Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  noinfbnd1lem5 Structured version   Visualization version   GIF version

Theorem noinfbnd1lem5 33930
Description: Lemma for noinfbnd1 33932. If 𝑈 is a prolongment of 𝑇 and in 𝐵, then (𝑈‘dom 𝑇) is not 2o. (Contributed by Scott Fenton, 9-Aug-2024.)
Hypothesis
Ref Expression
noinfbnd1.1 𝑇 = if(∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥, ((𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∪ {⟨dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥), 1o⟩}), (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))))
Assertion
Ref Expression
noinfbnd1lem5 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) → (𝑈‘dom 𝑇) ≠ 2o)
Distinct variable groups:   𝐵,𝑔,𝑢,𝑣,𝑥,𝑦   𝑣,𝑈   𝑥,𝑢,𝑦   𝑔,𝑉   𝑥,𝑣,𝑦,𝑈
Allowed substitution hints:   𝑇(𝑥,𝑦,𝑣,𝑢,𝑔)   𝑈(𝑢,𝑔)   𝑉(𝑥,𝑦,𝑣,𝑢)

Proof of Theorem noinfbnd1lem5
Dummy variables 𝑝 𝑧 𝑎 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 noinfbnd1.1 . . . . . . . . 9 𝑇 = if(∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥, ((𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∪ {⟨dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥), 1o⟩}), (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))))
21noinfno 33921 . . . . . . . 8 ((𝐵 No 𝐵𝑉) → 𝑇 No )
323ad2ant2 1133 . . . . . . 7 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) → 𝑇 No )
43adantl 482 . . . . . 6 ((∀𝑧𝐵𝑈 <s 𝑧 → (𝑧‘dom 𝑇) = 2o) ∧ (¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇))) → 𝑇 No )
5 nodmord 33856 . . . . . 6 (𝑇 No → Ord dom 𝑇)
64, 5syl 17 . . . . 5 ((∀𝑧𝐵𝑈 <s 𝑧 → (𝑧‘dom 𝑇) = 2o) ∧ (¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇))) → Ord dom 𝑇)
7 ordirr 6284 . . . . 5 (Ord dom 𝑇 → ¬ dom 𝑇 ∈ dom 𝑇)
86, 7syl 17 . . . 4 ((∀𝑧𝐵𝑈 <s 𝑧 → (𝑧‘dom 𝑇) = 2o) ∧ (¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇))) → ¬ dom 𝑇 ∈ dom 𝑇)
9 simpr3l 1233 . . . . . . . 8 ((∀𝑧𝐵𝑈 <s 𝑧 → (𝑧‘dom 𝑇) = 2o) ∧ (¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇))) → 𝑈𝐵)
109adantr 481 . . . . . . 7 (((∀𝑧𝐵𝑈 <s 𝑧 → (𝑧‘dom 𝑇) = 2o) ∧ (¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇))) ∧ (𝑈‘dom 𝑇) = 2o) → 𝑈𝐵)
11 ndmfv 6804 . . . . . . . . . . 11 (¬ dom 𝑇 ∈ dom 𝑈 → (𝑈‘dom 𝑇) = ∅)
12 2on0 8313 . . . . . . . . . . . . 13 2o ≠ ∅
1312necomi 2998 . . . . . . . . . . . 12 ∅ ≠ 2o
14 neeq1 3006 . . . . . . . . . . . 12 ((𝑈‘dom 𝑇) = ∅ → ((𝑈‘dom 𝑇) ≠ 2o ↔ ∅ ≠ 2o))
