MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nolesgn2o Structured version   Visualization version   GIF version

Theorem nolesgn2o 27616
Description: Given 𝐴 less-than or equal to 𝐵, equal to 𝐵 up to 𝑋, and 𝐴(𝑋) = 2o, then 𝐵(𝑋) = 2o. (Contributed by Scott Fenton, 6-Dec-2021.)
Assertion
Ref Expression
nolesgn2o (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ (𝐴𝑋) = 2o) ∧ ¬ 𝐵 <s 𝐴) → (𝐵𝑋) = 2o)

Proof of Theorem nolesgn2o
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl2 1193 . . . . . 6 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ (𝐴𝑋) = 2o)) → 𝐵 No )
2 nofv 27602 . . . . . 6 (𝐵 No → ((𝐵𝑋) = ∅ ∨ (𝐵𝑋) = 1o ∨ (𝐵𝑋) = 2o))
31, 2syl 17 . . . . 5 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ (𝐴𝑋) = 2o)) → ((𝐵𝑋) = ∅ ∨ (𝐵𝑋) = 1o ∨ (𝐵𝑋) = 2o))
4 3orel3 1488 . . . . 5 (¬ (𝐵𝑋) = 2o → (((𝐵𝑋) = ∅ ∨ (𝐵𝑋) = 1o ∨ (𝐵𝑋) = 2o) → ((𝐵𝑋) = ∅ ∨ (𝐵𝑋) = 1o)))
53, 4syl5com 31 . . . 4 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ (𝐴𝑋) = 2o)) → (¬ (𝐵𝑋) = 2o → ((𝐵𝑋) = ∅ ∨ (𝐵𝑋) = 1o)))
6 simp13 1206 . . . . . . 7 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ (𝐴𝑋) = 2o) ∧ ((𝐵𝑋) = ∅ ∨ (𝐵𝑋) = 1o)) → 𝑋 ∈ On)
7 fveq1 6839 . . . . . . . . . . . . 13 ((𝐴𝑋) = (𝐵𝑋) → ((𝐴𝑋)‘𝑦) = ((𝐵𝑋)‘𝑦))
87eqcomd 2735 . . . . . . . . . . . 12 ((𝐴𝑋) = (𝐵𝑋) → ((𝐵𝑋)‘𝑦) = ((𝐴𝑋)‘𝑦))
98adantr 480 . . . . . . . . . . 11 (((𝐴𝑋) = (𝐵𝑋) ∧ 𝑦𝑋) → ((𝐵𝑋)‘𝑦) = ((𝐴𝑋)‘𝑦))
10 simpr 484 . . . . . . . . . . . 12 (((𝐴𝑋) = (𝐵𝑋) ∧ 𝑦𝑋) → 𝑦𝑋)
1110fvresd 6860 . . . . . . . . . . 11 (((𝐴𝑋) = (𝐵𝑋) ∧ 𝑦𝑋) → ((𝐵𝑋)‘𝑦) = (𝐵𝑦))
1210fvresd 6860 . . . . . . . . . . 11 (((𝐴𝑋) = (𝐵𝑋) ∧ 𝑦𝑋) → ((𝐴𝑋)‘𝑦) = (𝐴𝑦))
139, 11, 123eqtr3d 2772 . . . . . . . . . 10 (((𝐴𝑋) = (𝐵𝑋) ∧ 𝑦𝑋) → (𝐵𝑦) = (𝐴𝑦))
1413ralrimiva 3125 . . . . . . . . 9 ((𝐴𝑋) = (𝐵𝑋) → ∀𝑦𝑋 (𝐵𝑦) = (𝐴𝑦))
1514adantr 480 . . . . . . . 8 (((𝐴𝑋) = (𝐵𝑋) ∧ (𝐴𝑋) = 2o) → ∀𝑦𝑋 (𝐵𝑦) = (𝐴𝑦))
16153ad2ant2 1134 . . . . . . 7 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ (𝐴𝑋) = 2o) ∧ ((𝐵𝑋) = ∅ ∨ (𝐵𝑋) = 1o)) → ∀𝑦𝑋 (𝐵𝑦) = (𝐴𝑦))
17 simprr 772 . . . . . . . . . . . . 13 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ (𝐴𝑋) = 2o)) → (𝐴𝑋) = 2o)
1817a1d 25 . . . . . . . . . . . 12 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ (𝐴𝑋) = 2o)) → ((𝐵𝑋) = ∅ → (𝐴𝑋) = 2o))
1918ancld 550 . . . . . . . . . . 11 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ (𝐴𝑋) = 2o)) → ((𝐵𝑋) = ∅ → ((𝐵𝑋) = ∅ ∧ (𝐴𝑋) = 2o)))
