Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  noinfbnd1lem5 Structured version   Visualization version   GIF version

Theorem noinfbnd1lem5 33857
Description: Lemma for noinfbnd1 33859. If 𝑈 is a prolongment of 𝑇 and in 𝐵, then (𝑈‘dom 𝑇) is not 2o. (Contributed by Scott Fenton, 9-Aug-2024.)
Hypothesis
Ref Expression
noinfbnd1.1 𝑇 = if(∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥, ((𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∪ {⟨dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥), 1o⟩}), (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))))
Assertion
Ref Expression
noinfbnd1lem5 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) → (𝑈‘dom 𝑇) ≠ 2o)
Distinct variable groups:   𝐵,𝑔,𝑢,𝑣,𝑥,𝑦   𝑣,𝑈   𝑥,𝑢,𝑦   𝑔,𝑉   𝑥,𝑣,𝑦,𝑈
Allowed substitution hints:   𝑇(𝑥,𝑦,𝑣,𝑢,𝑔)   𝑈(𝑢,𝑔)   𝑉(𝑥,𝑦,𝑣,𝑢)

Proof of Theorem noinfbnd1lem5
Dummy variables 𝑝 𝑧 𝑎 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 noinfbnd1.1 . . . . . . . . 9 𝑇 = if(∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥, ((𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∪ {⟨dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥), 1o⟩}), (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))))
21noinfno 33848 . . . . . . . 8 ((𝐵 No 𝐵𝑉) → 𝑇 No )
323ad2ant2 1132 . . . . . . 7 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) → 𝑇 No )
43adantl 481 . . . . . 6 ((∀𝑧𝐵𝑈 <s 𝑧 → (𝑧‘dom 𝑇) = 2o) ∧ (¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇))) → 𝑇 No )
5 nodmord 33783 . . . . . 6 (𝑇 No → Ord dom 𝑇)
64, 5syl 17 . . . . 5 ((∀𝑧𝐵𝑈 <s 𝑧 → (𝑧‘dom 𝑇) = 2o) ∧ (¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇))) → Ord dom 𝑇)
7 ordirr 6269 . . . . 5 (Ord dom 𝑇 → ¬ dom 𝑇 ∈ dom 𝑇)
86, 7syl 17 . . . 4 ((∀𝑧𝐵𝑈 <s 𝑧 → (𝑧‘dom 𝑇) = 2o) ∧ (¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇))) → ¬ dom 𝑇 ∈ dom 𝑇)
9 simpr3l 1232 . . . . . . . 8 ((∀𝑧𝐵𝑈 <s 𝑧 → (𝑧‘dom 𝑇) = 2o) ∧ (¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇))) → 𝑈𝐵)
109adantr 480 . . . . . . 7 (((∀𝑧𝐵𝑈 <s 𝑧 → (𝑧‘dom 𝑇) = 2o) ∧ (¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇))) ∧ (𝑈‘dom 𝑇) = 2o) → 𝑈𝐵)
11 ndmfv 6786 . . . . . . . . . . 11 (¬ dom 𝑇 ∈ dom 𝑈 → (𝑈‘dom 𝑇) = ∅)
12 2on0 8276 . . . . . . . . . . . . 13 2o ≠ ∅
1312necomi 2997 . . . . . . . . . . . 12 ∅ ≠ 2o
14 neeq1 3005 . . . . . . . . . . . 12 ((𝑈‘dom 𝑇) = ∅ → ((𝑈‘dom 𝑇) ≠ 2o ↔ ∅ ≠ 2o))