1513, 14mpbiri 257 . . . . . . . . . . 11 ((𝑈‘dom 𝑇) = ∅ → (𝑈‘dom 𝑇) ≠ 2o)
1611, 15syl 17 . . . . . . . . . 10 (¬ dom 𝑇 ∈ dom 𝑈 → (𝑈‘dom 𝑇) ≠ 2o)
1716neneqd 2948 . . . . . . . . 9 (¬ dom 𝑇 ∈ dom 𝑈 → ¬ (𝑈‘dom 𝑇) = 2o)
1817con4i 114 . . . . . . . 8 ((𝑈‘dom 𝑇) = 2o → dom 𝑇 ∈ dom 𝑈)
1918adantl 482 . . . . . . 7 (((∀𝑧𝐵𝑈 <s 𝑧 → (𝑧‘dom 𝑇) = 2o) ∧ (¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇))) ∧ (𝑈‘dom 𝑇) = 2o) → dom 𝑇 ∈ dom 𝑈)
20 simpl2l 1225 . . . . . . . . . . . . . . . . 17 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = 2o) → 𝐵 No )
2120adantr 481 . . . . . . . . . . . . . . . 16 ((((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = 2o) ∧ ((𝑧𝐵 ∧ ¬ 𝑈 <s 𝑧) ∧ (𝑧‘dom 𝑇) = 2o)) → 𝐵 No )
22 simpl3l 1227 . . . . . . . . . . . . . . . . 17 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = 2o) → 𝑈𝐵)
2322adantr 481 . . . . . . . . . . . . . . . 16 ((((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = 2o) ∧ ((𝑧𝐵 ∧ ¬ 𝑈 <s 𝑧) ∧ (𝑧‘dom 𝑇) = 2o)) → 𝑈𝐵)
2421, 23sseldd 3922 . . . . . . . . . . . . . . 15 ((((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = 2o) ∧ ((𝑧𝐵 ∧ ¬ 𝑈 <s 𝑧) ∧ (𝑧‘dom 𝑇) = 2o)) → 𝑈 No )
25 nofun 33852 . . . . . . . . . . . . . . 15 (𝑈 No → Fun 𝑈)
2624, 25syl 17 . . . . . . . . . . . . . 14 ((((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = 2o) ∧ ((𝑧𝐵 ∧ ¬ 𝑈 <s 𝑧) ∧ (𝑧‘dom 𝑇) = 2o)) → Fun 𝑈)
27 simprll 776 . . . . . . . . . . . . . . . 16 ((((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = 2o) ∧ ((𝑧𝐵 ∧ ¬ 𝑈 <s 𝑧) ∧ (𝑧‘dom 𝑇) = 2o)) → 𝑧𝐵)
2821, 27sseldd 3922 . . . . . . . . . . . . . . 15 ((((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = 2o) ∧ ((𝑧𝐵 ∧ ¬ 𝑈 <s 𝑧) ∧ (𝑧‘dom 𝑇) = 2o)) → 𝑧 No )
29 nofun 33852 . . . . . . . . . . . . . . 15 (𝑧 No → Fun 𝑧)
3028, 29syl 17 . . . . . . . . . . . . . 14 ((((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = 2o) ∧ ((𝑧𝐵 ∧ ¬ 𝑈 <s 𝑧) ∧ (𝑧‘dom 𝑇) = 2o)) → Fun 𝑧)
31 simpl3r 1228 . . . . . . . . . . . . . . . 16 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = 2o) → (𝑈 ↾ dom 𝑇) = 𝑇)
3231adantr 481 . . . . . . . . . . . . . . 15 ((((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = 2o) ∧ ((𝑧𝐵 ∧ ¬ 𝑈 <s 𝑧) ∧ (𝑧‘dom 𝑇) = 2o)) → (𝑈 ↾ dom 𝑇) = 𝑇)
33 simpll1 1211 . . . . . . . . . . . . . . . 16 ((((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = 2o) ∧ ((𝑧𝐵 ∧ ¬ 𝑈 <s 𝑧) ∧ (𝑧‘dom 𝑇) = 2o)) → ¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥)
