MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ttrcltr Structured version   Visualization version   GIF version

Theorem ttrcltr 9474
Description: The transitive closure of a class is transitive. (Contributed by Scott Fenton, 17-Oct-2024.)
Assertion
Ref Expression
ttrcltr (t++𝑅 ∘ t++𝑅) ⊆ t++𝑅

Proof of Theorem ttrcltr
Dummy variables 𝑎 𝑏 𝑐 𝑓 𝑔 𝑛 𝑚 𝑝 𝑞 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relco 6148 . 2 Rel (t++𝑅 ∘ t++𝑅)
2 eldifi 4061 . . . . . . . . . 10 (𝑛 ∈ (ω ∖ 1o) → 𝑛 ∈ ω)
3 eldifi 4061 . . . . . . . . . 10 (𝑚 ∈ (ω ∖ 1o) → 𝑚 ∈ ω)
4 nnacl 8442 . . . . . . . . . 10 ((𝑛 ∈ ω ∧ 𝑚 ∈ ω) → (𝑛 +o 𝑚) ∈ ω)
52, 3, 4syl2an 596 . . . . . . . . 9 ((𝑛 ∈ (ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o)) → (𝑛 +o 𝑚) ∈ ω)
6 eldif 3897 . . . . . . . . . . . . 13 (𝑛 ∈ (ω ∖ 1o) ↔ (𝑛 ∈ ω ∧ ¬ 𝑛 ∈ 1o))
7 1on 8309 . . . . . . . . . . . . . . . 16 1o ∈ On
87onordi 6371 . . . . . . . . . . . . . . 15 Ord 1o
9 nnord 7720 . . . . . . . . . . . . . . 15 (𝑛 ∈ ω → Ord 𝑛)
10 ordtri1 6299 . . . . . . . . . . . . . . 15 ((Ord 1o ∧ Ord 𝑛) → (1o𝑛 ↔ ¬ 𝑛 ∈ 1o))
118, 9, 10sylancr 587 . . . . . . . . . . . . . 14 (𝑛 ∈ ω → (1o𝑛 ↔ ¬ 𝑛 ∈ 1o))
1211biimpar 478 . . . . . . . . . . . . 13 ((𝑛 ∈ ω ∧ ¬ 𝑛 ∈ 1o) → 1o𝑛)
136, 12sylbi 216 . . . . . . . . . . . 12 (𝑛 ∈ (ω ∖ 1o) → 1o𝑛)
1413adantr 481 . . . . . . . . . . 11 ((𝑛 ∈ (ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o)) → 1o𝑛)
15 nnaword1 8460 . . . . . . . . . . . 12 ((𝑛 ∈ ω ∧ 𝑚 ∈ ω) → 𝑛 ⊆ (𝑛 +o 𝑚))
162, 3, 15syl2an 596 . . . . . . . . . . 11 ((𝑛 ∈ (ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o)) → 𝑛 ⊆ (𝑛 +o 𝑚))
1714, 16sstrd 3931 . . . . . . . . . 10 ((𝑛 ∈ (ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o)) → 1o ⊆ (𝑛 +o 𝑚))
18 nnord 7720 . . . . . . . . . . . 12 ((𝑛 +o 𝑚) ∈ ω → Ord (𝑛 +o 𝑚))
195, 18syl 17 . . . . . . . . . . 11 ((𝑛 ∈ (ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o)) → Ord (𝑛 +o 𝑚))
20 ordtri1 6299 . . . . . . . . . . 11 ((Ord 1o ∧ Ord (𝑛 +o 𝑚)) → (1o ⊆ (𝑛 +o 𝑚) ↔ ¬ (𝑛 +o 𝑚) ∈ 1o))
218, 19, 20sylancr 587 . . . . . . . . . 10 ((𝑛 ∈ (ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o)) → (1o ⊆ (𝑛 +o 𝑚) ↔ ¬ (𝑛 +o 𝑚) ∈ 1o))
2217, 21mpbid 231 . . . . . . . . 9 ((𝑛 ∈ (ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o)) → ¬ (𝑛 +o 𝑚) ∈ 1o)
235, 22eldifd 3898 . . . . . . . 8 ((𝑛 ∈ (ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o)) → (𝑛 +o 𝑚) ∈ (ω ∖ 1o))
24 0elsuc 7682 . . . . . . . . . . . . 13 (Ord (𝑛 +o 𝑚) → ∅ ∈ suc (𝑛 +o 𝑚))
2519, 24syl 17 . . . . . . . . . . . 12 ((𝑛 ∈ (ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o)) → ∅ ∈ suc (𝑛 +o 𝑚))
26 eleq1 2826 . . . . . . . . . . . . . 14 (𝑝 = ∅ → (𝑝 ∈ suc 𝑛 ↔ ∅ ∈ suc 𝑛))
27 fveq2 6774 . . . . . . . . . . . . . 14 (𝑝 = ∅ → (𝑓𝑝) = (𝑓‘∅))
28 eqeq2 2750 . . . . . . . . . . . . . . . 16 (𝑝 = ∅ → ((𝑛 +o 𝑞) = 𝑝 ↔ (𝑛 +o 𝑞) = ∅))
2928riotabidv 7234 . . . . . . . . . . . . . . 15 (𝑝 = ∅ → (𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑝) = (𝑞 ∈ ω (𝑛 +o 𝑞) = ∅))
3029fveq2d 6778 . . . . . . . . . . . . . 14 (𝑝 = ∅ → (𝑔‘(𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑝)) = (𝑔‘(𝑞 ∈ ω (𝑛 +o 𝑞) = ∅)))
3126, 27, 30ifbieq12d 4487 . . . . . . . . . . . . 13 (𝑝 = ∅ → if(𝑝 ∈ suc 𝑛, (𝑓𝑝), (𝑔‘(𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑝))) = if(∅ ∈ suc 𝑛, (𝑓‘∅), (𝑔‘(𝑞 ∈ ω (𝑛 +o 𝑞) = ∅))))
32 eqid 2738 . . . . . . . . . . . . 13 (𝑝 ∈ suc (𝑛 +o 𝑚) ↦ if(𝑝 ∈ suc 𝑛, (𝑓𝑝), (𝑔‘(𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑝)))) = (𝑝 ∈ suc (𝑛 +o 𝑚) ↦ if(𝑝 ∈ suc 𝑛, (𝑓𝑝), (𝑔‘(𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑝))))
33 fvex 6787 . . . . . . . . . . . . . 14 (𝑓‘∅) ∈ V
34 fvex 6787 . . . . . . . . . . . . . 14 (𝑔‘(𝑞 ∈ ω (𝑛 +o 𝑞) = ∅)) ∈ V
3533, 34ifex 4509 . . . . . . . . . . . . 13 if(∅ ∈ suc 𝑛, (𝑓‘∅), (𝑔‘(𝑞 ∈ ω (𝑛 +o 𝑞) = ∅))) ∈ V
3631, 32, 35fvmpt 6875 . . . . . . . . . . . 12 (∅ ∈ suc (𝑛 +o 𝑚) → ((𝑝 ∈ suc (𝑛 +o 𝑚) ↦ if(𝑝 ∈ suc 𝑛, (𝑓𝑝), (𝑔‘(𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑝))))‘∅) = if(∅ ∈ suc 𝑛, (𝑓‘∅), (𝑔‘(𝑞 ∈ ω (𝑛 +o 𝑞) = ∅))))
3725, 36syl 17 . . . . . . . . . . 11 ((𝑛 ∈ (ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o)) → ((𝑝 ∈ suc (𝑛 +o 𝑚) ↦ if(𝑝 ∈ suc 𝑛, (𝑓𝑝), (𝑔‘(𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑝))))‘∅) = if(∅ ∈ suc 𝑛, (𝑓‘∅), (𝑔‘(𝑞 ∈ ω (𝑛 +o 𝑞) = ∅))))
382adantr 481 . . . . . . . . . . . . . 14 ((𝑛 ∈ (ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o)) → 𝑛 ∈ ω)
3938, 9syl 17 . . . . . . . . . . . . 13 ((𝑛 ∈ (ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o)) → Ord 𝑛)
40 0elsuc 7682 . . . . . . . . . . . . 13 (Ord 𝑛 → ∅ ∈ suc 𝑛)
4139, 40syl 17 . . . . . . . . . . . 12 ((𝑛 ∈ (ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o)) → ∅ ∈ suc 𝑛)
4241iftrued 4467 . . . . . . . . . . 11 ((𝑛 ∈ (ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o)) → if(∅ ∈ suc 𝑛, (𝑓‘∅), (𝑔‘(𝑞 ∈ ω (𝑛 +o 𝑞) = ∅))) = (𝑓‘∅))
4337, 42eqtrd 2778 . . . . . . . . . 10 ((𝑛 ∈ (ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o)) → ((𝑝 ∈ suc (𝑛 +o 𝑚) ↦ if(𝑝 ∈ suc 𝑛, (𝑓𝑝), (𝑔‘(𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑝))))‘∅) = (𝑓‘∅))
44 simpl2l 1225 . . . . . . . . . 10 (((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑧) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔𝑚) = 𝑦) ∧ ∀𝑏𝑚 (𝑔𝑏)𝑅(𝑔‘suc 𝑏))) → (𝑓‘∅) = 𝑥)
4543, 44sylan9eq 2798 . . . . . . . . 9 (((𝑛 ∈ (ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o)) ∧ ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑧) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔𝑚) = 𝑦) ∧ ∀𝑏𝑚 (𝑔𝑏)𝑅(𝑔‘suc 𝑏)))) → ((𝑝 ∈ suc (𝑛 +o 𝑚) ↦ if(𝑝 ∈ suc 𝑛, (𝑓𝑝), (𝑔‘(𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑝))))‘∅) = 𝑥)
46 ovex 7308 . . . . . . . . . . . . 13 (𝑛 +o 𝑚) ∈ V
4746sucid 6345 . . . . . . . . . . . 12 (𝑛 +o 𝑚) ∈ suc (𝑛 +o 𝑚)
48 eleq1 2826 . . . . . . . . . . . . . 14 (𝑝 = (𝑛 +o 𝑚) → (𝑝 ∈ suc 𝑛 ↔ (𝑛 +o 𝑚) ∈ suc 𝑛))
49 fveq2 6774 . . . . . . . . . . . . . 14 (𝑝 = (𝑛 +o 𝑚) → (𝑓𝑝) = (𝑓‘(𝑛 +o 𝑚)))
50 eqeq2 2750 . . . . . . . . . . . . . . . 16 (𝑝 = (𝑛 +o 𝑚) → ((𝑛 +o 𝑞) = 𝑝 ↔ (𝑛 +o 𝑞) = (𝑛 +o 𝑚)))
5150riotabidv 7234 . . . . . . . . . . . . . . 15 (𝑝 = (𝑛 +o 𝑚) → (𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑝) = (𝑞 ∈ ω (𝑛 +o 𝑞) = (𝑛 +o 𝑚)))
5251fveq2d 6778 . . . . . . . . . . . . . 14 (𝑝 = (𝑛 +o 𝑚) → (𝑔‘(𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑝)) = (𝑔‘(𝑞 ∈ ω (𝑛 +o 𝑞) = (𝑛 +o 𝑚))))
5348, 49, 52ifbieq12d 4487 . . . . . . . . . . . . 13 (𝑝 = (𝑛 +o 𝑚) → if(𝑝 ∈ suc 𝑛, (𝑓𝑝), (𝑔‘(𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑝))) = if((𝑛 +o 𝑚) ∈ suc 𝑛, (𝑓‘(𝑛 +o 𝑚)), (𝑔‘(𝑞 ∈ ω (𝑛 +o 𝑞) = (𝑛 +o 𝑚)))))
54 fvex 6787 . . . . . . . . . . . . . 14 (𝑓‘(𝑛 +o 𝑚)) ∈ V
55 fvex 6787 . . . . . . . . . . . . . 14 (𝑔‘(𝑞 ∈ ω (𝑛 +o 𝑞) = (𝑛 +o 𝑚))) ∈ V
5654, 55ifex 4509 . . . . . . . . . . . . 13 if((𝑛 +o 𝑚) ∈ suc 𝑛, (𝑓‘(𝑛 +o 𝑚)), (𝑔‘(𝑞 ∈ ω (𝑛 +o 𝑞) = (𝑛 +o 𝑚)))) ∈ V
5753, 32, 56fvmpt 6875 . . . . . . . . . . . 12 ((𝑛 +o 𝑚) ∈ suc (𝑛 +o 𝑚) → ((𝑝 ∈ suc (𝑛 +o 𝑚) ↦ if(𝑝 ∈ suc 𝑛, (𝑓𝑝), (𝑔‘(𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑝))))‘(𝑛 +o 𝑚)) = if((𝑛 +o 𝑚) ∈ suc 𝑛, (𝑓‘(𝑛 +o 𝑚)), (𝑔‘(𝑞 ∈ ω (𝑛 +o 𝑞) = (𝑛 +o 𝑚)))))
5847, 57mp1i 13 . . . . . . . . . . 11 ((𝑛 ∈ (ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o)) → ((𝑝 ∈ suc (𝑛 +o 𝑚) ↦ if(𝑝 ∈ suc 𝑛, (𝑓𝑝), (𝑔‘(𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑝))))‘(𝑛 +o 𝑚)) = if((𝑛 +o 𝑚) ∈ suc 𝑛, (𝑓‘(𝑛 +o 𝑚)), (𝑔‘(𝑞 ∈ ω (𝑛 +o 𝑞) = (𝑛 +o 𝑚)))))
59 df-1o 8297 . . . . . . . . . . . . . . . . . 18 1o = suc ∅
6059difeq2i 4054 . . . . . . . . . . . . . . . . 17 (ω ∖ 1o) = (ω ∖ suc ∅)
6160eleq2i 2830 . . . . . . . . . . . . . . . 16 (𝑛 ∈ (ω ∖ 1o) ↔ 𝑛 ∈ (ω ∖ suc ∅))
