐵‘𝑦) = (𝐴‘𝑦))) |
33 | | fveq2 6756 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑋 → (𝐵‘𝑥) = (𝐵‘𝑋)) |
34 | | fveq2 6756 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑋 → (𝐴‘𝑥) = (𝐴‘𝑋)) |
35 | 33, 34 | breq12d 5083 |
. . . . . . . . 9
⊢ (𝑥 = 𝑋 → ((𝐵‘𝑥){〈1o, ∅〉,
〈1o, 2o〉, 〈∅, 2o〉}
(𝐴‘𝑥) ↔ (𝐵‘𝑋){〈1o, ∅〉,
〈1o, 2o〉, 〈∅, 2o〉}
(𝐴‘𝑋))) |
36 | 32, 35 | anbi12d 630 |
. . . . . . . 8
⊢ (𝑥 = 𝑋 → ((∀𝑦 ∈ 𝑥 (𝐵‘𝑦) = (𝐴‘𝑦) ∧ (𝐵‘𝑥){〈1o, ∅〉,
〈1o, 2o〉, 〈∅, 2o〉}
(𝐴‘𝑥)) ↔ (∀𝑦 ∈ 𝑋 (𝐵‘𝑦) = (𝐴‘𝑦) ∧ (𝐵‘𝑋){〈1o, ∅〉,
〈1o, 2o〉, 〈∅, 2o〉}
(𝐴‘𝑋)))) |
37 | 36 | rspcev 3552 |
. . . . . . 7
⊢ ((𝑋 ∈ On ∧ (∀𝑦 ∈ 𝑋 (𝐵‘𝑦) = (𝐴‘𝑦) ∧ (𝐵‘𝑋){〈1o, ∅〉,
〈1o, 2o〉, 〈∅, 2o〉}
(𝐴‘𝑋))) → ∃𝑥 ∈ On (∀𝑦 ∈ 𝑥 (𝐵‘𝑦) = (𝐴‘𝑦) ∧ (𝐵‘𝑥){〈1o, ∅〉,
〈1o, 2o〉, 〈∅, 2o〉}
(𝐴‘𝑥))) |
38 | 6, 16, 31, 37 | syl12anc 833 |
. . . . . 6
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝑋 ∈ On) ∧ ((𝐴 ↾ 𝑋) = (𝐵 ↾ 𝑋) ∧ (𝐴‘𝑋) = 2o) ∧ ((𝐵‘𝑋) = ∅ ∨ (𝐵‘𝑋) = 1o)) → ∃𝑥 ∈ On (∀𝑦 ∈ 𝑥 (𝐵‘𝑦) = (𝐴‘𝑦) ∧ (𝐵‘𝑥){〈1o, ∅〉,
〈1o, 2o〉, 〈∅, 2o〉}
(𝐴‘𝑥))) |
39 | | simp12 1202 |
. . . . . . 7
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝑋 ∈ On) ∧ ((𝐴 ↾ 𝑋) = (𝐵 ↾ 𝑋) ∧ (𝐴‘𝑋) = 2o) ∧ ((𝐵‘𝑋) = ∅ ∨ (𝐵‘𝑋) = 1o)) → 𝐵 ∈ No
) |
40 | | simp11 1201 |
. . . . . . 7
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝑋 ∈ On) ∧ ((𝐴 ↾ 𝑋) = (𝐵 ↾ 𝑋) ∧ (𝐴‘𝑋) = 2o) ∧ ((𝐵‘𝑋) = ∅ ∨ (𝐵‘𝑋) = 1o)) → 𝐴 ∈ No
) |
41 | | sltval 33777 |
. . . . . . 7
⊢ ((𝐵 ∈
No ∧ 𝐴 ∈
No ) → (𝐵 <s 𝐴 ↔ ∃𝑥 ∈ On (∀𝑦 ∈ 𝑥 (𝐵‘𝑦) = (𝐴‘𝑦) ∧ (𝐵‘𝑥){〈1o, ∅〉,
〈1o, 2o〉, 〈∅, 2o〉}
(𝐴‘𝑥)))) |
42 | 39, 40, 41 | syl2anc 583 |
. . . . . 6
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝑋 ∈ On) ∧ ((𝐴 ↾ 𝑋) = (𝐵 ↾ 𝑋) ∧ (𝐴‘𝑋) = 2o) ∧ ((𝐵‘𝑋) = ∅ ∨ (𝐵‘𝑋) = 1o)) → (𝐵 <s 𝐴 ↔ ∃𝑥 ∈ On (∀𝑦 ∈ 𝑥 (𝐵‘𝑦) = (𝐴‘𝑦) ∧ (𝐵‘𝑥){〈1o, ∅〉,
〈1o, 2o〉, 〈∅, 2o〉}
(𝐴‘𝑥)))) |
43 | 38, 42 | mpbird 256 |
. . . . 5
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝑋 ∈ On) ∧ ((𝐴 ↾ 𝑋) = (𝐵 ↾ 𝑋) ∧ (𝐴‘𝑋) = 2o) ∧ ((𝐵‘𝑋) = ∅ ∨ (𝐵‘𝑋) = 1o)) → 𝐵 <s 𝐴) |
44 | 43 | 3expia 1119 |
. . . 4
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝑋 ∈ On) ∧ ((𝐴 ↾ 𝑋) = (𝐵 ↾ 𝑋) ∧ (𝐴‘𝑋) = 2o)) → (((𝐵‘𝑋) = ∅ ∨ (𝐵‘𝑋) = 1o) → 𝐵 <s 𝐴)) |
45 | 5, 44 | syld 47 |
. . 3
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝑋 ∈ On) ∧ ((𝐴 ↾ 𝑋) = (𝐵 ↾ 𝑋) ∧ (𝐴‘𝑋) = 2o)) → (¬ (𝐵‘𝑋) = 2o → 𝐵 <s 𝐴)) |
46 | 45 | con1d 145 |
. 2
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝑋 ∈ On) ∧ ((𝐴 ↾ 𝑋) = (𝐵 ↾ 𝑋) ∧ (𝐴‘𝑋) = 2o)) → (¬ 𝐵 <s 𝐴 → (𝐵‘𝑋) = 2o)) |
47 | 46 | 3impia 1115 |
1
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝑋 ∈ On) ∧ ((𝐴 ↾ 𝑋) = (𝐵 ↾ 𝑋) ∧ (𝐴‘𝑋) = 2o) ∧ ¬ 𝐵 <s 𝐴) → (𝐵‘𝑋) = 2o) |