Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nolesgn2o Structured version   Visualization version   GIF version

Theorem nolesgn2o 33870
Description: Given 𝐴 less than or equal to 𝐵, equal to 𝐵 up to 𝑋, and 𝐴(𝑋) = 2o, then 𝐵(𝑋) = 2o. (Contributed by Scott Fenton, 6-Dec-2021.)
Assertion
Ref Expression
nolesgn2o (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ (𝐴𝑋) = 2o) ∧ ¬ 𝐵 <s 𝐴) → (𝐵𝑋) = 2o)

Proof of Theorem nolesgn2o
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl2 1191 . . . . . 6 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ (𝐴𝑋) = 2o)) → 𝐵 No )
2 nofv 33856 . . . . . 6 (𝐵 No → ((𝐵𝑋) = ∅ ∨ (𝐵𝑋) = 1o ∨ (𝐵𝑋) = 2o))
31, 2syl 17 . . . . 5 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ (𝐴𝑋) = 2o)) → ((𝐵𝑋) = ∅ ∨ (𝐵𝑋) = 1o ∨ (𝐵𝑋) = 2o))
4 3orel3 1485 . . . . 5 (¬ (𝐵𝑋) = 2o → (((𝐵𝑋) = ∅ ∨ (𝐵𝑋) = 1o ∨ (𝐵𝑋) = 2o) → ((𝐵𝑋) = ∅ ∨ (𝐵𝑋) = 1o)))
53, 4syl5com 31 . . . 4 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ (𝐴𝑋) = 2o)) → (¬ (𝐵𝑋) = 2o → ((𝐵𝑋) = ∅ ∨ (𝐵𝑋) = 1o)))
6 simp13 1204 . . . . . . 7 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ (𝐴𝑋) = 2o) ∧ ((𝐵𝑋) = ∅ ∨ (𝐵𝑋) = 1o)) → 𝑋 ∈ On)
7 fveq1 6770 . . . . . . . . . . . . 13 ((𝐴𝑋) = (𝐵𝑋) → ((𝐴𝑋)‘𝑦) = ((𝐵𝑋)‘𝑦))
87eqcomd 2746 . . . . . . . . . . . 12 ((𝐴𝑋) = (𝐵𝑋) → ((𝐵𝑋)‘𝑦) = ((𝐴𝑋)‘𝑦))
98adantr 481 . . . . . . . . . . 11 (((𝐴𝑋) = (𝐵𝑋) ∧ 𝑦𝑋) → ((𝐵𝑋)‘𝑦) = ((𝐴𝑋)‘𝑦))
10 simpr 485 . . . . . . . . . . . 12 (((𝐴𝑋) = (𝐵𝑋) ∧ 𝑦𝑋) → 𝑦𝑋)
1110fvresd 6791 . . . . . . . . . . 11 (((𝐴𝑋) = (𝐵𝑋) ∧ 𝑦𝑋) → ((𝐵𝑋)‘𝑦) = (𝐵𝑦))
1210fvresd 6791 . . . . . . . . . . 11 (((𝐴𝑋) = (𝐵𝑋) ∧ 𝑦𝑋) → ((𝐴𝑋)‘𝑦) = (𝐴𝑦))
139, 11, 123eqtr3d 2788 . . . . . . . . . 10 (((𝐴𝑋) = (𝐵𝑋) ∧ 𝑦𝑋) → (𝐵𝑦) = (𝐴𝑦))
1413ralrimiva 3110 . . . . . . . . 9 ((𝐴𝑋) = (𝐵𝑋) → ∀𝑦𝑋 (𝐵𝑦) = (𝐴𝑦))
1514adantr 481 . . . . . . . 8 (((𝐴𝑋) = (𝐵𝑋) ∧ (𝐴𝑋) = 2o) → ∀𝑦𝑋 (𝐵𝑦) = (𝐴𝑦))
16153ad2ant2 1133 . . . . . . 7 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ (𝐴𝑋) = 2o) ∧ ((𝐵𝑋) = ∅ ∨ (𝐵𝑋) = 1o)) → ∀𝑦𝑋 (𝐵𝑦) = (𝐴𝑦))
17 simprr 770 . . . . . . . . . . . . 13 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ (𝐴𝑋) = 2o)) → (𝐴𝑋) = 2o)
1817a1d 25 . . . . . . . . . . . 12 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ (𝐴𝑋) = 2o)) → ((𝐵𝑋) = ∅ → (𝐴𝑋) = 2o))
1918ancld 551 . . . . . . . . . . 11 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ (𝐴𝑋) = 2o)) → ((𝐵𝑋) = ∅ → ((𝐵𝑋) = ∅ ∧ (𝐴𝑋) = 2o)))
2017a1d 25 . . . . . . . . . . . 12 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ (𝐴𝑋) = 2o)) → ((𝐵𝑋) = 1o → (𝐴𝑋) = 2o))