62 peano1 7735 . . . . . . . . . . . . . . . . 17 ∅ ∈ ω
63 eldifsucnn 8494 . . . . . . . . . . . . . . . . 17 (∅ ∈ ω → (𝑛 ∈ (ω ∖ suc ∅) ↔ ∃𝑥 ∈ (ω ∖ ∅)𝑛 = suc 𝑥))
6462, 63ax-mp 5 . . . . . . . . . . . . . . . 16 (𝑛 ∈ (ω ∖ suc ∅) ↔ ∃𝑥 ∈ (ω ∖ ∅)𝑛 = suc 𝑥)
65 dif0 4306 . . . . . . . . . . . . . . . . 17 (ω ∖ ∅) = ω
6665rexeqi 3347 . . . . . . . . . . . . . . . 16 (∃𝑥 ∈ (ω ∖ ∅)𝑛 = suc 𝑥 ↔ ∃𝑥 ∈ ω 𝑛 = suc 𝑥)
6761, 64, 663bitri 297 . . . . . . . . . . . . . . 15 (𝑛 ∈ (ω ∖ 1o) ↔ ∃𝑥 ∈ ω 𝑛 = suc 𝑥)
6860eleq2i 2830 . . . . . . . . . . . . . . . 16 (𝑚 ∈ (ω ∖ 1o) ↔ 𝑚 ∈ (ω ∖ suc ∅))
69 eldifsucnn 8494 . . . . . . . . . . . . . . . . 17 (∅ ∈ ω → (𝑚 ∈ (ω ∖ suc ∅) ↔ ∃𝑦 ∈ (ω ∖ ∅)𝑚 = suc 𝑦))
7062, 69ax-mp 5 . . . . . . . . . . . . . . . 16 (𝑚 ∈ (ω ∖ suc ∅) ↔ ∃𝑦 ∈ (ω ∖ ∅)𝑚 = suc 𝑦)
7165rexeqi 3347 . . . . . . . . . . . . . . . 16 (∃𝑦 ∈ (ω ∖ ∅)𝑚 = suc 𝑦 ↔ ∃𝑦 ∈ ω 𝑚 = suc 𝑦)
7268, 70, 713bitri 297 . . . . . . . . . . . . . . 15 (𝑚 ∈ (ω ∖ 1o) ↔ ∃𝑦 ∈ ω 𝑚 = suc 𝑦)
7367, 72anbi12i 627 . . . . . . . . . . . . . 14 ((𝑛 ∈ (ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o)) ↔ (∃𝑥 ∈ ω 𝑛 = suc 𝑥 ∧ ∃𝑦 ∈ ω 𝑚 = suc 𝑦))
74 reeanv 3294 . . . . . . . . . . . . . 14 (∃𝑥 ∈ ω ∃𝑦 ∈ ω (𝑛 = suc 𝑥𝑚 = suc 𝑦) ↔ (∃𝑥 ∈ ω 𝑛 = suc 𝑥 ∧ ∃𝑦 ∈ ω 𝑚 = suc 𝑦))
7573, 74bitr4i 277 . . . . . . . . . . . . 13 ((𝑛 ∈ (ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o)) ↔ ∃𝑥 ∈ ω ∃𝑦 ∈ ω (𝑛 = suc 𝑥𝑚 = suc 𝑦))
76 peano2 7737 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ ω → suc 𝑥 ∈ ω)
77 nnaword1 8460 . . . . . . . . . . . . . . . . . . 19 ((suc 𝑥 ∈ ω ∧ 𝑦 ∈ ω) → suc 𝑥 ⊆ (suc 𝑥 +o 𝑦))
7876, 77sylan 580 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ ω ∧ 𝑦 ∈ ω) → suc 𝑥 ⊆ (suc 𝑥 +o 𝑦))
7976adantr 481 . . . . . . . . . . . . . . . . . . . 20 ((𝑥 ∈ ω ∧ 𝑦 ∈ ω) → suc 𝑥 ∈ ω)
80 nnord 7720 . . . . . . . . . . . . . . . . . . . 20 (suc 𝑥 ∈ ω → Ord suc 𝑥)
8179, 80syl 17 . . . . . . . . . . . . . . . . . . 19 ((𝑥 ∈ ω ∧ 𝑦 ∈ ω) → Ord suc 𝑥)
82 nnacl 8442 . . . . . . . . . . . . . . . . . . . . 21 ((suc 𝑥 ∈ ω ∧ 𝑦 ∈ ω) → (suc 𝑥 +o 𝑦) ∈ ω)
8376, 82sylan 580 . . . . . . . . . . . . . . . . . . . 20 ((𝑥 ∈ ω ∧ 𝑦 ∈ ω) → (suc 𝑥 +o 𝑦) ∈ ω)
84 nnord 7720 . . . . . . . . . . . . . . . . . . . 20 ((suc 𝑥 +o 𝑦) ∈ ω → Ord (suc 𝑥 +o 𝑦))
8583, 84syl 17 . . . . . . . . . . . . . . . . . . 19 ((𝑥 ∈ ω ∧ 𝑦 ∈ ω) → Ord (suc 𝑥 +o 𝑦))
86 ordsucsssuc 7670 . . . . . . . . . . . . . . . . . . 19 ((Ord suc 𝑥 ∧ Ord (suc 𝑥 +o 𝑦)) → (suc 𝑥 ⊆ (suc 𝑥 +o 𝑦) ↔ suc suc 𝑥 ⊆ suc (suc 𝑥 +o 𝑦)))
8781, 85, 86syl2anc 584 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ ω ∧ 𝑦 ∈ ω) → (suc 𝑥 ⊆ (suc 𝑥 +o 𝑦) ↔ suc suc 𝑥 ⊆ suc (suc 𝑥 +o 𝑦)))
8878, 87mpbid 231 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ ω ∧ 𝑦 ∈ ω) → suc suc 𝑥 ⊆ suc (suc 𝑥 +o 𝑦))
89 nnasuc 8437 . . . . . . . . . . . . . . . . . 18 ((suc 𝑥 ∈ ω ∧ 𝑦 ∈ ω) → (suc 𝑥 +o suc 𝑦) = suc (suc 𝑥 +o 𝑦))
9076, 89sylan 580 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ ω ∧ 𝑦 ∈ ω) → (suc 𝑥 +o suc 𝑦) = suc (suc 𝑥 +o 𝑦))
9188, 90sseqtrrd 3962 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ω ∧ 𝑦 ∈ ω) → suc suc 𝑥 ⊆ (suc 𝑥 +o suc 𝑦))
92 peano2 7737 . . . . . . . . . . . . . . . . . . 19 (suc 𝑥 ∈ ω → suc suc 𝑥 ∈ ω)
9379, 92syl 17 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ ω ∧ 𝑦 ∈ ω) → suc suc 𝑥 ∈ ω)
94 nnord 7720 . . . . . . . . . . . . . . . . . 18 (suc suc 𝑥 ∈ ω → Ord suc suc 𝑥)
9593, 94syl 17 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ ω ∧ 𝑦 ∈ ω) → Ord suc suc 𝑥)
96 peano2 7737 . . . . . . . . . . . . . . . . . . 19 (𝑦 ∈ ω → suc 𝑦 ∈ ω)
97 nnacl 8442 . . . . . . . . . . . . . . . . . . 19 ((suc 𝑥 ∈ ω ∧ suc 𝑦 ∈ ω) → (suc 𝑥 +o suc 𝑦) ∈ ω)
9876, 96, 97syl2an 596 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ ω ∧ 𝑦 ∈ ω) → (suc 𝑥 +o suc 𝑦) ∈ ω)
99 nnord 7720 . . . . . . . . . . . . . . . . . 18 ((suc 𝑥 +o suc 𝑦) ∈ ω → Ord (suc 𝑥 +o suc 𝑦))
10098, 99syl 17 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ ω ∧ 𝑦 ∈ ω) → Ord (suc 𝑥 +o suc 𝑦))
101 ordtri1 6299 . . . . . . . . . . . . . . . . 17 ((Ord suc suc 𝑥 ∧ Ord (suc 𝑥 +o suc 𝑦)) → (suc suc 𝑥 ⊆ (suc 𝑥 +o suc 𝑦) ↔ ¬ (suc 𝑥 +o suc 𝑦) ∈ suc suc 𝑥))
10295, 100, 101syl2anc 584 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ω ∧ 𝑦 ∈ ω) → (suc suc 𝑥 ⊆ (suc 𝑥 +o suc 𝑦) ↔ ¬ (suc 𝑥 +o suc 𝑦) ∈ suc suc 𝑥))
10391, 102mpbid 231 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ω ∧ 𝑦 ∈ ω) → ¬ (suc 𝑥 +o suc 𝑦) ∈ suc suc 𝑥)
104 oveq12 7284 . . . . . . . . . . . . . . . . 17 ((𝑛 = suc 𝑥𝑚 = suc 𝑦) → (𝑛 +o 𝑚) = (suc 𝑥 +o suc 𝑦))
105 suceq 6331 . . . . . . . . . . . . . . . . . 18 (𝑛 = suc 𝑥 → suc 𝑛 = suc suc 𝑥)
106105adantr 481 . . . . . . . . . . . . . . . . 17 ((𝑛 = suc 𝑥𝑚 = suc 𝑦) → suc 𝑛 = suc suc 𝑥)
107104, 106eleq12d 2833 . . . . . . . . . . . . . . . 16 ((𝑛 = suc 𝑥𝑚 = suc 𝑦) → ((𝑛 +o 𝑚) ∈ suc 𝑛 ↔ (suc 𝑥 +o suc 𝑦) ∈ suc suc 𝑥))
108107notbid 318 . . . . . . . . . . . . . . 15 ((𝑛 = suc 𝑥𝑚 = suc 𝑦) → (¬ (𝑛 +o 𝑚) ∈ suc 𝑛 ↔ ¬ (suc 𝑥 +o suc 𝑦) ∈ suc suc 𝑥))
109103, 108syl5ibrcom 246 . . . . . . . . . . . . . 14 ((𝑥 ∈ ω ∧ 𝑦 ∈ ω) → ((𝑛 = suc 𝑥𝑚 = suc 𝑦) → ¬ (𝑛 +o 𝑚) ∈ suc 𝑛))
110109rexlimivv 3221 . . . . . . . . . . . . 13 (∃𝑥 ∈ ω ∃𝑦 ∈ ω (𝑛 = suc 𝑥𝑚 = suc 𝑦) → ¬ (𝑛 +o 𝑚) ∈ suc 𝑛)
11175, 110sylbi 216 . . . . . . . . . . . 12 ((𝑛 ∈ (ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o)) → ¬ (𝑛 +o 𝑚) ∈ suc 𝑛)
112111iffalsed 4470 . . . . . . . . . . 11 ((𝑛 ∈ (ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o)) → if((𝑛 +o 𝑚) ∈ suc 𝑛, (𝑓‘(𝑛 +o 𝑚)), (𝑔‘(𝑞 ∈ ω (𝑛 +o 𝑞) = (𝑛 +o 𝑚)))) = (𝑔‘(𝑞 ∈ ω (𝑛 +o 𝑞) = (𝑛 +o 𝑚))))
1133adantl 482 . . . . . . . . . . . . 13 ((𝑛 ∈ (ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o)) → 𝑚 ∈ ω)
11438adantr 481 . . . . . . . . . . . . . 14 (((𝑛 ∈ (ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o)) ∧ 𝑞 ∈ ω) → 𝑛 ∈ ω)
115 simpr 485 . . . . . . . . . . . . . 14 (((𝑛 ∈ (ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o)) ∧ 𝑞 ∈ ω) → 𝑞 ∈ ω)
116113adantr 481 . . . . . . . . . . . . . 14 (((𝑛 ∈ (ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o)) ∧ 𝑞 ∈ ω) → 𝑚 ∈ ω)
117 nnacan 8459 . . . . . . . . . . . . . 14 ((𝑛 ∈ ω ∧ 𝑞 ∈ ω ∧ 𝑚 ∈ ω) → ((𝑛 +o 𝑞) = (𝑛 +o 𝑚) ↔ 𝑞 = 𝑚))
118114, 115, 116, 117syl3anc 1370 . . . . . . . . . . . . 13 (((𝑛 ∈ (ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o)) ∧ 𝑞 ∈ ω) → ((𝑛 +o 𝑞) = (𝑛 +o 𝑚) ↔ 𝑞 = 𝑚))
119113, 118riota5 7262 . . . . . . . . . . . 12 ((𝑛 ∈ (ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o)) → (𝑞 ∈ ω (𝑛 +o 𝑞) = (𝑛 +o 𝑚)) = 𝑚)
120119fveq2d 6778 . . . . . . . . . . 11 ((𝑛 ∈ (ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o)) → (𝑔‘(𝑞 ∈ ω (𝑛 +o 𝑞) = (𝑛 +o 𝑚))) = (𝑔𝑚))
12158, 112, 1203eqtrd 2782 . . . . . . . . . 10 ((𝑛 ∈ (ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o)) → ((𝑝 ∈ suc (𝑛 +o 𝑚) ↦ if(𝑝 ∈ suc 𝑛, (𝑓𝑝), (𝑔‘(𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑝))))‘(𝑛 +o 𝑚)) = (𝑔𝑚))
122 simpr2r 1232 . . . . . . . . . 10 (((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑧) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔𝑚) = 𝑦) ∧ ∀𝑏𝑚 (𝑔𝑏)𝑅(𝑔‘suc 𝑏))) → (𝑔𝑚) = 𝑦)
123121, 122sylan9eq 2798 . . . . . . . . 9 (((𝑛 ∈ (ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o)) ∧ ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑧) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔𝑚) = 𝑦) ∧ ∀𝑏𝑚 (𝑔𝑏)𝑅(𝑔‘suc 𝑏)))) → ((𝑝 ∈ suc (𝑛 +o 𝑚) ↦ if(𝑝 ∈ suc 𝑛, (𝑓𝑝), (𝑔‘(𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑝))))‘(𝑛 +o 𝑚)) = 𝑦)
124 simprl3 1219 . . . . . . . . . . . . . . 15 (((𝑛 ∈ (ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o)) ∧ ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑧) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔𝑚) = 𝑦) ∧ ∀𝑏𝑚 (𝑔𝑏)𝑅(𝑔‘suc 𝑏)))) → ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎))