1513, 14mpbiri 257 . . . . . . . . . . 11 ((𝑈‘dom 𝑇) = ∅ → (𝑈‘dom 𝑇) ≠ 2o)
1611, 15syl 17 . . . . . . . . . 10 (¬ dom 𝑇 ∈ dom 𝑈 → (𝑈‘dom 𝑇) ≠ 2o)
1716neneqd 2947 . . . . . . . . 9 (¬ dom 𝑇 ∈ dom 𝑈 → ¬ (𝑈‘dom 𝑇) = 2o)
1817con4i 114 . . . . . . . 8 ((𝑈‘dom 𝑇) = 2o → dom 𝑇 ∈ dom 𝑈)
1918adantl 481 . . . . . . 7 (((∀𝑧𝐵𝑈 <s 𝑧 → (𝑧‘dom 𝑇) = 2o) ∧ (¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇))) ∧ (𝑈‘dom 𝑇) = 2o) → dom 𝑇 ∈ dom 𝑈)
20 simpl2l 1224 . . . . . . . . . . . . . . . . 17 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = 2o) → 𝐵 No )
2120adantr 480 . . . . . . . . . . . . . . . 16 ((((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = 2o) ∧ ((𝑧𝐵 ∧ ¬ 𝑈 <s 𝑧) ∧ (𝑧‘dom 𝑇) = 2o)) → 𝐵 No )
22 simpl3l 1226 . . . . . . . . . . . . . . . . 17 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = 2o) → 𝑈𝐵)
2322adantr 480 . . . . . . . . . . . . . . . 16 ((((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = 2o) ∧ ((𝑧𝐵 ∧ ¬ 𝑈 <s 𝑧) ∧ (𝑧‘dom 𝑇) = 2o)) → 𝑈𝐵)
2421, 23sseldd 3918 . . . . . . . . . . . . . . 15 ((((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = 2o) ∧ ((𝑧𝐵 ∧ ¬ 𝑈 <s 𝑧) ∧ (𝑧‘dom 𝑇) = 2o)) → 𝑈 No )
25 nofun 33779 . . . . . . . . . . . . . . 15 (𝑈 No → Fun 𝑈)
2624, 25syl 17 . . . . . . . . . . . . . 14 ((((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = 2o) ∧ ((𝑧𝐵 ∧ ¬ 𝑈 <s 𝑧) ∧ (𝑧‘dom 𝑇) = 2o)) → Fun 𝑈)
27 simprll 775 . . . . . . . . . . . . . . . 16 ((((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = 2o) ∧ ((𝑧𝐵 ∧ ¬ 𝑈 <s 𝑧) ∧ (𝑧‘dom 𝑇) = 2o)) → 𝑧𝐵)
2821, 27sseldd 3918 . . . . . . . . . . . . . . 15 ((((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = 2o) ∧ ((𝑧𝐵 ∧ ¬ 𝑈 <s 𝑧) ∧ (𝑧‘dom 𝑇) = 2o)) → 𝑧 No )
29 nofun 33779 . . . . . . . . . . . . . . 15 (𝑧 No → Fun 𝑧)
3028, 29syl 17 . . . . . . . . . . . . . 14 ((((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = 2o) ∧ ((𝑧𝐵 ∧ ¬ 𝑈 <s 𝑧) ∧ (𝑧‘dom 𝑇) = 2o)) → Fun 𝑧)
31 simpl3r 1227 . . . . . . . . . . . . . . . 16 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = 2o) → (𝑈 ↾ dom 𝑇) = 𝑇)
3231adantr 480 . . . . . . . . . . . . . . 15 ((((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = 2o) ∧ ((𝑧𝐵 ∧ ¬ 𝑈 <s 𝑧) ∧ (𝑧‘dom 𝑇) = 2o)) → (𝑈 ↾ dom 𝑇) = 𝑇)
33 simpll1 1210 . . . . . . . . . . . . . . . 16 ((((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = 2o) ∧ ((𝑧𝐵 ∧ ¬ 𝑈 <s 𝑧) ∧ (𝑧‘dom 𝑇) = 2o)) → ¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥)
