MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  noinfbnd1lem5 Structured version   Visualization version   GIF version

Theorem noinfbnd1lem5 27673
Description: Lemma for noinfbnd1 27675. If 𝑈 is a prolongment of 𝑇 and in 𝐵, then (𝑈‘dom 𝑇) is not 2o. (Contributed by Scott Fenton, 9-Aug-2024.)
Hypothesis
Ref Expression
noinfbnd1.1 𝑇 = if(∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥, ((𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∪ {⟨dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥), 1o⟩}), (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))))
Assertion
Ref Expression
noinfbnd1lem5 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) → (𝑈‘dom 𝑇) ≠ 2o)
Distinct variable groups:   𝐵,𝑔,𝑢,𝑣,𝑥,𝑦   𝑣,𝑈   𝑥,𝑢,𝑦   𝑔,𝑉   𝑥,𝑣,𝑦,𝑈
Allowed substitution hints:   𝑇(𝑥,𝑦,𝑣,𝑢,𝑔)   𝑈(𝑢,𝑔)   𝑉(𝑥,𝑦,𝑣,𝑢)

Proof of Theorem noinfbnd1lem5
Dummy variables 𝑝 𝑧 𝑎 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 noinfbnd1.1 . . . . . . . . 9 𝑇 = if(∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥, ((𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∪ {⟨dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥), 1o⟩}), (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))))
21noinfno 27664 . . . . . . . 8 ((𝐵 No 𝐵𝑉) → 𝑇 No )
323ad2ant2 1131 . . . . . . 7 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) → 𝑇 No )
43adantl 480 . . . . . 6 ((∀𝑧𝐵𝑈 <s 𝑧 → (𝑧‘dom 𝑇) = 2o) ∧ (¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇))) → 𝑇 No )
5 nodmord 27599 . . . . . 6 (𝑇 No → Ord dom 𝑇)
64, 5syl 17 . . . . 5 ((∀𝑧𝐵𝑈 <s 𝑧 → (𝑧‘dom 𝑇) = 2o) ∧ (¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇))) → Ord dom 𝑇)
7 ordirr 6383 . . . . 5 (Ord dom 𝑇 → ¬ dom 𝑇 ∈ dom 𝑇)
86, 7syl 17 . . . 4 ((∀𝑧𝐵𝑈 <s 𝑧 → (𝑧‘dom 𝑇) = 2o) ∧ (¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇))) → ¬ dom 𝑇 ∈ dom 𝑇)
9 simpr3l 1231 . . . . . . . 8 ((∀𝑧𝐵𝑈 <s 𝑧 → (𝑧‘dom 𝑇) = 2o) ∧ (¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇))) → 𝑈𝐵)
109adantr 479 . . . . . . 7 (((∀𝑧𝐵𝑈 <s 𝑧 → (𝑧‘dom 𝑇) = 2o) ∧ (¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇))) ∧ (𝑈‘dom 𝑇) = 2o) → 𝑈𝐵)
11 ndmfv 6925 . . . . . . . . . . 11 (¬ dom 𝑇 ∈ dom 𝑈 → (𝑈‘dom 𝑇) = ∅)
12 2on0 8496 . . . . . . . . . . . . 13 2o ≠ ∅
1312necomi 2985 . . . . . . . . . . . 12 ∅ ≠ 2o
14 neeq1 2993 . . . . . . . . . . . 12 ((𝑈‘dom 𝑇) = ∅ → ((𝑈‘dom 𝑇) ≠ 2o ↔ ∅ ≠ 2o))
