Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ttrcltr Structured version   Visualization version   GIF version

Theorem ttrcltr 33702
Description: The transitive closure of a class is transitive. (Contributed by Scott Fenton, 17-Oct-2024.)
Assertion
Ref Expression
ttrcltr (t++𝑅 ∘ t++𝑅) ⊆ t++𝑅

Proof of Theorem ttrcltr
Dummy variables 𝑎 𝑏 𝑐 𝑓 𝑔 𝑛 𝑚 𝑝 𝑞 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relco 6137 . 2 Rel (t++𝑅 ∘ t++𝑅)
2 eldifi 4057 . . . . . . . . . 10 (𝑛 ∈ (ω ∖ 1o) → 𝑛 ∈ ω)
3 eldifi 4057 . . . . . . . . . 10 (𝑚 ∈ (ω ∖ 1o) → 𝑚 ∈ ω)
4 nnacl 8404 . . . . . . . . . 10 ((𝑛 ∈ ω ∧ 𝑚 ∈ ω) → (𝑛 +o 𝑚) ∈ ω)
52, 3, 4syl2an 595 . . . . . . . . 9 ((𝑛 ∈ (ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o)) → (𝑛 +o 𝑚) ∈ ω)
6 eldif 3893 . . . . . . . . . . . . 13 (𝑛 ∈ (ω ∖ 1o) ↔ (𝑛 ∈ ω ∧ ¬ 𝑛 ∈ 1o))
7 1on 8274 . . . . . . . . . . . . . . . 16 1o ∈ On
87onordi 6356 . . . . . . . . . . . . . . 15 Ord 1o
9 nnord 7695 . . . . . . . . . . . . . . 15 (𝑛 ∈ ω → Ord 𝑛)
10 ordtri1 6284 . . . . . . . . . . . . . . 15 ((Ord 1o ∧ Ord 𝑛) → (1o𝑛 ↔ ¬ 𝑛 ∈ 1o))
118, 9, 10sylancr 586 . . . . . . . . . . . . . 14 (𝑛 ∈ ω → (1o𝑛 ↔ ¬ 𝑛 ∈ 1o))
1211biimpar 477 . . . . . . . . . . . . 13 ((𝑛 ∈ ω ∧ ¬ 𝑛 ∈ 1o) → 1o𝑛)
136, 12sylbi 216 . . . . . . . . . . . 12 (𝑛 ∈ (ω ∖ 1o) → 1o𝑛)
1413adantr 480 . . . . . . . . . . 11 ((𝑛 ∈ (ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o)) → 1o𝑛)
15 nnaword1 8422 . . . . . . . . . . . 12 ((𝑛 ∈ ω ∧ 𝑚 ∈ ω) → 𝑛 ⊆ (𝑛 +o 𝑚))
162, 3, 15syl2an 595 . . . . . . . . . . 11 ((𝑛 ∈ (ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o)) → 𝑛 ⊆ (𝑛 +o 𝑚))
1714, 16sstrd 3927 . . . . . . . . . 10 ((𝑛 ∈ (ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o)) → 1o ⊆ (𝑛 +o 𝑚))
18 nnord 7695 . . . . . . . . . . . 12 ((𝑛 +o 𝑚) ∈ ω → Ord (𝑛 +o 𝑚))
195, 18syl 17 . . . . . . . . . . 11 ((𝑛 ∈ (ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o)) → Ord (𝑛 +o 𝑚))
20 ordtri1 6284 . . . . . . . . . . 11 ((Ord 1o ∧ Ord (𝑛 +o 𝑚)) → (1o ⊆ (𝑛 +o 𝑚) ↔ ¬ (𝑛 +o 𝑚) ∈ 1o))
218, 19, 20sylancr 586 . . . . . . . . . 10 ((𝑛 ∈ (ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o)) → (1o ⊆ (𝑛 +o 𝑚) ↔ ¬ (𝑛 +o 𝑚) ∈ 1o))
2217, 21mpbid 231 . . . . . . . . 9 ((𝑛 ∈ (ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o)) → ¬ (𝑛 +o 𝑚) ∈ 1o)
235, 22eldifd 3894 . . . . . . . 8 ((𝑛 ∈ (ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o)) → (𝑛 +o 𝑚) ∈ (ω ∖ 1o))
24 0elsuc 7657 . . . . . . . . . . . . 13 (Ord (𝑛 +o 𝑚) → ∅ ∈ suc (𝑛 +o 𝑚))
2519, 24syl 17 . . . . . . . . . . . 12 ((𝑛 ∈ (ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o)) → ∅ ∈ suc (𝑛 +o 𝑚))
26 eleq1 2826 . . . . . . . . . . . . . 14 (𝑝 = ∅ → (𝑝 ∈ suc 𝑛 ↔ ∅ ∈ suc 𝑛))
27 fveq2 6756 . . . . . . . . . . . . . 14 (𝑝 = ∅ → (𝑓𝑝) = (𝑓‘∅))
28 eqeq2 2750 . . . . . . . . . . . . . . . 16 (𝑝 = ∅ → ((𝑛 +o 𝑞) = 𝑝 ↔ (𝑛 +o 𝑞) = ∅))
2928riotabidv 7214 . . . . . . . . . . . . . . 15 (𝑝 = ∅ → (𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑝) = (𝑞 ∈ ω (𝑛 +o 𝑞) = ∅))
3029fveq2d 6760 . . . . . . . . . . . . . 14 (𝑝 = ∅ → (𝑔‘(𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑝)) = (𝑔‘(𝑞 ∈ ω (𝑛 +o 𝑞) = ∅)))
3126, 27, 30ifbieq12d 4484 . . . . . . . . . . . . 13 (𝑝 = ∅ → if(𝑝 ∈ suc 𝑛, (𝑓𝑝), (𝑔‘(𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑝))) = if(∅ ∈ suc 𝑛, (𝑓‘∅), (𝑔‘(𝑞 ∈ ω (𝑛 +o 𝑞) = ∅))))
32 eqid 2738 . . . . . . . . . . . . 13 (𝑝 ∈ suc (𝑛 +o 𝑚) ↦ if(𝑝 ∈ suc 𝑛, (𝑓𝑝), (𝑔‘(𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑝)))) = (𝑝 ∈ suc (𝑛 +o 𝑚) ↦ if(𝑝 ∈ suc 𝑛, (𝑓𝑝), (𝑔‘(𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑝))))
33 fvex 6769 . . . . . . . . . . . . . 14 (𝑓‘∅) ∈ V
34 fvex 6769 . . . . . . . . . . . . . 14 (𝑔‘(𝑞 ∈ ω (𝑛 +o 𝑞) = ∅)) ∈ V
3533, 34ifex 4506 . . . . . . . . . . . . 13 if(∅ ∈ suc 𝑛, (𝑓‘∅), (𝑔‘(𝑞 ∈ ω (𝑛 +o 𝑞) = ∅))) ∈ V
3631, 32, 35fvmpt 6857 . . . . . . . . . . . 12 (∅ ∈ suc (𝑛 +o 𝑚) → ((𝑝 ∈ suc (𝑛 +o 𝑚) ↦ if(𝑝 ∈ suc 𝑛, (𝑓𝑝), (𝑔‘(𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑝))))‘∅) = if(∅ ∈ suc 𝑛, (𝑓‘∅), (𝑔‘(𝑞 ∈ ω (𝑛 +o 𝑞) = ∅))))
3725, 36syl 17 . . . . . . . . . . 11 ((𝑛 ∈ (ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o)) → ((𝑝 ∈ suc (𝑛 +o 𝑚) ↦ if(𝑝 ∈ suc 𝑛, (𝑓𝑝), (𝑔‘(𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑝))))‘∅) = if(∅ ∈ suc 𝑛, (𝑓‘∅), (𝑔‘(𝑞 ∈ ω (𝑛 +o 𝑞) = ∅))))
382adantr 480 . . . . . . . . . . . . . 14 ((𝑛 ∈ (ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o)) → 𝑛 ∈ ω)
3938, 9syl 17 . . . . . . . . . . . . 13 ((𝑛 ∈ (ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o)) → Ord 𝑛)
40 0elsuc 7657 . . . . . . . . . . . . 13 (Ord 𝑛 → ∅ ∈ suc 𝑛)
4139, 40syl 17 . . . . . . . . . . . 12 ((𝑛 ∈ (ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o)) → ∅ ∈ suc 𝑛)
4241iftrued 4464 . . . . . . . . . . 11 ((𝑛 ∈ (ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o)) → if(∅ ∈ suc 𝑛, (𝑓‘∅), (𝑔‘(𝑞 ∈ ω (𝑛 +o 𝑞) = ∅))) = (𝑓‘∅))
4337, 42eqtrd 2778 . . . . . . . . . 10 ((𝑛 ∈ (ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o)) → ((𝑝 ∈ suc (𝑛 +o 𝑚) ↦ if(𝑝 ∈ suc 𝑛, (𝑓𝑝), (𝑔‘(𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑝))))‘∅) = (𝑓‘∅))
44 simpl2l 1224 . . . . . . . . . 10 (((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑧) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔𝑚) = 𝑦) ∧ ∀𝑏𝑚 (𝑔𝑏)𝑅(𝑔‘suc 𝑏))) → (𝑓‘∅) = 𝑥)
4543, 44sylan9eq 2799 . . . . . . . . 9 (((𝑛 ∈ (ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o)) ∧ ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑧) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔𝑚) = 𝑦) ∧ ∀𝑏𝑚 (𝑔𝑏)𝑅(𝑔‘suc 𝑏)))) → ((𝑝 ∈ suc (𝑛 +o 𝑚) ↦ if(𝑝 ∈ suc 𝑛, (𝑓𝑝), (𝑔‘(𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑝))))‘∅) = 𝑥)
46 ovex 7288 . . . . . . . . . . . . 13 (𝑛 +o 𝑚) ∈ V
4746sucid 6330 . . . . . . . . . . . 12 (𝑛 +o 𝑚) ∈ suc (𝑛 +o 𝑚)
48 eleq1 2826 . . . . . . . . . . . . . 14 (𝑝 = (𝑛 +o 𝑚) → (𝑝 ∈ suc 𝑛 ↔ (𝑛 +o 𝑚) ∈ suc 𝑛))
49 fveq2 6756 . . . . . . . . . . . . . 14 (𝑝 = (𝑛 +o 𝑚) → (𝑓𝑝) = (𝑓‘(𝑛 +o 𝑚)))
50 eqeq2 2750 . . . . . . . . . . . . . . . 16 (𝑝 = (𝑛 +o 𝑚) → ((𝑛 +o 𝑞) = 𝑝 ↔ (𝑛 +o 𝑞) = (𝑛 +o 𝑚)))
5150riotabidv 7214 . . . . . . . . . . . . . . 15 (𝑝 = (𝑛 +o 𝑚) → (𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑝) = (𝑞 ∈ ω (𝑛 +o 𝑞) = (𝑛 +o 𝑚)))
5251fveq2d 6760 . . . . . . . . . . . . . 14 (𝑝 = (𝑛 +o 𝑚) → (𝑔‘(𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑝)) = (𝑔‘(𝑞 ∈ ω (𝑛 +o 𝑞) = (𝑛 +o 𝑚))))
5348, 49, 52ifbieq12d 4484 . . . . . . . . . . . . 13 (𝑝 = (𝑛 +o 𝑚) → if(𝑝 ∈ suc 𝑛, (𝑓𝑝), (𝑔‘(𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑝))) = if((𝑛 +o 𝑚) ∈ suc 𝑛, (𝑓‘(𝑛 +o 𝑚)), (𝑔‘(𝑞 ∈ ω (𝑛 +o 𝑞) = (𝑛 +o 𝑚)))))
54 fvex 6769 . . . . . . . . . . . . . 14 (𝑓‘(𝑛 +o 𝑚)) ∈ V
55 fvex 6769 . . . . . . . . . . . . . 14 (𝑔‘(𝑞 ∈ ω (𝑛 +o 𝑞) = (𝑛 +o 𝑚))) ∈ V
5654, 55ifex 4506 . . . . . . . . . . . . 13 if((𝑛 +o 𝑚) ∈ suc 𝑛, (𝑓‘(𝑛 +o 𝑚)), (𝑔‘(𝑞 ∈ ω (𝑛 +o 𝑞) = (𝑛 +o 𝑚)))) ∈ V
5753, 32, 56fvmpt 6857 . . . . . . . . . . . 12 ((𝑛 +o 𝑚) ∈ suc (𝑛 +o 𝑚) → ((𝑝 ∈ suc (𝑛 +o 𝑚) ↦ if(𝑝 ∈ suc 𝑛, (𝑓𝑝), (𝑔‘(𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑝))))‘(𝑛 +o 𝑚)) = if((𝑛 +o 𝑚) ∈ suc 𝑛, (𝑓‘(𝑛 +o 𝑚)), (𝑔‘(𝑞 ∈ ω (𝑛 +o 𝑞) = (𝑛 +o 𝑚)))))
5847, 57mp1i 13 . . . . . . . . . . 11 ((𝑛 ∈ (ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o)) → ((𝑝 ∈ suc (𝑛 +o 𝑚) ↦ if(𝑝 ∈ suc 𝑛, (𝑓𝑝), (𝑔‘(𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑝))))‘(𝑛 +o 𝑚)) = if((𝑛 +o 𝑚) ∈ suc 𝑛, (𝑓‘(𝑛 +o 𝑚)), (𝑔‘(𝑞 ∈ ω (𝑛 +o 𝑞) = (𝑛 +o 𝑚)))))
59 df-1o 8267 . . . . . . . . . . . . . . . . . 18 1o = suc ∅
6059difeq2i 4050 . . . . . . . . . . . . . . . . 17 (ω ∖ 1o) = (ω ∖ suc ∅)
6160eleq2i 2830 . . . . . . . . . . . . . . . 16 (𝑛 ∈ (ω ∖ 1o) ↔ 𝑛 ∈ (ω ∖ suc ∅))
62 peano1 7710 . . . . . . . . . . . . . . . . 17 ∅ ∈ ω
63 eldifsucnn 33597 . . . . . . . . . . . . . . . . 17 (∅ ∈ ω → (𝑛 ∈ (ω ∖ suc ∅) ↔ ∃𝑥 ∈ (ω ∖ ∅)𝑛 = suc 𝑥))
6462, 63ax-mp 5 . . . . . . . . . . . . . . . 16 (𝑛 ∈ (ω ∖ suc ∅) ↔ ∃𝑥 ∈ (ω ∖ ∅)𝑛 = suc 𝑥)
65 dif0 4303 . . . . . . . . . . . . . . . . 17 (ω ∖ ∅) = ω
6665rexeqi 3338 . . . . . . . . . . . . . . . 16 (∃𝑥 ∈ (ω ∖ ∅)𝑛 = suc 𝑥 ↔ ∃𝑥 ∈ ω 𝑛 = suc 𝑥)
6761, 64, 663bitri 296 . . . . . . . . . . . . . . 15 (𝑛 ∈ (ω ∖ 1o) ↔ ∃𝑥 ∈ ω 𝑛 = suc 𝑥)
6860eleq2i 2830 . . . . . . . . . . . . . . . 16 (𝑚 ∈ (ω ∖ 1o) ↔ 𝑚 ∈ (ω ∖ suc ∅))
69 eldifsucnn 33597 . . . . . . . . . . . . . . . . 17 (∅ ∈ ω → (𝑚 ∈ (ω ∖ suc ∅) ↔ ∃𝑦 ∈ (ω ∖ ∅)𝑚 = suc 𝑦))
7062, 69ax-mp 5 . . . . . . . . . . . . . . . 16 (𝑚 ∈ (ω ∖ suc ∅) ↔ ∃𝑦 ∈ (ω ∖ ∅)𝑚 = suc 𝑦)
7165rexeqi 3338 . . . . . . . . . . . . . . . 16 (∃𝑦 ∈ (ω ∖ ∅)𝑚 = suc 𝑦 ↔ ∃𝑦 ∈ ω 𝑚 = suc 𝑦)
7268, 70, 713bitri 296 . . . . . . . . . . . . . . 15 (𝑚 ∈ (ω ∖ 1o) ↔ ∃𝑦 ∈ ω 𝑚 = suc 𝑦)
7367, 72anbi12i 626 . . . . . . . . . . . . . 14 ((𝑛 ∈ (ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o)) ↔ (∃𝑥 ∈ ω 𝑛 = suc 𝑥 ∧ ∃𝑦 ∈ ω 𝑚 = suc 𝑦))
74 reeanv 3292 . . . . . . . . . . . . . 14 (∃𝑥 ∈ ω ∃𝑦 ∈ ω (𝑛 = suc 𝑥𝑚 = suc 𝑦) ↔ (∃𝑥 ∈ ω 𝑛 = suc 𝑥 ∧ ∃𝑦 ∈ ω 𝑚 = suc 𝑦))
7573, 74bitr4i 277 . . . . . . . . . . . . 13 ((𝑛 ∈ (ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o)) ↔ ∃𝑥 ∈ ω ∃𝑦 ∈ ω (𝑛 = suc 𝑥𝑚 = suc 𝑦))
76 peano2 7711 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ ω → suc 𝑥 ∈ ω)
77 nnaword1 8422 . . . . . . . . . . . . . . . . . . 19 ((suc 𝑥 ∈ ω ∧ 𝑦 ∈ ω) → suc 𝑥 ⊆ (suc 𝑥 +o 𝑦))
7876, 77sylan 579 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ ω ∧ 𝑦 ∈ ω) → suc 𝑥 ⊆ (suc 𝑥 +o 𝑦))
7976adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝑥 ∈ ω ∧ 𝑦 ∈ ω) → suc 𝑥 ∈ ω)
80 nnord 7695 . . . . . . . . . . . . . . . . . . . 20 (suc 𝑥 ∈ ω → Ord suc 𝑥)
8179, 80syl 17 . . . . . . . . . . . . . . . . . . 19 ((𝑥 ∈ ω ∧ 𝑦 ∈ ω) → Ord suc 𝑥)
82 nnacl 8404 . . . . . . . . . . . . . . . . . . . . 21 ((suc 𝑥 ∈ ω ∧ 𝑦 ∈ ω) → (suc 𝑥 +o 𝑦) ∈ ω)
8376, 82sylan 579 . . . . . . . . . . . . . . . . . . . 20 ((𝑥 ∈ ω ∧ 𝑦 ∈ ω) → (suc 𝑥 +o 𝑦) ∈ ω)
84 nnord 7695 . . . . . . . . . . . . . . . . . . . 20 ((suc 𝑥 +o 𝑦) ∈ ω → Ord (suc 𝑥 +o 𝑦))
8583, 84syl 17 . . . . . . . . . . . . . . . . . . 19 ((𝑥 ∈ ω ∧ 𝑦 ∈ ω) → Ord (suc 𝑥 +o 𝑦))
86 ordsucsssuc 7645 . . . . . . . . . . . . . . . . . . 19 ((Ord suc 𝑥 ∧ Ord (suc 𝑥 +o 𝑦)) → (suc 𝑥 ⊆ (suc 𝑥 +o 𝑦) ↔ suc suc 𝑥 ⊆ suc (suc 𝑥 +o 𝑦)))
8781, 85, 86syl2anc 583 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ ω ∧ 𝑦 ∈ ω) → (suc 𝑥 ⊆ (suc 𝑥 +o 𝑦) ↔ suc suc 𝑥 ⊆ suc (suc 𝑥 +o 𝑦)))