2017a1d 25 . . . . . . . . . . . 12 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ (𝐴𝑋) = 2o)) → ((𝐵𝑋) = 1o → (𝐴𝑋) = 2o))
2120ancld 550 . . . . . . . . . . 11 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ (𝐴𝑋) = 2o)) → ((𝐵𝑋) = 1o → ((𝐵𝑋) = 1o ∧ (𝐴𝑋) = 2o)))
2219, 21orim12d 966 . . . . . . . . . 10 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ (𝐴𝑋) = 2o)) → (((𝐵𝑋) = ∅ ∨ (𝐵𝑋) = 1o) → (((𝐵𝑋) = ∅ ∧ (𝐴𝑋) = 2o) ∨ ((𝐵𝑋) = 1o ∧ (𝐴𝑋) = 2o))))
23223impia 1117 . . . . . . . . 9 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ (𝐴𝑋) = 2o) ∧ ((𝐵𝑋) = ∅ ∨ (𝐵𝑋) = 1o)) → (((𝐵𝑋) = ∅ ∧ (𝐴𝑋) = 2o) ∨ ((𝐵𝑋) = 1o ∧ (𝐴𝑋) = 2o)))
24 3mix3 1333 . . . . . . . . . 10 (((𝐵𝑋) = ∅ ∧ (𝐴𝑋) = 2o) → (((𝐵𝑋) = 1o ∧ (𝐴𝑋) = ∅) ∨ ((𝐵𝑋) = 1o ∧ (𝐴𝑋) = 2o) ∨ ((𝐵𝑋) = ∅ ∧ (𝐴𝑋) = 2o)))
25 3mix2 1332 . . . . . . . . . 10 (((𝐵𝑋) = 1o ∧ (𝐴𝑋) = 2o) → (((𝐵𝑋) = 1o ∧ (𝐴𝑋) = ∅) ∨ ((𝐵𝑋) = 1o ∧ (𝐴𝑋) = 2o) ∨ ((𝐵𝑋) = ∅ ∧ (𝐴𝑋) = 2o)))
2624, 25jaoi 857 . . . . . . . . 9 ((((𝐵𝑋) = ∅ ∧ (𝐴𝑋) = 2o) ∨ ((𝐵𝑋) = 1o ∧ (𝐴𝑋) = 2o)) → (((𝐵𝑋) = 1o ∧ (𝐴𝑋) = ∅) ∨ ((𝐵𝑋) = 1o ∧ (𝐴𝑋) = 2o) ∨ ((𝐵𝑋) = ∅ ∧ (𝐴𝑋) = 2o)))
2723, 26syl 17 . . . . . . . 8 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ (𝐴𝑋) = 2o) ∧ ((𝐵𝑋) = ∅ ∨ (𝐵𝑋) = 1o)) → (((𝐵𝑋) = 1o ∧ (𝐴𝑋) = ∅) ∨ ((𝐵𝑋) = 1o ∧ (𝐴𝑋) = 2o) ∨ ((𝐵𝑋) = ∅ ∧ (𝐴𝑋) = 2o)))
28 fvex 6853 . . . . . . . . 9 (𝐵𝑋) ∈ V
29 fvex 6853 . . . . . . . . 9 (𝐴𝑋) ∈ V
3028, 29brtp 5478 . . . . . . . 8 ((𝐵𝑋){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐴𝑋) ↔ (((𝐵𝑋) = 1o ∧ (𝐴𝑋) = ∅) ∨ ((𝐵𝑋) = 1o ∧ (𝐴𝑋) = 2o) ∨ ((𝐵𝑋) = ∅ ∧ (𝐴𝑋) = 2o)))
3127, 30sylibr 234 . . . . . . 7 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ (𝐴𝑋) = 2o) ∧ ((𝐵𝑋) = ∅ ∨ (𝐵𝑋) = 1o)) → (𝐵𝑋){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐴𝑋))
32 raleq 3293 . . . . . . . . 9 (𝑥 = 𝑋 → (∀𝑦𝑥 (𝐵𝑦) = (𝐴𝑦) ↔ ∀𝑦𝑋 (𝐵𝑦) = (𝐴𝑦)))
33 fveq2 6840 . . . . . . . . . 10 (𝑥 = 𝑋 → (𝐵𝑥) = (𝐵𝑋))
34 fveq2 6840 . . . . . . . . . 10 (𝑥 = 𝑋 → (𝐴𝑥) = (𝐴𝑋))
3533, 34breq12d 5115 . . . . . . . . 9 (𝑥 = 𝑋 → ((𝐵𝑥){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐴𝑥) ↔ (𝐵𝑋){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐴𝑋)))
3632, 35anbi12d 632 . . . . . . . 8 (𝑥 = 𝑋 → ((∀𝑦𝑥 (𝐵𝑦) = (𝐴𝑦) ∧ (𝐵𝑥){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐴𝑥)) ↔ (∀𝑦𝑋 (𝐵𝑦) = (𝐴𝑦) ∧ (𝐵𝑋){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐴𝑋))))
