Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nolesgn2o Structured version   Visualization version   GIF version

Theorem nolesgn2o 33801
Description: Given 𝐴 less than or equal to 𝐵, equal to 𝐵 up to 𝑋, and 𝐴(𝑋) = 2o, then 𝐵(𝑋) = 2o. (Contributed by Scott Fenton, 6-Dec-2021.)
Assertion
Ref Expression
nolesgn2o (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ (𝐴𝑋) = 2o) ∧ ¬ 𝐵 <s 𝐴) → (𝐵𝑋) = 2o)

Proof of Theorem nolesgn2o
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl2 1190 . . . . . 6 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ (𝐴𝑋) = 2o)) → 𝐵 No )
2 nofv 33787 . . . . . 6 (𝐵 No → ((𝐵𝑋) = ∅ ∨ (𝐵𝑋) = 1o ∨ (𝐵𝑋) = 2o))
31, 2syl 17 . . . . 5 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ (𝐴𝑋) = 2o)) → ((𝐵𝑋) = ∅ ∨ (𝐵𝑋) = 1o ∨ (𝐵𝑋) = 2o))
4 3orel3 33557 . . . . 5 (¬ (𝐵𝑋) = 2o → (((𝐵𝑋) = ∅ ∨ (𝐵𝑋) = 1o ∨ (𝐵𝑋) = 2o) → ((𝐵𝑋) = ∅ ∨ (𝐵𝑋) = 1o)))
53, 4syl5com 31 . . . 4 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ (𝐴𝑋) = 2o)) → (¬ (𝐵𝑋) = 2o → ((𝐵𝑋) = ∅ ∨ (𝐵𝑋) = 1o)))
6 simp13 1203 . . . . . . 7 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ (𝐴𝑋) = 2o) ∧ ((𝐵𝑋) = ∅ ∨ (𝐵𝑋) = 1o)) → 𝑋 ∈ On)
7 fveq1 6755 . . . . . . . . . . . . 13 ((𝐴𝑋) = (𝐵𝑋) → ((𝐴𝑋)‘𝑦) = ((𝐵𝑋)‘𝑦))
87eqcomd 2744 . . . . . . . . . . . 12 ((𝐴𝑋) = (𝐵𝑋) → ((𝐵𝑋)‘𝑦) = ((𝐴𝑋)‘𝑦))
98adantr 480 . . . . . . . . . . 11 (((𝐴𝑋) = (𝐵𝑋) ∧ 𝑦𝑋) → ((𝐵𝑋)‘𝑦) = ((𝐴𝑋)‘𝑦))
10 simpr 484 . . . . . . . . . . . 12 (((𝐴𝑋) = (𝐵𝑋) ∧ 𝑦𝑋) → 𝑦𝑋)
1110fvresd 6776 . . . . . . . . . . 11 (((𝐴𝑋) = (𝐵𝑋) ∧ 𝑦𝑋) → ((𝐵𝑋)‘𝑦) = (𝐵𝑦))
1210fvresd 6776 . . . . . . . . . . 11 (((𝐴𝑋) = (𝐵𝑋) ∧ 𝑦𝑋) → ((𝐴𝑋)‘𝑦) = (𝐴𝑦))
139, 11, 123eqtr3d 2786 . . . . . . . . . 10 (((𝐴𝑋) = (𝐵𝑋) ∧ 𝑦𝑋) → (𝐵𝑦) = (𝐴𝑦))
1413ralrimiva 3107 . . . . . . . . 9 ((𝐴𝑋) = (𝐵𝑋) → ∀𝑦𝑋 (𝐵𝑦) = (𝐴𝑦))
1514adantr 480 . . . . . . . 8 (((𝐴𝑋) = (𝐵𝑋) ∧ (𝐴𝑋) = 2o) → ∀𝑦𝑋 (𝐵𝑦) = (𝐴𝑦))
16153ad2ant2 1132 . . . . . . 7 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ (𝐴𝑋) = 2o) ∧ ((𝐵𝑋) = ∅ ∨ (𝐵𝑋) = 1o)) → ∀𝑦𝑋 (𝐵𝑦) = (𝐴𝑦))
17 simprr 769 . . . . . . . . . . . . 13 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ (𝐴𝑋) = 2o)) → (𝐴𝑋) = 2o)
1817a1d 25 . . . . . . . . . . . 12 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ (𝐴𝑋) = 2o)) → ((𝐵𝑋) = ∅ → (𝐴𝑋) = 2o))
1918ancld 550 . . . . . . . . . . 11 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ (𝐴𝑋) = 2o)) → ((𝐵𝑋) = ∅ → ((𝐵𝑋) = ∅ ∧ (𝐴𝑋) = 2o)))