1513, 14mpbiri 257 . . . . . . . . . . 11 ((𝑈‘dom 𝑇) = ∅ → (𝑈‘dom 𝑇) ≠ 2o)
1611, 15syl 17 . . . . . . . . . 10 (¬ dom 𝑇 ∈ dom 𝑈 → (𝑈‘dom 𝑇) ≠ 2o)
1716neneqd 2935 . . . . . . . . 9 (¬ dom 𝑇 ∈ dom 𝑈 → ¬ (𝑈‘dom 𝑇) = 2o)
1817con4i 114 . . . . . . . 8 ((𝑈‘dom 𝑇) = 2o → dom 𝑇 ∈ dom 𝑈)
1918adantl 480 . . . . . . 7 (((∀𝑧𝐵𝑈 <s 𝑧 → (𝑧‘dom 𝑇) = 2o) ∧ (¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇))) ∧ (𝑈‘dom 𝑇) = 2o) → dom 𝑇 ∈ dom 𝑈)
20 simpl2l 1223 . . . . . . . . . . . . . . . . 17 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = 2o) → 𝐵 No )
2120adantr 479 . . . . . . . . . . . . . . . 16 ((((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = 2o) ∧ ((𝑧𝐵 ∧ ¬ 𝑈 <s 𝑧) ∧ (𝑧‘dom 𝑇) = 2o)) → 𝐵 No )
22 simpl3l 1225 . . . . . . . . . . . . . . . . 17 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = 2o) → 𝑈𝐵)
2322adantr 479 . . . . . . . . . . . . . . . 16 ((((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = 2o) ∧ ((𝑧𝐵 ∧ ¬ 𝑈 <s 𝑧) ∧ (𝑧‘dom 𝑇) = 2o)) → 𝑈𝐵)
2421, 23sseldd 3974 . . . . . . . . . . . . . . 15 ((((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = 2o) ∧ ((𝑧𝐵 ∧ ¬ 𝑈 <s 𝑧) ∧ (𝑧‘dom 𝑇) = 2o)) → 𝑈 No )
25 nofun 27595 . . . . . . . . . . . . . . 15 (𝑈 No → Fun 𝑈)
2624, 25syl 17 . . . . . . . . . . . . . 14 ((((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = 2o) ∧ ((𝑧𝐵 ∧ ¬ 𝑈 <s 𝑧) ∧ (𝑧‘dom 𝑇) = 2o)) → Fun 𝑈)
27 simprll 777 . . . . . . . . . . . . . . . 16 ((((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = 2o) ∧ ((𝑧𝐵 ∧ ¬ 𝑈 <s 𝑧) ∧ (𝑧‘dom 𝑇) = 2o)) → 𝑧𝐵)
2821, 27sseldd 3974 . . . . . . . . . . . . . . 15 ((((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = 2o) ∧ ((𝑧𝐵 ∧ ¬ 𝑈 <s 𝑧) ∧ (𝑧‘dom 𝑇) = 2o)) → 𝑧 No )
29 nofun 27595 . . . . . . . . . . . . . . 15 (𝑧 No → Fun 𝑧)
3028, 29syl 17 . . . . . . . . . . . . . 14 ((((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = 2o) ∧ ((𝑧𝐵 ∧ ¬ 𝑈 <s 𝑧) ∧ (𝑧‘dom 𝑇) = 2o)) → Fun 𝑧)
31 simpl3r 1226 . . . . . . . . . . . . . . . 16 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = 2o) → (𝑈 ↾ dom 𝑇) = 𝑇)
3231adantr 479 . . . . . . . . . . . . . . 15 ((((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = 2o) ∧ ((𝑧𝐵 ∧ ¬ 𝑈 <s 𝑧) ∧ (𝑧‘dom 𝑇) = 2o)) → (𝑈 ↾ dom 𝑇) = 𝑇)
33 simpll1 1209 . . . . . . . . . . . . . . . 16 ((((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = 2o) ∧ ((𝑧𝐵 ∧ ¬ 𝑈 <s 𝑧) ∧ (𝑧‘dom 𝑇) = 2o)) → ¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥)