34 simpll2 1211 . . . . . . . . . . . . . . . 16 ((((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = 2o) ∧ ((𝑧𝐵 ∧ ¬ 𝑈 <s 𝑧) ∧ (𝑧‘dom 𝑇) = 2o)) → (𝐵 No 𝐵𝑉))
35 simpll3 1212 . . . . . . . . . . . . . . . 16 ((((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = 2o) ∧ ((𝑧𝐵 ∧ ¬ 𝑈 <s 𝑧) ∧ (𝑧‘dom 𝑇) = 2o)) → (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇))
36 simprl 767 . . . . . . . . . . . . . . . 16 ((((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = 2o) ∧ ((𝑧𝐵 ∧ ¬ 𝑈 <s 𝑧) ∧ (𝑧‘dom 𝑇) = 2o)) → (𝑧𝐵 ∧ ¬ 𝑈 <s 𝑧))
371noinfbnd1lem2 33854 . . . . . . . . . . . . . . . 16 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ ((𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇) ∧ (𝑧𝐵 ∧ ¬ 𝑈 <s 𝑧))) → (𝑧 ↾ dom 𝑇) = 𝑇)
3833, 34, 35, 36, 37syl112anc 1372 . . . . . . . . . . . . . . 15 ((((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = 2o) ∧ ((𝑧𝐵 ∧ ¬ 𝑈 <s 𝑧) ∧ (𝑧‘dom 𝑇) = 2o)) → (𝑧 ↾ dom 𝑇) = 𝑇)
3932, 38eqtr4d 2781 . . . . . . . . . . . . . 14 ((((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = 2o) ∧ ((𝑧𝐵 ∧ ¬ 𝑈 <s 𝑧) ∧ (𝑧‘dom 𝑇) = 2o)) → (𝑈 ↾ dom 𝑇) = (𝑧 ↾ dom 𝑇))
40 simplr 765 . . . . . . . . . . . . . . 15 ((((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = 2o) ∧ ((𝑧𝐵 ∧ ¬ 𝑈 <s 𝑧) ∧ (𝑧‘dom 𝑇) = 2o)) → (𝑈‘dom 𝑇) = 2o)
4140, 18syl 17 . . . . . . . . . . . . . 14 ((((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = 2o) ∧ ((𝑧𝐵 ∧ ¬ 𝑈 <s 𝑧) ∧ (𝑧‘dom 𝑇) = 2o)) → dom 𝑇 ∈ dom 𝑈)
42 simprr 769 . . . . . . . . . . . . . . 15 ((((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = 2o) ∧ ((𝑧𝐵 ∧ ¬ 𝑈 <s 𝑧) ∧ (𝑧‘dom 𝑇) = 2o)) → (𝑧‘dom 𝑇) = 2o)
43 ndmfv 6786 . . . . . . . . . . . . . . . . . 18 (¬ dom 𝑇 ∈ dom 𝑧 → (𝑧‘dom 𝑇) = ∅)
44 neeq1 3005 . . . . . . . . . . . . . . . . . . 19 ((𝑧‘dom 𝑇) = ∅ → ((𝑧‘dom 𝑇) ≠ 2o ↔ ∅ ≠ 2o))
4513, 44mpbiri 257 . . . . . . . . . . . . . . . . . 18 ((𝑧‘dom 𝑇) = ∅ → (𝑧‘dom 𝑇) ≠ 2o)
4643, 45syl 17 . . . . . . . . . . . . . . . . 17 (¬ dom 𝑇 ∈ dom 𝑧 → (𝑧‘dom 𝑇) ≠ 2o)
4746neneqd 2947 . . . . . . . . . . . . . . . 16 (¬ dom 𝑇 ∈ dom 𝑧 → ¬ (𝑧‘dom 𝑇) = 2o)
4847con4i 114 . . . . . . . . . . . . . . 15 ((𝑧‘dom 𝑇) = 2o → dom 𝑇 ∈ dom 𝑧)
4942, 48syl 17 . . . . . . . . . . . . . 14 ((((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = 2o) ∧ ((𝑧𝐵 ∧ ¬ 𝑈 <s 𝑧) ∧ (𝑧‘dom 𝑇) = 2o)) → dom 𝑇 ∈ dom 𝑧)