125 fveq2 6774 . . . . . . . . . . . . . . . . 17 (𝑎 = 𝑐 → (𝑓𝑎) = (𝑓𝑐))
126 suceq 6331 . . . . . . . . . . . . . . . . . 18 (𝑎 = 𝑐 → suc 𝑎 = suc 𝑐)
127126fveq2d 6778 . . . . . . . . . . . . . . . . 17 (𝑎 = 𝑐 → (𝑓‘suc 𝑎) = (𝑓‘suc 𝑐))
128125, 127breq12d 5087 . . . . . . . . . . . . . . . 16 (𝑎 = 𝑐 → ((𝑓𝑎)𝑅(𝑓‘suc 𝑎) ↔ (𝑓𝑐)𝑅(𝑓‘suc 𝑐)))
129128rspcv 3557 . . . . . . . . . . . . . . 15 (𝑐𝑛 → (∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎) → (𝑓𝑐)𝑅(𝑓‘suc 𝑐)))
130124, 129mpan9 507 . . . . . . . . . . . . . 14 ((((𝑛 ∈ (ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o)) ∧ ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑧) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔𝑚) = 𝑦) ∧ ∀𝑏𝑚 (𝑔𝑏)𝑅(𝑔‘suc 𝑏)))) ∧ 𝑐𝑛) → (𝑓𝑐)𝑅(𝑓‘suc 𝑐))
131 elelsuc 6338 . . . . . . . . . . . . . . . 16 (𝑐𝑛𝑐 ∈ suc 𝑛)
132131adantl 482 . . . . . . . . . . . . . . 15 ((((𝑛 ∈ (ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o)) ∧ ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑧) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔𝑚) = 𝑦) ∧ ∀𝑏𝑚 (𝑔𝑏)𝑅(𝑔‘suc 𝑏)))) ∧ 𝑐𝑛) → 𝑐 ∈ suc 𝑛)
133132iftrued 4467 . . . . . . . . . . . . . 14 ((((𝑛 ∈ (ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o)) ∧ ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑧) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔𝑚) = 𝑦) ∧ ∀𝑏𝑚 (𝑔𝑏)𝑅(𝑔‘suc 𝑏)))) ∧ 𝑐𝑛) → if(𝑐 ∈ suc 𝑛, (𝑓𝑐), (𝑔‘(𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑐))) = (𝑓𝑐))
134 ordsucelsuc 7669 . . . . . . . . . . . . . . . . . 18 (Ord 𝑛 → (𝑐𝑛 ↔ suc 𝑐 ∈ suc 𝑛))
13539, 134syl 17 . . . . . . . . . . . . . . . . 17 ((𝑛 ∈ (ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o)) → (𝑐𝑛 ↔ suc 𝑐 ∈ suc 𝑛))
136135adantr 481 . . . . . . . . . . . . . . . 16 (((𝑛 ∈ (ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o)) ∧ ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑧) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔𝑚) = 𝑦) ∧ ∀𝑏𝑚 (𝑔𝑏)𝑅(𝑔‘suc 𝑏)))) → (𝑐𝑛 ↔ suc 𝑐 ∈ suc 𝑛))
137136biimpa 477 . . . . . . . . . . . . . . 15 ((((𝑛 ∈ (ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o)) ∧ ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑧) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔𝑚) = 𝑦) ∧ ∀𝑏𝑚 (𝑔𝑏)𝑅(𝑔‘suc 𝑏)))) ∧ 𝑐𝑛) → suc 𝑐 ∈ suc 𝑛)
138137iftrued 4467 . . . . . . . . . . . . . 14 ((((𝑛 ∈ (ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o)) ∧ ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑧) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔𝑚) = 𝑦) ∧ ∀𝑏𝑚 (𝑔𝑏)𝑅(𝑔‘suc 𝑏)))) ∧ 𝑐𝑛) → if(suc 𝑐 ∈ suc 𝑛, (𝑓‘suc 𝑐), (𝑔‘(𝑞 ∈ ω (𝑛 +o 𝑞) = suc 𝑐))) = (𝑓‘suc 𝑐))
139130, 133, 1383brtr4d 5106 . . . . . . . . . . . . 13 ((((𝑛 ∈ (ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o)) ∧ ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑧) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔𝑚) = 𝑦) ∧ ∀𝑏𝑚 (𝑔𝑏)𝑅(𝑔‘suc 𝑏)))) ∧ 𝑐𝑛) → if(𝑐 ∈ suc 𝑛, (𝑓𝑐), (𝑔‘(𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑐)))𝑅if(suc 𝑐 ∈ suc 𝑛, (𝑓‘suc 𝑐), (𝑔‘(𝑞 ∈ ω (𝑛 +o 𝑞) = suc 𝑐))))
140139adantlr 712 . . . . . . . . . . . 12 (((((𝑛 ∈ (ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o)) ∧ ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑧) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔𝑚) = 𝑦) ∧ ∀𝑏𝑚 (𝑔𝑏)𝑅(𝑔‘suc 𝑏)))) ∧ 𝑐 ∈ (𝑛 +o 𝑚)) ∧ 𝑐𝑛) → if(𝑐 ∈ suc 𝑛, (𝑓𝑐), (𝑔‘(𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑐)))𝑅if(suc 𝑐 ∈ suc 𝑛, (𝑓‘suc 𝑐), (𝑔‘(𝑞 ∈ ω (𝑛 +o 𝑞) = suc 𝑐))))
14139adantr 481 . . . . . . . . . . . . . . . . 17 (((𝑛 ∈ (ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o)) ∧ ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑧) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔𝑚) = 𝑦) ∧ ∀𝑏𝑚 (𝑔𝑏)𝑅(𝑔‘suc 𝑏)))) → Ord 𝑛)
1425adantr 481 . . . . . . . . . . . . . . . . . . 19 (((𝑛 ∈ (ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o)) ∧ ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑧) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔𝑚) = 𝑦) ∧ ∀𝑏𝑚 (𝑔𝑏)𝑅(𝑔‘suc 𝑏)))) → (𝑛 +o 𝑚) ∈ ω)
143 elnn 7723 . . . . . . . . . . . . . . . . . . . 20 ((𝑐 ∈ (𝑛 +o 𝑚) ∧ (𝑛 +o 𝑚) ∈ ω) → 𝑐 ∈ ω)
144143ancoms 459 . . . . . . . . . . . . . . . . . . 19 (((𝑛 +o 𝑚) ∈ ω ∧ 𝑐 ∈ (𝑛 +o 𝑚)) → 𝑐 ∈ ω)
145142, 144sylan 580 . . . . . . . . . . . . . . . . . 18 ((((𝑛 ∈ (ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o)) ∧ ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑧) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔𝑚) = 𝑦) ∧ ∀𝑏𝑚 (𝑔𝑏)𝑅(𝑔‘suc 𝑏)))) ∧ 𝑐 ∈ (𝑛 +o 𝑚)) → 𝑐 ∈ ω)
146 nnord 7720 . . . . . . . . . . . . . . . . . 18 (𝑐 ∈ ω → Ord 𝑐)
147145, 146syl 17 . . . . . . . . . . . . . . . . 17 ((((𝑛 ∈ (ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o)) ∧ ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑧) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔𝑚) = 𝑦) ∧ ∀𝑏𝑚 (𝑔𝑏)𝑅(𝑔‘suc 𝑏)))) ∧ 𝑐 ∈ (𝑛 +o 𝑚)) → Ord 𝑐)
148 ordtri3or 6298 . . . . . . . . . . . . . . . . 17 ((Ord 𝑛 ∧ Ord 𝑐) → (𝑛𝑐𝑛 = 𝑐𝑐𝑛))
149141, 147, 148syl2an2r 682 . . . . . . . . . . . . . . . 16 ((((𝑛 ∈ (ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o)) ∧ ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑧) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔𝑚) = 𝑦) ∧ ∀𝑏𝑚 (𝑔𝑏)𝑅(𝑔‘suc 𝑏)))) ∧ 𝑐 ∈ (𝑛 +o 𝑚)) → (𝑛𝑐𝑛 = 𝑐𝑐𝑛))
150 3orel3 1485 . . . . . . . . . . . . . . . 16 𝑐𝑛 → ((𝑛𝑐𝑛 = 𝑐𝑐𝑛) → (𝑛𝑐𝑛 = 𝑐)))
151149, 150syl5com 31 . . . . . . . . . . . . . . 15 ((((𝑛 ∈ (ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o)) ∧ ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑧) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔𝑚) = 𝑦) ∧ ∀𝑏𝑚 (𝑔𝑏)𝑅(𝑔‘suc 𝑏)))) ∧ 𝑐 ∈ (𝑛 +o 𝑚)) → (¬ 𝑐𝑛 → (𝑛𝑐𝑛 = 𝑐)))
152 fveq2 6774 . . . . . . . . . . . . . . . . . . . 20 (𝑏 = (𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑐) → (𝑔𝑏) = (𝑔‘(𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑐)))
153 suceq 6331 . . . . . . . . . . . . . . . . . . . . 21 (𝑏 = (𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑐) → suc 𝑏 = suc (𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑐))
154153fveq2d 6778 . . . . . . . . . . . . . . . . . . . 20 (𝑏 = (𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑐) → (𝑔‘suc 𝑏) = (𝑔‘suc (𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑐)))
155152, 154breq12d 5087 . . . . . . . . . . . . . . . . . . 19 (𝑏 = (𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑐) → ((𝑔𝑏)𝑅(𝑔‘suc 𝑏) ↔ (𝑔‘(𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑐))𝑅(𝑔‘suc (𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑐))))
156 simprr3 1222 . . . . . . . . . . . . . . . . . . . . 21 (((𝑛 ∈ (ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o)) ∧ ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑧) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔𝑚) = 𝑦) ∧ ∀𝑏𝑚 (𝑔𝑏)𝑅(𝑔‘suc 𝑏)))) → ∀𝑏𝑚 (𝑔𝑏)𝑅(𝑔‘suc 𝑏))
157156adantr 481 . . . . . . . . . . . . . . . . . . . 20 ((((𝑛 ∈ (ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o)) ∧ ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑧) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔𝑚) = 𝑦) ∧ ∀𝑏𝑚 (𝑔𝑏)𝑅(𝑔‘suc 𝑏)))) ∧ 𝑐 ∈ (𝑛 +o 𝑚)) → ∀𝑏𝑚 (𝑔𝑏)𝑅(𝑔‘suc 𝑏))
158157adantr 481 . . . . . . . . . . . . . . . . . . 19 (((((𝑛 ∈ (ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o)) ∧ ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑧) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔𝑚) = 𝑦) ∧ ∀𝑏𝑚 (𝑔𝑏)𝑅(𝑔‘suc 𝑏)))) ∧ 𝑐 ∈ (𝑛 +o 𝑚)) ∧ 𝑛𝑐) → ∀𝑏𝑚 (𝑔𝑏)𝑅(𝑔‘suc 𝑏))