8878, 87mpbid 231 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ ω ∧ 𝑦 ∈ ω) → suc suc 𝑥 ⊆ suc (suc 𝑥 +o 𝑦))
89 nnasuc 8399 . . . . . . . . . . . . . . . . . 18 ((suc 𝑥 ∈ ω ∧ 𝑦 ∈ ω) → (suc 𝑥 +o suc 𝑦) = suc (suc 𝑥 +o 𝑦))
9076, 89sylan 579 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ ω ∧ 𝑦 ∈ ω) → (suc 𝑥 +o suc 𝑦) = suc (suc 𝑥 +o 𝑦))
9188, 90sseqtrrd 3958 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ω ∧ 𝑦 ∈ ω) → suc suc 𝑥 ⊆ (suc 𝑥 +o suc 𝑦))
92 peano2 7711 . . . . . . . . . . . . . . . . . . 19 (suc 𝑥 ∈ ω → suc suc 𝑥 ∈ ω)
9379, 92syl 17 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ ω ∧ 𝑦 ∈ ω) → suc suc 𝑥 ∈ ω)
94 nnord 7695 . . . . . . . . . . . . . . . . . 18 (suc suc 𝑥 ∈ ω → Ord suc suc 𝑥)
9593, 94syl 17 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ ω ∧ 𝑦 ∈ ω) → Ord suc suc 𝑥)
96 peano2 7711 . . . . . . . . . . . . . . . . . . 19 (𝑦 ∈ ω → suc 𝑦 ∈ ω)
97 nnacl 8404 . . . . . . . . . . . . . . . . . . 19 ((suc 𝑥 ∈ ω ∧ suc 𝑦 ∈ ω) → (suc 𝑥 +o suc 𝑦) ∈ ω)
9876, 96, 97syl2an 595 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ ω ∧ 𝑦 ∈ ω) → (suc 𝑥 +o suc 𝑦) ∈ ω)
99 nnord 7695 . . . . . . . . . . . . . . . . . 18 ((suc 𝑥 +o suc 𝑦) ∈ ω → Ord (suc 𝑥 +o suc 𝑦))
10098, 99syl 17 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ ω ∧ 𝑦 ∈ ω) → Ord (suc 𝑥 +o suc 𝑦))
101 ordtri1 6284 . . . . . . . . . . . . . . . . 17 ((Ord suc suc 𝑥 ∧ Ord (suc 𝑥 +o suc 𝑦)) → (suc suc 𝑥 ⊆ (suc 𝑥 +o suc 𝑦) ↔ ¬ (suc 𝑥 +o suc 𝑦) ∈ suc suc 𝑥))
10295, 100, 101syl2anc 583 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ω ∧ 𝑦 ∈ ω) → (suc suc 𝑥 ⊆ (suc 𝑥 +o suc 𝑦) ↔ ¬ (suc 𝑥 +o suc 𝑦) ∈ suc suc 𝑥))
10391, 102mpbid 231 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ω ∧ 𝑦 ∈ ω) → ¬ (suc 𝑥 +o suc 𝑦) ∈ suc suc 𝑥)
104 oveq12 7264 . . . . . . . . . . . . . . . . 17 ((𝑛 = suc 𝑥𝑚 = suc 𝑦) → (𝑛 +o 𝑚) = (suc 𝑥 +o suc 𝑦))
105 suceq 6316 . . . . . . . . . . . . . . . . . 18 (𝑛 = suc 𝑥 → suc 𝑛 = suc suc 𝑥)
106105adantr 480 . . . . . . . . . . . . . . . . 17 ((𝑛 = suc 𝑥𝑚 = suc 𝑦) → suc 𝑛 = suc suc 𝑥)
107104, 106eleq12d 2833 . . . . . . . . . . . . . . . 16 ((𝑛 = suc 𝑥𝑚 = suc 𝑦) → ((𝑛 +o 𝑚) ∈ suc 𝑛 ↔ (suc 𝑥 +o suc 𝑦) ∈ suc suc 𝑥))
108107notbid 317 . . . . . . . . . . . . . . 15 ((𝑛 = suc 𝑥𝑚 = suc 𝑦) → (¬ (𝑛 +o 𝑚) ∈ suc 𝑛 ↔ ¬ (suc 𝑥 +o suc 𝑦) ∈ suc suc 𝑥))
109103, 108syl5ibrcom 246 . . . . . . . . . . . . . 14 ((𝑥 ∈ ω ∧ 𝑦 ∈ ω) → ((𝑛 = suc 𝑥𝑚 = suc 𝑦) → ¬ (𝑛 +o 𝑚) ∈ suc 𝑛))
110109rexlimivv 3220 . . . . . . . . . . . . 13 (∃𝑥 ∈ ω ∃𝑦 ∈ ω (𝑛 = suc 𝑥𝑚 = suc 𝑦) → ¬ (𝑛 +o 𝑚) ∈ suc 𝑛)
11175, 110sylbi 216 . . . . . . . . . . . 12 ((𝑛 ∈ (ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o)) → ¬ (𝑛 +o 𝑚) ∈ suc 𝑛)
112111iffalsed 4467 . . . . . . . . . . 11 ((𝑛 ∈ (ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o)) → if((𝑛 +o 𝑚) ∈ suc 𝑛, (𝑓‘(𝑛 +o 𝑚)), (𝑔‘(𝑞 ∈ ω (𝑛 +o 𝑞) = (𝑛 +o 𝑚)))) = (𝑔‘(𝑞 ∈ ω (𝑛 +o 𝑞) = (𝑛 +o 𝑚))))
1133adantl 481 . . . . . . . . . . . . 13 ((𝑛 ∈ (ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o)) → 𝑚 ∈ ω)
11438adantr 480 . . . . . . . . . . . . . 14 (((𝑛 ∈ (ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o)) ∧ 𝑞 ∈ ω) → 𝑛 ∈ ω)
115 simpr 484 . . . . . . . . . . . . . 14 (((𝑛 ∈ (ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o)) ∧ 𝑞 ∈ ω) → 𝑞 ∈ ω)
116113adantr 480 . . . . . . . . . . . . . 14 (((𝑛 ∈ (ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o)) ∧ 𝑞 ∈ ω) → 𝑚 ∈ ω)
117 nnacan 8421 . . . . . . . . . . . . . 14 ((𝑛 ∈ ω ∧ 𝑞 ∈ ω ∧ 𝑚 ∈ ω) → ((𝑛 +o 𝑞) = (𝑛 +o 𝑚) ↔ 𝑞 = 𝑚))
118114, 115, 116, 117syl3anc 1369 . . . . . . . . . . . . 13 (((𝑛 ∈ (ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o)) ∧ 𝑞 ∈ ω) → ((𝑛 +o 𝑞) = (𝑛 +o 𝑚) ↔ 𝑞 = 𝑚))
119113, 118riota5 7242 . . . . . . . . . . . 12 ((𝑛 ∈ (ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o)) → (𝑞 ∈ ω (𝑛 +o 𝑞) = (𝑛 +o 𝑚)) = 𝑚)
120119fveq2d 6760 . . . . . . . . . . 11 ((𝑛 ∈ (ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o)) → (𝑔‘(𝑞 ∈ ω (𝑛 +o 𝑞) = (𝑛 +o 𝑚))) = (𝑔𝑚))
12158, 112, 1203eqtrd 2782 . . . . . . . . . 10 ((𝑛 ∈ (ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o)) → ((𝑝 ∈ suc (𝑛 +o 𝑚) ↦ if(𝑝 ∈ suc 𝑛, (𝑓𝑝), (𝑔‘(𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑝))))‘(𝑛 +o 𝑚)) = (𝑔𝑚))
122 simpr2r 1231 . . . . . . . . . 10 (((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑧) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔𝑚) = 𝑦) ∧ ∀𝑏𝑚 (𝑔𝑏)𝑅(𝑔‘suc 𝑏))) → (𝑔𝑚) = 𝑦)
123121, 122sylan9eq 2799 . . . . . . . . 9 (((𝑛 ∈ (ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o)) ∧ ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑧) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔𝑚) = 𝑦) ∧ ∀𝑏𝑚 (𝑔𝑏)𝑅(𝑔‘suc 𝑏)))) → ((𝑝 ∈ suc (𝑛 +o 𝑚) ↦ if(𝑝 ∈ suc 𝑛, (𝑓𝑝), (𝑔‘(𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑝))))‘(𝑛 +o 𝑚)) = 𝑦)
124 simprl3 1218 . . . . . . . . . . . . . . 15 (((𝑛 ∈ (ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o)) ∧ ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑧) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔𝑚) = 𝑦) ∧ ∀𝑏𝑚 (𝑔𝑏)𝑅(𝑔‘suc 𝑏)))) → ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎))
125 fveq2 6756 . . . . . . . . . . . . . . . . 17 (𝑎 = 𝑐 → (𝑓𝑎) = (𝑓𝑐))
126 suceq 6316 . . . . . . . . . . . . . . . . . 18 (𝑎 = 𝑐 → suc 𝑎 = suc 𝑐)
127126fveq2d 6760 . . . . . . . . . . . . . . . . 17 (𝑎 = 𝑐 → (𝑓‘suc 𝑎) = (𝑓‘suc 𝑐))
128125, 127breq12d 5083 . . . . . . . . . . . . . . . 16 (𝑎 = 𝑐 → ((𝑓𝑎)𝑅(𝑓‘suc 𝑎) ↔ (𝑓𝑐)𝑅(𝑓‘suc 𝑐)))
129128rspcv 3547 . . . . . . . . . . . . . . 15 (𝑐𝑛 → (∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎) → (𝑓𝑐)𝑅(𝑓‘suc 𝑐)))
130124, 129mpan9 506 . . . . . . . . . . . . . 14 ((((𝑛 ∈ (ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o)) ∧ ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑧) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔𝑚) = 𝑦) ∧ ∀𝑏𝑚 (𝑔𝑏)𝑅(𝑔‘suc 𝑏)))) ∧ 𝑐𝑛) → (𝑓𝑐)𝑅(𝑓‘suc 𝑐))
131 elelsuc 6323 . . . . . . . . . . . . . . . 16 (𝑐𝑛𝑐 ∈ suc 𝑛)
132131adantl 481 . . . . . . . . . . . . . . 15 ((((𝑛 ∈ (ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o)) ∧ ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑧) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔𝑚) = 𝑦) ∧ ∀𝑏𝑚 (𝑔𝑏)𝑅(𝑔‘suc 𝑏)))) ∧ 𝑐𝑛) → 𝑐 ∈ suc 𝑛)
133132iftrued 4464 . . . . . . . . . . . . . 14 ((((𝑛 ∈ (ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o)) ∧ ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑧) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔𝑚) = 𝑦) ∧ ∀𝑏𝑚 (𝑔𝑏)𝑅(𝑔‘suc 𝑏)))) ∧ 𝑐𝑛) → if(𝑐 ∈ suc 𝑛, (𝑓𝑐), (𝑔‘(𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑐))) = (𝑓𝑐))
134 ordsucelsuc 7644 . . . . . . . . . . . . . . . . . 18 (Ord 𝑛 → (𝑐𝑛 ↔ suc 𝑐 ∈ suc 𝑛))
13539, 134syl 17 . . . . . . . . . . . . . . . . 17 ((𝑛 ∈ (ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o)) → (𝑐𝑛 ↔ suc 𝑐 ∈ suc 𝑛))
136135adantr 480 . . . . . . . . . . . . . . . 16 (((𝑛 ∈ (ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o)) ∧ ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑧) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔𝑚) = 𝑦) ∧ ∀𝑏𝑚 (𝑔𝑏)𝑅(𝑔‘suc 𝑏)))) → (𝑐𝑛 ↔ suc 𝑐 ∈ suc 𝑛))
137136biimpa 476 . . . . . . . . . . . . . . 15 ((((𝑛 ∈ (ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o)) ∧ ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑧) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔𝑚) = 𝑦) ∧ ∀𝑏𝑚 (𝑔𝑏)𝑅(𝑔‘suc 𝑏)))) ∧ 𝑐𝑛) → suc 𝑐 ∈ suc 𝑛)
138137iftrued 4464 . . . . . . . . . . . . . 14 ((((𝑛 ∈ (ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o)) ∧ ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑧) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔𝑚) = 𝑦) ∧ ∀𝑏𝑚 (𝑔𝑏)𝑅(𝑔‘suc 𝑏)))) ∧ 𝑐𝑛) → if(suc 𝑐 ∈ suc 𝑛, (𝑓‘suc 𝑐), (𝑔‘(𝑞 ∈ ω (𝑛 +o 𝑞) = suc 𝑐))) = (𝑓‘suc 𝑐))
139130, 133, 1383brtr4d 5102 . . . . . . . . . . . . 13 ((((𝑛 ∈ (ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o)) ∧ ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑧) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔𝑚) = 𝑦) ∧ ∀𝑏𝑚 (𝑔𝑏)𝑅(𝑔‘suc 𝑏)))) ∧ 𝑐𝑛) → if(𝑐 ∈ suc 𝑛, (𝑓𝑐), (𝑔‘(𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑐)))𝑅if(suc 𝑐 ∈ suc 𝑛, (𝑓‘suc 𝑐), (𝑔‘(𝑞 ∈ ω (𝑛 +o 𝑞) = suc 𝑐))))
140139adantlr 711 . . . . . . . . . . . 12 (((((𝑛 ∈ (ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o)) ∧ ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑧) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔𝑚) = 𝑦) ∧ ∀𝑏𝑚 (𝑔𝑏)𝑅(𝑔‘suc 𝑏)))) ∧ 𝑐 ∈ (𝑛 +o 𝑚)) ∧ 𝑐𝑛) → if(𝑐 ∈ suc 𝑛, (𝑓𝑐), (𝑔‘(𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑐)))𝑅if(suc 𝑐 ∈ suc 𝑛, (𝑓‘suc 𝑐), (𝑔‘(𝑞 ∈ ω (𝑛 +o 𝑞) = suc 𝑐))))
14139adantr 480 . . . . . . . . . . . . . . . . 17 (((𝑛 ∈ (ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o)) ∧ ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑧) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔𝑚) = 𝑦) ∧ ∀𝑏𝑚 (𝑔𝑏)𝑅(𝑔‘suc 𝑏)))) → Ord 𝑛)
1425adantr 480 . . . . . . . . . . . . . . . . . . 19 (((𝑛 ∈ (ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o)) ∧ ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑧) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔𝑚) = 𝑦) ∧ ∀𝑏𝑚 (𝑔𝑏)𝑅(𝑔‘suc 𝑏)))) → (𝑛 +o 𝑚) ∈ ω)
143 elnn 7698 . . . . . . . . . . . . . . . . . . . 20 ((𝑐 ∈ (𝑛 +o 𝑚) ∧ (𝑛 +o 𝑚) ∈ ω) → 𝑐 ∈ ω)
144143ancoms 458 . . . . . . . . . . . . . . . . . . 19 (((𝑛 +o 𝑚) ∈ ω ∧ 𝑐 ∈ (𝑛 +o 𝑚)) → 𝑐 ∈ ω)
145142, 144sylan 579 . . . . . . . . . . . . . . . . . 18 ((((𝑛 ∈ (ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o)) ∧ ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑧) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔𝑚) = 𝑦) ∧ ∀𝑏𝑚 (𝑔𝑏)𝑅(𝑔‘suc 𝑏)))) ∧ 𝑐 ∈ (𝑛 +o 𝑚)) → 𝑐 ∈ ω)
146 nnord 7695 . . . . . . . . . . . . . . . . . 18 (𝑐 ∈ ω → Ord 𝑐)
147145, 146syl 17 . . . . . . . . . . . . . . . . 17 ((((𝑛 ∈ (ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o)) ∧ ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑧) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔𝑚) = 𝑦) ∧ ∀𝑏𝑚 (𝑔𝑏)𝑅(𝑔‘suc 𝑏)))) ∧ 𝑐 ∈ (𝑛 +o 𝑚)) → Ord 𝑐)
148 ordtri3or 6283 . . . . . . . . . . . . . . . . 17 ((Ord 𝑛 ∧ Ord 𝑐) → (𝑛𝑐𝑛 = 𝑐𝑐𝑛))