34 simpll2 1212 . . . . . . . . . . . . . . . 16 ((((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = 2o) ∧ ((𝑧𝐵 ∧ ¬ 𝑈 <s 𝑧) ∧ (𝑧‘dom 𝑇) = 2o)) → (𝐵 No 𝐵𝑉))
35 simpll3 1213 . . . . . . . . . . . . . . . 16 ((((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = 2o) ∧ ((𝑧𝐵 ∧ ¬ 𝑈 <s 𝑧) ∧ (𝑧‘dom 𝑇) = 2o)) → (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇))
36 simprl 768 . . . . . . . . . . . . . . . 16 ((((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = 2o) ∧ ((𝑧𝐵 ∧ ¬ 𝑈 <s 𝑧) ∧ (𝑧‘dom 𝑇) = 2o)) → (𝑧𝐵 ∧ ¬ 𝑈 <s 𝑧))
371noinfbnd1lem2 33927 . . . . . . . . . . . . . . . 16 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ ((𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇) ∧ (𝑧𝐵 ∧ ¬ 𝑈 <s 𝑧))) → (𝑧 ↾ dom 𝑇) = 𝑇)
3833, 34, 35, 36, 37syl112anc 1373 . . . . . . . . . . . . . . 15 ((((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = 2o) ∧ ((𝑧𝐵 ∧ ¬ 𝑈 <s 𝑧) ∧ (𝑧‘dom 𝑇) = 2o)) → (𝑧 ↾ dom 𝑇) = 𝑇)
3932, 38eqtr4d 2781 . . . . . . . . . . . . . 14 ((((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = 2o) ∧ ((𝑧𝐵 ∧ ¬ 𝑈 <s 𝑧) ∧ (𝑧‘dom 𝑇) = 2o)) → (𝑈 ↾ dom 𝑇) = (𝑧 ↾ dom 𝑇))
40 simplr 766 . . . . . . . . . . . . . . 15 ((((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = 2o) ∧ ((𝑧𝐵 ∧ ¬ 𝑈 <s 𝑧) ∧ (𝑧‘dom 𝑇) = 2o)) → (𝑈‘dom 𝑇) = 2o)
4140, 18syl 17 . . . . . . . . . . . . . 14 ((((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = 2o) ∧ ((𝑧𝐵 ∧ ¬ 𝑈 <s 𝑧) ∧ (𝑧‘dom 𝑇) = 2o)) → dom 𝑇 ∈ dom 𝑈)
42 simprr 770 . . . . . . . . . . . . . . 15 ((((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = 2o) ∧ ((𝑧𝐵 ∧ ¬ 𝑈 <s 𝑧) ∧ (𝑧‘dom 𝑇) = 2o)) → (𝑧‘dom 𝑇) = 2o)
43 ndmfv 6804 . . . . . . . . . . . . . . . . . 18 (¬ dom 𝑇 ∈ dom 𝑧 → (𝑧‘dom 𝑇) = ∅)
44 neeq1 3006 . . . . . . . . . . . . . . . . . . 19 ((𝑧‘dom 𝑇) = ∅ → ((𝑧‘dom 𝑇) ≠ 2o ↔ ∅ ≠ 2o))
4513, 44mpbiri 257 . . . . . . . . . . . . . . . . . 18 ((𝑧‘dom 𝑇) = ∅ → (𝑧‘dom 𝑇) ≠ 2o)
4643, 45syl 17 . . . . . . . . . . . . . . . . 17 (¬ dom 𝑇 ∈ dom 𝑧 → (𝑧‘dom 𝑇) ≠ 2o)
4746neneqd 2948 . . . . . . . . . . . . . . . 16 (¬ dom 𝑇 ∈ dom 𝑧 → ¬ (𝑧‘dom 𝑇) = 2o)
4847con4i 114 . . . . . . . . . . . . . . 15 ((𝑧‘dom 𝑇) = 2o → dom 𝑇 ∈ dom 𝑧)
4942, 48syl 17 . . . . . . . . . . . . . 14 ((((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = 2o) ∧ ((𝑧𝐵 ∧ ¬ 𝑈 <s 𝑧) ∧ (𝑧‘dom 𝑇) = 2o)) → dom 𝑇 ∈ dom 𝑧)