5040, 42eqtr4d 2781 . . . . . . . . . . . . . 14 ((((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = 2o) ∧ ((𝑧𝐵 ∧ ¬ 𝑈 <s 𝑧) ∧ (𝑧‘dom 𝑇) = 2o)) → (𝑈‘dom 𝑇) = (𝑧‘dom 𝑇))
51 eqfunressuc 33642 . . . . . . . . . . . . . 14 (((Fun 𝑈 ∧ Fun 𝑧) ∧ (𝑈 ↾ dom 𝑇) = (𝑧 ↾ dom 𝑇) ∧ (dom 𝑇 ∈ dom 𝑈 ∧ dom 𝑇 ∈ dom 𝑧 ∧ (𝑈‘dom 𝑇) = (𝑧‘dom 𝑇))) → (𝑈 ↾ suc dom 𝑇) = (𝑧 ↾ suc dom 𝑇))
5226, 30, 39, 41, 49, 50, 51syl213anc 1387 . . . . . . . . . . . . 13 ((((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = 2o) ∧ ((𝑧𝐵 ∧ ¬ 𝑈 <s 𝑧) ∧ (𝑧‘dom 𝑇) = 2o)) → (𝑈 ↾ suc dom 𝑇) = (𝑧 ↾ suc dom 𝑇))
5352expr 456 . . . . . . . . . . . 12 ((((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = 2o) ∧ (𝑧𝐵 ∧ ¬ 𝑈 <s 𝑧)) → ((𝑧‘dom 𝑇) = 2o → (𝑈 ↾ suc dom 𝑇) = (𝑧 ↾ suc dom 𝑇)))
5453expr 456 . . . . . . . . . . 11 ((((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = 2o) ∧ 𝑧𝐵) → (¬ 𝑈 <s 𝑧 → ((𝑧‘dom 𝑇) = 2o → (𝑈 ↾ suc dom 𝑇) = (𝑧 ↾ suc dom 𝑇))))
5554a2d 29 . . . . . . . . . 10 ((((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = 2o) ∧ 𝑧𝐵) → ((¬ 𝑈 <s 𝑧 → (𝑧‘dom 𝑇) = 2o) → (¬ 𝑈 <s 𝑧 → (𝑈 ↾ suc dom 𝑇) = (𝑧 ↾ suc dom 𝑇))))
5655ralimdva 3102 . . . . . . . . 9 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = 2o) → (∀𝑧𝐵𝑈 <s 𝑧 → (𝑧‘dom 𝑇) = 2o) → ∀𝑧𝐵𝑈 <s 𝑧 → (𝑈 ↾ suc dom 𝑇) = (𝑧 ↾ suc dom 𝑇))))
5756impcom 407 . . . . . . . 8 ((∀𝑧𝐵𝑈 <s 𝑧 → (𝑧‘dom 𝑇) = 2o) ∧ ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = 2o)) → ∀𝑧𝐵𝑈 <s 𝑧 → (𝑈 ↾ suc dom 𝑇) = (𝑧 ↾ suc dom 𝑇)))
5857anassrs 467 . . . . . . 7 (((∀𝑧𝐵𝑈 <s 𝑧 → (𝑧‘dom 𝑇) = 2o) ∧ (¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇))) ∧ (𝑈‘dom 𝑇) = 2o) → ∀𝑧𝐵𝑈 <s 𝑧 → (𝑈 ↾ suc dom 𝑇) = (𝑧 ↾ suc dom 𝑇)))
59 dmeq 5801 . . . . . . . . . 10 (𝑝 = 𝑈 → dom 𝑝 = dom 𝑈)
6059eleq2d 2824 . . . . . . . . 9 (𝑝 = 𝑈 → (dom 𝑇 ∈ dom 𝑝 ↔ dom 𝑇 ∈ dom 𝑈))
61 breq1 5073 . . . . . . . . . . . 12 (𝑝 = 𝑈 → (𝑝 <s 𝑧𝑈 <s 𝑧))
6261notbid 317 . . . . . . . . . . 11 (𝑝 = 𝑈 → (¬ 𝑝 <s 𝑧 ↔ ¬ 𝑈 <s 𝑧))
63 reseq1 5874 . . . . . . . . . . . 12 (𝑝 = 𝑈 → (𝑝 ↾ suc dom 𝑇) = (𝑈 ↾ suc dom 𝑇))
6463eqeq1d 2740 . . . . . . . . . . 11 (𝑝 = 𝑈 → ((𝑝 ↾ suc dom 𝑇) = (𝑧 ↾ suc dom 𝑇) ↔ (𝑈 ↾ suc dom 𝑇) = (𝑧 ↾ suc dom 𝑇)))
6562, 64imbi12d 344 . . . . . . . . . 10 (𝑝 = 𝑈 → ((¬ 𝑝 <s 𝑧 → (𝑝 ↾ suc dom 𝑇) = (𝑧 ↾ suc dom 𝑇)) ↔ (¬ 𝑈 <s 𝑧 → (𝑈 ↾ suc dom 𝑇) = (𝑧 ↾ suc dom 𝑇))))