34 simpll2 1210 . . . . . . . . . . . . . . . 16 ((((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = 2o) ∧ ((𝑧𝐵 ∧ ¬ 𝑈 <s 𝑧) ∧ (𝑧‘dom 𝑇) = 2o)) → (𝐵 No 𝐵𝑉))
35 simpll3 1211 . . . . . . . . . . . . . . . 16 ((((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = 2o) ∧ ((𝑧𝐵 ∧ ¬ 𝑈 <s 𝑧) ∧ (𝑧‘dom 𝑇) = 2o)) → (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇))
36 simprl 769 . . . . . . . . . . . . . . . 16 ((((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = 2o) ∧ ((𝑧𝐵 ∧ ¬ 𝑈 <s 𝑧) ∧ (𝑧‘dom 𝑇) = 2o)) → (𝑧𝐵 ∧ ¬ 𝑈 <s 𝑧))
371noinfbnd1lem2 27670 . . . . . . . . . . . . . . . 16 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ ((𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇) ∧ (𝑧𝐵 ∧ ¬ 𝑈 <s 𝑧))) → (𝑧 ↾ dom 𝑇) = 𝑇)
3833, 34, 35, 36, 37syl112anc 1371 . . . . . . . . . . . . . . 15 ((((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = 2o) ∧ ((𝑧𝐵 ∧ ¬ 𝑈 <s 𝑧) ∧ (𝑧‘dom 𝑇) = 2o)) → (𝑧 ↾ dom 𝑇) = 𝑇)
3932, 38eqtr4d 2768 . . . . . . . . . . . . . 14 ((((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = 2o) ∧ ((𝑧𝐵 ∧ ¬ 𝑈 <s 𝑧) ∧ (𝑧‘dom 𝑇) = 2o)) → (𝑈 ↾ dom 𝑇) = (𝑧 ↾ dom 𝑇))
40 simplr 767 . . . . . . . . . . . . . . 15 ((((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = 2o) ∧ ((𝑧𝐵 ∧ ¬ 𝑈 <s 𝑧) ∧ (𝑧‘dom 𝑇) = 2o)) → (𝑈‘dom 𝑇) = 2o)
4140, 18syl 17 . . . . . . . . . . . . . 14 ((((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = 2o) ∧ ((𝑧𝐵 ∧ ¬ 𝑈 <s 𝑧) ∧ (𝑧‘dom 𝑇) = 2o)) → dom 𝑇 ∈ dom 𝑈)
42 simprr 771 . . . . . . . . . . . . . . 15 ((((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = 2o) ∧ ((𝑧𝐵 ∧ ¬ 𝑈 <s 𝑧) ∧ (𝑧‘dom 𝑇) = 2o)) → (𝑧‘dom 𝑇) = 2o)
43 ndmfv 6925 . . . . . . . . . . . . . . . . . 18 (¬ dom 𝑇 ∈ dom 𝑧 → (𝑧‘dom 𝑇) = ∅)
44 neeq1 2993 . . . . . . . . . . . . . . . . . . 19 ((𝑧‘dom 𝑇) = ∅ → ((𝑧‘dom 𝑇) ≠ 2o ↔ ∅ ≠ 2o))
4513, 44mpbiri 257 . . . . . . . . . . . . . . . . . 18 ((𝑧‘dom 𝑇) = ∅ → (𝑧‘dom 𝑇) ≠ 2o)
4643, 45syl 17 . . . . . . . . . . . . . . . . 17 (¬ dom 𝑇 ∈ dom 𝑧 → (𝑧‘dom 𝑇) ≠ 2o)
4746neneqd 2935 . . . . . . . . . . . . . . . 16 (¬ dom 𝑇 ∈ dom 𝑧 → ¬ (𝑧‘dom 𝑇) = 2o)
4847con4i 114 . . . . . . . . . . . . . . 15 ((𝑧‘dom 𝑇) = 2o → dom 𝑇 ∈ dom 𝑧)
4942, 48syl 17 . . . . . . . . . . . . . 14 ((((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = 2o) ∧ ((𝑧𝐵 ∧ ¬ 𝑈 <s 𝑧) ∧ (𝑧‘dom 𝑇) = 2o)) → dom 𝑇 ∈ dom 𝑧)
5040, 42eqtr4d 2768 . . . . . . . . . . . . . 14 ((((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = 2o) ∧ ((𝑧𝐵 ∧ ¬ 𝑈 <s 𝑧) ∧ (𝑧‘dom 𝑇) = 2o)) → (𝑈‘dom 𝑇) = (𝑧‘dom 𝑇))
