MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  noinfbnd1lem5 Structured version   Visualization version   GIF version

Theorem noinfbnd1lem5 27646
Description: Lemma for noinfbnd1 27648. If 𝑈 is a prolongment of 𝑇 and in 𝐵, then (𝑈‘dom 𝑇) is not 2o. (Contributed by Scott Fenton, 9-Aug-2024.)
Hypothesis
Ref Expression
noinfbnd1.1 𝑇 = if(∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥, ((𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∪ {⟨dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥), 1o⟩}), (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))))
Assertion
Ref Expression
noinfbnd1lem5 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) → (𝑈‘dom 𝑇) ≠ 2o)
Distinct variable groups:   𝐵,𝑔,𝑢,𝑣,𝑥,𝑦   𝑣,𝑈   𝑔,𝑉   𝑥,𝑈,𝑦
Allowed substitution hints:   𝑇(𝑥,𝑦,𝑣,𝑢,𝑔)   𝑈(𝑢,𝑔)   𝑉(𝑥,𝑦,𝑣,𝑢)

Proof of Theorem noinfbnd1lem5
Dummy variables 𝑝 𝑧 𝑎 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 noinfbnd1.1 . . . . . . . . 9 𝑇 = if(∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥, ((𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∪ {⟨dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥), 1o⟩}), (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))))
21noinfno 27637 . . . . . . . 8 ((𝐵 No 𝐵𝑉) → 𝑇 No )
323ad2ant2 1134 . . . . . . 7 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) → 𝑇 No )
43adantl 481 . . . . . 6 ((∀𝑧𝐵𝑈 <s 𝑧 → (𝑧‘dom 𝑇) = 2o) ∧ (¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇))) → 𝑇 No )
5 nodmord 27572 . . . . . 6 (𝑇 No → Ord dom 𝑇)
64, 5syl 17 . . . . 5 ((∀𝑧𝐵𝑈 <s 𝑧 → (𝑧‘dom 𝑇) = 2o) ∧ (¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇))) → Ord dom 𝑇)
7 ordirr 6353 . . . . 5 (Ord dom 𝑇 → ¬ dom 𝑇 ∈ dom 𝑇)
86, 7syl 17 . . . 4 ((∀𝑧𝐵𝑈 <s 𝑧 → (𝑧‘dom 𝑇) = 2o) ∧ (¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇))) → ¬ dom 𝑇 ∈ dom 𝑇)
9 simpr3l 1235 . . . . . . . 8 ((∀𝑧𝐵𝑈 <s 𝑧 → (𝑧‘dom 𝑇) = 2o) ∧ (¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇))) → 𝑈𝐵)
109adantr 480 . . . . . . 7 (((∀𝑧𝐵𝑈 <s 𝑧 → (𝑧‘dom 𝑇) = 2o) ∧ (¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇))) ∧ (𝑈‘dom 𝑇) = 2o) → 𝑈𝐵)
11 ndmfv 6896 . . . . . . . . . . 11 (¬ dom 𝑇 ∈ dom 𝑈 → (𝑈‘dom 𝑇) = ∅)
12 2on0 8451 . . . . . . . . . . . . 13 2o ≠ ∅
1312necomi 2980 . . . . . . . . . . . 12 ∅ ≠ 2o
14 neeq1 2988 . . . . . . . . . . . 12 ((𝑈‘dom 𝑇) = ∅ → ((𝑈‘dom 𝑇) ≠ 2o ↔ ∅ ≠ 2o))