6665ralbidv 3120 . . . . . . . . 9 (𝑝 = 𝑈 → (∀𝑧𝐵𝑝 <s 𝑧 → (𝑝 ↾ suc dom 𝑇) = (𝑧 ↾ suc dom 𝑇)) ↔ ∀𝑧𝐵𝑈 <s 𝑧 → (𝑈 ↾ suc dom 𝑇) = (𝑧 ↾ suc dom 𝑇))))
6760, 66anbi12d 630 . . . . . . . 8 (𝑝 = 𝑈 → ((dom 𝑇 ∈ dom 𝑝 ∧ ∀𝑧𝐵𝑝 <s 𝑧 → (𝑝 ↾ suc dom 𝑇) = (𝑧 ↾ suc dom 𝑇))) ↔ (dom 𝑇 ∈ dom 𝑈 ∧ ∀𝑧𝐵𝑈 <s 𝑧 → (𝑈 ↾ suc dom 𝑇) = (𝑧 ↾ suc dom 𝑇)))))
6867rspcev 3552 . . . . . . 7 ((𝑈𝐵 ∧ (dom 𝑇 ∈ dom 𝑈 ∧ ∀𝑧𝐵𝑈 <s 𝑧 → (𝑈 ↾ suc dom 𝑇) = (𝑧 ↾ suc dom 𝑇)))) → ∃𝑝𝐵 (dom 𝑇 ∈ dom 𝑝 ∧ ∀𝑧𝐵𝑝 <s 𝑧 → (𝑝 ↾ suc dom 𝑇) = (𝑧 ↾ suc dom 𝑇))))
6910, 19, 58, 68syl12anc 833 . . . . . 6 (((∀𝑧𝐵𝑈 <s 𝑧 → (𝑧‘dom 𝑇) = 2o) ∧ (¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇))) ∧ (𝑈‘dom 𝑇) = 2o) → ∃𝑝𝐵 (dom 𝑇 ∈ dom 𝑝 ∧ ∀𝑧𝐵𝑝 <s 𝑧 → (𝑝 ↾ suc dom 𝑇) = (𝑧 ↾ suc dom 𝑇))))
70 nodmon 33780 . . . . . . . . 9 (𝑇 No → dom 𝑇 ∈ On)
714, 70syl 17 . . . . . . . 8 ((∀𝑧𝐵𝑈 <s 𝑧 → (𝑧‘dom 𝑇) = 2o) ∧ (¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇))) → dom 𝑇 ∈ On)
7271adantr 480 . . . . . . 7 (((∀𝑧𝐵𝑈 <s 𝑧 → (𝑧‘dom 𝑇) = 2o) ∧ (¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇))) ∧ (𝑈‘dom 𝑇) = 2o) → dom 𝑇 ∈ On)
73 eleq1 2826 . . . . . . . . . 10 (𝑎 = dom 𝑇 → (𝑎 ∈ dom 𝑝 ↔ dom 𝑇 ∈ dom 𝑝))
74 suceq 6316 . . . . . . . . . . . . . 14 (𝑎 = dom 𝑇 → suc 𝑎 = suc dom 𝑇)
7574reseq2d 5880 . . . . . . . . . . . . 13 (𝑎 = dom 𝑇 → (𝑝 ↾ suc 𝑎) = (𝑝 ↾ suc dom 𝑇))
7674reseq2d 5880 . . . . . . . . . . . . 13 (𝑎 = dom 𝑇 → (𝑧 ↾ suc 𝑎) = (𝑧 ↾ suc dom 𝑇))
7775, 76eqeq12d 2754 . . . . . . . . . . . 12 (𝑎 = dom 𝑇 → ((𝑝 ↾ suc 𝑎) = (𝑧 ↾ suc 𝑎) ↔ (𝑝 ↾ suc dom 𝑇) = (𝑧 ↾ suc dom 𝑇)))
7877imbi2d 340 . . . . . . . . . . 11 (𝑎 = dom 𝑇 → ((¬ 𝑝 <s 𝑧 → (𝑝 ↾ suc 𝑎) = (𝑧 ↾ suc 𝑎)) ↔ (¬ 𝑝 <s 𝑧 → (𝑝 ↾ suc dom 𝑇) = (𝑧 ↾ suc dom 𝑇))))
7978ralbidv 3120 . . . . . . . . . 10 (𝑎 = dom 𝑇 → (∀𝑧𝐵𝑝 <s 𝑧 → (𝑝 ↾ suc 𝑎) = (𝑧 ↾ suc 𝑎)) ↔ ∀𝑧𝐵𝑝 <s 𝑧 → (𝑝 ↾ suc dom 𝑇) = (𝑧 ↾ suc dom 𝑇))))
8073, 79anbi12d 630 . . . . . . . . 9 (𝑎 = dom 𝑇 → ((𝑎 ∈ dom 𝑝 ∧ ∀𝑧𝐵𝑝 <s 𝑧 → (𝑝 ↾ suc 𝑎) = (𝑧 ↾ suc 𝑎))) ↔ (dom 𝑇 ∈ dom 𝑝 ∧ ∀𝑧𝐵𝑝 <s 𝑧 → (𝑝 ↾ suc dom 𝑇) = (𝑧 ↾ suc dom 𝑇)))))
8180rexbidv 3225 . . . . . . . 8 (𝑎 = dom 𝑇 → (∃𝑝𝐵 (𝑎 ∈ dom 𝑝 ∧ ∀𝑧𝐵𝑝 <s 𝑧 → (𝑝 ↾ suc 𝑎) = (𝑧 ↾ suc 𝑎))) ↔ ∃𝑝𝐵 (dom 𝑇 ∈ dom 𝑝 ∧ ∀𝑧𝐵𝑝 <s 𝑧 → (𝑝 ↾ suc dom 𝑇) = (𝑧 ↾ suc dom 𝑇)))))
8281elabg 3600 . . . . . . 7 (dom 𝑇 ∈ On → (dom 𝑇 ∈ {𝑎 ∣ ∃𝑝𝐵 (𝑎 ∈ dom 𝑝 ∧ ∀𝑧𝐵𝑝 <s 𝑧 → (𝑝 ↾ suc 𝑎) = (𝑧 ↾ suc 𝑎)))} ↔ ∃𝑝𝐵 (dom 𝑇 ∈ dom 𝑝 ∧ ∀𝑧𝐵𝑝 <s 𝑧 → (𝑝 ↾ suc dom 𝑇) = (𝑧 ↾ suc dom 𝑇)))))