51 eqfunressuc 7362 . . . . . . . . . . . . . 14 (((Fun 𝑈 ∧ Fun 𝑧) ∧ (𝑈 ↾ dom 𝑇) = (𝑧 ↾ dom 𝑇) ∧ (dom 𝑇 ∈ dom 𝑈 ∧ dom 𝑇 ∈ dom 𝑧 ∧ (𝑈‘dom 𝑇) = (𝑧‘dom 𝑇))) → (𝑈 ↾ suc dom 𝑇) = (𝑧 ↾ suc dom 𝑇))
5226, 30, 39, 41, 49, 50, 51syl213anc 1386 . . . . . . . . . . . . 13 ((((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = 2o) ∧ ((𝑧𝐵 ∧ ¬ 𝑈 <s 𝑧) ∧ (𝑧‘dom 𝑇) = 2o)) → (𝑈 ↾ suc dom 𝑇) = (𝑧 ↾ suc dom 𝑇))
5352expr 455 . . . . . . . . . . . 12 ((((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = 2o) ∧ (𝑧𝐵 ∧ ¬ 𝑈 <s 𝑧)) → ((𝑧‘dom 𝑇) = 2o → (𝑈 ↾ suc dom 𝑇) = (𝑧 ↾ suc dom 𝑇)))
5453expr 455 . . . . . . . . . . 11 ((((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = 2o) ∧ 𝑧𝐵) → (¬ 𝑈 <s 𝑧 → ((𝑧‘dom 𝑇) = 2o → (𝑈 ↾ suc dom 𝑇) = (𝑧 ↾ suc dom 𝑇))))
5554a2d 29 . . . . . . . . . 10 ((((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = 2o) ∧ 𝑧𝐵) → ((¬ 𝑈 <s 𝑧 → (𝑧‘dom 𝑇) = 2o) → (¬ 𝑈 <s 𝑧 → (𝑈 ↾ suc dom 𝑇) = (𝑧 ↾ suc dom 𝑇))))
5655ralimdva 3157 . . . . . . . . 9 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = 2o) → (∀𝑧𝐵𝑈 <s 𝑧 → (𝑧‘dom 𝑇) = 2o) → ∀𝑧𝐵𝑈 <s 𝑧 → (𝑈 ↾ suc dom 𝑇) = (𝑧 ↾ suc dom 𝑇))))
5756impcom 406 . . . . . . . 8 ((∀𝑧𝐵𝑈 <s 𝑧 → (𝑧‘dom 𝑇) = 2o) ∧ ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = 2o)) → ∀𝑧𝐵𝑈 <s 𝑧 → (𝑈 ↾ suc dom 𝑇) = (𝑧 ↾ suc dom 𝑇)))
5857anassrs 466 . . . . . . 7 (((∀𝑧𝐵𝑈 <s 𝑧 → (𝑧‘dom 𝑇) = 2o) ∧ (¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇))) ∧ (𝑈‘dom 𝑇) = 2o) → ∀𝑧𝐵𝑈 <s 𝑧 → (𝑈 ↾ suc dom 𝑇) = (𝑧 ↾ suc dom 𝑇)))
59 dmeq 5901 . . . . . . . . . 10 (𝑝 = 𝑈 → dom 𝑝 = dom 𝑈)
6059eleq2d 2811 . . . . . . . . 9 (𝑝 = 𝑈 → (dom 𝑇 ∈ dom 𝑝 ↔ dom 𝑇 ∈ dom 𝑈))
61 breq1 5147 . . . . . . . . . . . 12 (𝑝 = 𝑈 → (𝑝 <s 𝑧𝑈 <s 𝑧))
6261notbid 317 . . . . . . . . . . 11 (𝑝 = 𝑈 → (¬ 𝑝 <s 𝑧 ↔ ¬ 𝑈 <s 𝑧))
63 reseq1 5974 . . . . . . . . . . . 12 (𝑝 = 𝑈 → (𝑝 ↾ suc dom 𝑇) = (𝑈 ↾ suc dom 𝑇))
6463eqeq1d 2727 . . . . . . . . . . 11 (𝑝 = 𝑈 → ((𝑝 ↾ suc dom 𝑇) = (𝑧 ↾ suc dom 𝑇) ↔ (𝑈 ↾ suc dom 𝑇) = (𝑧 ↾ suc dom 𝑇)))
6562, 64imbi12d 343 . . . . . . . . . 10 (𝑝 = 𝑈 → ((¬ 𝑝 <s 𝑧 → (𝑝 ↾ suc dom 𝑇) = (𝑧 ↾ suc dom 𝑇)) ↔ (¬ 𝑈 <s 𝑧 → (𝑈 ↾ suc dom 𝑇) = (𝑧 ↾ suc dom 𝑇))))
6665ralbidv 3168 . . . . . . . . 9 (𝑝 = 𝑈 → (∀𝑧𝐵𝑝 <s 𝑧 → (𝑝 ↾ suc dom 𝑇) = (𝑧 ↾ suc dom 𝑇)) ↔ ∀𝑧𝐵𝑈 <s 𝑧 → (𝑈 ↾ suc dom 𝑇) = (𝑧 ↾ suc dom 𝑇))))
6760, 66anbi12d 630 . . . . . . . 8 (𝑝 = 𝑈 → ((dom 𝑇 ∈ dom 𝑝 ∧ ∀𝑧𝐵𝑝 <s 𝑧 → (𝑝 ↾ suc dom 𝑇) = (𝑧 ↾ suc dom 𝑇))) ↔ (dom 𝑇 ∈ dom 𝑈 ∧ ∀𝑧𝐵𝑈 <s 𝑧 → (𝑈 ↾ suc dom 𝑇) = (𝑧 ↾ suc dom 𝑇)))))