2120ancld 551 . . . . . . . . . . 11 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ (𝐴𝑋) = 2o)) → ((𝐵𝑋) = 1o → ((𝐵𝑋) = 1o ∧ (𝐴𝑋) = 2o)))
2219, 21orim12d 962 . . . . . . . . . 10 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ (𝐴𝑋) = 2o)) → (((𝐵𝑋) = ∅ ∨ (𝐵𝑋) = 1o) → (((𝐵𝑋) = ∅ ∧ (𝐴𝑋) = 2o) ∨ ((𝐵𝑋) = 1o ∧ (𝐴𝑋) = 2o))))
23223impia 1116 . . . . . . . . 9 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ (𝐴𝑋) = 2o) ∧ ((𝐵𝑋) = ∅ ∨ (𝐵𝑋) = 1o)) → (((𝐵𝑋) = ∅ ∧ (𝐴𝑋) = 2o) ∨ ((𝐵𝑋) = 1o ∧ (𝐴𝑋) = 2o)))
24 3mix3 1331 . . . . . . . . . 10 (((𝐵𝑋) = ∅ ∧ (𝐴𝑋) = 2o) → (((𝐵𝑋) = 1o ∧ (𝐴𝑋) = ∅) ∨ ((𝐵𝑋) = 1o ∧ (𝐴𝑋) = 2o) ∨ ((𝐵𝑋) = ∅ ∧ (𝐴𝑋) = 2o)))
25 3mix2 1330 . . . . . . . . . 10 (((𝐵𝑋) = 1o ∧ (𝐴𝑋) = 2o) → (((𝐵𝑋) = 1o ∧ (𝐴𝑋) = ∅) ∨ ((𝐵𝑋) = 1o ∧ (𝐴𝑋) = 2o) ∨ ((𝐵𝑋) = ∅ ∧ (𝐴𝑋) = 2o)))
2624, 25jaoi 854 . . . . . . . . 9 ((((𝐵𝑋) = ∅ ∧ (𝐴𝑋) = 2o) ∨ ((𝐵𝑋) = 1o ∧ (𝐴𝑋) = 2o)) → (((𝐵𝑋) = 1o ∧ (𝐴𝑋) = ∅) ∨ ((𝐵𝑋) = 1o ∧ (𝐴𝑋) = 2o) ∨ ((𝐵𝑋) = ∅ ∧ (𝐴𝑋) = 2o)))
2723, 26syl 17 . . . . . . . 8 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ (𝐴𝑋) = 2o) ∧ ((𝐵𝑋) = ∅ ∨ (𝐵𝑋) = 1o)) → (((𝐵𝑋) = 1o ∧ (𝐴𝑋) = ∅) ∨ ((𝐵𝑋) = 1o ∧ (𝐴𝑋) = 2o) ∨ ((𝐵𝑋) = ∅ ∧ (𝐴𝑋) = 2o)))
28 fvex 6784 . . . . . . . . 9 (𝐵𝑋) ∈ V
29 fvex 6784 . . . . . . . . 9 (𝐴𝑋) ∈ V
3028, 29brtp 33713 . . . . . . . 8 ((𝐵𝑋){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐴𝑋) ↔ (((𝐵𝑋) = 1o ∧ (𝐴𝑋) = ∅) ∨ ((𝐵𝑋) = 1o ∧ (𝐴𝑋) = 2o) ∨ ((𝐵𝑋) = ∅ ∧ (𝐴𝑋) = 2o)))
3127, 30sylibr 233 . . . . . . 7 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ (𝐴𝑋) = 2o) ∧ ((𝐵𝑋) = ∅ ∨ (𝐵𝑋) = 1o)) → (𝐵𝑋){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐴𝑋))
32 raleq 3341 . . . . . . . . 9 (𝑥 = 𝑋 → (∀𝑦𝑥 (𝐵𝑦) = (𝐴𝑦) ↔ ∀𝑦𝑋 (𝐵𝑦) = (𝐴𝑦)))
33 fveq2 6771 . . . . . . . . . 10 (𝑥 = 𝑋 → (𝐵𝑥) = (𝐵𝑋))
34 fveq2 6771 . . . . . . . . . 10 (𝑥 = 𝑋 → (𝐴𝑥) = (𝐴𝑋))
3533, 34breq12d 5092 . . . . . . . . 9 (𝑥 = 𝑋 → ((𝐵𝑥){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐴𝑥) ↔ (𝐵𝑋){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐴𝑋)))
3632, 35anbi12d 631 . . . . . . . 8 (𝑥 = 𝑋 → ((∀𝑦𝑥 (𝐵𝑦) = (𝐴𝑦) ∧ (𝐵𝑥){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐴𝑥)) ↔ (∀𝑦𝑋 (𝐵𝑦) = (𝐴𝑦) ∧ (𝐵𝑋){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐴𝑋))))
3736rspcev 3561 . . . . . . 7 ((𝑋 ∈ On ∧ (∀𝑦𝑋 (𝐵𝑦) = (𝐴𝑦) ∧ (𝐵𝑋){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐴𝑋))) → ∃𝑥 ∈ On (∀𝑦𝑥 (𝐵𝑦) = (𝐴𝑦) ∧ (𝐵𝑥){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐴𝑥)))