2017a1d 25 . . . . . . . . . . . 12 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ (𝐴𝑋) = 2o)) → ((𝐵𝑋) = 1o → (𝐴𝑋) = 2o))
2120ancld 550 . . . . . . . . . . 11 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ (𝐴𝑋) = 2o)) → ((𝐵𝑋) = 1o → ((𝐵𝑋) = 1o ∧ (𝐴𝑋) = 2o)))
2219, 21orim12d 961 . . . . . . . . . 10 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ (𝐴𝑋) = 2o)) → (((𝐵𝑋) = ∅ ∨ (𝐵𝑋) = 1o) → (((𝐵𝑋) = ∅ ∧ (𝐴𝑋) = 2o) ∨ ((𝐵𝑋) = 1o ∧ (𝐴𝑋) = 2o))))
23223impia 1115 . . . . . . . . 9 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ (𝐴𝑋) = 2o) ∧ ((𝐵𝑋) = ∅ ∨ (𝐵𝑋) = 1o)) → (((𝐵𝑋) = ∅ ∧ (𝐴𝑋) = 2o) ∨ ((𝐵𝑋) = 1o ∧ (𝐴𝑋) = 2o)))
24 3mix3 1330 . . . . . . . . . 10 (((𝐵𝑋) = ∅ ∧ (𝐴𝑋) = 2o) → (((𝐵𝑋) = 1o ∧ (𝐴𝑋) = ∅) ∨ ((𝐵𝑋) = 1o ∧ (𝐴𝑋) = 2o) ∨ ((𝐵𝑋) = ∅ ∧ (𝐴𝑋) = 2o)))
25 3mix2 1329 . . . . . . . . . 10 (((𝐵𝑋) = 1o ∧ (𝐴𝑋) = 2o) → (((𝐵𝑋) = 1o ∧ (𝐴𝑋) = ∅) ∨ ((𝐵𝑋) = 1o ∧ (𝐴𝑋) = 2o) ∨ ((𝐵𝑋) = ∅ ∧ (𝐴𝑋) = 2o)))
2624, 25jaoi 853 . . . . . . . . 9 ((((𝐵𝑋) = ∅ ∧ (𝐴𝑋) = 2o) ∨ ((𝐵𝑋) = 1o ∧ (𝐴𝑋) = 2o)) → (((𝐵𝑋) = 1o ∧ (𝐴𝑋) = ∅) ∨ ((𝐵𝑋) = 1o ∧ (𝐴𝑋) = 2o) ∨ ((𝐵𝑋) = ∅ ∧ (𝐴𝑋) = 2o)))
2723, 26syl 17 . . . . . . . 8 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ (𝐴𝑋) = 2o) ∧ ((𝐵𝑋) = ∅ ∨ (𝐵𝑋) = 1o)) → (((𝐵𝑋) = 1o ∧ (𝐴𝑋) = ∅) ∨ ((𝐵𝑋) = 1o ∧ (𝐴𝑋) = 2o) ∨ ((𝐵𝑋) = ∅ ∧ (𝐴𝑋) = 2o)))
28 fvex 6769 . . . . . . . . 9 (𝐵𝑋) ∈ V
29 fvex 6769 . . . . . . . . 9 (𝐴𝑋) ∈ V
3028, 29brtp 33623 . . . . . . . 8 ((𝐵𝑋){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐴𝑋) ↔ (((𝐵𝑋) = 1o ∧ (𝐴𝑋) = ∅) ∨ ((𝐵𝑋) = 1o ∧ (𝐴𝑋) = 2o) ∨ ((𝐵𝑋) = ∅ ∧ (𝐴𝑋) = 2o)))
3127, 30sylibr 233 . . . . . . 7 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ (𝐴𝑋) = 2o) ∧ ((𝐵𝑋) = ∅ ∨ (𝐵𝑋) = 1o)) → (𝐵𝑋){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐴𝑋))
32 raleq 3333 . . . . . . . . 9 (𝑥 = 𝑋 → (∀𝑦𝑥 (𝐵𝑦) = (𝐴𝑦) ↔ ∀𝑦𝑋 (𝐵𝑦) = (𝐴𝑦)))
33 fveq2 6756 . . . . . . . . . 10 (𝑥 = 𝑋 → (𝐵𝑥) = (𝐵𝑋))
34 fveq2 6756 . . . . . . . . . 10 (𝑥 = 𝑋 → (𝐴𝑥) = (𝐴𝑋))
3533, 34breq12d 5083 . . . . . . . . 9 (𝑥 = 𝑋 → ((𝐵𝑥){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐴𝑥) ↔ (𝐵𝑋){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐴𝑋)))
3632, 35anbi12d 630 . . . . . . . 8 (𝑥 = 𝑋 → ((∀𝑦𝑥 (𝐵𝑦) = (𝐴𝑦) ∧ (𝐵𝑥){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐴𝑥)) ↔ (∀𝑦𝑋 (𝐵𝑦) = (𝐴𝑦) ∧ (𝐵𝑋){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐴𝑋))))