5040, 42eqtr4d 2781 . . . . . . . . . . . . . 14 ((((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = 2o) ∧ ((𝑧𝐵 ∧ ¬ 𝑈 <s 𝑧) ∧ (𝑧‘dom 𝑇) = 2o)) → (𝑈‘dom 𝑇) = (𝑧‘dom 𝑇))
51 eqfunressuc 33736 . . . . . . . . . . . . . 14 (((Fun 𝑈 ∧ Fun 𝑧) ∧ (𝑈 ↾ dom 𝑇) = (𝑧 ↾ dom 𝑇) ∧ (dom 𝑇 ∈ dom 𝑈 ∧ dom 𝑇 ∈ dom 𝑧 ∧ (𝑈‘dom 𝑇) = (𝑧‘dom 𝑇))) → (𝑈 ↾ suc dom 𝑇) = (𝑧 ↾ suc dom 𝑇))
5226, 30, 39, 41, 49, 50, 51syl213anc 1388 . . . . . . . . . . . . 13 ((((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = 2o) ∧ ((𝑧𝐵 ∧ ¬ 𝑈 <s 𝑧) ∧ (𝑧‘dom 𝑇) = 2o)) → (𝑈 ↾ suc dom 𝑇) = (𝑧 ↾ suc dom 𝑇))
5352expr 457 . . . . . . . . . . . 12 ((((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = 2o) ∧ (𝑧𝐵 ∧ ¬ 𝑈 <s 𝑧)) → ((𝑧‘dom 𝑇) = 2o → (𝑈 ↾ suc dom 𝑇) = (𝑧 ↾ suc dom 𝑇)))
5453expr 457 . . . . . . . . . . 11 ((((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = 2o) ∧ 𝑧𝐵) → (¬ 𝑈 <s 𝑧 → ((𝑧‘dom 𝑇) = 2o → (𝑈 ↾ suc dom 𝑇) = (𝑧 ↾ suc dom 𝑇))))
5554a2d 29 . . . . . . . . . 10 ((((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = 2o) ∧ 𝑧𝐵) → ((¬ 𝑈 <s 𝑧 → (𝑧‘dom 𝑇) = 2o) → (¬ 𝑈 <s 𝑧 → (𝑈 ↾ suc dom 𝑇) = (𝑧 ↾ suc dom 𝑇))))
5655ralimdva 3108 . . . . . . . . 9 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = 2o) → (∀𝑧𝐵𝑈 <s 𝑧 → (𝑧‘dom 𝑇) = 2o) → ∀𝑧𝐵𝑈 <s 𝑧 → (𝑈 ↾ suc dom 𝑇) = (𝑧 ↾ suc dom 𝑇))))
5756impcom 408 . . . . . . . 8 ((∀𝑧𝐵𝑈 <s 𝑧 → (𝑧‘dom 𝑇) = 2o) ∧ ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = 2o)) → ∀𝑧𝐵𝑈 <s 𝑧 → (𝑈 ↾ suc dom 𝑇) = (𝑧 ↾ suc dom 𝑇)))
5857anassrs 468 . . . . . . 7 (((∀𝑧𝐵𝑈 <s 𝑧 → (𝑧‘dom 𝑇) = 2o) ∧ (¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇))) ∧ (𝑈‘dom 𝑇) = 2o) → ∀𝑧𝐵𝑈 <s 𝑧 → (𝑈 ↾ suc dom 𝑇) = (𝑧 ↾ suc dom 𝑇)))
59 dmeq 5812 . . . . . . . . . 10 (𝑝 = 𝑈 → dom 𝑝 = dom 𝑈)
6059eleq2d 2824 . . . . . . . . 9 (𝑝 = 𝑈 → (dom 𝑇 ∈ dom 𝑝 ↔ dom 𝑇 ∈ dom 𝑈))
61 breq1 5077 . . . . . . . . . . . 12 (𝑝 = 𝑈 → (𝑝 <s 𝑧𝑈 <s 𝑧))
6261notbid 318 . . . . . . . . . . 11 (𝑝 = 𝑈 → (¬ 𝑝 <s 𝑧 ↔ ¬ 𝑈 <s 𝑧))
63 reseq1 5885 . . . . . . . . . . . 12 (𝑝 = 𝑈 → (𝑝 ↾ suc dom 𝑇) = (𝑈 ↾ suc dom 𝑇))
6463eqeq1d 2740 . . . . . . . . . . 11 (𝑝 = 𝑈 → ((𝑝 ↾ suc dom 𝑇) = (𝑧 ↾ suc dom 𝑇) ↔ (𝑈 ↾ suc dom 𝑇) = (𝑧 ↾ suc dom 𝑇)))
6562, 64imbi12d 345 . . . . . . . . . 10 (𝑝 = 𝑈 → ((¬ 𝑝 <s 𝑧 → (𝑝 ↾ suc dom 𝑇) = (𝑧 ↾ suc dom 𝑇)) ↔ (¬ 𝑈 <s 𝑧 → (𝑈 ↾ suc dom 𝑇) = (𝑧 ↾ suc dom 𝑇))))