159 ordelss 6282 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((Ord 𝑐𝑛𝑐) → 𝑛𝑐)
160147, 159sylan 580 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝑛 ∈ (ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o)) ∧ ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑧) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔𝑚) = 𝑦) ∧ ∀𝑏𝑚 (𝑔𝑏)𝑅(𝑔‘suc 𝑏)))) ∧ 𝑐 ∈ (𝑛 +o 𝑚)) ∧ 𝑛𝑐) → 𝑛𝑐)
16138adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑛 ∈ (ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o)) ∧ ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑧) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔𝑚) = 𝑦) ∧ ∀𝑏𝑚 (𝑔𝑏)𝑅(𝑔‘suc 𝑏)))) → 𝑛 ∈ ω)
162161adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝑛 ∈ (ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o)) ∧ ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑧) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔𝑚) = 𝑦) ∧ ∀𝑏𝑚 (𝑔𝑏)𝑅(𝑔‘suc 𝑏)))) ∧ 𝑐 ∈ (𝑛 +o 𝑚)) → 𝑛 ∈ ω)
163145adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝑛 ∈ (ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o)) ∧ ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑧) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔𝑚) = 𝑦) ∧ ∀𝑏𝑚 (𝑔𝑏)𝑅(𝑔‘suc 𝑏)))) ∧ 𝑐 ∈ (𝑛 +o 𝑚)) ∧ 𝑛𝑐) → 𝑐 ∈ ω)
164 nnawordex 8468 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑛 ∈ ω ∧ 𝑐 ∈ ω) → (𝑛𝑐 ↔ ∃𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑐))
165162, 163, 164syl2an2r 682 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝑛 ∈ (ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o)) ∧ ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑧) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔𝑚) = 𝑦) ∧ ∀𝑏𝑚 (𝑔𝑏)𝑅(𝑔‘suc 𝑏)))) ∧ 𝑐 ∈ (𝑛 +o 𝑚)) ∧ 𝑛𝑐) → (𝑛𝑐 ↔ ∃𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑐))
166160, 165mpbid 231 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝑛 ∈ (ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o)) ∧ ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑧) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔𝑚) = 𝑦) ∧ ∀𝑏𝑚 (𝑔𝑏)𝑅(𝑔‘suc 𝑏)))) ∧ 𝑐 ∈ (𝑛 +o 𝑚)) ∧ 𝑛𝑐) → ∃𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑐)
167 oveq2 7283 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑞 = 𝑝 → (𝑛 +o 𝑞) = (𝑛 +o 𝑝))
168167eqeq1d 2740 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑞 = 𝑝 → ((𝑛 +o 𝑞) = 𝑐 ↔ (𝑛 +o 𝑝) = 𝑐))
169168cbvrexvw 3384 . . . . . . . . . . . . . . . . . . . . . . 23 (∃𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑐 ↔ ∃𝑝 ∈ ω (𝑛 +o 𝑝) = 𝑐)
170166, 169sylib 217 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝑛 ∈ (ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o)) ∧ ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑧) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔𝑚) = 𝑦) ∧ ∀𝑏𝑚 (𝑔𝑏)𝑅(𝑔‘suc 𝑏)))) ∧ 𝑐 ∈ (𝑛 +o 𝑚)) ∧ 𝑛𝑐) → ∃𝑝 ∈ ω (𝑛 +o 𝑝) = 𝑐)
171 simprr 770 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((((𝑛 ∈ (ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o)) ∧ ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑧) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔𝑚) = 𝑦) ∧ ∀𝑏𝑚 (𝑔𝑏)𝑅(𝑔‘suc 𝑏)))) ∧ 𝑐 ∈ (𝑛 +o 𝑚)) ∧ 𝑛𝑐) ∧ (𝑝 ∈ ω ∧ (𝑛 +o 𝑝) = 𝑐)) → (𝑛 +o 𝑝) = 𝑐)
172 simpllr 773 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((((𝑛 ∈ (ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o)) ∧ ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑧) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔𝑚) = 𝑦) ∧ ∀𝑏𝑚 (𝑔𝑏)𝑅(𝑔‘suc 𝑏)))) ∧ 𝑐 ∈ (𝑛 +o 𝑚)) ∧ 𝑛𝑐) ∧ (𝑝 ∈ ω ∧ (𝑛 +o 𝑝) = 𝑐)) → 𝑐 ∈ (𝑛 +o 𝑚))
173171, 172eqeltrd 2839 . . . . . . . . . . . . . . . . . . . . . . 23 ((((((𝑛 ∈ (ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o)) ∧ ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑧) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔𝑚) = 𝑦) ∧ ∀𝑏𝑚 (𝑔𝑏)𝑅(𝑔‘suc 𝑏)))) ∧ 𝑐 ∈ (𝑛 +o 𝑚)) ∧ 𝑛𝑐) ∧ (𝑝 ∈ ω ∧ (𝑛 +o 𝑝) = 𝑐)) → (𝑛 +o 𝑝) ∈ (𝑛 +o 𝑚))
174 simprl 768 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((((𝑛 ∈ (ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o)) ∧ ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑧) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔𝑚) = 𝑦) ∧ ∀𝑏𝑚 (𝑔𝑏)𝑅(𝑔‘suc 𝑏)))) ∧ 𝑐 ∈ (𝑛 +o 𝑚)) ∧ 𝑛𝑐) ∧ (𝑝 ∈ ω ∧ (𝑛 +o 𝑝) = 𝑐)) → 𝑝 ∈ ω)
1753ad4antlr 730 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝑛 ∈ (ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o)) ∧ ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑧) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔𝑚) = 𝑦) ∧ ∀𝑏𝑚 (𝑔𝑏)𝑅(𝑔‘suc 𝑏)))) ∧ 𝑐 ∈ (𝑛 +o 𝑚)) ∧ 𝑛𝑐) → 𝑚 ∈ ω)
176175adantr 481 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((((𝑛 ∈ (ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o)) ∧ ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑧) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔𝑚) = 𝑦) ∧ ∀𝑏𝑚 (𝑔𝑏)𝑅(𝑔‘suc 𝑏)))) ∧ 𝑐 ∈ (𝑛 +o 𝑚)) ∧ 𝑛𝑐) ∧ (𝑝 ∈ ω ∧ (𝑛 +o 𝑝) = 𝑐)) → 𝑚 ∈ ω)
177162adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝑛 ∈ (ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o)) ∧ ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑧) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔𝑚) = 𝑦) ∧ ∀𝑏𝑚 (𝑔𝑏)𝑅(𝑔‘suc 𝑏)))) ∧ 𝑐 ∈ (𝑛 +o 𝑚)) ∧ 𝑛𝑐) → 𝑛 ∈ ω)
178177adantr 481 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((((𝑛 ∈ (ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o)) ∧ ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑧) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔𝑚) = 𝑦) ∧ ∀𝑏𝑚 (𝑔𝑏)𝑅(𝑔‘suc 𝑏)))) ∧ 𝑐 ∈ (𝑛 +o 𝑚)) ∧ 𝑛𝑐) ∧ (𝑝 ∈ ω ∧ (𝑛 +o 𝑝) = 𝑐)) → 𝑛 ∈ ω)
179 nnaord 8450 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑝 ∈ ω ∧ 𝑚 ∈ ω ∧ 𝑛 ∈ ω) → (𝑝𝑚 ↔ (𝑛 +o 𝑝) ∈ (𝑛 +o 𝑚)))
180174, 176, 178, 179syl3anc 1370 . . . . . . . . . . . . . . . . . . . . . . 23 ((((((𝑛 ∈ (ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o)) ∧ ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑧) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔𝑚) = 𝑦) ∧ ∀𝑏𝑚 (𝑔𝑏)𝑅(𝑔‘suc 𝑏)))) ∧ 𝑐 ∈ (𝑛 +o 𝑚)) ∧ 𝑛𝑐) ∧ (𝑝 ∈ ω ∧ (𝑛 +o 𝑝) = 𝑐)) → (𝑝𝑚 ↔ (𝑛 +o 𝑝) ∈ (𝑛 +o 𝑚)))
181173, 180mpbird 256 . . . . . . . . . . . . . . . . . . . . . 22 ((((((𝑛 ∈ (ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o)) ∧ ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑧) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔𝑚) = 𝑦) ∧ ∀𝑏𝑚 (𝑔𝑏)𝑅(𝑔‘suc 𝑏)))) ∧ 𝑐 ∈ (𝑛 +o 𝑚)) ∧ 𝑛𝑐) ∧ (𝑝 ∈ ω ∧ (𝑛 +o 𝑝) = 𝑐)) → 𝑝𝑚)
182170, 181, 171reximssdv 3205 . . . . . . . . . . . . . . . . . . . . 21 (((((𝑛 ∈ (ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o)) ∧ ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑧) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔𝑚) = 𝑦) ∧ ∀𝑏𝑚 (𝑔𝑏)𝑅(𝑔‘suc 𝑏)))) ∧ 𝑐 ∈ (𝑛 +o 𝑚)) ∧ 𝑛𝑐) → ∃𝑝𝑚 (𝑛 +o 𝑝) = 𝑐)
183 elnn 7723 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑝𝑚𝑚 ∈ ω) → 𝑝 ∈ ω)
184183ancoms 459 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑚 ∈ ω ∧ 𝑝𝑚) → 𝑝 ∈ ω)
185175, 184sylan 580 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((((𝑛 ∈ (ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o)) ∧ ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑧) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔𝑚) = 𝑦) ∧ ∀𝑏𝑚 (𝑔𝑏)𝑅(𝑔‘suc 𝑏)))) ∧ 𝑐 ∈ (𝑛 +o 𝑚)) ∧ 𝑛𝑐) ∧ 𝑝𝑚) → 𝑝 ∈ ω)
186 nnasmo 8493 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑛 ∈ ω → ∃*𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑐)
187177, 186syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((𝑛 ∈ (ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o)) ∧ ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑧) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔𝑚) = 𝑦) ∧ ∀𝑏𝑚 (𝑔𝑏)𝑅(𝑔‘suc 𝑏)))) ∧ 𝑐 ∈ (𝑛 +o 𝑚)) ∧ 𝑛𝑐) → ∃*𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑐)