3736rspcev 3552 . . . . . . 7 ((𝑋 ∈ On ∧ (∀𝑦𝑋 (𝐵𝑦) = (𝐴𝑦) ∧ (𝐵𝑋){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐴𝑋))) → ∃𝑥 ∈ On (∀𝑦𝑥 (𝐵𝑦) = (𝐴𝑦) ∧ (𝐵𝑥){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐴𝑥)))
386, 16, 31, 37syl12anc 833 . . . . . 6 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ (𝐴𝑋) = 2o) ∧ ((𝐵𝑋) = ∅ ∨ (𝐵𝑋) = 1o)) → ∃𝑥 ∈ On (∀𝑦𝑥 (𝐵𝑦) = (𝐴𝑦) ∧ (𝐵𝑥){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐴𝑥)))
39 simp12 1202 . . . . . . 7 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ (𝐴𝑋) = 2o) ∧ ((𝐵𝑋) = ∅ ∨ (𝐵𝑋) = 1o)) → 𝐵 No )
40 simp11 1201 . . . . . . 7 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ (𝐴𝑋) = 2o) ∧ ((𝐵𝑋) = ∅ ∨ (𝐵𝑋) = 1o)) → 𝐴 No )
41 sltval 33777 . . . . . . 7 ((𝐵 No 𝐴 No ) → (𝐵 <s 𝐴 ↔ ∃𝑥 ∈ On (∀𝑦𝑥 (𝐵𝑦) = (𝐴𝑦) ∧ (𝐵𝑥){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐴𝑥))))
4239, 40, 41syl2anc 583 . . . . . 6 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ (𝐴𝑋) = 2o) ∧ ((𝐵𝑋) = ∅ ∨ (𝐵𝑋) = 1o)) → (𝐵 <s 𝐴 ↔ ∃𝑥 ∈ On (∀𝑦𝑥 (𝐵𝑦) = (𝐴𝑦) ∧ (𝐵𝑥){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐴𝑥))))
4338, 42mpbird 256 . . . . 5 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ (𝐴𝑋) = 2o) ∧ ((𝐵𝑋) = ∅ ∨ (𝐵𝑋) = 1o)) → 𝐵 <s 𝐴)
44433expia 1119 . . . 4 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ (𝐴𝑋) = 2o)) → (((𝐵𝑋) = ∅ ∨ (𝐵𝑋) = 1o) → 𝐵 <s 𝐴))
455, 44syld 47 . . 3 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ (𝐴𝑋) = 2o)) → (¬ (𝐵𝑋) = 2o𝐵 <s 𝐴))
4645con1d 145 . 2 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ (𝐴𝑋) = 2o)) → (¬ 𝐵 <s 𝐴 → (𝐵𝑋) = 2o))
47463impia 1115 1 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ (𝐴𝑋) = 2o) ∧ ¬ 𝐵 <s 𝐴) → (𝐵𝑋) = 2o)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  wo 843  w3o 1084  w3a 1085   = wceq 1539  wcel 2108  wral 3063  wrex 3064  c0 4253  {ctp 4562  cop 4564   class class class wbr 5070  cres 5582  Oncon0 6251  cfv 6418  1oc1o 8260  2oc2o 8261   No csur 33770   <s cslt 33771
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-ord 6254  df-on 6255  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-1o 8267  df-2o 8268  df-no 33773  df-slt 33774
This theorem is referenced by:  nolesgn2ores  33802
  Copyright terms: Public domain W3C validator