149141, 147, 148syl2an2r 681 . . . . . . . . . . . . . . . 16 ((((𝑛 ∈ (ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o)) ∧ ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑧) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔𝑚) = 𝑦) ∧ ∀𝑏𝑚 (𝑔𝑏)𝑅(𝑔‘suc 𝑏)))) ∧ 𝑐 ∈ (𝑛 +o 𝑚)) → (𝑛𝑐𝑛 = 𝑐𝑐𝑛))
150 3orel3 33557 . . . . . . . . . . . . . . . 16 𝑐𝑛 → ((𝑛𝑐𝑛 = 𝑐𝑐𝑛) → (𝑛𝑐𝑛 = 𝑐)))
151149, 150syl5com 31 . . . . . . . . . . . . . . 15 ((((𝑛 ∈ (ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o)) ∧ ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑧) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔𝑚) = 𝑦) ∧ ∀𝑏𝑚 (𝑔𝑏)𝑅(𝑔‘suc 𝑏)))) ∧ 𝑐 ∈ (𝑛 +o 𝑚)) → (¬ 𝑐𝑛 → (𝑛𝑐𝑛 = 𝑐)))
152 fveq2 6756 . . . . . . . . . . . . . . . . . . . 20 (𝑏 = (𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑐) → (𝑔𝑏) = (𝑔‘(𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑐)))
153 suceq 6316 . . . . . . . . . . . . . . . . . . . . 21 (𝑏 = (𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑐) → suc 𝑏 = suc (𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑐))
154153fveq2d 6760 . . . . . . . . . . . . . . . . . . . 20 (𝑏 = (𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑐) → (𝑔‘suc 𝑏) = (𝑔‘suc (𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑐)))
155152, 154breq12d 5083 . . . . . . . . . . . . . . . . . . 19 (𝑏 = (𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑐) → ((𝑔𝑏)𝑅(𝑔‘suc 𝑏) ↔ (𝑔‘(𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑐))𝑅(𝑔‘suc (𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑐))))
156 simprr3 1221 . . . . . . . . . . . . . . . . . . . . 21 (((𝑛 ∈ (ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o)) ∧ ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑧) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔𝑚) = 𝑦) ∧ ∀𝑏𝑚 (𝑔𝑏)𝑅(𝑔‘suc 𝑏)))) → ∀𝑏𝑚 (𝑔𝑏)𝑅(𝑔‘suc 𝑏))
157156adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((((𝑛 ∈ (ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o)) ∧ ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑧) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔𝑚) = 𝑦) ∧ ∀𝑏𝑚 (𝑔𝑏)𝑅(𝑔‘suc 𝑏)))) ∧ 𝑐 ∈ (𝑛 +o 𝑚)) → ∀𝑏𝑚 (𝑔𝑏)𝑅(𝑔‘suc 𝑏))
158157adantr 480 . . . . . . . . . . . . . . . . . . 19 (((((𝑛 ∈ (ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o)) ∧ ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑧) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔𝑚) = 𝑦) ∧ ∀𝑏𝑚 (𝑔𝑏)𝑅(𝑔‘suc 𝑏)))) ∧ 𝑐 ∈ (𝑛 +o 𝑚)) ∧ 𝑛𝑐) → ∀𝑏𝑚 (𝑔𝑏)𝑅(𝑔‘suc 𝑏))
159 ordelss 6267 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((Ord 𝑐𝑛𝑐) → 𝑛𝑐)
160147, 159sylan 579 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝑛 ∈ (ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o)) ∧ ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑧) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔𝑚) = 𝑦) ∧ ∀𝑏𝑚 (𝑔𝑏)𝑅(𝑔‘suc 𝑏)))) ∧ 𝑐 ∈ (𝑛 +o 𝑚)) ∧ 𝑛𝑐) → 𝑛𝑐)
16138adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑛 ∈ (ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o)) ∧ ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑧) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔𝑚) = 𝑦) ∧ ∀𝑏𝑚 (𝑔𝑏)𝑅(𝑔‘suc 𝑏)))) → 𝑛 ∈ ω)
162161adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝑛 ∈ (ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o)) ∧ ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑧) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔𝑚) = 𝑦) ∧ ∀𝑏𝑚 (𝑔𝑏)𝑅(𝑔‘suc 𝑏)))) ∧ 𝑐 ∈ (𝑛 +o 𝑚)) → 𝑛 ∈ ω)
163145adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝑛 ∈ (ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o)) ∧ ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑧) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔𝑚) = 𝑦) ∧ ∀𝑏𝑚 (𝑔𝑏)𝑅(𝑔‘suc 𝑏)))) ∧ 𝑐 ∈ (𝑛 +o 𝑚)) ∧ 𝑛𝑐) → 𝑐 ∈ ω)
164 nnawordex 8430 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑛 ∈ ω ∧ 𝑐 ∈ ω) → (𝑛𝑐 ↔ ∃𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑐))
165162, 163, 164syl2an2r 681 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝑛 ∈ (ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o)) ∧ ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑧) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔𝑚) = 𝑦) ∧ ∀𝑏𝑚 (𝑔𝑏)𝑅(𝑔‘suc 𝑏)))) ∧ 𝑐 ∈ (𝑛 +o 𝑚)) ∧ 𝑛𝑐) → (𝑛𝑐 ↔ ∃𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑐))
166160, 165mpbid 231 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝑛 ∈ (ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o)) ∧ ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑧) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔𝑚) = 𝑦) ∧ ∀𝑏𝑚 (𝑔𝑏)𝑅(𝑔‘suc 𝑏)))) ∧ 𝑐 ∈ (𝑛 +o 𝑚)) ∧ 𝑛𝑐) → ∃𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑐)
167 oveq2 7263 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑞 = 𝑝 → (𝑛 +o 𝑞) = (𝑛 +o 𝑝))
168167eqeq1d 2740 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑞 = 𝑝 → ((𝑛 +o 𝑞) = 𝑐 ↔ (𝑛 +o 𝑝) = 𝑐))
169168cbvrexvw 3373 . . . . . . . . . . . . . . . . . . . . . . 23 (∃𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑐 ↔ ∃𝑝 ∈ ω (𝑛 +o 𝑝) = 𝑐)
170166, 169sylib 217 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝑛 ∈ (ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o)) ∧ ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑧) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔𝑚) = 𝑦) ∧ ∀𝑏𝑚 (𝑔𝑏)𝑅(𝑔‘suc 𝑏)))) ∧ 𝑐 ∈ (𝑛 +o 𝑚)) ∧ 𝑛𝑐) → ∃𝑝 ∈ ω (𝑛 +o 𝑝) = 𝑐)
171 simprr 769 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((((𝑛 ∈ (ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o)) ∧ ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑧) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔𝑚) = 𝑦) ∧ ∀𝑏𝑚 (𝑔𝑏)𝑅(𝑔‘suc 𝑏)))) ∧ 𝑐 ∈ (𝑛 +o 𝑚)) ∧ 𝑛𝑐) ∧ (𝑝 ∈ ω ∧ (𝑛 +o 𝑝) = 𝑐)) → (𝑛 +o 𝑝) = 𝑐)
172 simpllr 772 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((((𝑛 ∈ (ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o)) ∧ ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑧) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔𝑚) = 𝑦) ∧ ∀𝑏𝑚 (𝑔𝑏)𝑅(𝑔‘suc 𝑏)))) ∧ 𝑐 ∈ (𝑛 +o 𝑚)) ∧ 𝑛𝑐) ∧ (𝑝 ∈ ω ∧ (𝑛 +o 𝑝) = 𝑐)) → 𝑐 ∈ (𝑛 +o 𝑚))
173171, 172eqeltrd 2839 . . . . . . . . . . . . . . . . . . . . . . 23 ((((((𝑛 ∈ (ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o)) ∧ ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑧) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔𝑚) = 𝑦) ∧ ∀𝑏𝑚 (𝑔𝑏)𝑅(𝑔‘suc 𝑏)))) ∧ 𝑐 ∈ (𝑛 +o 𝑚)) ∧ 𝑛𝑐) ∧ (𝑝 ∈ ω ∧ (𝑛 +o 𝑝) = 𝑐)) → (𝑛 +o 𝑝) ∈ (𝑛 +o 𝑚))
174 simprl 767 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((((𝑛 ∈ (ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o)) ∧ ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑧) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔𝑚) = 𝑦) ∧ ∀𝑏𝑚 (𝑔𝑏)𝑅(𝑔‘suc 𝑏)))) ∧ 𝑐 ∈ (𝑛 +o 𝑚)) ∧ 𝑛𝑐) ∧ (𝑝 ∈ ω ∧ (𝑛 +o 𝑝) = 𝑐)) → 𝑝 ∈ ω)
1753ad4antlr 729 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝑛 ∈ (ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o)) ∧ ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑧) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔𝑚) = 𝑦) ∧ ∀𝑏𝑚 (𝑔𝑏)𝑅(𝑔‘suc 𝑏)))) ∧ 𝑐 ∈ (𝑛 +o 𝑚)) ∧ 𝑛𝑐) → 𝑚 ∈ ω)
176175adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((((𝑛 ∈ (ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o)) ∧ ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑧) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔𝑚) = 𝑦) ∧ ∀𝑏𝑚 (𝑔𝑏)𝑅(𝑔‘suc 𝑏)))) ∧ 𝑐 ∈ (𝑛 +o 𝑚)) ∧ 𝑛𝑐) ∧ (𝑝 ∈ ω ∧ (𝑛 +o 𝑝) = 𝑐)) → 𝑚 ∈ ω)
177162adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝑛 ∈ (ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o)) ∧ ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑧) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔𝑚) = 𝑦) ∧ ∀𝑏𝑚 (𝑔𝑏)𝑅(𝑔‘suc 𝑏)))) ∧ 𝑐 ∈ (𝑛 +o 𝑚)) ∧ 𝑛𝑐) → 𝑛 ∈ ω)
178177adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((((𝑛 ∈ (ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o)) ∧ ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑧) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔𝑚) = 𝑦) ∧ ∀𝑏𝑚 (𝑔𝑏)𝑅(𝑔‘suc 𝑏)))) ∧ 𝑐 ∈ (𝑛 +o 𝑚)) ∧ 𝑛𝑐) ∧ (𝑝 ∈ ω ∧ (𝑛 +o 𝑝) = 𝑐)) → 𝑛 ∈ ω)
179 nnaord 8412 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑝 ∈ ω ∧ 𝑚 ∈ ω ∧ 𝑛 ∈ ω) → (𝑝𝑚 ↔ (𝑛 +o 𝑝) ∈ (𝑛 +o 𝑚)))
180174, 176, 178, 179syl3anc 1369 . . . . . . . . . . . . . . . . . . . . . . 23 ((((((𝑛 ∈ (ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o)) ∧ ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑧) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔𝑚) = 𝑦) ∧ ∀𝑏𝑚 (𝑔𝑏)𝑅(𝑔‘suc 𝑏)))) ∧ 𝑐 ∈ (𝑛 +o 𝑚)) ∧ 𝑛𝑐) ∧ (𝑝 ∈ ω ∧ (𝑛 +o 𝑝) = 𝑐)) → (𝑝𝑚 ↔ (𝑛 +o 𝑝) ∈ (𝑛 +o 𝑚)))
181173, 180mpbird 256 . . . . . . . . . . . . . . . . . . . . . 22 ((((((𝑛 ∈ (ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o)) ∧ ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑧) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔𝑚) = 𝑦) ∧ ∀𝑏𝑚 (𝑔𝑏)𝑅(𝑔‘suc 𝑏)))) ∧ 𝑐 ∈ (𝑛 +o 𝑚)) ∧ 𝑛𝑐) ∧ (𝑝 ∈ ω ∧ (𝑛 +o 𝑝) = 𝑐)) → 𝑝𝑚)
182170, 181, 171reximssdv 3204 . . . . . . . . . . . . . . . . . . . . 21 (((((𝑛 ∈ (ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o)) ∧ ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑧) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔𝑚) = 𝑦) ∧ ∀𝑏𝑚 (𝑔𝑏)𝑅(𝑔‘suc 𝑏)))) ∧ 𝑐 ∈ (𝑛 +o 𝑚)) ∧ 𝑛𝑐) → ∃𝑝𝑚 (𝑛 +o 𝑝) = 𝑐)
183 elnn 7698 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑝𝑚𝑚 ∈ ω) → 𝑝 ∈ ω)
184183ancoms 458 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑚 ∈ ω ∧ 𝑝𝑚) → 𝑝 ∈ ω)
185175, 184sylan 579 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((((𝑛 ∈ (ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o)) ∧ ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑧) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔𝑚) = 𝑦) ∧ ∀𝑏𝑚 (𝑔𝑏)𝑅(𝑔‘suc 𝑏)))) ∧ 𝑐 ∈ (𝑛 +o 𝑚)) ∧ 𝑛𝑐) ∧ 𝑝𝑚) → 𝑝 ∈ ω)
186 nnasmo 33596 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑛 ∈ ω → ∃*𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑐)
187177, 186syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((𝑛 ∈ (ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o)) ∧ ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑧) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔𝑚) = 𝑦) ∧ ∀𝑏𝑚 (𝑔𝑏)𝑅(𝑔‘suc 𝑏)))) ∧ 𝑐 ∈ (𝑛 +o 𝑚)) ∧ 𝑛𝑐) → ∃*𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑐)