1513, 14mpbiri 258 . . . . . . . . . . 11 ((𝑈‘dom 𝑇) = ∅ → (𝑈‘dom 𝑇) ≠ 2o)
1611, 15syl 17 . . . . . . . . . 10 (¬ dom 𝑇 ∈ dom 𝑈 → (𝑈‘dom 𝑇) ≠ 2o)
1716neneqd 2931 . . . . . . . . 9 (¬ dom 𝑇 ∈ dom 𝑈 → ¬ (𝑈‘dom 𝑇) = 2o)
1817con4i 114 . . . . . . . 8 ((𝑈‘dom 𝑇) = 2o → dom 𝑇 ∈ dom 𝑈)
1918adantl 481 . . . . . . 7 (((∀𝑧𝐵𝑈 <s 𝑧 → (𝑧‘dom 𝑇) = 2o) ∧ (¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇))) ∧ (𝑈‘dom 𝑇) = 2o) → dom 𝑇 ∈ dom 𝑈)
20 simpl2l 1227 . . . . . . . . . . . . . . . . 17 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = 2o) → 𝐵 No )
2120adantr 480 . . . . . . . . . . . . . . . 16 ((((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = 2o) ∧ ((𝑧𝐵 ∧ ¬ 𝑈 <s 𝑧) ∧ (𝑧‘dom 𝑇) = 2o)) → 𝐵 No )
22 simpl3l 1229 . . . . . . . . . . . . . . . . 17 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = 2o) → 𝑈𝐵)
2322adantr 480 . . . . . . . . . . . . . . . 16 ((((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = 2o) ∧ ((𝑧𝐵 ∧ ¬ 𝑈 <s 𝑧) ∧ (𝑧‘dom 𝑇) = 2o)) → 𝑈𝐵)
2421, 23sseldd 3950 . . . . . . . . . . . . . . 15 ((((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = 2o) ∧ ((𝑧𝐵 ∧ ¬ 𝑈 <s 𝑧) ∧ (𝑧‘dom 𝑇) = 2o)) → 𝑈 No )
25 nofun 27568 . . . . . . . . . . . . . . 15 (𝑈 No → Fun 𝑈)
2624, 25syl 17 . . . . . . . . . . . . . 14 ((((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = 2o) ∧ ((𝑧𝐵 ∧ ¬ 𝑈 <s 𝑧) ∧ (𝑧‘dom 𝑇) = 2o)) → Fun 𝑈)
27 simprll 778 . . . . . . . . . . . . . . . 16 ((((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = 2o) ∧ ((𝑧𝐵 ∧ ¬ 𝑈 <s 𝑧) ∧ (𝑧‘dom 𝑇) = 2o)) → 𝑧𝐵)
2821, 27sseldd 3950 . . . . . . . . . . . . . . 15 ((((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = 2o) ∧ ((𝑧𝐵 ∧ ¬ 𝑈 <s 𝑧) ∧ (𝑧‘dom 𝑇) = 2o)) → 𝑧 No )
29 nofun 27568 . . . . . . . . . . . . . . 15 (𝑧 No → Fun 𝑧)
3028, 29syl 17 . . . . . . . . . . . . . 14 ((((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = 2o) ∧ ((𝑧𝐵 ∧ ¬ 𝑈 <s 𝑧) ∧ (𝑧‘dom 𝑇) = 2o)) → Fun 𝑧)
31 simpl3r 1230 . . . . . . . . . . . . . . . 16 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = 2o) → (𝑈 ↾ dom 𝑇) = 𝑇)
3231adantr 480 . . . . . . . . . . . . . . 15 ((((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = 2o) ∧ ((𝑧𝐵 ∧ ¬ 𝑈 <s 𝑧) ∧ (𝑧‘dom 𝑇) = 2o)) → (𝑈 ↾ dom 𝑇) = 𝑇)
33 simpll1 1213 . . . . . . . . . . . . . . . 16 ((((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = 2o) ∧ ((𝑧𝐵 ∧ ¬ 𝑈 <s 𝑧) ∧ (𝑧‘dom 𝑇) = 2o)) → ¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥)