188 reu5 3361 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (∃!𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑐 ↔ (∃𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑐 ∧ ∃*𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑐))
189166, 187, 188sylanbrc 583 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝑛 ∈ (ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o)) ∧ ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑧) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔𝑚) = 𝑦) ∧ ∀𝑏𝑚 (𝑔𝑏)𝑅(𝑔‘suc 𝑏)))) ∧ 𝑐 ∈ (𝑛 +o 𝑚)) ∧ 𝑛𝑐) → ∃!𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑐)
190189adantr 481 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((((𝑛 ∈ (ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o)) ∧ ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑧) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔𝑚) = 𝑦) ∧ ∀𝑏𝑚 (𝑔𝑏)𝑅(𝑔‘suc 𝑏)))) ∧ 𝑐 ∈ (𝑛 +o 𝑚)) ∧ 𝑛𝑐) ∧ 𝑝𝑚) → ∃!𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑐)
191168riota2 7258 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑝 ∈ ω ∧ ∃!𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑐) → ((𝑛 +o 𝑝) = 𝑐 ↔ (𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑐) = 𝑝))
192185, 190, 191syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . 23 ((((((𝑛 ∈ (ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o)) ∧ ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑧) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔𝑚) = 𝑦) ∧ ∀𝑏𝑚 (𝑔𝑏)𝑅(𝑔‘suc 𝑏)))) ∧ 𝑐 ∈ (𝑛 +o 𝑚)) ∧ 𝑛𝑐) ∧ 𝑝𝑚) → ((𝑛 +o 𝑝) = 𝑐 ↔ (𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑐) = 𝑝))
193 eqcom 2745 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑐) = 𝑝𝑝 = (𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑐))
194192, 193bitrdi 287 . . . . . . . . . . . . . . . . . . . . . 22 ((((((𝑛 ∈ (ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o)) ∧ ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑧) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔𝑚) = 𝑦) ∧ ∀𝑏𝑚 (𝑔𝑏)𝑅(𝑔‘suc 𝑏)))) ∧ 𝑐 ∈ (𝑛 +o 𝑚)) ∧ 𝑛𝑐) ∧ 𝑝𝑚) → ((𝑛 +o 𝑝) = 𝑐𝑝 = (𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑐)))
195194rexbidva 3225 . . . . . . . . . . . . . . . . . . . . 21 (((((𝑛 ∈ (ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o)) ∧ ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑧) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔𝑚) = 𝑦) ∧ ∀𝑏𝑚 (𝑔𝑏)𝑅(𝑔‘suc 𝑏)))) ∧ 𝑐 ∈ (𝑛 +o 𝑚)) ∧ 𝑛𝑐) → (∃𝑝𝑚 (𝑛 +o 𝑝) = 𝑐 ↔ ∃𝑝𝑚 𝑝 = (𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑐)))
196182, 195mpbid 231 . . . . . . . . . . . . . . . . . . . 20 (((((𝑛 ∈ (ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o)) ∧ ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑧) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔𝑚) = 𝑦) ∧ ∀𝑏𝑚 (𝑔𝑏)𝑅(𝑔‘suc 𝑏)))) ∧ 𝑐 ∈ (𝑛 +o 𝑚)) ∧ 𝑛𝑐) → ∃𝑝𝑚 𝑝 = (𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑐))
197 risset 3194 . . . . . . . . . . . . . . . . . . . 20 ((𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑐) ∈ 𝑚 ↔ ∃𝑝𝑚 𝑝 = (𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑐))
198196, 197sylibr 233 . . . . . . . . . . . . . . . . . . 19 (((((𝑛 ∈ (ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o)) ∧ ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑧) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔𝑚) = 𝑦) ∧ ∀𝑏𝑚 (𝑔𝑏)𝑅(𝑔‘suc 𝑏)))) ∧ 𝑐 ∈ (𝑛 +o 𝑚)) ∧ 𝑛𝑐) → (𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑐) ∈ 𝑚)
199155, 158, 198rspcdva 3562 . . . . . . . . . . . . . . . . . 18 (((((𝑛 ∈ (ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o)) ∧ ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑧) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔𝑚) = 𝑦) ∧ ∀𝑏𝑚 (𝑔𝑏)𝑅(𝑔‘suc 𝑏)))) ∧ 𝑐 ∈ (𝑛 +o 𝑚)) ∧ 𝑛𝑐) → (𝑔‘(𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑐))𝑅(𝑔‘suc (𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑐)))
200 simpr 485 . . . . . . . . . . . . . . . . . . . 20 (((((𝑛 ∈ (ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o)) ∧ ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑧) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔𝑚) = 𝑦) ∧ ∀𝑏𝑚 (𝑔𝑏)𝑅(𝑔‘suc 𝑏)))) ∧ 𝑐 ∈ (𝑛 +o 𝑚)) ∧ 𝑛𝑐) → 𝑛𝑐)
201 vex 3436 . . . . . . . . . . . . . . . . . . . . . 22 𝑛 ∈ V
202147adantr 481 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝑛 ∈ (ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o)) ∧ ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑧) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔𝑚) = 𝑦) ∧ ∀𝑏𝑚 (𝑔𝑏)𝑅(𝑔‘suc 𝑏)))) ∧ 𝑐 ∈ (𝑛 +o 𝑚)) ∧ 𝑛𝑐) → Ord 𝑐)
203 ordelsuc 7667 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑛 ∈ V ∧ Ord 𝑐) → (𝑛𝑐 ↔ suc 𝑛𝑐))
204201, 202, 203sylancr 587 . . . . . . . . . . . . . . . . . . . . 21 (((((𝑛 ∈ (ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o)) ∧ ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑧) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔𝑚) = 𝑦) ∧ ∀𝑏𝑚 (𝑔𝑏)𝑅(𝑔‘suc 𝑏)))) ∧ 𝑐 ∈ (𝑛 +o 𝑚)) ∧ 𝑛𝑐) → (𝑛𝑐 ↔ suc 𝑛𝑐))
205 peano2 7737 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑛 ∈ ω → suc 𝑛 ∈ ω)
20638, 205syl 17 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑛 ∈ (ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o)) → suc 𝑛 ∈ ω)
207 nnord 7720 . . . . . . . . . . . . . . . . . . . . . . . . 25 (suc 𝑛 ∈ ω → Ord suc 𝑛)
208206, 207syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑛 ∈ (ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o)) → Ord suc 𝑛)
209208adantr 481 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑛 ∈ (ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o)) ∧ ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑧) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔𝑚) = 𝑦) ∧ ∀𝑏𝑚 (𝑔𝑏)𝑅(𝑔‘suc 𝑏)))) → Ord suc 𝑛)
210209adantr 481 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑛 ∈ (ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o)) ∧ ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑧) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔𝑚) = 𝑦) ∧ ∀𝑏𝑚 (𝑔𝑏)𝑅(𝑔‘suc 𝑏)))) ∧ 𝑐 ∈ (𝑛 +o 𝑚)) → Ord suc 𝑛)
211 ordtri1 6299 . . . . . . . . . . . . . . . . . . . . . 22 ((Ord suc 𝑛 ∧ Ord 𝑐) → (suc 𝑛𝑐 ↔ ¬ 𝑐 ∈ suc 𝑛))
212210, 202, 211syl2an2r 682 . . . . . . . . . . . . . . . . . . . . 21 (((((𝑛 ∈ (ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o)) ∧ ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑧) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔𝑚) = 𝑦) ∧ ∀𝑏𝑚 (𝑔𝑏)𝑅(𝑔‘suc 𝑏)))) ∧ 𝑐 ∈ (𝑛 +o 𝑚)) ∧ 𝑛𝑐) → (suc 𝑛𝑐 ↔ ¬ 𝑐 ∈ suc 𝑛))
213204, 212bitrd 278 . . . . . . . . . . . . . . . . . . . 20 (((((𝑛 ∈ (ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o)) ∧ ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑧) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔𝑚) = 𝑦) ∧ ∀𝑏𝑚 (𝑔𝑏)𝑅(𝑔‘suc 𝑏)))) ∧ 𝑐 ∈ (𝑛 +o 𝑚)) ∧ 𝑛𝑐) → (𝑛𝑐 ↔ ¬ 𝑐 ∈ suc 𝑛))
214200, 213mpbid 231 . . . . . . . . . . . . . . . . . . 19 (((((𝑛 ∈ (ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o)) ∧ ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑧) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔𝑚) = 𝑦) ∧ ∀𝑏𝑚 (𝑔𝑏)𝑅(𝑔‘suc 𝑏)))) ∧ 𝑐 ∈ (𝑛 +o 𝑚)) ∧ 𝑛𝑐) → ¬ 𝑐 ∈ suc 𝑛)
215214iffalsed 4470 . . . . . . . . . . . . . . . . . 18 (((((𝑛 ∈ (ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o)) ∧ ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑧) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔𝑚) = 𝑦) ∧ ∀𝑏𝑚 (𝑔𝑏)𝑅(𝑔‘suc 𝑏)))) ∧ 𝑐 ∈ (𝑛 +o 𝑚)) ∧ 𝑛𝑐) → if(𝑐 ∈ suc 𝑛, (𝑓𝑐), (𝑔‘(𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑐))) = (𝑔‘(𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑐)))