188 reu5 3351 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (∃!𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑐 ↔ (∃𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑐 ∧ ∃*𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑐))
189166, 187, 188sylanbrc 582 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝑛 ∈ (ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o)) ∧ ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑧) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔𝑚) = 𝑦) ∧ ∀𝑏𝑚 (𝑔𝑏)𝑅(𝑔‘suc 𝑏)))) ∧ 𝑐 ∈ (𝑛 +o 𝑚)) ∧ 𝑛𝑐) → ∃!𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑐)
190189adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((((𝑛 ∈ (ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o)) ∧ ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑧) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔𝑚) = 𝑦) ∧ ∀𝑏𝑚 (𝑔𝑏)𝑅(𝑔‘suc 𝑏)))) ∧ 𝑐 ∈ (𝑛 +o 𝑚)) ∧ 𝑛𝑐) ∧ 𝑝𝑚) → ∃!𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑐)
191168riota2 7238 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑝 ∈ ω ∧ ∃!𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑐) → ((𝑛 +o 𝑝) = 𝑐 ↔ (𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑐) = 𝑝))
192185, 190, 191syl2anc 583 . . . . . . . . . . . . . . . . . . . . . . 23 ((((((𝑛 ∈ (ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o)) ∧ ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑧) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔𝑚) = 𝑦) ∧ ∀𝑏𝑚 (𝑔𝑏)𝑅(𝑔‘suc 𝑏)))) ∧ 𝑐 ∈ (𝑛 +o 𝑚)) ∧ 𝑛𝑐) ∧ 𝑝𝑚) → ((𝑛 +o 𝑝) = 𝑐 ↔ (𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑐) = 𝑝))
193 eqcom 2745 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑐) = 𝑝𝑝 = (𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑐))
194192, 193bitrdi 286 . . . . . . . . . . . . . . . . . . . . . 22 ((((((𝑛 ∈ (ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o)) ∧ ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑧) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔𝑚) = 𝑦) ∧ ∀𝑏𝑚 (𝑔𝑏)𝑅(𝑔‘suc 𝑏)))) ∧ 𝑐 ∈ (𝑛 +o 𝑚)) ∧ 𝑛𝑐) ∧ 𝑝𝑚) → ((𝑛 +o 𝑝) = 𝑐𝑝 = (𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑐)))
195194rexbidva 3224 . . . . . . . . . . . . . . . . . . . . 21 (((((𝑛 ∈ (ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o)) ∧ ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑧) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔𝑚) = 𝑦) ∧ ∀𝑏𝑚 (𝑔𝑏)𝑅(𝑔‘suc 𝑏)))) ∧ 𝑐 ∈ (𝑛 +o 𝑚)) ∧ 𝑛𝑐) → (∃𝑝𝑚 (𝑛 +o 𝑝) = 𝑐 ↔ ∃𝑝𝑚 𝑝 = (𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑐)))
196182, 195mpbid 231 . . . . . . . . . . . . . . . . . . . 20 (((((𝑛 ∈ (ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o)) ∧ ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑧) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔𝑚) = 𝑦) ∧ ∀𝑏𝑚 (𝑔𝑏)𝑅(𝑔‘suc 𝑏)))) ∧ 𝑐 ∈ (𝑛 +o 𝑚)) ∧ 𝑛𝑐) → ∃𝑝𝑚 𝑝 = (𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑐))
197 risset 3193 . . . . . . . . . . . . . . . . . . . 20 ((𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑐) ∈ 𝑚 ↔ ∃𝑝𝑚 𝑝 = (𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑐))
198196, 197sylibr 233 . . . . . . . . . . . . . . . . . . 19 (((((𝑛 ∈ (ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o)) ∧ ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑧) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔𝑚) = 𝑦) ∧ ∀𝑏𝑚 (𝑔𝑏)𝑅(𝑔‘suc 𝑏)))) ∧ 𝑐 ∈ (𝑛 +o 𝑚)) ∧ 𝑛𝑐) → (𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑐) ∈ 𝑚)
199155, 158, 198rspcdva 3554 . . . . . . . . . . . . . . . . . 18 (((((𝑛 ∈ (ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o)) ∧ ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑧) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔𝑚) = 𝑦) ∧ ∀𝑏𝑚 (𝑔𝑏)𝑅(𝑔‘suc 𝑏)))) ∧ 𝑐 ∈ (𝑛 +o 𝑚)) ∧ 𝑛𝑐) → (𝑔‘(𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑐))𝑅(𝑔‘suc (𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑐)))
200 simpr 484 . . . . . . . . . . . . . . . . . . . 20 (((((𝑛 ∈ (ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o)) ∧ ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑧) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔𝑚) = 𝑦) ∧ ∀𝑏𝑚 (𝑔𝑏)𝑅(𝑔‘suc 𝑏)))) ∧ 𝑐 ∈ (𝑛 +o 𝑚)) ∧ 𝑛𝑐) → 𝑛𝑐)
201 vex 3426 . . . . . . . . . . . . . . . . . . . . . 22 𝑛 ∈ V
202147adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝑛 ∈ (ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o)) ∧ ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑧) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔𝑚) = 𝑦) ∧ ∀𝑏𝑚 (𝑔𝑏)𝑅(𝑔‘suc 𝑏)))) ∧ 𝑐 ∈ (𝑛 +o 𝑚)) ∧ 𝑛𝑐) → Ord 𝑐)
203 ordelsuc 7642 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑛 ∈ V ∧ Ord 𝑐) → (𝑛𝑐 ↔ suc 𝑛𝑐))
204201, 202, 203sylancr 586 . . . . . . . . . . . . . . . . . . . . 21 (((((𝑛 ∈ (ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o)) ∧ ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑧) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔𝑚) = 𝑦) ∧ ∀𝑏𝑚 (𝑔𝑏)𝑅(𝑔‘suc 𝑏)))) ∧ 𝑐 ∈ (𝑛 +o 𝑚)) ∧ 𝑛𝑐) → (𝑛𝑐 ↔ suc 𝑛𝑐))
205 peano2 7711 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑛 ∈ ω → suc 𝑛 ∈ ω)
20638, 205syl 17 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑛 ∈ (ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o)) → suc 𝑛 ∈ ω)
207 nnord 7695 . . . . . . . . . . . . . . . . . . . . . . . . 25 (suc 𝑛 ∈ ω → Ord suc 𝑛)
208206, 207syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑛 ∈ (ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o)) → Ord suc 𝑛)
209208adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑛 ∈ (ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o)) ∧ ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑧) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔𝑚) = 𝑦) ∧ ∀𝑏𝑚 (𝑔𝑏)𝑅(𝑔‘suc 𝑏)))) → Ord suc 𝑛)
210209adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑛 ∈ (ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o)) ∧ ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑧) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔𝑚) = 𝑦) ∧ ∀𝑏𝑚 (𝑔𝑏)𝑅(𝑔‘suc 𝑏)))) ∧ 𝑐 ∈ (𝑛 +o 𝑚)) → Ord suc 𝑛)
211 ordtri1 6284 . . . . . . . . . . . . . . . . . . . . . 22 ((Ord suc 𝑛 ∧ Ord 𝑐) → (suc 𝑛𝑐 ↔ ¬ 𝑐 ∈ suc 𝑛))
212210, 202, 211syl2an2r 681 . . . . . . . . . . . . . . . . . . . . 21 (((((𝑛 ∈ (ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o)) ∧ ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑧) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔𝑚) = 𝑦) ∧ ∀𝑏𝑚 (𝑔𝑏)𝑅(𝑔‘suc 𝑏)))) ∧ 𝑐 ∈ (𝑛 +o 𝑚)) ∧ 𝑛𝑐) → (suc 𝑛𝑐 ↔ ¬ 𝑐 ∈ suc 𝑛))
213204, 212bitrd 278 . . . . . . . . . . . . . . . . . . . 20 (((((𝑛 ∈ (ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o)) ∧ ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑧) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔𝑚) = 𝑦) ∧ ∀𝑏𝑚 (𝑔𝑏)𝑅(𝑔‘suc 𝑏)))) ∧ 𝑐 ∈ (𝑛 +o 𝑚)) ∧ 𝑛𝑐) → (𝑛𝑐 ↔ ¬ 𝑐 ∈ suc 𝑛))
214200, 213mpbid 231 . . . . . . . . . . . . . . . . . . 19 (((((𝑛 ∈ (ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o)) ∧ ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑧) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔𝑚) = 𝑦) ∧ ∀𝑏𝑚 (𝑔𝑏)𝑅(𝑔‘suc 𝑏)))) ∧ 𝑐 ∈ (𝑛 +o 𝑚)) ∧ 𝑛𝑐) → ¬ 𝑐 ∈ suc 𝑛)
215214iffalsed 4467 . . . . . . . . . . . . . . . . . 18 (((((𝑛 ∈ (ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o)) ∧ ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑧) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔𝑚) = 𝑦) ∧ ∀𝑏𝑚 (𝑔𝑏)𝑅(𝑔‘suc 𝑏)))) ∧ 𝑐 ∈ (𝑛 +o 𝑚)) ∧ 𝑛𝑐) → if(𝑐 ∈ suc 𝑛, (𝑓𝑐), (𝑔‘(𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑐))) = (𝑔‘(𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑐)))
216 riotacl 7230 . . . . . . . . . . . . . . . . . . . . . . 23 (∃!𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑐 → (𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑐) ∈ ω)
217189, 216syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝑛 ∈ (ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o)) ∧ ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑧) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔𝑚) = 𝑦) ∧ ∀𝑏𝑚 (𝑔𝑏)𝑅(𝑔‘suc 𝑏)))) ∧ 𝑐 ∈ (𝑛 +o 𝑚)) ∧ 𝑛𝑐) → (𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑐) ∈ ω)
218 nnasuc 8399 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑛 ∈ ω ∧ (𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑐) ∈ ω) → (𝑛 +o suc (𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑐)) = suc (𝑛 +o (𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑐)))
219162, 217, 218syl2an2r 681 . . . . . . . . . . . . . . . . . . . . 21 (((((𝑛 ∈ (ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o)) ∧ ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑧) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔𝑚) = 𝑦) ∧ ∀𝑏𝑚 (𝑔𝑏)𝑅(𝑔‘suc 𝑏)))) ∧ 𝑐 ∈ (𝑛 +o 𝑚)) ∧ 𝑛𝑐) → (𝑛 +o suc (𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑐)) = suc (𝑛 +o (𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑐)))
220 eqidd 2739 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝑛 ∈ (ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o)) ∧ ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑧) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔𝑚) = 𝑦) ∧ ∀𝑏𝑚 (𝑔𝑏)𝑅(𝑔‘suc 𝑏)))) ∧ 𝑐 ∈ (𝑛 +o 𝑚)) ∧ 𝑛𝑐) → (𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑐) = (𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑐))
221 nfriota1 7219 . . . . . . . . . . . . . . . . . . . . . . . . 25 𝑞(𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑐)
222 nfcv 2906 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 𝑞𝑛
223 nfcv 2906 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 𝑞 +o
224222, 223, 221nfov 7285 . . . . . . . . . . . . . . . . . . . . . . . . . 26 𝑞(𝑛 +o (𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑐))
225224nfeq1 2921 . . . . . . . . . . . . . . . . . . . . . . . . 25 𝑞(𝑛 +o (𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑐)) = 𝑐
226 oveq2 7263 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑞 = (𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑐) → (𝑛 +o 𝑞) = (𝑛 +o (𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑐)))
227226eqeq1d 2740 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑞 = (𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑐) → ((𝑛 +o 𝑞) = 𝑐 ↔ (𝑛 +o (𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑐)) = 𝑐))