34 simpll2 1214 . . . . . . . . . . . . . . . 16 ((((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = 2o) ∧ ((𝑧𝐵 ∧ ¬ 𝑈 <s 𝑧) ∧ (𝑧‘dom 𝑇) = 2o)) → (𝐵 No 𝐵𝑉))
35 simpll3 1215 . . . . . . . . . . . . . . . 16 ((((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = 2o) ∧ ((𝑧𝐵 ∧ ¬ 𝑈 <s 𝑧) ∧ (𝑧‘dom 𝑇) = 2o)) → (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇))
36 simprl 770 . . . . . . . . . . . . . . . 16 ((((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = 2o) ∧ ((𝑧𝐵 ∧ ¬ 𝑈 <s 𝑧) ∧ (𝑧‘dom 𝑇) = 2o)) → (𝑧𝐵 ∧ ¬ 𝑈 <s 𝑧))
371noinfbnd1lem2 27643 . . . . . . . . . . . . . . . 16 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ ((𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇) ∧ (𝑧𝐵 ∧ ¬ 𝑈 <s 𝑧))) → (𝑧 ↾ dom 𝑇) = 𝑇)
3833, 34, 35, 36, 37syl112anc 1376 . . . . . . . . . . . . . . 15 ((((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = 2o) ∧ ((𝑧𝐵 ∧ ¬ 𝑈 <s 𝑧) ∧ (𝑧‘dom 𝑇) = 2o)) → (𝑧 ↾ dom 𝑇) = 𝑇)
3932, 38eqtr4d 2768 . . . . . . . . . . . . . 14 ((((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = 2o) ∧ ((𝑧𝐵 ∧ ¬ 𝑈 <s 𝑧) ∧ (𝑧‘dom 𝑇) = 2o)) → (𝑈 ↾ dom 𝑇) = (𝑧 ↾ dom 𝑇))
40 simplr 768 . . . . . . . . . . . . . . 15 ((((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = 2o) ∧ ((𝑧𝐵 ∧ ¬ 𝑈 <s 𝑧) ∧ (𝑧‘dom 𝑇) = 2o)) → (𝑈‘dom 𝑇) = 2o)
4140, 18syl 17 . . . . . . . . . . . . . 14 ((((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = 2o) ∧ ((𝑧𝐵 ∧ ¬ 𝑈 <s 𝑧) ∧ (𝑧‘dom 𝑇) = 2o)) → dom 𝑇 ∈ dom 𝑈)
42 simprr 772 . . . . . . . . . . . . . . 15 ((((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = 2o) ∧ ((𝑧𝐵 ∧ ¬ 𝑈 <s 𝑧) ∧ (𝑧‘dom 𝑇) = 2o)) → (𝑧‘dom 𝑇) = 2o)
43 ndmfv 6896 . . . . . . . . . . . . . . . . . 18 (¬ dom 𝑇 ∈ dom 𝑧 → (𝑧‘dom 𝑇) = ∅)
44 neeq1 2988 . . . . . . . . . . . . . . . . . . 19 ((𝑧‘dom 𝑇) = ∅ → ((𝑧‘dom 𝑇) ≠ 2o ↔ ∅ ≠ 2o))
4513, 44mpbiri 258 . . . . . . . . . . . . . . . . . 18 ((𝑧‘dom 𝑇) = ∅ → (𝑧‘dom 𝑇) ≠ 2o)
4643, 45syl 17 . . . . . . . . . . . . . . . . 17 (¬ dom 𝑇 ∈ dom 𝑧 → (𝑧‘dom 𝑇) ≠ 2o)
4746neneqd 2931 . . . . . . . . . . . . . . . 16 (¬ dom 𝑇 ∈ dom 𝑧 → ¬ (𝑧‘dom 𝑇) = 2o)
4847con4i 114 . . . . . . . . . . . . . . 15 ((𝑧‘dom 𝑇) = 2o → dom 𝑇 ∈ dom 𝑧)
4942, 48syl 17 . . . . . . . . . . . . . 14 ((((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = 2o) ∧ ((𝑧𝐵 ∧ ¬ 𝑈 <s 𝑧) ∧ (𝑧‘dom 𝑇) = 2o)) → dom 𝑇 ∈ dom 𝑧)