6867rspcev 3603 . . . . . . 7 ((𝑈𝐵 ∧ (dom 𝑇 ∈ dom 𝑈 ∧ ∀𝑧𝐵𝑈 <s 𝑧 → (𝑈 ↾ suc dom 𝑇) = (𝑧 ↾ suc dom 𝑇)))) → ∃𝑝𝐵 (dom 𝑇 ∈ dom 𝑝 ∧ ∀𝑧𝐵𝑝 <s 𝑧 → (𝑝 ↾ suc dom 𝑇) = (𝑧 ↾ suc dom 𝑇))))
6910, 19, 58, 68syl12anc 835 . . . . . 6 (((∀𝑧𝐵𝑈 <s 𝑧 → (𝑧‘dom 𝑇) = 2o) ∧ (¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇))) ∧ (𝑈‘dom 𝑇) = 2o) → ∃𝑝𝐵 (dom 𝑇 ∈ dom 𝑝 ∧ ∀𝑧𝐵𝑝 <s 𝑧 → (𝑝 ↾ suc dom 𝑇) = (𝑧 ↾ suc dom 𝑇))))
70 nodmon 27596 . . . . . . . . 9 (𝑇 No → dom 𝑇 ∈ On)
714, 70syl 17 . . . . . . . 8 ((∀𝑧𝐵𝑈 <s 𝑧 → (𝑧‘dom 𝑇) = 2o) ∧ (¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇))) → dom 𝑇 ∈ On)
7271adantr 479 . . . . . . 7 (((∀𝑧𝐵𝑈 <s 𝑧 → (𝑧‘dom 𝑇) = 2o) ∧ (¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇))) ∧ (𝑈‘dom 𝑇) = 2o) → dom 𝑇 ∈ On)
73 eleq1 2813 . . . . . . . . . 10 (𝑎 = dom 𝑇 → (𝑎 ∈ dom 𝑝 ↔ dom 𝑇 ∈ dom 𝑝))
74 suceq 6431 . . . . . . . . . . . . . 14 (𝑎 = dom 𝑇 → suc 𝑎 = suc dom 𝑇)
7574reseq2d 5980 . . . . . . . . . . . . 13 (𝑎 = dom 𝑇 → (𝑝 ↾ suc 𝑎) = (𝑝 ↾ suc dom 𝑇))
7674reseq2d 5980 . . . . . . . . . . . . 13 (𝑎 = dom 𝑇 → (𝑧 ↾ suc 𝑎) = (𝑧 ↾ suc dom 𝑇))
7775, 76eqeq12d 2741 . . . . . . . . . . . 12 (𝑎 = dom 𝑇 → ((𝑝 ↾ suc 𝑎) = (𝑧 ↾ suc 𝑎) ↔ (𝑝 ↾ suc dom 𝑇) = (𝑧 ↾ suc dom 𝑇)))
7877imbi2d 339 . . . . . . . . . . 11 (𝑎 = dom 𝑇 → ((¬ 𝑝 <s 𝑧 → (𝑝 ↾ suc 𝑎) = (𝑧 ↾ suc 𝑎)) ↔ (¬ 𝑝 <s 𝑧 → (𝑝 ↾ suc dom 𝑇) = (𝑧 ↾ suc dom 𝑇))))
7978ralbidv 3168 . . . . . . . . . 10 (𝑎 = dom 𝑇 → (∀𝑧𝐵𝑝 <s 𝑧 → (𝑝 ↾ suc 𝑎) = (𝑧 ↾ suc 𝑎)) ↔ ∀𝑧𝐵𝑝 <s 𝑧 → (𝑝 ↾ suc dom 𝑇) = (𝑧 ↾ suc dom 𝑇))))
8073, 79anbi12d 630 . . . . . . . . 9 (𝑎 = dom 𝑇 → ((𝑎 ∈ dom 𝑝 ∧ ∀𝑧𝐵𝑝 <s 𝑧 → (𝑝 ↾ suc 𝑎) = (𝑧 ↾ suc 𝑎))) ↔ (dom 𝑇 ∈ dom 𝑝 ∧ ∀𝑧𝐵𝑝 <s 𝑧 → (𝑝 ↾ suc dom 𝑇) = (𝑧 ↾ suc dom 𝑇)))))
8180rexbidv 3169 . . . . . . . 8 (𝑎 = dom 𝑇 → (∃𝑝𝐵 (𝑎 ∈ dom 𝑝 ∧ ∀𝑧𝐵𝑝 <s 𝑧 → (𝑝 ↾ suc 𝑎) = (𝑧 ↾ suc 𝑎))) ↔ ∃𝑝𝐵 (dom 𝑇 ∈ dom 𝑝 ∧ ∀𝑧𝐵𝑝 <s 𝑧 → (𝑝 ↾ suc dom 𝑇) = (𝑧 ↾ suc dom 𝑇)))))
8281elabg 3659 . . . . . . 7 (dom 𝑇 ∈ On → (dom 𝑇 ∈ {𝑎 ∣ ∃𝑝𝐵 (𝑎 ∈ dom 𝑝 ∧ ∀𝑧𝐵𝑝 <s 𝑧 → (𝑝 ↾ suc 𝑎) = (𝑧 ↾ suc 𝑎)))} ↔ ∃𝑝𝐵 (dom 𝑇 ∈ dom 𝑝 ∧ ∀𝑧𝐵𝑝 <s 𝑧 → (𝑝 ↾ suc dom 𝑇) = (𝑧 ↾ suc dom 𝑇)))))
8372, 82syl 17 . . . . . 6 (((∀𝑧𝐵𝑈 <s 𝑧 → (𝑧‘dom 𝑇) = 2o) ∧ (¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇))) ∧ (𝑈‘dom 𝑇) = 2o) → (dom 𝑇 ∈ {𝑎 ∣ ∃𝑝𝐵 (𝑎 ∈ dom 𝑝 ∧ ∀𝑧𝐵𝑝 <s 𝑧 → (𝑝 ↾ suc 𝑎) = (𝑧 ↾ suc 𝑎)))} ↔ ∃𝑝𝐵 (dom 𝑇 ∈ dom 𝑝 ∧ ∀𝑧𝐵𝑝 <s 𝑧 → (𝑝 ↾ suc dom 𝑇) = (𝑧 ↾ suc dom 𝑇)))))