8372, 82syl 17 . . . . . 6 (((∀𝑧𝐵𝑈 <s 𝑧 → (𝑧‘dom 𝑇) = 2o) ∧ (¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇))) ∧ (𝑈‘dom 𝑇) = 2o) → (dom 𝑇 ∈ {𝑎 ∣ ∃𝑝𝐵 (𝑎 ∈ dom 𝑝 ∧ ∀𝑧𝐵𝑝 <s 𝑧 → (𝑝 ↾ suc 𝑎) = (𝑧 ↾ suc 𝑎)))} ↔ ∃𝑝𝐵 (dom 𝑇 ∈ dom 𝑝 ∧ ∀𝑧𝐵𝑝 <s 𝑧 → (𝑝 ↾ suc dom 𝑇) = (𝑧 ↾ suc dom 𝑇)))))
8469, 83mpbird 256 . . . . 5 (((∀𝑧𝐵𝑈 <s 𝑧 → (𝑧‘dom 𝑇) = 2o) ∧ (¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇))) ∧ (𝑈‘dom 𝑇) = 2o) → dom 𝑇 ∈ {𝑎 ∣ ∃𝑝𝐵 (𝑎 ∈ dom 𝑝 ∧ ∀𝑧𝐵𝑝 <s 𝑧 → (𝑝 ↾ suc 𝑎) = (𝑧 ↾ suc 𝑎)))})
851noinfdm 33849 . . . . . . . . 9 (¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 → dom 𝑇 = {𝑎 ∣ ∃𝑝𝐵 (𝑎 ∈ dom 𝑝 ∧ ∀𝑧𝐵𝑝 <s 𝑧 → (𝑝 ↾ suc 𝑎) = (𝑧 ↾ suc 𝑎)))})
86853ad2ant1 1131 . . . . . . . 8 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) → dom 𝑇 = {𝑎 ∣ ∃𝑝𝐵 (𝑎 ∈ dom 𝑝 ∧ ∀𝑧𝐵𝑝 <s 𝑧 → (𝑝 ↾ suc 𝑎) = (𝑧 ↾ suc 𝑎)))})
8786adantl 481 . . . . . . 7 ((∀𝑧𝐵𝑈 <s 𝑧 → (𝑧‘dom 𝑇) = 2o) ∧ (¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇))) → dom 𝑇 = {𝑎 ∣ ∃𝑝𝐵 (𝑎 ∈ dom 𝑝 ∧ ∀𝑧𝐵𝑝 <s 𝑧 → (𝑝 ↾ suc 𝑎) = (𝑧 ↾ suc 𝑎)))})
8887adantr 480 . . . . . 6 (((∀𝑧𝐵𝑈 <s 𝑧 → (𝑧‘dom 𝑇) = 2o) ∧ (¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇))) ∧ (𝑈‘dom 𝑇) = 2o) → dom 𝑇 = {𝑎 ∣ ∃𝑝𝐵 (𝑎 ∈ dom 𝑝 ∧ ∀𝑧𝐵𝑝 <s 𝑧 → (𝑝 ↾ suc 𝑎) = (𝑧 ↾ suc 𝑎)))})
8988eleq2d 2824 . . . . 5 (((∀𝑧𝐵𝑈 <s 𝑧 → (𝑧‘dom 𝑇) = 2o) ∧ (¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇))) ∧ (𝑈‘dom 𝑇) = 2o) → (dom 𝑇 ∈ dom 𝑇 ↔ dom 𝑇 ∈ {𝑎 ∣ ∃𝑝𝐵 (𝑎 ∈ dom 𝑝 ∧ ∀𝑧𝐵𝑝 <s 𝑧 → (𝑝 ↾ suc 𝑎) = (𝑧 ↾ suc 𝑎)))}))
9084, 89mpbird 256 . . . 4 (((∀𝑧𝐵𝑈 <s 𝑧 → (𝑧‘dom 𝑇) = 2o) ∧ (¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇))) ∧ (𝑈‘dom 𝑇) = 2o) → dom 𝑇 ∈ dom 𝑇)
918, 90mtand 812 . . 3 ((∀𝑧𝐵𝑈 <s 𝑧 → (𝑧‘dom 𝑇) = 2o) ∧ (¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇))) → ¬ (𝑈‘dom 𝑇) = 2o)
9291neqned 2949 . 2 ((∀𝑧𝐵𝑈 <s 𝑧 → (𝑧‘dom 𝑇) = 2o) ∧ (¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇))) → (𝑈‘dom 𝑇) ≠ 2o)
93 rexanali 3191 . . 3 (∃𝑧𝐵𝑈 <s 𝑧 ∧ ¬ (𝑧‘dom 𝑇) = 2o) ↔ ¬ ∀𝑧𝐵𝑈 <s 𝑧 → (𝑧‘dom 𝑇) = 2o))
94 simpr1 1192 . . . . . . . . . . 11 ((((𝑧𝐵 ∧ ¬ 𝑈 <s 𝑧) ∧ ¬ (𝑧‘dom 𝑇) = 2o) ∧ (¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇))) → ¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥)
95 simpr2 1193 . . . . . . . . . . 11 ((((𝑧𝐵 ∧ ¬ 𝑈 <s 𝑧) ∧ ¬ (𝑧‘dom 𝑇) = 2o) ∧ (¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇))) → (𝐵 No 𝐵𝑉))