5040, 42eqtr4d 2768 . . . . . . . . . . . . . 14 ((((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = 2o) ∧ ((𝑧𝐵 ∧ ¬ 𝑈 <s 𝑧) ∧ (𝑧‘dom 𝑇) = 2o)) → (𝑈‘dom 𝑇) = (𝑧‘dom 𝑇))
51 eqfunressuc 7339 . . . . . . . . . . . . . 14 (((Fun 𝑈 ∧ Fun 𝑧) ∧ (𝑈 ↾ dom 𝑇) = (𝑧 ↾ dom 𝑇) ∧ (dom 𝑇 ∈ dom 𝑈 ∧ dom 𝑇 ∈ dom 𝑧 ∧ (𝑈‘dom 𝑇) = (𝑧‘dom 𝑇))) → (𝑈 ↾ suc dom 𝑇) = (𝑧 ↾ suc dom 𝑇))
5226, 30, 39, 41, 49, 50, 51syl213anc 1391 . . . . . . . . . . . . 13 ((((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = 2o) ∧ ((𝑧𝐵 ∧ ¬ 𝑈 <s 𝑧) ∧ (𝑧‘dom 𝑇) = 2o)) → (𝑈 ↾ suc dom 𝑇) = (𝑧 ↾ suc dom 𝑇))
5352expr 456 . . . . . . . . . . . 12 ((((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = 2o) ∧ (𝑧𝐵 ∧ ¬ 𝑈 <s 𝑧)) → ((𝑧‘dom 𝑇) = 2o → (𝑈 ↾ suc dom 𝑇) = (𝑧 ↾ suc dom 𝑇)))
5453expr 456 . . . . . . . . . . 11 ((((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = 2o) ∧ 𝑧𝐵) → (¬ 𝑈 <s 𝑧 → ((𝑧‘dom 𝑇) = 2o → (𝑈 ↾ suc dom 𝑇) = (𝑧 ↾ suc dom 𝑇))))
5554a2d 29 . . . . . . . . . 10 ((((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = 2o) ∧ 𝑧𝐵) → ((¬ 𝑈 <s 𝑧 → (𝑧‘dom 𝑇) = 2o) → (¬ 𝑈 <s 𝑧 → (𝑈 ↾ suc dom 𝑇) = (𝑧 ↾ suc dom 𝑇))))
5655ralimdva 3146 . . . . . . . . 9 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = 2o) → (∀𝑧𝐵𝑈 <s 𝑧 → (𝑧‘dom 𝑇) = 2o) → ∀𝑧𝐵𝑈 <s 𝑧 → (𝑈 ↾ suc dom 𝑇) = (𝑧 ↾ suc dom 𝑇))))
5756impcom 407 . . . . . . . 8 ((∀𝑧𝐵𝑈 <s 𝑧 → (𝑧‘dom 𝑇) = 2o) ∧ ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = 2o)) → ∀𝑧𝐵𝑈 <s 𝑧 → (𝑈 ↾ suc dom 𝑇) = (𝑧 ↾ suc dom 𝑇)))
5857anassrs 467 . . . . . . 7 (((∀𝑧𝐵𝑈 <s 𝑧 → (𝑧‘dom 𝑇) = 2o) ∧ (¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇))) ∧ (𝑈‘dom 𝑇) = 2o) → ∀𝑧𝐵𝑈 <s 𝑧 → (𝑈 ↾ suc dom 𝑇) = (𝑧 ↾ suc dom 𝑇)))
59 dmeq 5870 . . . . . . . . . 10 (𝑝 = 𝑈 → dom 𝑝 = dom 𝑈)
6059eleq2d 2815 . . . . . . . . 9 (𝑝 = 𝑈 → (dom 𝑇 ∈ dom 𝑝 ↔ dom 𝑇 ∈ dom 𝑈))
61 breq1 5113 . . . . . . . . . . . 12 (𝑝 = 𝑈 → (𝑝 <s 𝑧𝑈 <s 𝑧))
6261notbid 318 . . . . . . . . . . 11 (𝑝 = 𝑈 → (¬ 𝑝 <s 𝑧 ↔ ¬ 𝑈 <s 𝑧))
63 reseq1 5947 . . . . . . . . . . . 12 (𝑝 = 𝑈 → (𝑝 ↾ suc dom 𝑇) = (𝑈 ↾ suc dom 𝑇))
6463eqeq1d 2732 . . . . . . . . . . 11 (𝑝 = 𝑈 → ((𝑝 ↾ suc dom 𝑇) = (𝑧 ↾ suc dom 𝑇) ↔ (𝑈 ↾ suc dom 𝑇) = (𝑧 ↾ suc dom 𝑇)))
6562, 64imbi12d 344 . . . . . . . . . 10 (𝑝 = 𝑈 → ((¬ 𝑝 <s 𝑧 → (𝑝 ↾ suc dom 𝑇) = (𝑧 ↾ suc dom 𝑇)) ↔ (¬ 𝑈 <s 𝑧 → (𝑈 ↾ suc dom 𝑇) = (𝑧 ↾ suc dom 𝑇))))