8469, 83mpbird 256 . . . . 5 (((∀𝑧𝐵𝑈 <s 𝑧 → (𝑧‘dom 𝑇) = 2o) ∧ (¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇))) ∧ (𝑈‘dom 𝑇) = 2o) → dom 𝑇 ∈ {𝑎 ∣ ∃𝑝𝐵 (𝑎 ∈ dom 𝑝 ∧ ∀𝑧𝐵𝑝 <s 𝑧 → (𝑝 ↾ suc 𝑎) = (𝑧 ↾ suc 𝑎)))})
851noinfdm 27665 . . . . . . . . 9 (¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 → dom 𝑇 = {𝑎 ∣ ∃𝑝𝐵 (𝑎 ∈ dom 𝑝 ∧ ∀𝑧𝐵𝑝 <s 𝑧 → (𝑝 ↾ suc 𝑎) = (𝑧 ↾ suc 𝑎)))})
86853ad2ant1 1130 . . . . . . . 8 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) → dom 𝑇 = {𝑎 ∣ ∃𝑝𝐵 (𝑎 ∈ dom 𝑝 ∧ ∀𝑧𝐵𝑝 <s 𝑧 → (𝑝 ↾ suc 𝑎) = (𝑧 ↾ suc 𝑎)))})
8786adantl 480 . . . . . . 7 ((∀𝑧𝐵𝑈 <s 𝑧 → (𝑧‘dom 𝑇) = 2o) ∧ (¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇))) → dom 𝑇 = {𝑎 ∣ ∃𝑝𝐵 (𝑎 ∈ dom 𝑝 ∧ ∀𝑧𝐵𝑝 <s 𝑧 → (𝑝 ↾ suc 𝑎) = (𝑧 ↾ suc 𝑎)))})
8887adantr 479 . . . . . 6 (((∀𝑧𝐵𝑈 <s 𝑧 → (𝑧‘dom 𝑇) = 2o) ∧ (¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇))) ∧ (𝑈‘dom 𝑇) = 2o) → dom 𝑇 = {𝑎 ∣ ∃𝑝𝐵 (𝑎 ∈ dom 𝑝 ∧ ∀𝑧𝐵𝑝 <s 𝑧 → (𝑝 ↾ suc 𝑎) = (𝑧 ↾ suc 𝑎)))})
8988eleq2d 2811 . . . . 5 (((∀𝑧𝐵𝑈 <s 𝑧 → (𝑧‘dom 𝑇) = 2o) ∧ (¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇))) ∧ (𝑈‘dom 𝑇) = 2o) → (dom 𝑇 ∈ dom 𝑇 ↔ dom 𝑇 ∈ {𝑎 ∣ ∃𝑝𝐵 (𝑎 ∈ dom 𝑝 ∧ ∀𝑧𝐵𝑝 <s 𝑧 → (𝑝 ↾ suc 𝑎) = (𝑧 ↾ suc 𝑎)))}))
9084, 89mpbird 256 . . . 4 (((∀𝑧𝐵𝑈 <s 𝑧 → (𝑧‘dom 𝑇) = 2o) ∧ (¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇))) ∧ (𝑈‘dom 𝑇) = 2o) → dom 𝑇 ∈ dom 𝑇)
918, 90mtand 814 . . 3 ((∀𝑧𝐵𝑈 <s 𝑧 → (𝑧‘dom 𝑇) = 2o) ∧ (¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇))) → ¬ (𝑈‘dom 𝑇) = 2o)
9291neqned 2937 . 2 ((∀𝑧𝐵𝑈 <s 𝑧 → (𝑧‘dom 𝑇) = 2o) ∧ (¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇))) → (𝑈‘dom 𝑇) ≠ 2o)
93 rexanali 3092 . . 3 (∃𝑧𝐵𝑈 <s 𝑧 ∧ ¬ (𝑧‘dom 𝑇) = 2o) ↔ ¬ ∀𝑧𝐵𝑈 <s 𝑧 → (𝑧‘dom 𝑇) = 2o))
94 simpr1 1191 . . . . . . . . . . 11 ((((𝑧𝐵 ∧ ¬ 𝑈 <s 𝑧) ∧ ¬ (𝑧‘dom 𝑇) = 2o) ∧ (¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇))) → ¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥)
95 simpr2 1192 . . . . . . . . . . 11 ((((𝑧𝐵 ∧ ¬ 𝑈 <s 𝑧) ∧ ¬ (𝑧‘dom 𝑇) = 2o) ∧ (¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇))) → (𝐵 No 𝐵𝑉))
96 simplll 773 . . . . . . . . . . 11 ((((𝑧𝐵 ∧ ¬ 𝑈 <s 𝑧) ∧ ¬ (𝑧‘dom 𝑇) = 2o) ∧ (¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇))) → 𝑧𝐵)
97 simpr3 1193 . . . . . . . . . . . 12 ((((𝑧𝐵 ∧ ¬ 𝑈 <s 𝑧) ∧ ¬ (𝑧‘dom 𝑇) = 2o) ∧ (¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇))) → (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇))
98 simpll 765 . . . . . . . . . . . 12 ((((𝑧𝐵 ∧ ¬ 𝑈 <s 𝑧) ∧ ¬ (𝑧‘dom 𝑇) = 2o) ∧ (¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇))) → (𝑧𝐵 ∧ ¬ 𝑈 <s 𝑧))