6665ralbidv 3112 . . . . . . . . 9 (𝑝 = 𝑈 → (∀𝑧𝐵𝑝 <s 𝑧 → (𝑝 ↾ suc dom 𝑇) = (𝑧 ↾ suc dom 𝑇)) ↔ ∀𝑧𝐵𝑈 <s 𝑧 → (𝑈 ↾ suc dom 𝑇) = (𝑧 ↾ suc dom 𝑇))))
6760, 66anbi12d 631 . . . . . . . 8 (𝑝 = 𝑈 → ((dom 𝑇 ∈ dom 𝑝 ∧ ∀𝑧𝐵𝑝 <s 𝑧 → (𝑝 ↾ suc dom 𝑇) = (𝑧 ↾ suc dom 𝑇))) ↔ (dom 𝑇 ∈ dom 𝑈 ∧ ∀𝑧𝐵𝑈 <s 𝑧 → (𝑈 ↾ suc dom 𝑇) = (𝑧 ↾ suc dom 𝑇)))))
6867rspcev 3561 . . . . . . 7 ((𝑈𝐵 ∧ (dom 𝑇 ∈ dom 𝑈 ∧ ∀𝑧𝐵𝑈 <s 𝑧 → (𝑈 ↾ suc dom 𝑇) = (𝑧 ↾ suc dom 𝑇)))) → ∃𝑝𝐵 (dom 𝑇 ∈ dom 𝑝 ∧ ∀𝑧𝐵𝑝 <s 𝑧 → (𝑝 ↾ suc dom 𝑇) = (𝑧 ↾ suc dom 𝑇))))
6910, 19, 58, 68syl12anc 834 . . . . . 6 (((∀𝑧𝐵𝑈 <s 𝑧 → (𝑧‘dom 𝑇) = 2o) ∧ (¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇))) ∧ (𝑈‘dom 𝑇) = 2o) → ∃𝑝𝐵 (dom 𝑇 ∈ dom 𝑝 ∧ ∀𝑧𝐵𝑝 <s 𝑧 → (𝑝 ↾ suc dom 𝑇) = (𝑧 ↾ suc dom 𝑇))))
70 nodmon 33853 . . . . . . . . 9 (𝑇 No → dom 𝑇 ∈ On)
714, 70syl 17 . . . . . . . 8 ((∀𝑧𝐵𝑈 <s 𝑧 → (𝑧‘dom 𝑇) = 2o) ∧ (¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇))) → dom 𝑇 ∈ On)
7271adantr 481 . . . . . . 7 (((∀𝑧𝐵𝑈 <s 𝑧 → (𝑧‘dom 𝑇) = 2o) ∧ (¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇))) ∧ (𝑈‘dom 𝑇) = 2o) → dom 𝑇 ∈ On)
73 eleq1 2826 . . . . . . . . . 10 (𝑎 = dom 𝑇 → (𝑎 ∈ dom 𝑝 ↔ dom 𝑇 ∈ dom 𝑝))
74 suceq 6331 . . . . . . . . . . . . . 14 (𝑎 = dom 𝑇 → suc 𝑎 = suc dom 𝑇)
7574reseq2d 5891 . . . . . . . . . . . . 13 (𝑎 = dom 𝑇 → (𝑝 ↾ suc 𝑎) = (𝑝 ↾ suc dom 𝑇))
7674reseq2d 5891 . . . . . . . . . . . . 13 (𝑎 = dom 𝑇 → (𝑧 ↾ suc 𝑎) = (𝑧 ↾ suc dom 𝑇))
7775, 76eqeq12d 2754 . . . . . . . . . . . 12 (𝑎 = dom 𝑇 → ((𝑝 ↾ suc 𝑎) = (𝑧 ↾ suc 𝑎) ↔ (𝑝 ↾ suc dom 𝑇) = (𝑧 ↾ suc dom 𝑇)))
7877imbi2d 341 . . . . . . . . . . 11 (𝑎 = dom 𝑇 → ((¬ 𝑝 <s 𝑧 → (𝑝 ↾ suc 𝑎) = (𝑧 ↾ suc 𝑎)) ↔ (¬ 𝑝 <s 𝑧 → (𝑝 ↾ suc dom 𝑇) = (𝑧 ↾ suc dom 𝑇))))
7978ralbidv 3112 . . . . . . . . . 10 (𝑎 = dom 𝑇 → (∀𝑧𝐵𝑝 <s 𝑧 → (𝑝 ↾ suc 𝑎) = (𝑧 ↾ suc 𝑎)) ↔ ∀𝑧𝐵𝑝 <s 𝑧 → (𝑝 ↾ suc dom 𝑇) = (𝑧 ↾ suc dom 𝑇))))
8073, 79anbi12d 631 . . . . . . . . 9 (𝑎 = dom 𝑇 → ((𝑎 ∈ dom 𝑝 ∧ ∀𝑧𝐵𝑝 <s 𝑧 → (𝑝 ↾ suc 𝑎) = (𝑧 ↾ suc 𝑎))) ↔ (dom 𝑇 ∈ dom 𝑝 ∧ ∀𝑧𝐵𝑝 <s 𝑧 → (𝑝 ↾ suc dom 𝑇) = (𝑧 ↾ suc dom 𝑇)))))
8180rexbidv 3226 . . . . . . . 8 (𝑎 = dom 𝑇 → (∃𝑝𝐵 (𝑎 ∈ dom 𝑝 ∧ ∀𝑧𝐵𝑝 <s 𝑧 → (𝑝 ↾ suc 𝑎) = (𝑧 ↾ suc 𝑎))) ↔ ∃𝑝𝐵 (dom 𝑇 ∈ dom 𝑝 ∧ ∀𝑧𝐵𝑝 <s 𝑧 → (𝑝 ↾ suc dom 𝑇) = (𝑧 ↾ suc dom 𝑇)))))
8281elabg 3607 . . . . . . 7 (dom 𝑇 ∈ On → (dom 𝑇 ∈ {𝑎 ∣ ∃𝑝𝐵 (𝑎 ∈ dom 𝑝 ∧ ∀𝑧𝐵𝑝 <s 𝑧 → (𝑝 ↾ suc 𝑎) = (𝑧 ↾ suc 𝑎)))} ↔ ∃𝑝𝐵 (dom 𝑇 ∈ dom 𝑝 ∧ ∀𝑧𝐵𝑝 <s 𝑧 → (𝑝 ↾ suc dom 𝑇) = (𝑧 ↾ suc dom 𝑇)))))