216 riotacl 7250 . . . . . . . . . . . . . . . . . . . . . . 23 (∃!𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑐 → (𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑐) ∈ ω)
217189, 216syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝑛 ∈ (ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o)) ∧ ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑧) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔𝑚) = 𝑦) ∧ ∀𝑏𝑚 (𝑔𝑏)𝑅(𝑔‘suc 𝑏)))) ∧ 𝑐 ∈ (𝑛 +o 𝑚)) ∧ 𝑛𝑐) → (𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑐) ∈ ω)
218 nnasuc 8437 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑛 ∈ ω ∧ (𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑐) ∈ ω) → (𝑛 +o suc (𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑐)) = suc (𝑛 +o (𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑐)))
219162, 217, 218syl2an2r 682 . . . . . . . . . . . . . . . . . . . . 21 (((((𝑛 ∈ (ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o)) ∧ ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑧) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔𝑚) = 𝑦) ∧ ∀𝑏𝑚 (𝑔𝑏)𝑅(𝑔‘suc 𝑏)))) ∧ 𝑐 ∈ (𝑛 +o 𝑚)) ∧ 𝑛𝑐) → (𝑛 +o suc (𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑐)) = suc (𝑛 +o (𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑐)))
220 eqidd 2739 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝑛 ∈ (ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o)) ∧ ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑧) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔𝑚) = 𝑦) ∧ ∀𝑏𝑚 (𝑔𝑏)𝑅(𝑔‘suc 𝑏)))) ∧ 𝑐 ∈ (𝑛 +o 𝑚)) ∧ 𝑛𝑐) → (𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑐) = (𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑐))
221 nfriota1 7239 . . . . . . . . . . . . . . . . . . . . . . . . 25 𝑞(𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑐)
222 nfcv 2907 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 𝑞𝑛
223 nfcv 2907 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 𝑞 +o
224222, 223, 221nfov 7305 . . . . . . . . . . . . . . . . . . . . . . . . . 26 𝑞(𝑛 +o (𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑐))
225224nfeq1 2922 . . . . . . . . . . . . . . . . . . . . . . . . 25 𝑞(𝑛 +o (𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑐)) = 𝑐
226 oveq2 7283 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑞 = (𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑐) → (𝑛 +o 𝑞) = (𝑛 +o (𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑐)))
227226eqeq1d 2740 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑞 = (𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑐) → ((𝑛 +o 𝑞) = 𝑐 ↔ (𝑛 +o (𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑐)) = 𝑐))
228221, 225, 227riota2f 7257 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑐) ∈ ω ∧ ∃!𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑐) → ((𝑛 +o (𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑐)) = 𝑐 ↔ (𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑐) = (𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑐)))
229217, 189, 228syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝑛 ∈ (ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o)) ∧ ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑧) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔𝑚) = 𝑦) ∧ ∀𝑏𝑚 (𝑔𝑏)𝑅(𝑔‘suc 𝑏)))) ∧ 𝑐 ∈ (𝑛 +o 𝑚)) ∧ 𝑛𝑐) → ((𝑛 +o (𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑐)) = 𝑐 ↔ (𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑐) = (𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑐)))
230220, 229mpbird 256 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝑛 ∈ (ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o)) ∧ ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑧) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔𝑚) = 𝑦) ∧ ∀𝑏𝑚 (𝑔𝑏)𝑅(𝑔‘suc 𝑏)))) ∧ 𝑐 ∈ (𝑛 +o 𝑚)) ∧ 𝑛𝑐) → (𝑛 +o (𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑐)) = 𝑐)
231 suceq 6331 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑛 +o (𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑐)) = 𝑐 → suc (𝑛 +o (𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑐)) = suc 𝑐)
232230, 231syl 17 . . . . . . . . . . . . . . . . . . . . 21 (((((𝑛 ∈ (ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o)) ∧ ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑧) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔𝑚) = 𝑦) ∧ ∀𝑏𝑚 (𝑔𝑏)𝑅(𝑔‘suc 𝑏)))) ∧ 𝑐 ∈ (𝑛 +o 𝑚)) ∧ 𝑛𝑐) → suc (𝑛 +o (𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑐)) = suc 𝑐)
233219, 232eqtrd 2778 . . . . . . . . . . . . . . . . . . . 20 (((((𝑛 ∈ (ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o)) ∧ ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑧) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔𝑚) = 𝑦) ∧ ∀𝑏𝑚 (𝑔𝑏)𝑅(𝑔‘suc 𝑏)))) ∧ 𝑐 ∈ (𝑛 +o 𝑚)) ∧ 𝑛𝑐) → (𝑛 +o suc (𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑐)) = suc 𝑐)
234 peano2 7737 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑐) ∈ ω → suc (𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑐) ∈ ω)
235217, 234syl 17 . . . . . . . . . . . . . . . . . . . . 21 (((((𝑛 ∈ (ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o)) ∧ ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑧) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔𝑚) = 𝑦) ∧ ∀𝑏𝑚 (𝑔𝑏)𝑅(𝑔‘suc 𝑏)))) ∧ 𝑐 ∈ (𝑛 +o 𝑚)) ∧ 𝑛𝑐) → suc (𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑐) ∈ ω)
236 peano2 7737 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑝 ∈ ω → suc 𝑝 ∈ ω)
237 nnasuc 8437 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑛 ∈ ω ∧ 𝑝 ∈ ω) → (𝑛 +o suc 𝑝) = suc (𝑛 +o 𝑝))
238177, 237sylan 580 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((((𝑛 ∈ (ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o)) ∧ ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑧) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔𝑚) = 𝑦) ∧ ∀𝑏𝑚 (𝑔𝑏)𝑅(𝑔‘suc 𝑏)))) ∧ 𝑐 ∈ (𝑛 +o 𝑚)) ∧ 𝑛𝑐) ∧ 𝑝 ∈ ω) → (𝑛 +o suc 𝑝) = suc (𝑛 +o 𝑝))
239 oveq2 7283 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑞 = suc 𝑝 → (𝑛 +o 𝑞) = (𝑛 +o suc 𝑝))
240239eqeq1d 2740 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑞 = suc 𝑝 → ((𝑛 +o 𝑞) = suc (𝑛 +o 𝑝) ↔ (𝑛 +o suc 𝑝) = suc (𝑛 +o 𝑝)))
241240rspcev 3561 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((suc 𝑝 ∈ ω ∧ (𝑛 +o suc 𝑝) = suc (𝑛 +o 𝑝)) → ∃𝑞 ∈ ω (𝑛 +o 𝑞) = suc (𝑛 +o 𝑝))
242236, 238, 241syl2an2 683 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((((𝑛 ∈ (ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o)) ∧ ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑧) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔𝑚) = 𝑦) ∧ ∀𝑏𝑚 (𝑔𝑏)𝑅(𝑔‘suc 𝑏)))) ∧ 𝑐 ∈ (𝑛 +o 𝑚)) ∧ 𝑛𝑐) ∧ 𝑝 ∈ ω) → ∃𝑞 ∈ ω (𝑛 +o 𝑞) = suc (𝑛 +o 𝑝))
243 suceq 6331 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑛 +o 𝑝) = 𝑐 → suc (𝑛 +o 𝑝) = suc 𝑐)
244243eqeq2d 2749 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑛 +o 𝑝) = 𝑐 → ((𝑛 +o 𝑞) = suc (𝑛 +o 𝑝) ↔ (𝑛 +o 𝑞) = suc 𝑐))
245244rexbidv 3226 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑛 +o 𝑝) = 𝑐 → (∃𝑞 ∈ ω (𝑛 +o 𝑞) = suc (𝑛 +o 𝑝) ↔ ∃𝑞 ∈ ω (𝑛 +o 𝑞) = suc 𝑐))
246242, 245syl5ibcom 244 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((((𝑛 ∈ (ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o)) ∧ ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑧) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔𝑚) = 𝑦) ∧ ∀𝑏𝑚 (𝑔𝑏)𝑅(𝑔‘suc 𝑏)))) ∧ 𝑐 ∈ (𝑛 +o 𝑚)) ∧ 𝑛𝑐) ∧ 𝑝 ∈ ω) → ((𝑛 +o 𝑝) = 𝑐 → ∃𝑞 ∈ ω (𝑛 +o 𝑞) = suc 𝑐))