9994, 95, 97, 98, 37syl112anc 1371 . . . . . . . . . . 11 ((((𝑧𝐵 ∧ ¬ 𝑈 <s 𝑧) ∧ ¬ (𝑧‘dom 𝑇) = 2o) ∧ (¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇))) → (𝑧 ↾ dom 𝑇) = 𝑇)
1001noinfbnd1lem4 27672 . . . . . . . . . . 11 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑧𝐵 ∧ (𝑧 ↾ dom 𝑇) = 𝑇)) → (𝑧‘dom 𝑇) ≠ ∅)
10194, 95, 96, 99, 100syl112anc 1371 . . . . . . . . . 10 ((((𝑧𝐵 ∧ ¬ 𝑈 <s 𝑧) ∧ ¬ (𝑧‘dom 𝑇) = 2o) ∧ (¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇))) → (𝑧‘dom 𝑇) ≠ ∅)
102101neneqd 2935 . . . . . . . . 9 ((((𝑧𝐵 ∧ ¬ 𝑈 <s 𝑧) ∧ ¬ (𝑧‘dom 𝑇) = 2o) ∧ (¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇))) → ¬ (𝑧‘dom 𝑇) = ∅)
103102pm2.21d 121 . . . . . . . 8 ((((𝑧𝐵 ∧ ¬ 𝑈 <s 𝑧) ∧ ¬ (𝑧‘dom 𝑇) = 2o) ∧ (¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇))) → ((𝑧‘dom 𝑇) = ∅ → (𝑈‘dom 𝑇) ≠ 2o))
1041noinfbnd1lem3 27671 . . . . . . . . . . 11 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑧𝐵 ∧ (𝑧 ↾ dom 𝑇) = 𝑇)) → (𝑧‘dom 𝑇) ≠ 1o)
10594, 95, 96, 99, 104syl112anc 1371 . . . . . . . . . 10 ((((𝑧𝐵 ∧ ¬ 𝑈 <s 𝑧) ∧ ¬ (𝑧‘dom 𝑇) = 2o) ∧ (¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇))) → (𝑧‘dom 𝑇) ≠ 1o)
106105neneqd 2935 . . . . . . . . 9 ((((𝑧𝐵 ∧ ¬ 𝑈 <s 𝑧) ∧ ¬ (𝑧‘dom 𝑇) = 2o) ∧ (¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇))) → ¬ (𝑧‘dom 𝑇) = 1o)
107106pm2.21d 121 . . . . . . . 8 ((((𝑧𝐵 ∧ ¬ 𝑈 <s 𝑧) ∧ ¬ (𝑧‘dom 𝑇) = 2o) ∧ (¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇))) → ((𝑧‘dom 𝑇) = 1o → (𝑈‘dom 𝑇) ≠ 2o))
108 simplr 767 . . . . . . . . 9 ((((𝑧𝐵 ∧ ¬ 𝑈 <s 𝑧) ∧ ¬ (𝑧‘dom 𝑇) = 2o) ∧ (¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇))) → ¬ (𝑧‘dom 𝑇) = 2o)
109 simpr2l 1229 . . . . . . . . . . 11 ((((𝑧𝐵 ∧ ¬ 𝑈 <s 𝑧) ∧ ¬ (𝑧‘dom 𝑇) = 2o) ∧ (¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇))) → 𝐵 No )
110109, 96sseldd 3974 . . . . . . . . . 10 ((((𝑧𝐵 ∧ ¬ 𝑈 <s 𝑧) ∧ ¬ (𝑧‘dom 𝑇) = 2o) ∧ (¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇))) → 𝑧 No )
111 nofv 27603 . . . . . . . . . 10 (𝑧 No → ((𝑧‘dom 𝑇) = ∅ ∨ (𝑧‘dom 𝑇) = 1o ∨ (𝑧‘dom 𝑇) = 2o))
112110, 111syl 17 . . . . . . . . 9 ((((𝑧𝐵 ∧ ¬ 𝑈 <s 𝑧) ∧ ¬ (𝑧‘dom 𝑇) = 2o) ∧ (¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇))) → ((𝑧‘dom 𝑇) = ∅ ∨ (𝑧‘dom 𝑇) = 1o ∨ (𝑧‘dom 𝑇) = 2o))
113 3orel3 1481 . . . . . . . . 9 (¬ (𝑧‘dom 𝑇) = 2o → (((𝑧‘dom 𝑇) = ∅ ∨ (𝑧‘dom 𝑇) = 1o ∨ (𝑧‘dom 𝑇) = 2o) → ((𝑧‘dom 𝑇) = ∅ ∨ (𝑧‘dom 𝑇) = 1o)))