8372, 82syl 17 . . . . . 6 (((∀𝑧𝐵𝑈 <s 𝑧 → (𝑧‘dom 𝑇) = 2o) ∧ (¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇))) ∧ (𝑈‘dom 𝑇) = 2o) → (dom 𝑇 ∈ {𝑎 ∣ ∃𝑝𝐵 (𝑎 ∈ dom 𝑝 ∧ ∀𝑧𝐵𝑝 <s 𝑧 → (𝑝 ↾ suc 𝑎) = (𝑧 ↾ suc 𝑎)))} ↔ ∃𝑝𝐵 (dom 𝑇 ∈ dom 𝑝 ∧ ∀𝑧𝐵𝑝 <s 𝑧 → (𝑝 ↾ suc dom 𝑇) = (𝑧 ↾ suc dom 𝑇)))))
8469, 83mpbird 256 . . . . 5 (((∀𝑧𝐵𝑈 <s 𝑧 → (𝑧‘dom 𝑇) = 2o) ∧ (¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇))) ∧ (𝑈‘dom 𝑇) = 2o) → dom 𝑇 ∈ {𝑎 ∣ ∃𝑝𝐵 (𝑎 ∈ dom 𝑝 ∧ ∀𝑧𝐵𝑝 <s 𝑧 → (𝑝 ↾ suc 𝑎) = (𝑧 ↾ suc 𝑎)))})
851noinfdm 33922 . . . . . . . . 9 (¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 → dom 𝑇 = {𝑎 ∣ ∃𝑝𝐵 (𝑎 ∈ dom 𝑝 ∧ ∀𝑧𝐵𝑝 <s 𝑧 → (𝑝 ↾ suc 𝑎) = (𝑧 ↾ suc 𝑎)))})
86853ad2ant1 1132 . . . . . . . 8 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) → dom 𝑇 = {𝑎 ∣ ∃𝑝𝐵 (𝑎 ∈ dom 𝑝 ∧ ∀𝑧𝐵𝑝 <s 𝑧 → (𝑝 ↾ suc 𝑎) = (𝑧 ↾ suc 𝑎)))})
8786adantl 482 . . . . . . 7 ((∀𝑧𝐵𝑈 <s 𝑧 → (𝑧‘dom 𝑇) = 2o) ∧ (¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇))) → dom 𝑇 = {𝑎 ∣ ∃𝑝𝐵 (𝑎 ∈ dom 𝑝 ∧ ∀𝑧𝐵𝑝 <s 𝑧 → (𝑝 ↾ suc 𝑎) = (𝑧 ↾ suc 𝑎)))})
8887adantr 481 . . . . . 6 (((∀𝑧𝐵𝑈 <s 𝑧 → (𝑧‘dom 𝑇) = 2o) ∧ (¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇))) ∧ (𝑈‘dom 𝑇) = 2o) → dom 𝑇 = {𝑎 ∣ ∃𝑝𝐵 (𝑎 ∈ dom 𝑝 ∧ ∀𝑧𝐵𝑝 <s 𝑧 → (𝑝 ↾ suc 𝑎) = (𝑧 ↾ suc 𝑎)))})
8988eleq2d 2824 . . . . 5 (((∀𝑧𝐵𝑈 <s 𝑧 → (𝑧‘dom 𝑇) = 2o) ∧ (¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇))) ∧ (𝑈‘dom 𝑇) = 2o) → (dom 𝑇 ∈ dom 𝑇 ↔ dom 𝑇 ∈ {𝑎 ∣ ∃𝑝𝐵 (𝑎 ∈ dom 𝑝 ∧ ∀𝑧𝐵𝑝 <s 𝑧 → (𝑝 ↾ suc 𝑎) = (𝑧 ↾ suc 𝑎)))}))
9084, 89mpbird 256 . . . 4 (((∀𝑧𝐵𝑈 <s 𝑧 → (𝑧‘dom 𝑇) = 2o) ∧ (¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇))) ∧ (𝑈‘dom 𝑇) = 2o) → dom 𝑇 ∈ dom 𝑇)
918, 90mtand 813 . . 3 ((∀𝑧𝐵𝑈 <s 𝑧 → (𝑧‘dom 𝑇) = 2o) ∧ (¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇))) → ¬ (𝑈‘dom 𝑇) = 2o)
9291neqned 2950 . 2 ((∀𝑧𝐵𝑈 <s 𝑧 → (𝑧‘dom 𝑇) = 2o) ∧ (¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇))) → (𝑈‘dom 𝑇) ≠ 2o)
93 rexanali 3192 . . 3 (∃𝑧𝐵𝑈 <s 𝑧 ∧ ¬ (𝑧‘dom 𝑇) = 2o) ↔ ¬ ∀𝑧𝐵𝑈 <s 𝑧 → (𝑧‘dom 𝑇) = 2o))
94 simpr1 1193 . . . . . . . . . . 11 ((((𝑧𝐵 ∧ ¬ 𝑈 <s 𝑧) ∧ ¬ (𝑧‘dom 𝑇) = 2o) ∧ (¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇))) → ¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥)
95 simpr2 1194 . . . . . . . . . . 11 ((((𝑧𝐵 ∧ ¬ 𝑈 <s 𝑧) ∧ ¬ (𝑧‘dom 𝑇) = 2o) ∧ (¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇))) → (𝐵 No 𝐵𝑉))