6665ralbidv 3157 . . . . . . . . 9 (𝑝 = 𝑈 → (∀𝑧𝐵𝑝 <s 𝑧 → (𝑝 ↾ suc dom 𝑇) = (𝑧 ↾ suc dom 𝑇)) ↔ ∀𝑧𝐵𝑈 <s 𝑧 → (𝑈 ↾ suc dom 𝑇) = (𝑧 ↾ suc dom 𝑇))))
6760, 66anbi12d 632 . . . . . . . 8 (𝑝 = 𝑈 → ((dom 𝑇 ∈ dom 𝑝 ∧ ∀𝑧𝐵𝑝 <s 𝑧 → (𝑝 ↾ suc dom 𝑇) = (𝑧 ↾ suc dom 𝑇))) ↔ (dom 𝑇 ∈ dom 𝑈 ∧ ∀𝑧𝐵𝑈 <s 𝑧 → (𝑈 ↾ suc dom 𝑇) = (𝑧 ↾ suc dom 𝑇)))))
6867rspcev 3591 . . . . . . 7 ((𝑈𝐵 ∧ (dom 𝑇 ∈ dom 𝑈 ∧ ∀𝑧𝐵𝑈 <s 𝑧 → (𝑈 ↾ suc dom 𝑇) = (𝑧 ↾ suc dom 𝑇)))) → ∃𝑝𝐵 (dom 𝑇 ∈ dom 𝑝 ∧ ∀𝑧𝐵𝑝 <s 𝑧 → (𝑝 ↾ suc dom 𝑇) = (𝑧 ↾ suc dom 𝑇))))
6910, 19, 58, 68syl12anc 836 . . . . . 6 (((∀𝑧𝐵𝑈 <s 𝑧 → (𝑧‘dom 𝑇) = 2o) ∧ (¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇))) ∧ (𝑈‘dom 𝑇) = 2o) → ∃𝑝𝐵 (dom 𝑇 ∈ dom 𝑝 ∧ ∀𝑧𝐵𝑝 <s 𝑧 → (𝑝 ↾ suc dom 𝑇) = (𝑧 ↾ suc dom 𝑇))))
70 nodmon 27569 . . . . . . . . 9 (𝑇 No → dom 𝑇 ∈ On)
714, 70syl 17 . . . . . . . 8 ((∀𝑧𝐵𝑈 <s 𝑧 → (𝑧‘dom 𝑇) = 2o) ∧ (¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇))) → dom 𝑇 ∈ On)
7271adantr 480 . . . . . . 7 (((∀𝑧𝐵𝑈 <s 𝑧 → (𝑧‘dom 𝑇) = 2o) ∧ (¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇))) ∧ (𝑈‘dom 𝑇) = 2o) → dom 𝑇 ∈ On)
73 eleq1 2817 . . . . . . . . . 10 (𝑎 = dom 𝑇 → (𝑎 ∈ dom 𝑝 ↔ dom 𝑇 ∈ dom 𝑝))
74 suceq 6403 . . . . . . . . . . . . . 14 (𝑎 = dom 𝑇 → suc 𝑎 = suc dom 𝑇)
7574reseq2d 5953 . . . . . . . . . . . . 13 (𝑎 = dom 𝑇 → (𝑝 ↾ suc 𝑎) = (𝑝 ↾ suc dom 𝑇))
7674reseq2d 5953 . . . . . . . . . . . . 13 (𝑎 = dom 𝑇 → (𝑧 ↾ suc 𝑎) = (𝑧 ↾ suc dom 𝑇))
7775, 76eqeq12d 2746 . . . . . . . . . . . 12 (𝑎 = dom 𝑇 → ((𝑝 ↾ suc 𝑎) = (𝑧 ↾ suc 𝑎) ↔ (𝑝 ↾ suc dom 𝑇) = (𝑧 ↾ suc dom 𝑇)))
7877imbi2d 340 . . . . . . . . . . 11 (𝑎 = dom 𝑇 → ((¬ 𝑝 <s 𝑧 → (𝑝 ↾ suc 𝑎) = (𝑧 ↾ suc 𝑎)) ↔ (¬ 𝑝 <s 𝑧 → (𝑝 ↾ suc dom 𝑇) = (𝑧 ↾ suc dom 𝑇))))
7978ralbidv 3157 . . . . . . . . . 10 (𝑎 = dom 𝑇 → (∀𝑧𝐵𝑝 <s 𝑧 → (𝑝 ↾ suc 𝑎) = (𝑧 ↾ suc 𝑎)) ↔ ∀𝑧𝐵𝑝 <s 𝑧 → (𝑝 ↾ suc dom 𝑇) = (𝑧 ↾ suc dom 𝑇))))
8073, 79anbi12d 632 . . . . . . . . 9 (𝑎 = dom 𝑇 → ((𝑎 ∈ dom 𝑝 ∧ ∀𝑧𝐵𝑝 <s 𝑧 → (𝑝 ↾ suc 𝑎) = (𝑧 ↾ suc 𝑎))) ↔ (dom 𝑇 ∈ dom 𝑝 ∧ ∀𝑧𝐵𝑝 <s 𝑧 → (𝑝 ↾ suc dom 𝑇) = (𝑧 ↾ suc dom 𝑇)))))
8180rexbidv 3158 . . . . . . . 8 (𝑎 = dom 𝑇 → (∃𝑝𝐵 (𝑎 ∈ dom 𝑝 ∧ ∀𝑧𝐵𝑝 <s 𝑧 → (𝑝 ↾ suc 𝑎) = (𝑧 ↾ suc 𝑎))) ↔ ∃𝑝𝐵 (dom 𝑇 ∈ dom 𝑝 ∧ ∀𝑧𝐵𝑝 <s 𝑧 → (𝑝 ↾ suc dom 𝑇) = (𝑧 ↾ suc dom 𝑇)))))
8281elabg 3646 . . . . . . 7 (dom 𝑇 ∈ On → (dom 𝑇 ∈ {𝑎 ∣ ∃𝑝𝐵 (𝑎 ∈ dom 𝑝 ∧ ∀𝑧𝐵𝑝 <s 𝑧 → (𝑝 ↾ suc 𝑎) = (𝑧 ↾ suc 𝑎)))} ↔ ∃𝑝𝐵 (dom 𝑇 ∈ dom 𝑝 ∧ ∀𝑧𝐵𝑝 <s 𝑧 → (𝑝 ↾ suc dom 𝑇) = (𝑧 ↾ suc dom 𝑇)))))