96 simplll 771 . . . . . . . . . . 11 ((((𝑧𝐵 ∧ ¬ 𝑈 <s 𝑧) ∧ ¬ (𝑧‘dom 𝑇) = 2o) ∧ (¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇))) → 𝑧𝐵)
97 simpr3 1194 . . . . . . . . . . . 12 ((((𝑧𝐵 ∧ ¬ 𝑈 <s 𝑧) ∧ ¬ (𝑧‘dom 𝑇) = 2o) ∧ (¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇))) → (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇))
98 simpll 763 . . . . . . . . . . . 12 ((((𝑧𝐵 ∧ ¬ 𝑈 <s 𝑧) ∧ ¬ (𝑧‘dom 𝑇) = 2o) ∧ (¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇))) → (𝑧𝐵 ∧ ¬ 𝑈 <s 𝑧))
9994, 95, 97, 98, 37syl112anc 1372 . . . . . . . . . . 11 ((((𝑧𝐵 ∧ ¬ 𝑈 <s 𝑧) ∧ ¬ (𝑧‘dom 𝑇) = 2o) ∧ (¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇))) → (𝑧 ↾ dom 𝑇) = 𝑇)
1001noinfbnd1lem4 33856 . . . . . . . . . . 11 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑧𝐵 ∧ (𝑧 ↾ dom 𝑇) = 𝑇)) → (𝑧‘dom 𝑇) ≠ ∅)
10194, 95, 96, 99, 100syl112anc 1372 . . . . . . . . . 10 ((((𝑧𝐵 ∧ ¬ 𝑈 <s 𝑧) ∧ ¬ (𝑧‘dom 𝑇) = 2o) ∧ (¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇))) → (𝑧‘dom 𝑇) ≠ ∅)
102101neneqd 2947 . . . . . . . . 9 ((((𝑧𝐵 ∧ ¬ 𝑈 <s 𝑧) ∧ ¬ (𝑧‘dom 𝑇) = 2o) ∧ (¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇))) → ¬ (𝑧‘dom 𝑇) = ∅)
103102pm2.21d 121 . . . . . . . 8 ((((𝑧𝐵 ∧ ¬ 𝑈 <s 𝑧) ∧ ¬ (𝑧‘dom 𝑇) = 2o) ∧ (¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇))) → ((𝑧‘dom 𝑇) = ∅ → (𝑈‘dom 𝑇) ≠ 2o))
1041noinfbnd1lem3 33855 . . . . . . . . . . 11 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑧𝐵 ∧ (𝑧 ↾ dom 𝑇) = 𝑇)) → (𝑧‘dom 𝑇) ≠ 1o)
10594, 95, 96, 99, 104syl112anc 1372 . . . . . . . . . 10 ((((𝑧𝐵 ∧ ¬ 𝑈 <s 𝑧) ∧ ¬ (𝑧‘dom 𝑇) = 2o) ∧ (¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇))) → (𝑧‘dom 𝑇) ≠ 1o)
106105neneqd 2947 . . . . . . . . 9 ((((𝑧𝐵 ∧ ¬ 𝑈 <s 𝑧) ∧ ¬ (𝑧‘dom 𝑇) = 2o) ∧ (¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇))) → ¬ (𝑧‘dom 𝑇) = 1o)
107106pm2.21d 121 . . . . . . . 8 ((((𝑧𝐵 ∧ ¬ 𝑈 <s 𝑧) ∧ ¬ (𝑧‘dom 𝑇) = 2o) ∧ (¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇))) → ((𝑧‘dom 𝑇) = 1o → (𝑈‘dom 𝑇) ≠ 2o))
108 simplr 765 . . . . . . . . 9 ((((𝑧𝐵 ∧ ¬ 𝑈 <s 𝑧) ∧ ¬ (𝑧‘dom 𝑇) = 2o) ∧ (¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇))) → ¬ (𝑧‘dom 𝑇) = 2o)
109 simpr2l 1230 . . . . . . . . . . 11 ((((𝑧𝐵 ∧ ¬ 𝑈 <s 𝑧) ∧ ¬ (𝑧‘dom 𝑇) = 2o) ∧ (¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇))) → 𝐵 No )
110109, 96sseldd 3918 . . . . . . . . . 10 ((((𝑧𝐵 ∧ ¬ 𝑈 <s 𝑧) ∧ ¬ (𝑧‘dom 𝑇) = 2o) ∧ (¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇))) → 𝑧 No )