228221, 225, 227riota2f 7237 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑐) ∈ ω ∧ ∃!𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑐) → ((𝑛 +o (𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑐)) = 𝑐 ↔ (𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑐) = (𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑐)))
229217, 189, 228syl2anc 583 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝑛 ∈ (ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o)) ∧ ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑧) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔𝑚) = 𝑦) ∧ ∀𝑏𝑚 (𝑔𝑏)𝑅(𝑔‘suc 𝑏)))) ∧ 𝑐 ∈ (𝑛 +o 𝑚)) ∧ 𝑛𝑐) → ((𝑛 +o (𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑐)) = 𝑐 ↔ (𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑐) = (𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑐)))
230220, 229mpbird 256 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝑛 ∈ (ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o)) ∧ ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑧) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔𝑚) = 𝑦) ∧ ∀𝑏𝑚 (𝑔𝑏)𝑅(𝑔‘suc 𝑏)))) ∧ 𝑐 ∈ (𝑛 +o 𝑚)) ∧ 𝑛𝑐) → (𝑛 +o (𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑐)) = 𝑐)
231 suceq 6316 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑛 +o (𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑐)) = 𝑐 → suc (𝑛 +o (𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑐)) = suc 𝑐)
232230, 231syl 17 . . . . . . . . . . . . . . . . . . . . 21 (((((𝑛 ∈ (ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o)) ∧ ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑧) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔𝑚) = 𝑦) ∧ ∀𝑏𝑚 (𝑔𝑏)𝑅(𝑔‘suc 𝑏)))) ∧ 𝑐 ∈ (𝑛 +o 𝑚)) ∧ 𝑛𝑐) → suc (𝑛 +o (𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑐)) = suc 𝑐)
233219, 232eqtrd 2778 . . . . . . . . . . . . . . . . . . . 20 (((((𝑛 ∈ (ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o)) ∧ ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑧) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔𝑚) = 𝑦) ∧ ∀𝑏𝑚 (𝑔𝑏)𝑅(𝑔‘suc 𝑏)))) ∧ 𝑐 ∈ (𝑛 +o 𝑚)) ∧ 𝑛𝑐) → (𝑛 +o suc (𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑐)) = suc 𝑐)
234 peano2 7711 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑐) ∈ ω → suc (𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑐) ∈ ω)
235217, 234syl 17 . . . . . . . . . . . . . . . . . . . . 21 (((((𝑛 ∈ (ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o)) ∧ ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑧) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔𝑚) = 𝑦) ∧ ∀𝑏𝑚 (𝑔𝑏)𝑅(𝑔‘suc 𝑏)))) ∧ 𝑐 ∈ (𝑛 +o 𝑚)) ∧ 𝑛𝑐) → suc (𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑐) ∈ ω)
236 peano2 7711 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑝 ∈ ω → suc 𝑝 ∈ ω)
237 nnasuc 8399 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑛 ∈ ω ∧ 𝑝 ∈ ω) → (𝑛 +o suc 𝑝) = suc (𝑛 +o 𝑝))
238177, 237sylan 579 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((((𝑛 ∈ (ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o)) ∧ ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑧) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔𝑚) = 𝑦) ∧ ∀𝑏𝑚 (𝑔𝑏)𝑅(𝑔‘suc 𝑏)))) ∧ 𝑐 ∈ (𝑛 +o 𝑚)) ∧ 𝑛𝑐) ∧ 𝑝 ∈ ω) → (𝑛 +o suc 𝑝) = suc (𝑛 +o 𝑝))
239 oveq2 7263 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑞 = suc 𝑝 → (𝑛 +o 𝑞) = (𝑛 +o suc 𝑝))
240239eqeq1d 2740 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑞 = suc 𝑝 → ((𝑛 +o 𝑞) = suc (𝑛 +o 𝑝) ↔ (𝑛 +o suc 𝑝) = suc (𝑛 +o 𝑝)))
241240rspcev 3552 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((suc 𝑝 ∈ ω ∧ (𝑛 +o suc 𝑝) = suc (𝑛 +o 𝑝)) → ∃𝑞 ∈ ω (𝑛 +o 𝑞) = suc (𝑛 +o 𝑝))
242236, 238, 241syl2an2 682 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((((𝑛 ∈ (ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o)) ∧ ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑧) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔𝑚) = 𝑦) ∧ ∀𝑏𝑚 (𝑔𝑏)𝑅(𝑔‘suc 𝑏)))) ∧ 𝑐 ∈ (𝑛 +o 𝑚)) ∧ 𝑛𝑐) ∧ 𝑝 ∈ ω) → ∃𝑞 ∈ ω (𝑛 +o 𝑞) = suc (𝑛 +o 𝑝))
243 suceq 6316 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑛 +o 𝑝) = 𝑐 → suc (𝑛 +o 𝑝) = suc 𝑐)
244243eqeq2d 2749 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑛 +o 𝑝) = 𝑐 → ((𝑛 +o 𝑞) = suc (𝑛 +o 𝑝) ↔ (𝑛 +o 𝑞) = suc 𝑐))
245244rexbidv 3225 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑛 +o 𝑝) = 𝑐 → (∃𝑞 ∈ ω (𝑛 +o 𝑞) = suc (𝑛 +o 𝑝) ↔ ∃𝑞 ∈ ω (𝑛 +o 𝑞) = suc 𝑐))
246242, 245syl5ibcom 244 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((((𝑛 ∈ (ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o)) ∧ ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑧) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔𝑚) = 𝑦) ∧ ∀𝑏𝑚 (𝑔𝑏)𝑅(𝑔‘suc 𝑏)))) ∧ 𝑐 ∈ (𝑛 +o 𝑚)) ∧ 𝑛𝑐) ∧ 𝑝 ∈ ω) → ((𝑛 +o 𝑝) = 𝑐 → ∃𝑞 ∈ ω (𝑛 +o 𝑞) = suc 𝑐))
247246rexlimdva 3212 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝑛 ∈ (ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o)) ∧ ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑧) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔𝑚) = 𝑦) ∧ ∀𝑏𝑚 (𝑔𝑏)𝑅(𝑔‘suc 𝑏)))) ∧ 𝑐 ∈ (𝑛 +o 𝑚)) ∧ 𝑛𝑐) → (∃𝑝 ∈ ω (𝑛 +o 𝑝) = 𝑐 → ∃𝑞 ∈ ω (𝑛 +o 𝑞) = suc 𝑐))
248170, 247mpd 15 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝑛 ∈ (ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o)) ∧ ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑧) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔𝑚) = 𝑦) ∧ ∀𝑏𝑚 (𝑔𝑏)𝑅(𝑔‘suc 𝑏)))) ∧ 𝑐 ∈ (𝑛 +o 𝑚)) ∧ 𝑛𝑐) → ∃𝑞 ∈ ω (𝑛 +o 𝑞) = suc 𝑐)
249 nnasmo 33596 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑛 ∈ ω → ∃*𝑞 ∈ ω (𝑛 +o 𝑞) = suc 𝑐)
250177, 249syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝑛 ∈ (ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o)) ∧ ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑧) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔𝑚) = 𝑦) ∧ ∀𝑏𝑚 (𝑔𝑏)𝑅(𝑔‘suc 𝑏)))) ∧ 𝑐 ∈ (𝑛 +o 𝑚)) ∧ 𝑛𝑐) → ∃*𝑞 ∈ ω (𝑛 +o 𝑞) = suc 𝑐)
251 reu5 3351 . . . . . . . . . . . . . . . . . . . . . 22 (∃!𝑞 ∈ ω (𝑛 +o 𝑞) = suc 𝑐 ↔ (∃𝑞 ∈ ω (𝑛 +o 𝑞) = suc 𝑐 ∧ ∃*𝑞 ∈ ω (𝑛 +o 𝑞) = suc 𝑐))
252248, 250, 251sylanbrc 582 . . . . . . . . . . . . . . . . . . . . 21 (((((𝑛 ∈ (ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o)) ∧ ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑧) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔𝑚) = 𝑦) ∧ ∀𝑏𝑚 (𝑔𝑏)𝑅(𝑔‘suc 𝑏)))) ∧ 𝑐 ∈ (𝑛 +o 𝑚)) ∧ 𝑛𝑐) → ∃!𝑞 ∈ ω (𝑛 +o 𝑞) = suc 𝑐)
253221nfsuc 6322 . . . . . . . . . . . . . . . . . . . . . 22 𝑞 suc (𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑐)
254222, 223, 253nfov 7285 . . . . . . . . . . . . . . . . . . . . . . 23 𝑞(𝑛 +o suc (𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑐))
255254nfeq1 2921 . . . . . . . . . . . . . . . . . . . . . 22 𝑞(𝑛 +o suc (𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑐)) = suc 𝑐
256 oveq2 7263 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑞 = suc (𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑐) → (𝑛 +o 𝑞) = (𝑛 +o suc (𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑐)))
257256eqeq1d 2740 . . . . . . . . . . . . . . . . . . . . . 22 (𝑞 = suc (𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑐) → ((𝑛 +o 𝑞) = suc 𝑐 ↔ (𝑛 +o suc (𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑐)) = suc 𝑐))
258253, 255, 257riota2f 7237 . . . . . . . . . . . . . . . . . . . . 21 ((suc (𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑐) ∈ ω ∧ ∃!𝑞 ∈ ω (𝑛 +o 𝑞) = suc 𝑐) → ((𝑛 +o suc (𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑐)) = suc 𝑐 ↔ (𝑞 ∈ ω (𝑛 +o 𝑞) = suc 𝑐) = suc (𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑐)))
259235, 252, 258syl2anc 583 . . . . . . . . . . . . . . . . . . . 20 (((((𝑛 ∈ (ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o)) ∧ ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑧) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔𝑚) = 𝑦) ∧ ∀𝑏𝑚 (𝑔𝑏)𝑅(𝑔‘suc 𝑏)))) ∧ 𝑐 ∈ (𝑛 +o 𝑚)) ∧ 𝑛𝑐) → ((𝑛 +o suc (𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑐)) = suc 𝑐 ↔ (𝑞 ∈ ω (𝑛 +o 𝑞) = suc 𝑐) = suc (𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑐)))
260233, 259mpbid 231 . . . . . . . . . . . . . . . . . . 19 (((((𝑛 ∈ (ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o)) ∧ ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑧) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔𝑚) = 𝑦) ∧ ∀𝑏𝑚 (𝑔𝑏)𝑅(𝑔‘suc 𝑏)))) ∧ 𝑐 ∈ (𝑛 +o 𝑚)) ∧ 𝑛𝑐) → (𝑞 ∈ ω (𝑛 +o 𝑞) = suc 𝑐) = suc (𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑐))
261260fveq2d 6760 . . . . . . . . . . . . . . . . . 18 (((((𝑛 ∈ (ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o)) ∧ ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑧) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔𝑚) = 𝑦) ∧ ∀𝑏𝑚 (𝑔𝑏)𝑅(𝑔‘suc 𝑏)))) ∧ 𝑐 ∈ (𝑛 +o 𝑚)) ∧ 𝑛𝑐) → (𝑔‘(𝑞 ∈ ω (𝑛 +o 𝑞) = suc 𝑐)) = (𝑔‘suc (𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑐)))
262199, 215, 2613brtr4d 5102 . . . . . . . . . . . . . . . . 17 (((((𝑛 ∈ (ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o)) ∧ ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑧) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔𝑚) = 𝑦) ∧ ∀𝑏𝑚 (𝑔𝑏)𝑅(𝑔‘suc 𝑏)))) ∧ 𝑐 ∈ (𝑛 +o 𝑚)) ∧ 𝑛𝑐) → if(𝑐 ∈ suc 𝑛, (𝑓𝑐), (𝑔‘(𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑐)))𝑅(𝑔‘(𝑞 ∈ ω (𝑛 +o 𝑞) = suc 𝑐)))
263262ex 412 . . . . . . . . . . . . . . . 16 ((((𝑛 ∈ (ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o)) ∧ ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑧) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔𝑚) = 𝑦) ∧ ∀𝑏𝑚 (𝑔𝑏)𝑅(𝑔‘suc 𝑏)))) ∧ 𝑐 ∈ (𝑛 +o 𝑚)) → (𝑛𝑐 → if(𝑐 ∈ suc 𝑛, (𝑓𝑐), (𝑔‘(𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑐)))𝑅(𝑔‘(𝑞 ∈ ω (𝑛 +o 𝑞) = suc 𝑐))))
264 fveq2 6756 . . . . . . . . . . . . . . . . . . . . 21 (𝑏 = ∅ → (𝑔𝑏) = (𝑔‘∅))
265 suceq 6316 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑏 = ∅ → suc 𝑏 = suc ∅)
266265, 59eqtr4di 2797 . . . . . . . . . . . . . . . . . . . . . 22 (𝑏 = ∅ → suc 𝑏 = 1o)
267266fveq2d 6760 . . . . . . . . . . . . . . . . . . . . 21 (𝑏 = ∅ → (𝑔‘suc 𝑏) = (𝑔‘1o))
268264, 267breq12d 5083 . . . . . . . . . . . . . . . . . . . 20 (𝑏 = ∅ → ((𝑔𝑏)𝑅(𝑔‘suc 𝑏) ↔ (𝑔‘∅)𝑅(𝑔‘1o)))