8372, 82syl 17 . . . . . 6 (((∀𝑧𝐵𝑈 <s 𝑧 → (𝑧‘dom 𝑇) = 2o) ∧ (¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇))) ∧ (𝑈‘dom 𝑇) = 2o) → (dom 𝑇 ∈ {𝑎 ∣ ∃𝑝𝐵 (𝑎 ∈ dom 𝑝 ∧ ∀𝑧𝐵𝑝 <s 𝑧 → (𝑝 ↾ suc 𝑎) = (𝑧 ↾ suc 𝑎)))} ↔ ∃𝑝𝐵 (dom 𝑇 ∈ dom 𝑝 ∧ ∀𝑧𝐵𝑝 <s 𝑧 → (𝑝 ↾ suc dom 𝑇) = (𝑧 ↾ suc dom 𝑇)))))
8469, 83mpbird 257 . . . . 5 (((∀𝑧𝐵𝑈 <s 𝑧 → (𝑧‘dom 𝑇) = 2o) ∧ (¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇))) ∧ (𝑈‘dom 𝑇) = 2o) → dom 𝑇 ∈ {𝑎 ∣ ∃𝑝𝐵 (𝑎 ∈ dom 𝑝 ∧ ∀𝑧𝐵𝑝 <s 𝑧 → (𝑝 ↾ suc 𝑎) = (𝑧 ↾ suc 𝑎)))})
851noinfdm 27638 . . . . . . . . 9 (¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 → dom 𝑇 = {𝑎 ∣ ∃𝑝𝐵 (𝑎 ∈ dom 𝑝 ∧ ∀𝑧𝐵𝑝 <s 𝑧 → (𝑝 ↾ suc 𝑎) = (𝑧 ↾ suc 𝑎)))})
86853ad2ant1 1133 . . . . . . . 8 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) → dom 𝑇 = {𝑎 ∣ ∃𝑝𝐵 (𝑎 ∈ dom 𝑝 ∧ ∀𝑧𝐵𝑝 <s 𝑧 → (𝑝 ↾ suc 𝑎) = (𝑧 ↾ suc 𝑎)))})
8786adantl 481 . . . . . . 7 ((∀𝑧𝐵𝑈 <s 𝑧 → (𝑧‘dom 𝑇) = 2o) ∧ (¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇))) → dom 𝑇 = {𝑎 ∣ ∃𝑝𝐵 (𝑎 ∈ dom 𝑝 ∧ ∀𝑧𝐵𝑝 <s 𝑧 → (𝑝 ↾ suc 𝑎) = (𝑧 ↾ suc 𝑎)))})
8887adantr 480 . . . . . 6 (((∀𝑧𝐵𝑈 <s 𝑧 → (𝑧‘dom 𝑇) = 2o) ∧ (¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇))) ∧ (𝑈‘dom 𝑇) = 2o) → dom 𝑇 = {𝑎 ∣ ∃𝑝𝐵 (𝑎 ∈ dom 𝑝 ∧ ∀𝑧𝐵𝑝 <s 𝑧 → (𝑝 ↾ suc 𝑎) = (𝑧 ↾ suc 𝑎)))})
8988eleq2d 2815 . . . . 5 (((∀𝑧𝐵𝑈 <s 𝑧 → (𝑧‘dom 𝑇) = 2o) ∧ (¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇))) ∧ (𝑈‘dom 𝑇) = 2o) → (dom 𝑇 ∈ dom 𝑇 ↔ dom 𝑇 ∈ {𝑎 ∣ ∃𝑝𝐵 (𝑎 ∈ dom 𝑝 ∧ ∀𝑧𝐵𝑝 <s 𝑧 → (𝑝 ↾ suc 𝑎) = (𝑧 ↾ suc 𝑎)))}))
9084, 89mpbird 257 . . . 4 (((∀𝑧𝐵𝑈 <s 𝑧 → (𝑧‘dom 𝑇) = 2o) ∧ (¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇))) ∧ (𝑈‘dom 𝑇) = 2o) → dom 𝑇 ∈ dom 𝑇)
918, 90mtand 815 . . 3 ((∀𝑧𝐵𝑈 <s 𝑧 → (𝑧‘dom 𝑇) = 2o) ∧ (¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇))) → ¬ (𝑈‘dom 𝑇) = 2o)
9291neqned 2933 . 2 ((∀𝑧𝐵𝑈 <s 𝑧 → (𝑧‘dom 𝑇) = 2o) ∧ (¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇))) → (𝑈‘dom 𝑇) ≠ 2o)
93 rexanali 3085 . . 3 (∃𝑧𝐵𝑈 <s 𝑧 ∧ ¬ (𝑧‘dom 𝑇) = 2o) ↔ ¬ ∀𝑧𝐵𝑈 <s 𝑧 → (𝑧‘dom 𝑇) = 2o))
94 simpr1 1195 . . . . . . . . . . 11 ((((𝑧𝐵 ∧ ¬ 𝑈 <s 𝑧) ∧ ¬ (𝑧‘dom 𝑇) = 2o) ∧ (¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇))) → ¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥)
95 simpr2 1196 . . . . . . . . . . 11 ((((𝑧𝐵 ∧ ¬ 𝑈 <s 𝑧) ∧ ¬ (𝑧‘dom 𝑇) = 2o) ∧ (¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇))) → (𝐵 No 𝐵𝑉))
96 simplll 774 . . . . . . . . . . 11 ((((𝑧𝐵 ∧ ¬ 𝑈 <s 𝑧) ∧ ¬ (𝑧‘dom 𝑇) = 2o) ∧ (¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇))) → 𝑧𝐵)