96 simplll 772 . . . . . . . . . . 11 ((((𝑧𝐵 ∧ ¬ 𝑈 <s 𝑧) ∧ ¬ (𝑧‘dom 𝑇) = 2o) ∧ (¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇))) → 𝑧𝐵)
97 simpr3 1195 . . . . . . . . . . . 12 ((((𝑧𝐵 ∧ ¬ 𝑈 <s 𝑧) ∧ ¬ (𝑧‘dom 𝑇) = 2o) ∧ (¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇))) → (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇))
98 simpll 764 . . . . . . . . . . . 12 ((((𝑧𝐵 ∧ ¬ 𝑈 <s 𝑧) ∧ ¬ (𝑧‘dom 𝑇) = 2o) ∧ (¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇))) → (𝑧𝐵 ∧ ¬ 𝑈 <s 𝑧))
9994, 95, 97, 98, 37syl112anc 1373 . . . . . . . . . . 11 ((((𝑧𝐵 ∧ ¬ 𝑈 <s 𝑧) ∧ ¬ (𝑧‘dom 𝑇) = 2o) ∧ (¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇))) → (𝑧 ↾ dom 𝑇) = 𝑇)
1001noinfbnd1lem4 33929 . . . . . . . . . . 11 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑧𝐵 ∧ (𝑧 ↾ dom 𝑇) = 𝑇)) → (𝑧‘dom 𝑇) ≠ ∅)
10194, 95, 96, 99, 100syl112anc 1373 . . . . . . . . . 10 ((((𝑧𝐵 ∧ ¬ 𝑈 <s 𝑧) ∧ ¬ (𝑧‘dom 𝑇) = 2o) ∧ (¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇))) → (𝑧‘dom 𝑇) ≠ ∅)
102101neneqd 2948 . . . . . . . . 9 ((((𝑧𝐵 ∧ ¬ 𝑈 <s 𝑧) ∧ ¬ (𝑧‘dom 𝑇) = 2o) ∧ (¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇))) → ¬ (𝑧‘dom 𝑇) = ∅)
103102pm2.21d 121 . . . . . . . 8 ((((𝑧𝐵 ∧ ¬ 𝑈 <s 𝑧) ∧ ¬ (𝑧‘dom 𝑇) = 2o) ∧ (¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇))) → ((𝑧‘dom 𝑇) = ∅ → (𝑈‘dom 𝑇) ≠ 2o))
1041noinfbnd1lem3 33928 . . . . . . . . . . 11 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑧𝐵 ∧ (𝑧 ↾ dom 𝑇) = 𝑇)) → (𝑧‘dom 𝑇) ≠ 1o)
10594, 95, 96, 99, 104syl112anc 1373 . . . . . . . . . 10 ((((𝑧𝐵 ∧ ¬ 𝑈 <s 𝑧) ∧ ¬ (𝑧‘dom 𝑇) = 2o) ∧ (¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇))) → (𝑧‘dom 𝑇) ≠ 1o)
106105neneqd 2948 . . . . . . . . 9 ((((𝑧𝐵 ∧ ¬ 𝑈 <s 𝑧) ∧ ¬ (𝑧‘dom 𝑇) = 2o) ∧ (¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇))) → ¬ (𝑧‘dom 𝑇) = 1o)
107106pm2.21d 121 . . . . . . . 8 ((((𝑧𝐵 ∧ ¬ 𝑈 <s 𝑧) ∧ ¬ (𝑧‘dom 𝑇) = 2o) ∧ (¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇))) → ((𝑧‘dom 𝑇) = 1o → (𝑈‘dom 𝑇) ≠ 2o))
108 simplr 766 . . . . . . . . 9 ((((𝑧𝐵 ∧ ¬ 𝑈 <s 𝑧) ∧ ¬ (𝑧‘dom 𝑇) = 2o) ∧ (¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇))) → ¬ (𝑧‘dom 𝑇) = 2o)
109 simpr2l 1231 . . . . . . . . . . 11 ((((𝑧𝐵 ∧ ¬ 𝑈 <s 𝑧) ∧ ¬ (𝑧‘dom 𝑇) = 2o) ∧ (¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇))) → 𝐵 No )
110109, 96sseldd 3922 . . . . . . . . . 10 ((((𝑧𝐵 ∧ ¬ 𝑈 <s 𝑧) ∧ ¬ (𝑧‘dom 𝑇) = 2o) ∧ (¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇))) → 𝑧 No )