3736rspcev 3585 . . . . . . 7 ((𝑋 ∈ On ∧ (∀𝑦𝑋 (𝐵𝑦) = (𝐴𝑦) ∧ (𝐵𝑋){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐴𝑋))) → ∃𝑥 ∈ On (∀𝑦𝑥 (𝐵𝑦) = (𝐴𝑦) ∧ (𝐵𝑥){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐴𝑥)))
386, 16, 31, 37syl12anc 836 . . . . . 6 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ (𝐴𝑋) = 2o) ∧ ((𝐵𝑋) = ∅ ∨ (𝐵𝑋) = 1o)) → ∃𝑥 ∈ On (∀𝑦𝑥 (𝐵𝑦) = (𝐴𝑦) ∧ (𝐵𝑥){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐴𝑥)))
39 simp12 1205 . . . . . . 7 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ (𝐴𝑋) = 2o) ∧ ((𝐵𝑋) = ∅ ∨ (𝐵𝑋) = 1o)) → 𝐵 No )
40 simp11 1204 . . . . . . 7 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ (𝐴𝑋) = 2o) ∧ ((𝐵𝑋) = ∅ ∨ (𝐵𝑋) = 1o)) → 𝐴 No )
41 sltval 27592 . . . . . . 7 ((𝐵 No 𝐴 No ) → (𝐵 <s 𝐴 ↔ ∃𝑥 ∈ On (∀𝑦𝑥 (𝐵𝑦) = (𝐴𝑦) ∧ (𝐵𝑥){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐴𝑥))))
4239, 40, 41syl2anc 584 . . . . . 6 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ (𝐴𝑋) = 2o) ∧ ((𝐵𝑋) = ∅ ∨ (𝐵𝑋) = 1o)) → (𝐵 <s 𝐴 ↔ ∃𝑥 ∈ On (∀𝑦𝑥 (𝐵𝑦) = (𝐴𝑦) ∧ (𝐵𝑥){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐴𝑥))))
4338, 42mpbird 257 . . . . 5 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ (𝐴𝑋) = 2o) ∧ ((𝐵𝑋) = ∅ ∨ (𝐵𝑋) = 1o)) → 𝐵 <s 𝐴)
44433expia 1121 . . . 4 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ (𝐴𝑋) = 2o)) → (((𝐵𝑋) = ∅ ∨ (𝐵𝑋) = 1o) → 𝐵 <s 𝐴))
455, 44syld 47 . . 3 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ (𝐴𝑋) = 2o)) → (¬ (𝐵𝑋) = 2o𝐵 <s 𝐴))
4645con1d 145 . 2 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ (𝐴𝑋) = 2o)) → (¬ 𝐵 <s 𝐴 → (𝐵𝑋) = 2o))
47463impia 1117 1 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ (𝐴𝑋) = 2o) ∧ ¬ 𝐵 <s 𝐴) → (𝐵𝑋) = 2o)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3o 1085  w3a 1086   = wceq 1540  wcel 2109  wral 3044  wrex 3053  c0 4292  {ctp 4589  cop 4591   class class class wbr 5102  cres 5633  Oncon0 6320  cfv 6499  1oc1o 8404  2oc2o 8405   No csur 27584   <s cslt 27585
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ord 6323  df-on 6324  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-fv 6507  df-1o 8411  df-2o 8412  df-no 27587  df-slt 27588
This theorem is referenced by:  nolesgn2ores  27617
  Copyright terms: Public domain W3C validator