247246rexlimdva 3213 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝑛 ∈ (ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o)) ∧ ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑧) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔𝑚) = 𝑦) ∧ ∀𝑏𝑚 (𝑔𝑏)𝑅(𝑔‘suc 𝑏)))) ∧ 𝑐 ∈ (𝑛 +o 𝑚)) ∧ 𝑛𝑐) → (∃𝑝 ∈ ω (𝑛 +o 𝑝) = 𝑐 → ∃𝑞 ∈ ω (𝑛 +o 𝑞) = suc 𝑐))
248170, 247mpd 15 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝑛 ∈ (ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o)) ∧ ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑧) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔𝑚) = 𝑦) ∧ ∀𝑏𝑚 (𝑔𝑏)𝑅(𝑔‘suc 𝑏)))) ∧ 𝑐 ∈ (𝑛 +o 𝑚)) ∧ 𝑛𝑐) → ∃𝑞 ∈ ω (𝑛 +o 𝑞) = suc 𝑐)
249 nnasmo 8493 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑛 ∈ ω → ∃*𝑞 ∈ ω (𝑛 +o 𝑞) = suc 𝑐)
250177, 249syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝑛 ∈ (ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o)) ∧ ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑧) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔𝑚) = 𝑦) ∧ ∀𝑏𝑚 (𝑔𝑏)𝑅(𝑔‘suc 𝑏)))) ∧ 𝑐 ∈ (𝑛 +o 𝑚)) ∧ 𝑛𝑐) → ∃*𝑞 ∈ ω (𝑛 +o 𝑞) = suc 𝑐)
251 reu5 3361 . . . . . . . . . . . . . . . . . . . . . 22 (∃!𝑞 ∈ ω (𝑛 +o 𝑞) = suc 𝑐 ↔ (∃𝑞 ∈ ω (𝑛 +o 𝑞) = suc 𝑐 ∧ ∃*𝑞 ∈ ω (𝑛 +o 𝑞) = suc 𝑐))
252248, 250, 251sylanbrc 583 . . . . . . . . . . . . . . . . . . . . 21 (((((𝑛 ∈ (ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o)) ∧ ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑧) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔𝑚) = 𝑦) ∧ ∀𝑏𝑚 (𝑔𝑏)𝑅(𝑔‘suc 𝑏)))) ∧ 𝑐 ∈ (𝑛 +o 𝑚)) ∧ 𝑛𝑐) → ∃!𝑞 ∈ ω (𝑛 +o 𝑞) = suc 𝑐)
253221nfsuc 6337 . . . . . . . . . . . . . . . . . . . . . 22 𝑞 suc (𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑐)
254222, 223, 253nfov 7305 . . . . . . . . . . . . . . . . . . . . . . 23 𝑞(𝑛 +o suc (𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑐))
255254nfeq1 2922 . . . . . . . . . . . . . . . . . . . . . 22 𝑞(𝑛 +o suc (𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑐)) = suc 𝑐
256 oveq2 7283 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑞 = suc (𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑐) → (𝑛 +o 𝑞) = (𝑛 +o suc (𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑐)))
257256eqeq1d 2740 . . . . . . . . . . . . . . . . . . . . . 22 (𝑞 = suc (𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑐) → ((𝑛 +o 𝑞) = suc 𝑐 ↔ (𝑛 +o suc (𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑐)) = suc 𝑐))
258253, 255, 257riota2f 7257 . . . . . . . . . . . . . . . . . . . . 21 ((suc (𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑐) ∈ ω ∧ ∃!𝑞 ∈ ω (𝑛 +o 𝑞) = suc 𝑐) → ((𝑛 +o suc (𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑐)) = suc 𝑐 ↔ (𝑞 ∈ ω (𝑛 +o 𝑞) = suc 𝑐) = suc (𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑐)))
259235, 252, 258syl2anc 584 . . . . . . . . . . . . . . . . . . . 20 (((((𝑛 ∈ (ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o)) ∧ ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑧) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔𝑚) = 𝑦) ∧ ∀𝑏𝑚 (𝑔𝑏)𝑅(𝑔‘suc 𝑏)))) ∧ 𝑐 ∈ (𝑛 +o 𝑚)) ∧ 𝑛𝑐) → ((𝑛 +o suc (𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑐)) = suc 𝑐 ↔ (𝑞 ∈ ω (𝑛 +o 𝑞) = suc 𝑐) = suc (𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑐)))
260233, 259mpbid 231 . . . . . . . . . . . . . . . . . . 19 (((((𝑛 ∈ (ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o)) ∧ ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑧) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔𝑚) = 𝑦) ∧ ∀𝑏𝑚 (𝑔𝑏)𝑅(𝑔‘suc 𝑏)))) ∧ 𝑐 ∈ (𝑛 +o 𝑚)) ∧ 𝑛𝑐) → (𝑞 ∈ ω (𝑛 +o 𝑞) = suc 𝑐) = suc (𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑐))
261260fveq2d 6778 . . . . . . . . . . . . . . . . . 18 (((((𝑛 ∈ (ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o)) ∧ ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑧) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔𝑚) = 𝑦) ∧ ∀𝑏𝑚 (𝑔𝑏)𝑅(𝑔‘suc 𝑏)))) ∧ 𝑐 ∈ (𝑛 +o 𝑚)) ∧ 𝑛𝑐) → (𝑔‘(𝑞 ∈ ω (𝑛 +o 𝑞) = suc 𝑐)) = (𝑔‘suc (𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑐)))
262199, 215, 2613brtr4d 5106 . . . . . . . . . . . . . . . . 17 (((((𝑛 ∈ (ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o)) ∧ ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑧) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔𝑚) = 𝑦) ∧ ∀𝑏𝑚 (𝑔𝑏)𝑅(𝑔‘suc 𝑏)))) ∧ 𝑐 ∈ (𝑛 +o 𝑚)) ∧ 𝑛𝑐) → if(𝑐 ∈ suc 𝑛, (𝑓𝑐), (𝑔‘(𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑐)))𝑅(𝑔‘(𝑞 ∈ ω (𝑛 +o 𝑞) = suc 𝑐)))
263262ex 413 . . . . . . . . . . . . . . . 16 ((((𝑛 ∈ (ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o)) ∧ ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑧) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔𝑚) = 𝑦) ∧ ∀𝑏𝑚 (𝑔𝑏)𝑅(𝑔‘suc 𝑏)))) ∧ 𝑐 ∈ (𝑛 +o 𝑚)) → (𝑛𝑐 → if(𝑐 ∈ suc 𝑛, (𝑓𝑐), (𝑔‘(𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑐)))𝑅(𝑔‘(𝑞 ∈ ω (𝑛 +o 𝑞) = suc 𝑐))))
264 fveq2 6774 . . . . . . . . . . . . . . . . . . . . 21 (𝑏 = ∅ → (𝑔𝑏) = (𝑔‘∅))
265 suceq 6331 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑏 = ∅ → suc 𝑏 = suc ∅)
266265, 59eqtr4di 2796 . . . . . . . . . . . . . . . . . . . . . 22 (𝑏 = ∅ → suc 𝑏 = 1o)
267266fveq2d 6778 . . . . . . . . . . . . . . . . . . . . 21 (𝑏 = ∅ → (𝑔‘suc 𝑏) = (𝑔‘1o))
268264, 267breq12d 5087 . . . . . . . . . . . . . . . . . . . 20 (𝑏 = ∅ → ((𝑔𝑏)𝑅(𝑔‘suc 𝑏) ↔ (𝑔‘∅)𝑅(𝑔‘1o)))
269 eldif 3897 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑚 ∈ (ω ∖ 1o) ↔ (𝑚 ∈ ω ∧ ¬ 𝑚 ∈ 1o))
270 nnord 7720 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑚 ∈ ω → Ord 𝑚)
271 ordtri1 6299 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((Ord 1o ∧ Ord 𝑚) → (1o𝑚 ↔ ¬ 𝑚 ∈ 1o))
2728, 270, 271sylancr 587 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑚 ∈ ω → (1o𝑚 ↔ ¬ 𝑚 ∈ 1o))
273272biimpar 478 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑚 ∈ ω ∧ ¬ 𝑚 ∈ 1o) → 1o𝑚)
274269, 273sylbi 216 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑚 ∈ (ω ∖ 1o) → 1o𝑚)
275274adantl 482 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑛 ∈ (ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o)) → 1o𝑚)
27659, 275eqsstrrid 3970 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑛 ∈ (ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o)) → suc ∅ ⊆ 𝑚)
277 0ex 5231 . . . . . . . . . . . . . . . . . . . . . . 23 ∅ ∈ V
278113, 270syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑛 ∈ (ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o)) → Ord 𝑚)
279 ordelsuc 7667 . . . . . . . . . . . . . . . . . . . . . . 23 ((∅ ∈ V ∧ Ord 𝑚) → (∅ ∈ 𝑚 ↔ suc ∅ ⊆ 𝑚))
280277, 278, 279sylancr 587 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑛 ∈ (ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o)) → (∅ ∈ 𝑚 ↔ suc ∅ ⊆ 𝑚))
281276, 280mpbird 256 . . . . . . . . . . . . . . . . . . . . 21 ((𝑛 ∈ (ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o)) → ∅ ∈ 𝑚)
282281adantr 481 . . . . . . . . . . . . . . . . . . . 20 (((𝑛 ∈ (ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o)) ∧ ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑧) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔𝑚) = 𝑦) ∧ ∀𝑏𝑚 (𝑔𝑏)𝑅(𝑔‘suc 𝑏)))) → ∅ ∈ 𝑚)
283268, 156, 282rspcdva 3562 . . . . . . . . . . . . . . . . . . 19 (((𝑛 ∈ (ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o)) ∧ ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑧) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔𝑚) = 𝑦) ∧ ∀𝑏𝑚 (𝑔𝑏)𝑅(𝑔‘suc 𝑏)))) → (𝑔‘∅)𝑅(𝑔‘1o))
284 simpl2r 1226 . . . . . . . . . . . . . . . . . . . . 21 (((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑧) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔𝑚) = 𝑦) ∧ ∀𝑏𝑚 (𝑔𝑏)𝑅(𝑔‘suc 𝑏))) → (𝑓𝑛) = 𝑧)