97 simpr3 1197 . . . . . . . . . . . 12 ((((𝑧𝐵 ∧ ¬ 𝑈 <s 𝑧) ∧ ¬ (𝑧‘dom 𝑇) = 2o) ∧ (¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇))) → (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇))
98 simpll 766 . . . . . . . . . . . 12 ((((𝑧𝐵 ∧ ¬ 𝑈 <s 𝑧) ∧ ¬ (𝑧‘dom 𝑇) = 2o) ∧ (¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇))) → (𝑧𝐵 ∧ ¬ 𝑈 <s 𝑧))
9994, 95, 97, 98, 37syl112anc 1376 . . . . . . . . . . 11 ((((𝑧𝐵 ∧ ¬ 𝑈 <s 𝑧) ∧ ¬ (𝑧‘dom 𝑇) = 2o) ∧ (¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇))) → (𝑧 ↾ dom 𝑇) = 𝑇)
1001noinfbnd1lem4 27645 . . . . . . . . . . 11 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑧𝐵 ∧ (𝑧 ↾ dom 𝑇) = 𝑇)) → (𝑧‘dom 𝑇) ≠ ∅)
10194, 95, 96, 99, 100syl112anc 1376 . . . . . . . . . 10 ((((𝑧𝐵 ∧ ¬ 𝑈 <s 𝑧) ∧ ¬ (𝑧‘dom 𝑇) = 2o) ∧ (¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇))) → (𝑧‘dom 𝑇) ≠ ∅)
102101neneqd 2931 . . . . . . . . 9 ((((𝑧𝐵 ∧ ¬ 𝑈 <s 𝑧) ∧ ¬ (𝑧‘dom 𝑇) = 2o) ∧ (¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇))) → ¬ (𝑧‘dom 𝑇) = ∅)
103102pm2.21d 121 . . . . . . . 8 ((((𝑧𝐵 ∧ ¬ 𝑈 <s 𝑧) ∧ ¬ (𝑧‘dom 𝑇) = 2o) ∧ (¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇))) → ((𝑧‘dom 𝑇) = ∅ → (𝑈‘dom 𝑇) ≠ 2o))
1041noinfbnd1lem3 27644 . . . . . . . . . . 11 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑧𝐵 ∧ (𝑧 ↾ dom 𝑇) = 𝑇)) → (𝑧‘dom 𝑇) ≠ 1o)
10594, 95, 96, 99, 104syl112anc 1376 . . . . . . . . . 10 ((((𝑧𝐵 ∧ ¬ 𝑈 <s 𝑧) ∧ ¬ (𝑧‘dom 𝑇) = 2o) ∧ (¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇))) → (𝑧‘dom 𝑇) ≠ 1o)
106105neneqd 2931 . . . . . . . . 9 ((((𝑧𝐵 ∧ ¬ 𝑈 <s 𝑧) ∧ ¬ (𝑧‘dom 𝑇) = 2o) ∧ (¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇))) → ¬ (𝑧‘dom 𝑇) = 1o)
107106pm2.21d 121 . . . . . . . 8 ((((𝑧𝐵 ∧ ¬ 𝑈 <s 𝑧) ∧ ¬ (𝑧‘dom 𝑇) = 2o) ∧ (¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇))) → ((𝑧‘dom 𝑇) = 1o → (𝑈‘dom 𝑇) ≠ 2o))
108 simplr 768 . . . . . . . . 9 ((((𝑧𝐵 ∧ ¬ 𝑈 <s 𝑧) ∧ ¬ (𝑧‘dom 𝑇) = 2o) ∧ (¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇))) → ¬ (𝑧‘dom 𝑇) = 2o)
109 simpr2l 1233 . . . . . . . . . . 11 ((((𝑧𝐵 ∧ ¬ 𝑈 <s 𝑧) ∧ ¬ (𝑧‘dom 𝑇) = 2o) ∧ (¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇))) → 𝐵 No )
110109, 96sseldd 3950 . . . . . . . . . 10 ((((𝑧𝐵 ∧ ¬ 𝑈 <s 𝑧) ∧ ¬ (𝑧‘dom 𝑇) = 2o) ∧ (¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇))) → 𝑧 No )