269 eldif 3893 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑚 ∈ (ω ∖ 1o) ↔ (𝑚 ∈ ω ∧ ¬ 𝑚 ∈ 1o))
270 nnord 7695 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑚 ∈ ω → Ord 𝑚)
271 ordtri1 6284 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((Ord 1o ∧ Ord 𝑚) → (1o𝑚 ↔ ¬ 𝑚 ∈ 1o))
2728, 270, 271sylancr 586 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑚 ∈ ω → (1o𝑚 ↔ ¬ 𝑚 ∈ 1o))
273272biimpar 477 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑚 ∈ ω ∧ ¬ 𝑚 ∈ 1o) → 1o𝑚)
274269, 273sylbi 216 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑚 ∈ (ω ∖ 1o) → 1o𝑚)
275274adantl 481 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑛 ∈ (ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o)) → 1o𝑚)
27659, 275eqsstrrid 3966 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑛 ∈ (ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o)) → suc ∅ ⊆ 𝑚)
277 0ex 5226 . . . . . . . . . . . . . . . . . . . . . . 23 ∅ ∈ V
278113, 270syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑛 ∈ (ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o)) → Ord 𝑚)
279 ordelsuc 7642 . . . . . . . . . . . . . . . . . . . . . . 23 ((∅ ∈ V ∧ Ord 𝑚) → (∅ ∈ 𝑚 ↔ suc ∅ ⊆ 𝑚))
280277, 278, 279sylancr 586 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑛 ∈ (ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o)) → (∅ ∈ 𝑚 ↔ suc ∅ ⊆ 𝑚))
281276, 280mpbird 256 . . . . . . . . . . . . . . . . . . . . 21 ((𝑛 ∈ (ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o)) → ∅ ∈ 𝑚)
282281adantr 480 . . . . . . . . . . . . . . . . . . . 20 (((𝑛 ∈ (ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o)) ∧ ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑧) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔𝑚) = 𝑦) ∧ ∀𝑏𝑚 (𝑔𝑏)𝑅(𝑔‘suc 𝑏)))) → ∅ ∈ 𝑚)
283268, 156, 282rspcdva 3554 . . . . . . . . . . . . . . . . . . 19 (((𝑛 ∈ (ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o)) ∧ ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑧) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔𝑚) = 𝑦) ∧ ∀𝑏𝑚 (𝑔𝑏)𝑅(𝑔‘suc 𝑏)))) → (𝑔‘∅)𝑅(𝑔‘1o))
284 simpl2r 1225 . . . . . . . . . . . . . . . . . . . . 21 (((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑧) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔𝑚) = 𝑦) ∧ ∀𝑏𝑚 (𝑔𝑏)𝑅(𝑔‘suc 𝑏))) → (𝑓𝑛) = 𝑧)
285 simpr2l 1230 . . . . . . . . . . . . . . . . . . . . 21 (((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑧) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔𝑚) = 𝑦) ∧ ∀𝑏𝑚 (𝑔𝑏)𝑅(𝑔‘suc 𝑏))) → (𝑔‘∅) = 𝑧)
286284, 285eqtr4d 2781 . . . . . . . . . . . . . . . . . . . 20 (((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑧) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔𝑚) = 𝑦) ∧ ∀𝑏𝑚 (𝑔𝑏)𝑅(𝑔‘suc 𝑏))) → (𝑓𝑛) = (𝑔‘∅))
287286adantl 481 . . . . . . . . . . . . . . . . . . 19 (((𝑛 ∈ (ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o)) ∧ ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑧) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔𝑚) = 𝑦) ∧ ∀𝑏𝑚 (𝑔𝑏)𝑅(𝑔‘suc 𝑏)))) → (𝑓𝑛) = (𝑔‘∅))
288 nnon 7693 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑛 ∈ ω → 𝑛 ∈ On)
28938, 288syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑛 ∈ (ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o)) → 𝑛 ∈ On)
290 oa1suc 8323 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑛 ∈ On → (𝑛 +o 1o) = suc 𝑛)
291289, 290syl 17 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑛 ∈ (ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o)) → (𝑛 +o 1o) = suc 𝑛)
292 1onn 8432 . . . . . . . . . . . . . . . . . . . . . . 23 1o ∈ ω
293 oveq2 7263 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑞 = 1o → (𝑛 +o 𝑞) = (𝑛 +o 1o))
294293eqeq1d 2740 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑞 = 1o → ((𝑛 +o 𝑞) = suc 𝑛 ↔ (𝑛 +o 1o) = suc 𝑛))
295294rspcev 3552 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((1o ∈ ω ∧ (𝑛 +o 1o) = suc 𝑛) → ∃𝑞 ∈ ω (𝑛 +o 𝑞) = suc 𝑛)
296292, 291, 295sylancr 586 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑛 ∈ (ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o)) → ∃𝑞 ∈ ω (𝑛 +o 𝑞) = suc 𝑛)
297 nnasmo 33596 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑛 ∈ ω → ∃*𝑞 ∈ ω (𝑛 +o 𝑞) = suc 𝑛)
29838, 297syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑛 ∈ (ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o)) → ∃*𝑞 ∈ ω (𝑛 +o 𝑞) = suc 𝑛)
299 reu5 3351 . . . . . . . . . . . . . . . . . . . . . . . 24 (∃!𝑞 ∈ ω (𝑛 +o 𝑞) = suc 𝑛 ↔ (∃𝑞 ∈ ω (𝑛 +o 𝑞) = suc 𝑛 ∧ ∃*𝑞 ∈ ω (𝑛 +o 𝑞) = suc 𝑛))
300296, 298, 299sylanbrc 582 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑛 ∈ (ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o)) → ∃!𝑞 ∈ ω (𝑛 +o 𝑞) = suc 𝑛)
301294riota2 7238 . . . . . . . . . . . . . . . . . . . . . . 23 ((1o ∈ ω ∧ ∃!𝑞 ∈ ω (𝑛 +o 𝑞) = suc 𝑛) → ((𝑛 +o 1o) = suc 𝑛 ↔ (𝑞 ∈ ω (𝑛 +o 𝑞) = suc 𝑛) = 1o))
302292, 300, 301sylancr 586 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑛 ∈ (ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o)) → ((𝑛 +o 1o) = suc 𝑛 ↔ (𝑞 ∈ ω (𝑛 +o 𝑞) = suc 𝑛) = 1o))
303291, 302mpbid 231 . . . . . . . . . . . . . . . . . . . . 21 ((𝑛 ∈ (ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o)) → (𝑞 ∈ ω (𝑛 +o 𝑞) = suc 𝑛) = 1o)
304303adantr 480 . . . . . . . . . . . . . . . . . . . 20 (((𝑛 ∈ (ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o)) ∧ ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑧) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔𝑚) = 𝑦) ∧ ∀𝑏𝑚 (𝑔𝑏)𝑅(𝑔‘suc 𝑏)))) → (𝑞 ∈ ω (𝑛 +o 𝑞) = suc 𝑛) = 1o)
305304fveq2d 6760 . . . . . . . . . . . . . . . . . . 19 (((𝑛 ∈ (ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o)) ∧ ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑧) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔𝑚) = 𝑦) ∧ ∀𝑏𝑚 (𝑔𝑏)𝑅(𝑔‘suc 𝑏)))) → (𝑔‘(𝑞 ∈ ω (𝑛 +o 𝑞) = suc 𝑛)) = (𝑔‘1o))
306283, 287, 3053brtr4d 5102 . . . . . . . . . . . . . . . . . 18 (((𝑛 ∈ (ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o)) ∧ ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑧) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔𝑚) = 𝑦) ∧ ∀𝑏𝑚 (𝑔𝑏)𝑅(𝑔‘suc 𝑏)))) → (𝑓𝑛)𝑅(𝑔‘(𝑞 ∈ ω (𝑛 +o 𝑞) = suc 𝑛)))
307201sucid 6330 . . . . . . . . . . . . . . . . . . . . 21 𝑛 ∈ suc 𝑛
308307iftruei 4463 . . . . . . . . . . . . . . . . . . . 20 if(𝑛 ∈ suc 𝑛, (𝑓𝑛), (𝑔‘(𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑐))) = (𝑓𝑛)
309 eleq1 2826 . . . . . . . . . . . . . . . . . . . . 21 (𝑛 = 𝑐 → (𝑛 ∈ suc 𝑛𝑐 ∈ suc 𝑛))
310 fveq2 6756 . . . . . . . . . . . . . . . . . . . . 21 (𝑛 = 𝑐 → (𝑓𝑛) = (𝑓𝑐))
311309, 310ifbieq1d 4480 . . . . . . . . . . . . . . . . . . . 20 (𝑛 = 𝑐 → if(𝑛 ∈ suc 𝑛, (𝑓𝑛), (𝑔‘(𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑐))) = if(𝑐 ∈ suc 𝑛, (𝑓𝑐), (𝑔‘(𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑐))))
312308, 311eqtr3id 2793 . . . . . . . . . . . . . . . . . . 19 (𝑛 = 𝑐 → (𝑓𝑛) = if(𝑐 ∈ suc 𝑛, (𝑓𝑐), (𝑔‘(𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑐))))
313 suceq 6316 . . . . . . . . . . . . . . . . . . . . . 22 (𝑛 = 𝑐 → suc 𝑛 = suc 𝑐)
314313eqeq2d 2749 . . . . . . . . . . . . . . . . . . . . 21 (𝑛 = 𝑐 → ((𝑛 +o 𝑞) = suc 𝑛 ↔ (𝑛 +o 𝑞) = suc 𝑐))
315314riotabidv 7214 . . . . . . . . . . . . . . . . . . . 20 (𝑛 = 𝑐 → (𝑞 ∈ ω (𝑛 +o 𝑞) = suc 𝑛) = (𝑞 ∈ ω (𝑛 +o 𝑞) = suc 𝑐))
316315fveq2d 6760 . . . . . . . . . . . . . . . . . . 19 (𝑛 = 𝑐 → (𝑔‘(𝑞 ∈ ω (𝑛 +o 𝑞) = suc 𝑛)) = (𝑔‘(𝑞 ∈ ω (𝑛 +o 𝑞) = suc 𝑐)))
317312, 316breq12d 5083 . . . . . . . . . . . . . . . . . 18 (𝑛 = 𝑐 → ((𝑓𝑛)𝑅(𝑔‘(𝑞 ∈ ω (𝑛 +o 𝑞) = suc 𝑛)) ↔ if(𝑐 ∈ suc 𝑛, (𝑓𝑐), (𝑔‘(𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑐)))𝑅(𝑔‘(𝑞 ∈ ω (𝑛 +o 𝑞) = suc 𝑐))))
318306, 317syl5ibcom 244 . . . . . . . . . . . . . . . . 17 (((𝑛 ∈ (ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o)) ∧ ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑧) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔𝑚) = 𝑦) ∧ ∀𝑏𝑚 (𝑔𝑏)𝑅(𝑔‘suc 𝑏)))) → (𝑛 = 𝑐 → if(𝑐 ∈ suc 𝑛, (𝑓𝑐), (𝑔‘(𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑐)))𝑅(𝑔‘(𝑞 ∈ ω (𝑛 +o 𝑞) = suc 𝑐))))
319318adantr 480 . . . . . . . . . . . . . . . 16 ((((𝑛 ∈ (ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o)) ∧ ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑧) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔𝑚) = 𝑦) ∧ ∀𝑏𝑚 (𝑔𝑏)𝑅(𝑔‘suc 𝑏)))) ∧ 𝑐 ∈ (𝑛 +o 𝑚)) → (𝑛 = 𝑐 → if(𝑐 ∈ suc 𝑛, (𝑓𝑐), (𝑔‘(𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑐)))𝑅(𝑔‘(𝑞 ∈ ω (𝑛 +o 𝑞) = suc 𝑐))))
320263, 319jaod 855 . . . . . . . . . . . . . . 15 ((((𝑛 ∈ (ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o)) ∧ ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑧) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔𝑚) = 𝑦) ∧ ∀𝑏𝑚 (𝑔𝑏)𝑅(𝑔‘suc 𝑏)))) ∧ 𝑐 ∈ (𝑛 +o 𝑚)) → ((𝑛𝑐𝑛 = 𝑐) → if(𝑐 ∈ suc 𝑛, (𝑓𝑐), (𝑔‘(𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑐)))𝑅(𝑔‘(𝑞 ∈ ω (𝑛 +o 𝑞) = suc 𝑐))))
321151, 320syld 47 . . . . . . . . . . . . . 14 ((((𝑛 ∈ (ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o)) ∧ ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑧) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔𝑚) = 𝑦) ∧ ∀𝑏𝑚 (𝑔𝑏)𝑅(𝑔‘suc 𝑏)))) ∧ 𝑐 ∈ (𝑛 +o 𝑚)) → (¬ 𝑐𝑛 → if(𝑐 ∈ suc 𝑛, (𝑓𝑐), (𝑔‘(𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑐)))𝑅(𝑔‘(𝑞 ∈ ω (𝑛 +o 𝑞) = suc 𝑐))))
322321imp 406 . . . . . . . . . . . . 13 (((((𝑛 ∈ (ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o)) ∧ ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑧) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔𝑚) = 𝑦) ∧ ∀𝑏𝑚 (𝑔𝑏)𝑅(𝑔‘suc 𝑏)))) ∧ 𝑐 ∈ (𝑛 +o 𝑚)) ∧ ¬ 𝑐𝑛) → if(𝑐 ∈ suc 𝑛, (𝑓𝑐), (𝑔‘(𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑐)))𝑅(𝑔‘(𝑞 ∈ ω (𝑛 +o 𝑞) = suc 𝑐)))
323135notbid 317 . . . . . . . . . . . . . . . . 17 ((𝑛 ∈ (ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o)) → (¬ 𝑐𝑛 ↔ ¬ suc 𝑐 ∈ suc 𝑛))
324323adantr 480 . . . . . . . . . . . . . . . 16 (((𝑛 ∈ (ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o)) ∧ ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑧) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔𝑚) = 𝑦) ∧ ∀𝑏𝑚 (𝑔𝑏)𝑅(𝑔‘suc 𝑏)))) → (¬ 𝑐𝑛 ↔ ¬ suc 𝑐 ∈ suc 𝑛))
325324adantr 480 . . . . . . . . . . . . . . 15 ((((𝑛 ∈ (ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o)) ∧ ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑧) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔𝑚) = 𝑦) ∧ ∀𝑏𝑚 (𝑔𝑏)𝑅(𝑔‘suc 𝑏)))) ∧ 𝑐 ∈ (𝑛 +o 𝑚)) → (¬ 𝑐𝑛 ↔ ¬ suc 𝑐 ∈ suc 𝑛))