111 nofv 33860 . . . . . . . . . 10 (𝑧 No → ((𝑧‘dom 𝑇) = ∅ ∨ (𝑧‘dom 𝑇) = 1o ∨ (𝑧‘dom 𝑇) = 2o))
112110, 111syl 17 . . . . . . . . 9 ((((𝑧𝐵 ∧ ¬ 𝑈 <s 𝑧) ∧ ¬ (𝑧‘dom 𝑇) = 2o) ∧ (¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇))) → ((𝑧‘dom 𝑇) = ∅ ∨ (𝑧‘dom 𝑇) = 1o ∨ (𝑧‘dom 𝑇) = 2o))
113 3orel3 1485 . . . . . . . . 9 (¬ (𝑧‘dom 𝑇) = 2o → (((𝑧‘dom 𝑇) = ∅ ∨ (𝑧‘dom 𝑇) = 1o ∨ (𝑧‘dom 𝑇) = 2o) → ((𝑧‘dom 𝑇) = ∅ ∨ (𝑧‘dom 𝑇) = 1o)))
114108, 112, 113sylc 65 . . . . . . . 8 ((((𝑧𝐵 ∧ ¬ 𝑈 <s 𝑧) ∧ ¬ (𝑧‘dom 𝑇) = 2o) ∧ (¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇))) → ((𝑧‘dom 𝑇) = ∅ ∨ (𝑧‘dom 𝑇) = 1o))
115103, 107, 114mpjaod 857 . . . . . . 7 ((((𝑧𝐵 ∧ ¬ 𝑈 <s 𝑧) ∧ ¬ (𝑧‘dom 𝑇) = 2o) ∧ (¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇))) → (𝑈‘dom 𝑇) ≠ 2o)
116115ex 413 . . . . . 6 (((𝑧𝐵 ∧ ¬ 𝑈 <s 𝑧) ∧ ¬ (𝑧‘dom 𝑇) = 2o) → ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) → (𝑈‘dom 𝑇) ≠ 2o))
117116anasss 467 . . . . 5 ((𝑧𝐵 ∧ (¬ 𝑈 <s 𝑧 ∧ ¬ (𝑧‘dom 𝑇) = 2o)) → ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) → (𝑈‘dom 𝑇) ≠ 2o))
118117rexlimiva 3210 . . . 4 (∃𝑧𝐵𝑈 <s 𝑧 ∧ ¬ (𝑧‘dom 𝑇) = 2o) → ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) → (𝑈‘dom 𝑇) ≠ 2o))
119118imp 407 . . 3 ((∃𝑧𝐵𝑈 <s 𝑧 ∧ ¬ (𝑧‘dom 𝑇) = 2o) ∧ (¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇))) → (𝑈‘dom 𝑇) ≠ 2o)
12093, 119sylanbr 582 . 2 ((¬ ∀𝑧𝐵𝑈 <s 𝑧 → (𝑧‘dom 𝑇) = 2o) ∧ (¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇))) → (𝑈‘dom 𝑇) ≠ 2o)
12192, 120pm2.61ian 809 1 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) → (𝑈‘dom 𝑇) ≠ 2o)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wo 844  w3o 1085  w3a 1086   = wceq 1539  wcel 2106  {cab 2715  wne 2943  wral 3064  wrex 3065  cun 3885  wss 3887  c0 4256  ifcif 4459  {csn 4561  cop 4567   class class class wbr 5074  cmpt 5157  dom cdm 5589  cres 5591  Ord word 6265  Oncon0 6266  suc csuc 6268  cio 6389  Fun wfun 6427  cfv 6433  crio 7231  1oc1o 8290  2oc2o 8291   No csur 33843   <s cslt 33844
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-ord 6269  df-on 6270  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-1o 8297  df-2o 8298  df-no 33846  df-slt 33847  df-bday 33848
This theorem is referenced by:  noinfbnd1lem6  33931
  Copyright terms: Public domain W3C validator