111 nofv 27576 . . . . . . . . . 10 (𝑧 No → ((𝑧‘dom 𝑇) = ∅ ∨ (𝑧‘dom 𝑇) = 1o ∨ (𝑧‘dom 𝑇) = 2o))
112110, 111syl 17 . . . . . . . . 9 ((((𝑧𝐵 ∧ ¬ 𝑈 <s 𝑧) ∧ ¬ (𝑧‘dom 𝑇) = 2o) ∧ (¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇))) → ((𝑧‘dom 𝑇) = ∅ ∨ (𝑧‘dom 𝑇) = 1o ∨ (𝑧‘dom 𝑇) = 2o))
113 3orel3 1488 . . . . . . . . 9 (¬ (𝑧‘dom 𝑇) = 2o → (((𝑧‘dom 𝑇) = ∅ ∨ (𝑧‘dom 𝑇) = 1o ∨ (𝑧‘dom 𝑇) = 2o) → ((𝑧‘dom 𝑇) = ∅ ∨ (𝑧‘dom 𝑇) = 1o)))
114108, 112, 113sylc 65 . . . . . . . 8 ((((𝑧𝐵 ∧ ¬ 𝑈 <s 𝑧) ∧ ¬ (𝑧‘dom 𝑇) = 2o) ∧ (¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇))) → ((𝑧‘dom 𝑇) = ∅ ∨ (𝑧‘dom 𝑇) = 1o))
115103, 107, 114mpjaod 860 . . . . . . 7 ((((𝑧𝐵 ∧ ¬ 𝑈 <s 𝑧) ∧ ¬ (𝑧‘dom 𝑇) = 2o) ∧ (¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇))) → (𝑈‘dom 𝑇) ≠ 2o)
116115ex 412 . . . . . 6 (((𝑧𝐵 ∧ ¬ 𝑈 <s 𝑧) ∧ ¬ (𝑧‘dom 𝑇) = 2o) → ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) → (𝑈‘dom 𝑇) ≠ 2o))
117116anasss 466 . . . . 5 ((𝑧𝐵 ∧ (¬ 𝑈 <s 𝑧 ∧ ¬ (𝑧‘dom 𝑇) = 2o)) → ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) → (𝑈‘dom 𝑇) ≠ 2o))
118117rexlimiva 3127 . . . 4 (∃𝑧𝐵𝑈 <s 𝑧 ∧ ¬ (𝑧‘dom 𝑇) = 2o) → ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) → (𝑈‘dom 𝑇) ≠ 2o))
119118imp 406 . . 3 ((∃𝑧𝐵𝑈 <s 𝑧 ∧ ¬ (𝑧‘dom 𝑇) = 2o) ∧ (¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇))) → (𝑈‘dom 𝑇) ≠ 2o)
12093, 119sylanbr 582 . 2 ((¬ ∀𝑧𝐵𝑈 <s 𝑧 → (𝑧‘dom 𝑇) = 2o) ∧ (¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇))) → (𝑈‘dom 𝑇) ≠ 2o)
12192, 120pm2.61ian 811 1 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) → (𝑈‘dom 𝑇) ≠ 2o)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3o 1085  w3a 1086   = wceq 1540  wcel 2109  {cab 2708  wne 2926  wral 3045  wrex 3054  cun 3915  wss 3917  c0 4299  ifcif 4491  {csn 4592  cop 4598   class class class wbr 5110  cmpt 5191  dom cdm 5641  cres 5643  Ord word 6334  Oncon0 6335  suc csuc 6337  cio 6465  Fun wfun 6508  cfv 6514  crio 7346  1oc1o 8430  2oc2o 8431   No csur 27558   <s cslt 27559
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-int 4914  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-ord 6338  df-on 6339  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-fo 6520  df-fv 6522  df-riota 7347  df-1o 8437  df-2o 8438  df-no 27561  df-slt 27562  df-bday 27563
This theorem is referenced by:  noinfbnd1lem6  27647
  Copyright terms: Public domain W3C validator