111 nofv 33787 . . . . . . . . . 10 (𝑧 No → ((𝑧‘dom 𝑇) = ∅ ∨ (𝑧‘dom 𝑇) = 1o ∨ (𝑧‘dom 𝑇) = 2o))
112110, 111syl 17 . . . . . . . . 9 ((((𝑧𝐵 ∧ ¬ 𝑈 <s 𝑧) ∧ ¬ (𝑧‘dom 𝑇) = 2o) ∧ (¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇))) → ((𝑧‘dom 𝑇) = ∅ ∨ (𝑧‘dom 𝑇) = 1o ∨ (𝑧‘dom 𝑇) = 2o))
113 3orel3 33557 . . . . . . . . 9 (¬ (𝑧‘dom 𝑇) = 2o → (((𝑧‘dom 𝑇) = ∅ ∨ (𝑧‘dom 𝑇) = 1o ∨ (𝑧‘dom 𝑇) = 2o) → ((𝑧‘dom 𝑇) = ∅ ∨ (𝑧‘dom 𝑇) = 1o)))
114108, 112, 113sylc 65 . . . . . . . 8 ((((𝑧𝐵 ∧ ¬ 𝑈 <s 𝑧) ∧ ¬ (𝑧‘dom 𝑇) = 2o) ∧ (¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇))) → ((𝑧‘dom 𝑇) = ∅ ∨ (𝑧‘dom 𝑇) = 1o))
115103, 107, 114mpjaod 856 . . . . . . 7 ((((𝑧𝐵 ∧ ¬ 𝑈 <s 𝑧) ∧ ¬ (𝑧‘dom 𝑇) = 2o) ∧ (¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇))) → (𝑈‘dom 𝑇) ≠ 2o)
116115ex 412 . . . . . 6 (((𝑧𝐵 ∧ ¬ 𝑈 <s 𝑧) ∧ ¬ (𝑧‘dom 𝑇) = 2o) → ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) → (𝑈‘dom 𝑇) ≠ 2o))
117116anasss 466 . . . . 5 ((𝑧𝐵 ∧ (¬ 𝑈 <s 𝑧 ∧ ¬ (𝑧‘dom 𝑇) = 2o)) → ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) → (𝑈‘dom 𝑇) ≠ 2o))
118117rexlimiva 3209 . . . 4 (∃𝑧𝐵𝑈 <s 𝑧 ∧ ¬ (𝑧‘dom 𝑇) = 2o) → ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) → (𝑈‘dom 𝑇) ≠ 2o))
119118imp 406 . . 3 ((∃𝑧𝐵𝑈 <s 𝑧 ∧ ¬ (𝑧‘dom 𝑇) = 2o) ∧ (¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇))) → (𝑈‘dom 𝑇) ≠ 2o)
12093, 119sylanbr 581 . 2 ((¬ ∀𝑧𝐵𝑈 <s 𝑧 → (𝑧‘dom 𝑇) = 2o) ∧ (¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇))) → (𝑈‘dom 𝑇) ≠ 2o)
12192, 120pm2.61ian 808 1 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) → (𝑈‘dom 𝑇) ≠ 2o)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  wo 843  w3o 1084  w3a 1085   = wceq 1539  wcel 2108  {cab 2715  wne 2942  wral 3063  wrex 3064  cun 3881  wss 3883  c0 4253  ifcif 4456  {csn 4558  cop 4564   class class class wbr 5070  cmpt 5153  dom cdm 5580  cres 5582  Ord word 6250  Oncon0 6251  suc csuc 6253  cio 6374  Fun wfun 6412  cfv 6418  crio 7211  1oc1o 8260  2oc2o 8261   No csur 33770   <s cslt 33771
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-ord 6254  df-on 6255  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-1o 8267  df-2o 8268  df-no 33773  df-slt 33774  df-bday 33775
This theorem is referenced by:  noinfbnd1lem6  33858
  Copyright terms: Public domain W3C validator