326325biimpa 476 . . . . . . . . . . . . . 14 (((((𝑛 ∈ (ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o)) ∧ ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑧) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔𝑚) = 𝑦) ∧ ∀𝑏𝑚 (𝑔𝑏)𝑅(𝑔‘suc 𝑏)))) ∧ 𝑐 ∈ (𝑛 +o 𝑚)) ∧ ¬ 𝑐𝑛) → ¬ suc 𝑐 ∈ suc 𝑛)
327326iffalsed 4467 . . . . . . . . . . . . 13 (((((𝑛 ∈ (ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o)) ∧ ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑧) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔𝑚) = 𝑦) ∧ ∀𝑏𝑚 (𝑔𝑏)𝑅(𝑔‘suc 𝑏)))) ∧ 𝑐 ∈ (𝑛 +o 𝑚)) ∧ ¬ 𝑐𝑛) → if(suc 𝑐 ∈ suc 𝑛, (𝑓‘suc 𝑐), (𝑔‘(𝑞 ∈ ω (𝑛 +o 𝑞) = suc 𝑐))) = (𝑔‘(𝑞 ∈ ω (𝑛 +o 𝑞) = suc 𝑐)))
328322, 327breqtrrd 5098 . . . . . . . . . . . 12 (((((𝑛 ∈ (ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o)) ∧ ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑧) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔𝑚) = 𝑦) ∧ ∀𝑏𝑚 (𝑔𝑏)𝑅(𝑔‘suc 𝑏)))) ∧ 𝑐 ∈ (𝑛 +o 𝑚)) ∧ ¬ 𝑐𝑛) → if(𝑐 ∈ suc 𝑛, (𝑓𝑐), (𝑔‘(𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑐)))𝑅if(suc 𝑐 ∈ suc 𝑛, (𝑓‘suc 𝑐), (𝑔‘(𝑞 ∈ ω (𝑛 +o 𝑞) = suc 𝑐))))
329140, 328pm2.61dan 809 . . . . . . . . . . 11 ((((𝑛 ∈ (ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o)) ∧ ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑧) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔𝑚) = 𝑦) ∧ ∀𝑏𝑚 (𝑔𝑏)𝑅(𝑔‘suc 𝑏)))) ∧ 𝑐 ∈ (𝑛 +o 𝑚)) → if(𝑐 ∈ suc 𝑛, (𝑓𝑐), (𝑔‘(𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑐)))𝑅if(suc 𝑐 ∈ suc 𝑛, (𝑓‘suc 𝑐), (𝑔‘(𝑞 ∈ ω (𝑛 +o 𝑞) = suc 𝑐))))
330 elelsuc 6323 . . . . . . . . . . . . 13 (𝑐 ∈ (𝑛 +o 𝑚) → 𝑐 ∈ suc (𝑛 +o 𝑚))
331330adantl 481 . . . . . . . . . . . 12 ((((𝑛 ∈ (ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o)) ∧ ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑧) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔𝑚) = 𝑦) ∧ ∀𝑏𝑚 (𝑔𝑏)𝑅(𝑔‘suc 𝑏)))) ∧ 𝑐 ∈ (𝑛 +o 𝑚)) → 𝑐 ∈ suc (𝑛 +o 𝑚))
332 eleq1 2826 . . . . . . . . . . . . . 14 (𝑝 = 𝑐 → (𝑝 ∈ suc 𝑛𝑐 ∈ suc 𝑛))
333 fveq2 6756 . . . . . . . . . . . . . 14 (𝑝 = 𝑐 → (𝑓𝑝) = (𝑓𝑐))
334 eqeq2 2750 . . . . . . . . . . . . . . . 16 (𝑝 = 𝑐 → ((𝑛 +o 𝑞) = 𝑝 ↔ (𝑛 +o 𝑞) = 𝑐))
335334riotabidv 7214 . . . . . . . . . . . . . . 15 (𝑝 = 𝑐 → (𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑝) = (𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑐))
336335fveq2d 6760 . . . . . . . . . . . . . 14 (𝑝 = 𝑐 → (𝑔‘(𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑝)) = (𝑔‘(𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑐)))
337332, 333, 336ifbieq12d 4484 . . . . . . . . . . . . 13 (𝑝 = 𝑐 → if(𝑝 ∈ suc 𝑛, (𝑓𝑝), (𝑔‘(𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑝))) = if(𝑐 ∈ suc 𝑛, (𝑓𝑐), (𝑔‘(𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑐))))
338 fvex 6769 . . . . . . . . . . . . . 14 (𝑓𝑐) ∈ V
339 fvex 6769 . . . . . . . . . . . . . 14 (𝑔‘(𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑐)) ∈ V
340338, 339ifex 4506 . . . . . . . . . . . . 13 if(𝑐 ∈ suc 𝑛, (𝑓𝑐), (𝑔‘(𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑐))) ∈ V
341337, 32, 340fvmpt 6857 . . . . . . . . . . . 12 (𝑐 ∈ suc (𝑛 +o 𝑚) → ((𝑝 ∈ suc (𝑛 +o 𝑚) ↦ if(𝑝 ∈ suc 𝑛, (𝑓𝑝), (𝑔‘(𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑝))))‘𝑐) = if(𝑐 ∈ suc 𝑛, (𝑓𝑐), (𝑔‘(𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑐))))
342331, 341syl 17 . . . . . . . . . . 11 ((((𝑛 ∈ (ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o)) ∧ ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑧) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔𝑚) = 𝑦) ∧ ∀𝑏𝑚 (𝑔𝑏)𝑅(𝑔‘suc 𝑏)))) ∧ 𝑐 ∈ (𝑛 +o 𝑚)) → ((𝑝 ∈ suc (𝑛 +o 𝑚) ↦ if(𝑝 ∈ suc 𝑛, (𝑓𝑝), (𝑔‘(𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑝))))‘𝑐) = if(𝑐 ∈ suc 𝑛, (𝑓𝑐), (𝑔‘(𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑐))))
343 ordsucelsuc 7644 . . . . . . . . . . . . . . 15 (Ord (𝑛 +o 𝑚) → (𝑐 ∈ (𝑛 +o 𝑚) ↔ suc 𝑐 ∈ suc (𝑛 +o 𝑚)))
34419, 343syl 17 . . . . . . . . . . . . . 14 ((𝑛 ∈ (ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o)) → (𝑐 ∈ (𝑛 +o 𝑚) ↔ suc 𝑐 ∈ suc (𝑛 +o 𝑚)))
345344adantr 480 . . . . . . . . . . . . 13 (((𝑛 ∈ (ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o)) ∧ ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑧) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔𝑚) = 𝑦) ∧ ∀𝑏𝑚 (𝑔𝑏)𝑅(𝑔‘suc 𝑏)))) → (𝑐 ∈ (𝑛 +o 𝑚) ↔ suc 𝑐 ∈ suc (𝑛 +o 𝑚)))
346345biimpa 476 . . . . . . . . . . . 12 ((((𝑛 ∈ (ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o)) ∧ ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑧) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔𝑚) = 𝑦) ∧ ∀𝑏𝑚 (𝑔𝑏)𝑅(𝑔‘suc 𝑏)))) ∧ 𝑐 ∈ (𝑛 +o 𝑚)) → suc 𝑐 ∈ suc (𝑛 +o 𝑚))
347 eleq1 2826 . . . . . . . . . . . . . 14 (𝑝 = suc 𝑐 → (𝑝 ∈ suc 𝑛 ↔ suc 𝑐 ∈ suc 𝑛))
348 fveq2 6756 . . . . . . . . . . . . . 14 (𝑝 = suc 𝑐 → (𝑓𝑝) = (𝑓‘suc 𝑐))
349 eqeq2 2750 . . . . . . . . . . . . . . . 16 (𝑝 = suc 𝑐 → ((𝑛 +o 𝑞) = 𝑝 ↔ (𝑛 +o 𝑞) = suc 𝑐))
350349riotabidv 7214 . . . . . . . . . . . . . . 15 (𝑝 = suc 𝑐 → (𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑝) = (𝑞 ∈ ω (𝑛 +o 𝑞) = suc 𝑐))
351350fveq2d 6760 . . . . . . . . . . . . . 14 (𝑝 = suc 𝑐 → (𝑔‘(𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑝)) = (𝑔‘(𝑞 ∈ ω (𝑛 +o 𝑞) = suc 𝑐)))
352347, 348, 351ifbieq12d 4484 . . . . . . . . . . . . 13 (𝑝 = suc 𝑐 → if(𝑝 ∈ suc 𝑛, (𝑓𝑝), (𝑔‘(𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑝))) = if(suc 𝑐 ∈ suc 𝑛, (𝑓‘suc 𝑐), (𝑔‘(𝑞 ∈ ω (𝑛 +o 𝑞) = suc 𝑐))))
353 fvex 6769 . . . . . . . . . . . . . 14 (𝑓‘suc 𝑐) ∈ V
354 fvex 6769 . . . . . . . . . . . . . 14 (𝑔‘(𝑞 ∈ ω (𝑛 +o 𝑞) = suc 𝑐)) ∈ V
355353, 354ifex 4506 . . . . . . . . . . . . 13 if(suc 𝑐 ∈ suc 𝑛, (𝑓‘suc 𝑐), (𝑔‘(𝑞 ∈ ω (𝑛 +o 𝑞) = suc 𝑐))) ∈ V
356352, 32, 355fvmpt 6857 . . . . . . . . . . . 12 (suc 𝑐 ∈ suc (𝑛 +o 𝑚) → ((𝑝 ∈ suc (𝑛 +o 𝑚) ↦ if(𝑝 ∈ suc 𝑛, (𝑓𝑝), (𝑔‘(𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑝))))‘suc 𝑐) = if(suc 𝑐 ∈ suc 𝑛, (𝑓‘suc 𝑐), (𝑔‘(𝑞 ∈ ω (𝑛 +o 𝑞) = suc 𝑐))))
357346, 356syl 17 . . . . . . . . . . 11 ((((𝑛 ∈ (ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o)) ∧ ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑧) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔𝑚) = 𝑦) ∧ ∀𝑏𝑚 (𝑔𝑏)𝑅(𝑔‘suc 𝑏)))) ∧ 𝑐 ∈ (𝑛 +o 𝑚)) → ((𝑝 ∈ suc (𝑛 +o 𝑚) ↦ if(𝑝 ∈ suc 𝑛, (𝑓𝑝), (𝑔‘(𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑝))))‘suc 𝑐) = if(suc 𝑐 ∈ suc 𝑛, (𝑓‘suc 𝑐), (𝑔‘(𝑞 ∈ ω (𝑛 +o 𝑞) = suc 𝑐))))
358329, 342, 3573brtr4d 5102 . . . . . . . . . 10 ((((𝑛 ∈ (ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o)) ∧ ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑧) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔𝑚) = 𝑦) ∧ ∀𝑏𝑚 (𝑔𝑏)𝑅(𝑔‘suc 𝑏)))) ∧ 𝑐 ∈ (𝑛 +o 𝑚)) → ((𝑝 ∈ suc (𝑛 +o 𝑚) ↦ if(𝑝 ∈ suc 𝑛, (𝑓𝑝), (𝑔‘(𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑝))))‘𝑐)𝑅((𝑝 ∈ suc (𝑛 +o 𝑚) ↦ if(𝑝 ∈ suc 𝑛, (𝑓𝑝), (𝑔‘(𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑝))))‘suc 𝑐))
359358ralrimiva 3107 . . . . . . . . 9 (((𝑛 ∈ (ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o)) ∧ ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑧) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔𝑚) = 𝑦) ∧ ∀𝑏𝑚 (𝑔𝑏)𝑅(𝑔‘suc 𝑏)))) → ∀𝑐 ∈ (𝑛 +o 𝑚)((𝑝 ∈ suc (𝑛 +o 𝑚) ↦ if(𝑝 ∈ suc 𝑛, (𝑓𝑝), (𝑔‘(𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑝))))‘𝑐)𝑅((𝑝 ∈ suc (𝑛 +o 𝑚) ↦ if(𝑝 ∈ suc 𝑛, (𝑓𝑝), (𝑔‘(𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑝))))‘suc 𝑐))
360 fvex 6769 . . . . . . . . . . . 12 (𝑓𝑝) ∈ V
361 fvex 6769 . . . . . . . . . . . 12 (𝑔‘(𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑝)) ∈ V
362360, 361ifex 4506 . . . . . . . . . . 11 if(𝑝 ∈ suc 𝑛, (𝑓𝑝), (𝑔‘(𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑝))) ∈ V
363362, 32fnmpti 6560 . . . . . . . . . 10 (𝑝 ∈ suc (𝑛 +o 𝑚) ↦ if(𝑝 ∈ suc 𝑛, (𝑓𝑝), (𝑔‘(𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑝)))) Fn suc (𝑛 +o 𝑚)
36446sucex 7633 . . . . . . . . . . . 12 suc (𝑛 +o 𝑚) ∈ V
365364mptex 7081 . . . . . . . . . . 11 (𝑝 ∈ suc (𝑛 +o 𝑚) ↦ if(𝑝 ∈ suc 𝑛, (𝑓𝑝), (𝑔‘(𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑝)))) ∈ V
366 fneq1 6508 . . . . . . . . . . . 12 ( = (𝑝 ∈ suc (𝑛 +o 𝑚) ↦ if(𝑝 ∈ suc 𝑛, (𝑓𝑝), (𝑔‘(𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑝)))) → ( Fn suc (𝑛 +o 𝑚) ↔ (𝑝 ∈ suc (𝑛 +o 𝑚) ↦ if(𝑝 ∈ suc 𝑛, (𝑓𝑝), (𝑔‘(𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑝)))) Fn suc (𝑛 +o 𝑚)))
367 fveq1 6755 . . . . . . . . . . . . . 14 ( = (𝑝 ∈ suc (𝑛 +o 𝑚) ↦ if(𝑝 ∈ suc 𝑛, (𝑓𝑝), (𝑔‘(𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑝)))) → (‘∅) = ((𝑝 ∈ suc (𝑛 +o 𝑚) ↦ if(𝑝 ∈ suc 𝑛, (𝑓𝑝), (𝑔‘(𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑝))))‘∅))
368367eqeq1d 2740 . . . . . . . . . . . . 13 ( = (𝑝 ∈ suc (𝑛 +o 𝑚) ↦ if(𝑝 ∈ suc 𝑛, (𝑓𝑝), (𝑔‘(𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑝)))) → ((‘∅) = 𝑥 ↔ ((𝑝 ∈ suc (𝑛 +o 𝑚) ↦ if(𝑝 ∈ suc 𝑛, (𝑓𝑝), (𝑔‘(𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑝))))‘∅) = 𝑥))
369 fveq1 6755 . . . . . . . . . . . . . 14 ( = (𝑝 ∈ suc (𝑛 +o 𝑚) ↦ if(𝑝 ∈ suc 𝑛, (𝑓𝑝), (𝑔‘(𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑝)))) → (‘(𝑛 +o 𝑚)) = ((𝑝 ∈ suc (𝑛 +o 𝑚) ↦ if(𝑝 ∈ suc 𝑛, (𝑓𝑝), (𝑔‘(𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑝))))‘(𝑛 +o 𝑚)))
370369eqeq1d 2740 . . . . . . . . . . . . 13 ( = (𝑝 ∈ suc (𝑛 +o 𝑚) ↦ if(𝑝 ∈ suc 𝑛, (𝑓𝑝), (𝑔‘(𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑝)))) → ((‘(𝑛 +o 𝑚)) = 𝑦 ↔ ((𝑝 ∈ suc (𝑛 +o 𝑚) ↦ if(𝑝 ∈ suc 𝑛, (𝑓𝑝), (𝑔‘(𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑝))))‘(𝑛 +o 𝑚)) = 𝑦))
371368, 370anbi12d 630 . . . . . . . . . . . 12 ( = (𝑝 ∈ suc (𝑛 +o 𝑚) ↦ if(𝑝 ∈ suc 𝑛, (𝑓𝑝), (𝑔‘(𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑝)))) → (((‘∅) = 𝑥 ∧ (‘(𝑛 +o 𝑚)) = 𝑦) ↔ (((𝑝 ∈ suc (𝑛 +o 𝑚) ↦ if(𝑝 ∈ suc 𝑛, (𝑓𝑝), (𝑔‘(𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑝))))‘∅) = 𝑥 ∧ ((𝑝 ∈ suc (𝑛 +o 𝑚) ↦ if(𝑝 ∈ suc 𝑛, (𝑓𝑝), (𝑔‘(𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑝))))‘(𝑛 +o 𝑚)) = 𝑦)))
372 fveq1 6755 . . . . . . . . . . . . . 14 ( = (𝑝 ∈ suc (𝑛 +o 𝑚) ↦ if(𝑝 ∈ suc 𝑛, (𝑓𝑝), (𝑔‘(𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑝)))) → (𝑐) = ((𝑝 ∈ suc (𝑛 +o 𝑚) ↦ if(𝑝 ∈ suc 𝑛, (𝑓𝑝), (𝑔‘(𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑝))))‘𝑐))