386, 16, 31, 37syl12anc 834 . . . . . 6 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ (𝐴𝑋) = 2o) ∧ ((𝐵𝑋) = ∅ ∨ (𝐵𝑋) = 1o)) → ∃𝑥 ∈ On (∀𝑦𝑥 (𝐵𝑦) = (𝐴𝑦) ∧ (𝐵𝑥){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐴𝑥)))
39 simp12 1203 . . . . . . 7 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ (𝐴𝑋) = 2o) ∧ ((𝐵𝑋) = ∅ ∨ (𝐵𝑋) = 1o)) → 𝐵 No )
40 simp11 1202 . . . . . . 7 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ (𝐴𝑋) = 2o) ∧ ((𝐵𝑋) = ∅ ∨ (𝐵𝑋) = 1o)) → 𝐴 No )
41 sltval 33846 . . . . . . 7 ((𝐵 No 𝐴 No ) → (𝐵 <s 𝐴 ↔ ∃𝑥 ∈ On (∀𝑦𝑥 (𝐵𝑦) = (𝐴𝑦) ∧ (𝐵𝑥){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐴𝑥))))
4239, 40, 41syl2anc 584 . . . . . 6 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ (𝐴𝑋) = 2o) ∧ ((𝐵𝑋) = ∅ ∨ (𝐵𝑋) = 1o)) → (𝐵 <s 𝐴 ↔ ∃𝑥 ∈ On (∀𝑦𝑥 (𝐵𝑦) = (𝐴𝑦) ∧ (𝐵𝑥){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐴𝑥))))
4338, 42mpbird 256 . . . . 5 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ (𝐴𝑋) = 2o) ∧ ((𝐵𝑋) = ∅ ∨ (𝐵𝑋) = 1o)) → 𝐵 <s 𝐴)
44433expia 1120 . . . 4 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ (𝐴𝑋) = 2o)) → (((𝐵𝑋) = ∅ ∨ (𝐵𝑋) = 1o) → 𝐵 <s 𝐴))
455, 44syld 47 . . 3 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ (𝐴𝑋) = 2o)) → (¬ (𝐵𝑋) = 2o𝐵 <s 𝐴))
4645con1d 145 . 2 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ (𝐴𝑋) = 2o)) → (¬ 𝐵 <s 𝐴 → (𝐵𝑋) = 2o))
47463impia 1116 1 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ (𝐴𝑋) = 2o) ∧ ¬ 𝐵 <s 𝐴) → (𝐵𝑋) = 2o)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wo 844  w3o 1085  w3a 1086   = wceq 1542  wcel 2110  wral 3066  wrex 3067  c0 4262  {ctp 4571  cop 4573   class class class wbr 5079  cres 5592  Oncon0 6265  cfv 6432  1oc1o 8281  2oc2o 8282   No csur 33839   <s cslt 33840
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-rep 5214  ax-sep 5227  ax-nul 5234  ax-pr 5356
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-ral 3071  df-rex 3072  df-reu 3073  df-rab 3075  df-v 3433  df-sbc 3721  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4846  df-iun 4932  df-br 5080  df-opab 5142  df-mpt 5163  df-tr 5197  df-id 5490  df-eprel 5496  df-po 5504  df-so 5505  df-fr 5545  df-we 5547  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-ord 6268  df-on 6269  df-suc 6271  df-iota 6390  df-fun 6434  df-fn 6435  df-f 6436  df-f1 6437  df-fo 6438  df-f1o 6439  df-fv 6440  df-1o 8288  df-2o 8289  df-no 33842  df-slt 33843
This theorem is referenced by:  nolesgn2ores  33871
  Copyright terms: Public domain W3C validator