114108, 112, 113sylc 65 . . . . . . . 8 ((((𝑧𝐵 ∧ ¬ 𝑈 <s 𝑧) ∧ ¬ (𝑧‘dom 𝑇) = 2o) ∧ (¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇))) → ((𝑧‘dom 𝑇) = ∅ ∨ (𝑧‘dom 𝑇) = 1o))
115103, 107, 114mpjaod 858 . . . . . . 7 ((((𝑧𝐵 ∧ ¬ 𝑈 <s 𝑧) ∧ ¬ (𝑧‘dom 𝑇) = 2o) ∧ (¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇))) → (𝑈‘dom 𝑇) ≠ 2o)
116115ex 411 . . . . . 6 (((𝑧𝐵 ∧ ¬ 𝑈 <s 𝑧) ∧ ¬ (𝑧‘dom 𝑇) = 2o) → ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) → (𝑈‘dom 𝑇) ≠ 2o))
117116anasss 465 . . . . 5 ((𝑧𝐵 ∧ (¬ 𝑈 <s 𝑧 ∧ ¬ (𝑧‘dom 𝑇) = 2o)) → ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) → (𝑈‘dom 𝑇) ≠ 2o))
118117rexlimiva 3137 . . . 4 (∃𝑧𝐵𝑈 <s 𝑧 ∧ ¬ (𝑧‘dom 𝑇) = 2o) → ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) → (𝑈‘dom 𝑇) ≠ 2o))
119118imp 405 . . 3 ((∃𝑧𝐵𝑈 <s 𝑧 ∧ ¬ (𝑧‘dom 𝑇) = 2o) ∧ (¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇))) → (𝑈‘dom 𝑇) ≠ 2o)
12093, 119sylanbr 580 . 2 ((¬ ∀𝑧𝐵𝑈 <s 𝑧 → (𝑧‘dom 𝑇) = 2o) ∧ (¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇))) → (𝑈‘dom 𝑇) ≠ 2o)
12192, 120pm2.61ian 810 1 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) → (𝑈‘dom 𝑇) ≠ 2o)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 394  wo 845  w3o 1083  w3a 1084   = wceq 1533  wcel 2098  {cab 2702  wne 2930  wral 3051  wrex 3060  cun 3939  wss 3941  c0 4319  ifcif 4525  {csn 4625  cop 4631   class class class wbr 5144  cmpt 5227  dom cdm 5673  cres 5675  Ord word 6364  Oncon0 6365  suc csuc 6367  cio 6493  Fun wfun 6537  cfv 6543  crio 7368  1oc1o 8473  2oc2o 8474   No csur 27586   <s cslt 27587
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5281  ax-sep 5295  ax-nul 5302  ax-pr 5424  ax-un 7735
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3887  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-pss 3961  df-nul 4320  df-if 4526  df-pw 4601  df-sn 4626  df-pr 4628  df-tp 4630  df-op 4632  df-uni 4905  df-int 4946  df-iun 4994  df-br 5145  df-opab 5207  df-mpt 5228  df-tr 5262  df-id 5571  df-eprel 5577  df-po 5585  df-so 5586  df-fr 5628  df-we 5630  df-xp 5679  df-rel 5680  df-cnv 5681  df-co 5682  df-dm 5683  df-rn 5684  df-res 5685  df-ima 5686  df-ord 6368  df-on 6369  df-suc 6371  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7369  df-1o 8480  df-2o 8481  df-no 27589  df-slt 27590  df-bday 27591
This theorem is referenced by:  noinfbnd1lem6  27674
  Copyright terms: Public domain W3C validator