373 fveq1 6755 . . . . . . . . . . . . . 14 ( = (𝑝 ∈ suc (𝑛 +o 𝑚) ↦ if(𝑝 ∈ suc 𝑛, (𝑓𝑝), (𝑔‘(𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑝)))) → (‘suc 𝑐) = ((𝑝 ∈ suc (𝑛 +o 𝑚) ↦ if(𝑝 ∈ suc 𝑛, (𝑓𝑝), (𝑔‘(𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑝))))‘suc 𝑐))
374372, 373breq12d 5083 . . . . . . . . . . . . 13 ( = (𝑝 ∈ suc (𝑛 +o 𝑚) ↦ if(𝑝 ∈ suc 𝑛, (𝑓𝑝), (𝑔‘(𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑝)))) → ((𝑐)𝑅(‘suc 𝑐) ↔ ((𝑝 ∈ suc (𝑛 +o 𝑚) ↦ if(𝑝 ∈ suc 𝑛, (𝑓𝑝), (𝑔‘(𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑝))))‘𝑐)𝑅((𝑝 ∈ suc (𝑛 +o 𝑚) ↦ if(𝑝 ∈ suc 𝑛, (𝑓𝑝), (𝑔‘(𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑝))))‘suc 𝑐)))
375374ralbidv 3120 . . . . . . . . . . . 12 ( = (𝑝 ∈ suc (𝑛 +o 𝑚) ↦ if(𝑝 ∈ suc 𝑛, (𝑓𝑝), (𝑔‘(𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑝)))) → (∀𝑐 ∈ (𝑛 +o 𝑚)(𝑐)𝑅(‘suc 𝑐) ↔ ∀𝑐 ∈ (𝑛 +o 𝑚)((𝑝 ∈ suc (𝑛 +o 𝑚) ↦ if(𝑝 ∈ suc 𝑛, (𝑓𝑝), (𝑔‘(𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑝))))‘𝑐)𝑅((𝑝 ∈ suc (𝑛 +o 𝑚) ↦ if(𝑝 ∈ suc 𝑛, (𝑓𝑝), (𝑔‘(𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑝))))‘suc 𝑐)))
376366, 371, 3753anbi123d 1434 . . . . . . . . . . 11 ( = (𝑝 ∈ suc (𝑛 +o 𝑚) ↦ if(𝑝 ∈ suc 𝑛, (𝑓𝑝), (𝑔‘(𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑝)))) → (( Fn suc (𝑛 +o 𝑚) ∧ ((‘∅) = 𝑥 ∧ (‘(𝑛 +o 𝑚)) = 𝑦) ∧ ∀𝑐 ∈ (𝑛 +o 𝑚)(𝑐)𝑅(‘suc 𝑐)) ↔ ((𝑝 ∈ suc (𝑛 +o 𝑚) ↦ if(𝑝 ∈ suc 𝑛, (𝑓𝑝), (𝑔‘(𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑝)))) Fn suc (𝑛 +o 𝑚) ∧ (((𝑝 ∈ suc (𝑛 +o 𝑚) ↦ if(𝑝 ∈ suc 𝑛, (𝑓𝑝), (𝑔‘(𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑝))))‘∅) = 𝑥 ∧ ((𝑝 ∈ suc (𝑛 +o 𝑚) ↦ if(𝑝 ∈ suc 𝑛, (𝑓𝑝), (𝑔‘(𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑝))))‘(𝑛 +o 𝑚)) = 𝑦) ∧ ∀𝑐 ∈ (𝑛 +o 𝑚)((𝑝 ∈ suc (𝑛 +o 𝑚) ↦ if(𝑝 ∈ suc 𝑛, (𝑓𝑝), (𝑔‘(𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑝))))‘𝑐)𝑅((𝑝 ∈ suc (𝑛 +o 𝑚) ↦ if(𝑝 ∈ suc 𝑛, (𝑓𝑝), (𝑔‘(𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑝))))‘suc 𝑐))))
377365, 376spcev 3535 . . . . . . . . . 10 (((𝑝 ∈ suc (𝑛 +o 𝑚) ↦ if(𝑝 ∈ suc 𝑛, (𝑓𝑝), (𝑔‘(𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑝)))) Fn suc (𝑛 +o 𝑚) ∧ (((𝑝 ∈ suc (𝑛 +o 𝑚) ↦ if(𝑝 ∈ suc 𝑛, (𝑓𝑝), (𝑔‘(𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑝))))‘∅) = 𝑥 ∧ ((𝑝 ∈ suc (𝑛 +o 𝑚) ↦ if(𝑝 ∈ suc 𝑛, (𝑓𝑝), (𝑔‘(𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑝))))‘(𝑛 +o 𝑚)) = 𝑦) ∧ ∀𝑐 ∈ (𝑛 +o 𝑚)((𝑝 ∈ suc (𝑛 +o 𝑚) ↦ if(𝑝 ∈ suc 𝑛, (𝑓𝑝), (𝑔‘(𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑝))))‘𝑐)𝑅((𝑝 ∈ suc (𝑛 +o 𝑚) ↦ if(𝑝 ∈ suc 𝑛, (𝑓𝑝), (𝑔‘(𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑝))))‘suc 𝑐)) → ∃( Fn suc (𝑛 +o 𝑚) ∧ ((‘∅) = 𝑥 ∧ (‘(𝑛 +o 𝑚)) = 𝑦) ∧ ∀𝑐 ∈ (𝑛 +o 𝑚)(𝑐)𝑅(‘suc 𝑐)))
378363, 377mp3an1 1446 . . . . . . . . 9 (((((𝑝 ∈ suc (𝑛 +o 𝑚) ↦ if(𝑝 ∈ suc 𝑛, (𝑓𝑝), (𝑔‘(𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑝))))‘∅) = 𝑥 ∧ ((𝑝 ∈ suc (𝑛 +o 𝑚) ↦ if(𝑝 ∈ suc 𝑛, (𝑓𝑝), (𝑔‘(𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑝))))‘(𝑛 +o 𝑚)) = 𝑦) ∧ ∀𝑐 ∈ (𝑛 +o 𝑚)((𝑝 ∈ suc (𝑛 +o 𝑚) ↦ if(𝑝 ∈ suc 𝑛, (𝑓𝑝), (𝑔‘(𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑝))))‘𝑐)𝑅((𝑝 ∈ suc (𝑛 +o 𝑚) ↦ if(𝑝 ∈ suc 𝑛, (𝑓𝑝), (𝑔‘(𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑝))))‘suc 𝑐)) → ∃( Fn suc (𝑛 +o 𝑚) ∧ ((‘∅) = 𝑥 ∧ (‘(𝑛 +o 𝑚)) = 𝑦) ∧ ∀𝑐 ∈ (𝑛 +o 𝑚)(𝑐)𝑅(‘suc 𝑐)))
37945, 123, 359, 378syl21anc 834 . . . . . . . 8 (((𝑛 ∈ (ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o)) ∧ ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑧) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔𝑚) = 𝑦) ∧ ∀𝑏𝑚 (𝑔𝑏)𝑅(𝑔‘suc 𝑏)))) → ∃( Fn suc (𝑛 +o 𝑚) ∧ ((‘∅) = 𝑥 ∧ (‘(𝑛 +o 𝑚)) = 𝑦) ∧ ∀𝑐 ∈ (𝑛 +o 𝑚)(𝑐)𝑅(‘suc 𝑐)))
380 suceq 6316 . . . . . . . . . . . 12 (𝑝 = (𝑛 +o 𝑚) → suc 𝑝 = suc (𝑛 +o 𝑚))
381380fneq2d 6511 . . . . . . . . . . 11 (𝑝 = (𝑛 +o 𝑚) → ( Fn suc 𝑝 Fn suc (𝑛 +o 𝑚)))
382 fveqeq2 6765 . . . . . . . . . . . 12 (𝑝 = (𝑛 +o 𝑚) → ((𝑝) = 𝑦 ↔ (‘(𝑛 +o 𝑚)) = 𝑦))
383382anbi2d 628 . . . . . . . . . . 11 (𝑝 = (𝑛 +o 𝑚) → (((‘∅) = 𝑥 ∧ (𝑝) = 𝑦) ↔ ((‘∅) = 𝑥 ∧ (‘(𝑛 +o 𝑚)) = 𝑦)))
384 raleq 3333 . . . . . . . . . . 11 (𝑝 = (𝑛 +o 𝑚) → (∀𝑐𝑝 (𝑐)𝑅(‘suc 𝑐) ↔ ∀𝑐 ∈ (𝑛 +o 𝑚)(𝑐)𝑅(‘suc 𝑐)))
385381, 383, 3843anbi123d 1434 . . . . . . . . . 10 (𝑝 = (𝑛 +o 𝑚) → (( Fn suc 𝑝 ∧ ((‘∅) = 𝑥 ∧ (𝑝) = 𝑦) ∧ ∀𝑐𝑝 (𝑐)𝑅(‘suc 𝑐)) ↔ ( Fn suc (𝑛 +o 𝑚) ∧ ((‘∅) = 𝑥 ∧ (‘(𝑛 +o 𝑚)) = 𝑦) ∧ ∀𝑐 ∈ (𝑛 +o 𝑚)(𝑐)𝑅(‘suc 𝑐))))
386385exbidv 1925 . . . . . . . . 9 (𝑝 = (𝑛 +o 𝑚) → (∃( Fn suc 𝑝 ∧ ((‘∅) = 𝑥 ∧ (𝑝) = 𝑦) ∧ ∀𝑐𝑝 (𝑐)𝑅(‘suc 𝑐)) ↔ ∃( Fn suc (𝑛 +o 𝑚) ∧ ((‘∅) = 𝑥 ∧ (‘(𝑛 +o 𝑚)) = 𝑦) ∧ ∀𝑐 ∈ (𝑛 +o 𝑚)(𝑐)𝑅(‘suc 𝑐))))
387386rspcev 3552 . . . . . . . 8 (((𝑛 +o 𝑚) ∈ (ω ∖ 1o) ∧ ∃( Fn suc (𝑛 +o 𝑚) ∧ ((‘∅) = 𝑥 ∧ (‘(𝑛 +o 𝑚)) = 𝑦) ∧ ∀𝑐 ∈ (𝑛 +o 𝑚)(𝑐)𝑅(‘suc 𝑐))) → ∃𝑝 ∈ (ω ∖ 1o)∃( Fn suc 𝑝 ∧ ((‘∅) = 𝑥 ∧ (𝑝) = 𝑦) ∧ ∀𝑐𝑝 (𝑐)𝑅(‘suc 𝑐)))
38823, 379, 387syl2an2r 681 . . . . . . 7 (((𝑛 ∈ (ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o)) ∧ ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑧) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔𝑚) = 𝑦) ∧ ∀𝑏𝑚 (𝑔𝑏)𝑅(𝑔‘suc 𝑏)))) → ∃𝑝 ∈ (ω ∖ 1o)∃( Fn suc 𝑝 ∧ ((‘∅) = 𝑥 ∧ (𝑝) = 𝑦) ∧ ∀𝑐𝑝 (𝑐)𝑅(‘suc 𝑐)))
389388ex 412 . . . . . 6 ((𝑛 ∈ (ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o)) → (((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑧) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔𝑚) = 𝑦) ∧ ∀𝑏𝑚 (𝑔𝑏)𝑅(𝑔‘suc 𝑏))) → ∃𝑝 ∈ (ω ∖ 1o)∃( Fn suc 𝑝 ∧ ((‘∅) = 𝑥 ∧ (𝑝) = 𝑦) ∧ ∀𝑐𝑝 (𝑐)𝑅(‘suc 𝑐))))
390389exlimdvv 1938 . . . . 5 ((𝑛 ∈ (ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o)) → (∃𝑓𝑔((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑧) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔𝑚) = 𝑦) ∧ ∀𝑏𝑚 (𝑔𝑏)𝑅(𝑔‘suc 𝑏))) → ∃𝑝 ∈ (ω ∖ 1o)∃( Fn suc 𝑝 ∧ ((‘∅) = 𝑥 ∧ (𝑝) = 𝑦) ∧ ∀𝑐𝑝 (𝑐)𝑅(‘suc 𝑐))))
391390rexlimivv 3220 . . . 4 (∃𝑛 ∈ (ω ∖ 1o)∃𝑚 ∈ (ω ∖ 1o)∃𝑓𝑔((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑧) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔𝑚) = 𝑦) ∧ ∀𝑏𝑚 (𝑔𝑏)𝑅(𝑔‘suc 𝑏))) → ∃𝑝 ∈ (ω ∖ 1o)∃( Fn suc 𝑝 ∧ ((‘∅) = 𝑥 ∧ (𝑝) = 𝑦) ∧ ∀𝑐𝑝 (𝑐)𝑅(‘suc 𝑐)))
392391exlimiv 1934 . . 3 (∃𝑧𝑛 ∈ (ω ∖ 1o)∃𝑚 ∈ (ω ∖ 1o)∃𝑓𝑔((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑧) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔𝑚) = 𝑦) ∧ ∀𝑏𝑚 (𝑔𝑏)𝑅(𝑔‘suc 𝑏))) → ∃𝑝 ∈ (ω ∖ 1o)∃( Fn suc 𝑝 ∧ ((‘∅) = 𝑥 ∧ (𝑝) = 𝑦) ∧ ∀𝑐𝑝 (𝑐)𝑅(‘suc 𝑐)))
393 vex 3426 . . . . 5 𝑥 ∈ V
394 vex 3426 . . . . 5 𝑦 ∈ V
395393, 394opelco 5769 . . . 4 (⟨𝑥, 𝑦⟩ ∈ (t++𝑅 ∘ t++𝑅) ↔ ∃𝑧(𝑥t++𝑅𝑧𝑧t++𝑅𝑦))
396 reeanv 3292 . . . . . 6 (∃𝑛 ∈ (ω ∖ 1o)∃𝑚 ∈ (ω ∖ 1o)(∃𝑓(𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑧) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎)) ∧ ∃𝑔(𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔𝑚) = 𝑦) ∧ ∀𝑏𝑚 (𝑔𝑏)𝑅(𝑔‘suc 𝑏))) ↔ (∃𝑛 ∈ (ω ∖ 1o)∃𝑓(𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑧) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎)) ∧ ∃𝑚 ∈ (ω ∖ 1o)∃𝑔(𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔𝑚) = 𝑦) ∧ ∀𝑏𝑚 (𝑔𝑏)𝑅(𝑔‘suc 𝑏))))
397 eeanv 2349 . . . . . . 7 (∃𝑓𝑔((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑧) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔𝑚) = 𝑦) ∧ ∀𝑏𝑚 (𝑔𝑏)𝑅(𝑔‘suc 𝑏))) ↔ (∃𝑓(𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑧) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎)) ∧ ∃𝑔(𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔𝑚) = 𝑦) ∧ ∀𝑏𝑚 (𝑔𝑏)𝑅(𝑔‘suc 𝑏))))
3983972rexbii 3178 . . . . . 6 (∃𝑛 ∈ (ω ∖ 1o)∃𝑚 ∈ (ω ∖ 1o)∃𝑓𝑔((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑧) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔𝑚) = 𝑦) ∧ ∀𝑏𝑚 (𝑔𝑏)𝑅(𝑔‘suc 𝑏))) ↔ ∃𝑛 ∈ (ω ∖ 1o)∃𝑚 ∈ (ω ∖ 1o)(∃𝑓(𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑧) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎)) ∧ ∃𝑔(𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔𝑚) = 𝑦) ∧ ∀𝑏𝑚 (𝑔𝑏)𝑅(𝑔‘suc 𝑏))))
399 brttrcl 33699 . . . . . . 7 (𝑥t++𝑅𝑧 ↔ ∃𝑛 ∈ (ω ∖ 1o)∃𝑓(𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑧) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎)))
400 brttrcl 33699 . . . . . . 7 (𝑧t++𝑅𝑦 ↔ ∃𝑚 ∈ (ω ∖ 1o)∃𝑔(𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔𝑚) = 𝑦) ∧ ∀𝑏𝑚 (𝑔𝑏)𝑅(𝑔‘suc 𝑏)))
401399, 400anbi12i 626 . . . . . 6 ((𝑥t++𝑅𝑧𝑧t++𝑅𝑦) ↔ (∃𝑛 ∈ (ω ∖ 1o)∃𝑓(𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑧) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎)) ∧ ∃𝑚 ∈ (ω ∖ 1o)∃𝑔(𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔𝑚) = 𝑦) ∧ ∀𝑏𝑚 (𝑔𝑏)𝑅(𝑔‘suc 𝑏))))
402396, 398, 4013bitr4ri 303 . . . . 5 ((𝑥t++𝑅𝑧𝑧t++𝑅𝑦) ↔ ∃𝑛 ∈ (ω ∖ 1o)∃𝑚 ∈ (ω ∖ 1o)∃𝑓𝑔((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑧) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔𝑚) = 𝑦) ∧ ∀𝑏𝑚 (𝑔𝑏)𝑅(𝑔‘suc 𝑏))))
403402exbii 1851 . . . 4 (∃𝑧(𝑥t++𝑅𝑧𝑧t++𝑅𝑦) ↔ ∃𝑧𝑛 ∈ (ω ∖ 1o)∃𝑚 ∈ (ω ∖ 1o)∃𝑓𝑔((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑧) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔𝑚) = 𝑦) ∧ ∀𝑏𝑚 (𝑔𝑏)𝑅(𝑔‘suc 𝑏))))
404395, 403bitri 274 . . 3 (⟨𝑥, 𝑦⟩ ∈ (t++𝑅 ∘ t++𝑅) ↔ ∃𝑧𝑛 ∈ (ω ∖ 1o)∃𝑚 ∈ (ω ∖ 1o)∃𝑓𝑔((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑧) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔𝑚) = 𝑦) ∧ ∀𝑏𝑚 (𝑔𝑏)𝑅(𝑔‘suc 𝑏))))
405 df-br 5071 . . . 4 (𝑥t++𝑅𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ t++𝑅)
406 brttrcl 33699 . . . 4 (𝑥t++𝑅𝑦 ↔ ∃𝑝 ∈ (ω ∖ 1o)∃( Fn suc 𝑝 ∧ ((‘∅) = 𝑥 ∧ (𝑝) = 𝑦) ∧ ∀𝑐𝑝 (𝑐)𝑅(‘suc 𝑐)))
407405, 406bitr3i 276 . . 3 (⟨𝑥, 𝑦⟩ ∈ t++𝑅 ↔ ∃𝑝 ∈ (ω ∖ 1o)∃( Fn suc 𝑝 ∧ ((‘∅) = 𝑥 ∧ (𝑝) = 𝑦) ∧ ∀𝑐𝑝 (𝑐)𝑅(‘suc 𝑐)))
408392, 404, 4073imtr4i 291 . 2 (⟨𝑥, 𝑦⟩ ∈ (t++𝑅 ∘ t++𝑅) → ⟨𝑥, 𝑦⟩ ∈ t++𝑅)
4091, 408relssi 5686 1 (t++𝑅 ∘ t++𝑅) ⊆ t++𝑅
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  wo 843  w3o 1084  w3a 1085   = wceq 1539  wex 1783  wcel 2108  wral 3063  wrex 3064  ∃!wreu 3065  ∃*wrmo 3066  Vcvv 3422  cdif 3880  wss 3883  c0 4253  ifcif 4456  cop 4564   class class class wbr 5070  cmpt 5153  ccom 5584  Ord word 6250  Oncon0 6251  suc csuc 6253   Fn wfn 6413  cfv 6418  crio 7211  (class class class)co 7255  ωcom 7687  1oc1o 8260   +o coa 8264  t++cttrcl 33693
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-oadd 8271  df-ttrcl 33694
This theorem is referenced by:  ttrclco  33704  cottrcl  33705  dfttrcl2  33710
  Copyright terms: Public domain W3C validator