285 simpr2l 1231 . . . . . . . . . . . . . . . . . . . . 21 (((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑧) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔𝑚) = 𝑦) ∧ ∀𝑏𝑚 (𝑔𝑏)𝑅(𝑔‘suc 𝑏))) → (𝑔‘∅) = 𝑧)
286284, 285eqtr4d 2781 . . . . . . . . . . . . . . . . . . . 20 (((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑧) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔𝑚) = 𝑦) ∧ ∀𝑏𝑚 (𝑔𝑏)𝑅(𝑔‘suc 𝑏))) → (𝑓𝑛) = (𝑔‘∅))
287286adantl 482 . . . . . . . . . . . . . . . . . . 19 (((𝑛 ∈ (ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o)) ∧ ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑧) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔𝑚) = 𝑦) ∧ ∀𝑏𝑚 (𝑔𝑏)𝑅(𝑔‘suc 𝑏)))) → (𝑓𝑛) = (𝑔‘∅))
288 nnon 7718 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑛 ∈ ω → 𝑛 ∈ On)
28938, 288syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑛 ∈ (ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o)) → 𝑛 ∈ On)
290 oa1suc 8361 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑛 ∈ On → (𝑛 +o 1o) = suc 𝑛)
291289, 290syl 17 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑛 ∈ (ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o)) → (𝑛 +o 1o) = suc 𝑛)
292 1onn 8470 . . . . . . . . . . . . . . . . . . . . . . 23 1o ∈ ω
293 oveq2 7283 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑞 = 1o → (𝑛 +o 𝑞) = (𝑛 +o 1o))
294293eqeq1d 2740 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑞 = 1o → ((𝑛 +o 𝑞) = suc 𝑛 ↔ (𝑛 +o 1o) = suc 𝑛))
295294rspcev 3561 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((1o ∈ ω ∧ (𝑛 +o 1o) = suc 𝑛) → ∃𝑞 ∈ ω (𝑛 +o 𝑞) = suc 𝑛)
296292, 291, 295sylancr 587 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑛 ∈ (ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o)) → ∃𝑞 ∈ ω (𝑛 +o 𝑞) = suc 𝑛)
297 nnasmo 8493 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑛 ∈ ω → ∃*𝑞 ∈ ω (𝑛 +o 𝑞) = suc 𝑛)
29838, 297syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑛 ∈ (ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o)) → ∃*𝑞 ∈ ω (𝑛 +o 𝑞) = suc 𝑛)
299 reu5 3361 . . . . . . . . . . . . . . . . . . . . . . . 24 (∃!𝑞 ∈ ω (𝑛 +o 𝑞) = suc 𝑛 ↔ (∃𝑞 ∈ ω (𝑛 +o 𝑞) = suc 𝑛 ∧ ∃*𝑞 ∈ ω (𝑛 +o 𝑞) = suc 𝑛))
300296, 298, 299sylanbrc 583 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑛 ∈ (ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o)) → ∃!𝑞 ∈ ω (𝑛 +o 𝑞) = suc 𝑛)
301294riota2 7258 . . . . . . . . . . . . . . . . . . . . . . 23 ((1o ∈ ω ∧ ∃!𝑞 ∈ ω (𝑛 +o 𝑞) = suc 𝑛) → ((𝑛 +o 1o) = suc 𝑛 ↔ (𝑞 ∈ ω (𝑛 +o 𝑞) = suc 𝑛) = 1o))
302292, 300, 301sylancr 587 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑛 ∈ (ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o)) → ((𝑛 +o 1o) = suc 𝑛 ↔ (𝑞 ∈ ω (𝑛 +o 𝑞) = suc 𝑛) = 1o))
303291, 302mpbid 231 . . . . . . . . . . . . . . . . . . . . 21 ((𝑛 ∈ (ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o)) → (𝑞 ∈ ω (𝑛 +o 𝑞) = suc 𝑛) = 1o)
304303adantr 481 . . . . . . . . . . . . . . . . . . . 20 (((𝑛 ∈ (ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o)) ∧ ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑧) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔𝑚) = 𝑦) ∧ ∀𝑏𝑚 (𝑔𝑏)𝑅(𝑔‘suc 𝑏)))) → (𝑞 ∈ ω (𝑛 +o 𝑞) = suc 𝑛) = 1o)
305304fveq2d 6778 . . . . . . . . . . . . . . . . . . 19 (((𝑛 ∈ (ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o)) ∧ ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑧) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔𝑚) = 𝑦) ∧ ∀𝑏𝑚 (𝑔𝑏)𝑅(𝑔‘suc 𝑏)))) → (𝑔‘(𝑞 ∈ ω (𝑛 +o 𝑞) = suc 𝑛)) = (𝑔‘1o))
306283, 287, 3053brtr4d 5106 . . . . . . . . . . . . . . . . . 18 (((𝑛 ∈ (ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o)) ∧ ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑧) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔𝑚) = 𝑦) ∧ ∀𝑏𝑚 (𝑔𝑏)𝑅(𝑔‘suc 𝑏)))) → (𝑓𝑛)𝑅(𝑔‘(𝑞 ∈ ω (𝑛 +o 𝑞) = suc 𝑛)))
307201sucid 6345 . . . . . . . . . . . . . . . . . . . . 21 𝑛 ∈ suc 𝑛
308307iftruei 4466 . . . . . . . . . . . . . . . . . . . 20 if(𝑛 ∈ suc 𝑛, (𝑓𝑛), (𝑔‘(𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑐))) = (𝑓𝑛)
309 eleq1 2826 . . . . . . . . . . . . . . . . . . . . 21 (𝑛 = 𝑐 → (𝑛 ∈ suc 𝑛𝑐 ∈ suc 𝑛))
310 fveq2 6774 . . . . . . . . . . . . . . . . . . . . 21 (𝑛 = 𝑐 → (𝑓𝑛) = (𝑓𝑐))
311309, 310ifbieq1d 4483 . . . . . . . . . . . . . . . . . . . 20 (𝑛 = 𝑐 → if(𝑛 ∈ suc 𝑛, (𝑓𝑛), (𝑔‘(𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑐))) = if(𝑐 ∈ suc 𝑛, (𝑓𝑐), (𝑔‘(𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑐))))
312308, 311eqtr3id 2792 . . . . . . . . . . . . . . . . . . 19 (𝑛 = 𝑐 → (𝑓𝑛) = if(𝑐 ∈ suc 𝑛, (𝑓𝑐), (𝑔‘(𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑐))))
313 suceq 6331 . . . . . . . . . . . . . . . . . . . . . 22 (𝑛 = 𝑐 → suc 𝑛 = suc 𝑐)
314313eqeq2d 2749 . . . . . . . . . . . . . . . . . . . . 21 (𝑛 = 𝑐 → ((𝑛 +o 𝑞) = suc 𝑛 ↔ (𝑛 +o 𝑞) = suc 𝑐))
315314riotabidv 7234 . . . . . . . . . . . . . . . . . . . 20 (𝑛 = 𝑐 → (𝑞 ∈ ω (𝑛 +o 𝑞) = suc 𝑛) = (𝑞 ∈ ω (𝑛 +o 𝑞) = suc 𝑐))
316315fveq2d 6778 . . . . . . . . . . . . . . . . . . 19 (𝑛 = 𝑐 → (𝑔‘(𝑞 ∈ ω (𝑛 +o 𝑞) = suc 𝑛)) = (𝑔‘(𝑞 ∈ ω (𝑛 +o 𝑞) = suc 𝑐)))
317312, 316breq12d 5087 . . . . . . . . . . . . . . . . . 18 (𝑛 = 𝑐 → ((𝑓𝑛)𝑅(𝑔‘(𝑞 ∈ ω (𝑛 +o 𝑞) = suc 𝑛)) ↔ if(𝑐 ∈ suc 𝑛, (𝑓𝑐), (𝑔‘(𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑐)))𝑅(𝑔‘(𝑞 ∈ ω (𝑛 +o 𝑞) = suc 𝑐))))
318306, 317syl5ibcom 244 . . . . . . . . . . . . . . . . 17 (((𝑛 ∈ (ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o)) ∧ ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑧) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔𝑚) = 𝑦) ∧ ∀𝑏𝑚 (𝑔𝑏)𝑅(𝑔‘suc 𝑏)))) → (𝑛 = 𝑐 → if(𝑐 ∈ suc 𝑛, (𝑓𝑐), (𝑔‘(𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑐)))𝑅(𝑔‘(𝑞 ∈ ω (𝑛 +o 𝑞) = suc 𝑐))))
319318adantr 481 . . . . . . . . . . . . . . . 16 ((((𝑛 ∈ (ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o)) ∧ ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑧) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔𝑚) = 𝑦) ∧ ∀𝑏𝑚 (𝑔𝑏)𝑅(𝑔‘suc 𝑏)))) ∧ 𝑐 ∈ (𝑛 +o 𝑚)) → (𝑛 = 𝑐 → if(𝑐 ∈ suc 𝑛, (𝑓𝑐), (𝑔‘(𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑐)))𝑅(𝑔‘(𝑞 ∈ ω (𝑛 +o 𝑞) = suc 𝑐))))
320263, 319jaod 856 . . . . . . . . . . . . . . 15 ((((𝑛 ∈ (ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o)) ∧ ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑧) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔𝑚) = 𝑦) ∧ ∀𝑏𝑚 (𝑔𝑏)𝑅(𝑔‘suc 𝑏)))) ∧ 𝑐 ∈ (𝑛 +o 𝑚)) → ((𝑛𝑐𝑛 = 𝑐) → if(𝑐 ∈ suc 𝑛, (𝑓𝑐), (𝑔‘(𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑐)))𝑅(𝑔‘(𝑞 ∈ ω (𝑛 +o 𝑞) = suc 𝑐))))
321151, 320syld 47 . . . . . . . . . . . . . 14 ((((𝑛 ∈ (ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o)) ∧ ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑧) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔𝑚) = 𝑦) ∧ ∀𝑏𝑚 (𝑔𝑏)𝑅(𝑔‘suc 𝑏)))) ∧ 𝑐 ∈ (𝑛 +o 𝑚)) → (¬ 𝑐𝑛 → if(𝑐 ∈ suc 𝑛, (𝑓𝑐), (𝑔‘(𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑐)))𝑅(𝑔‘(𝑞 ∈ ω (𝑛 +o 𝑞) = suc 𝑐))))
322321imp 407 . . . . . . . . . . . . 13 (((((𝑛 ∈ (ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o)) ∧ ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑧) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔𝑚) = 𝑦) ∧ ∀𝑏𝑚 (𝑔𝑏)𝑅(𝑔‘suc 𝑏)))) ∧ 𝑐 ∈ (𝑛 +o 𝑚)) ∧ ¬ 𝑐𝑛) → if(𝑐 ∈ suc 𝑛, (𝑓𝑐), (𝑔‘(𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑐)))𝑅(𝑔‘(𝑞 ∈ ω (𝑛 +o 𝑞) = suc 𝑐)))
323135notbid 318 . . . . . . . . . . . . . . . . 17 ((𝑛 ∈ (ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o)) → (¬ 𝑐𝑛 ↔ ¬ suc 𝑐 ∈ suc 𝑛))
324323adantr 481 . . . . . . . . . . . . . . . 16 (((𝑛 ∈ (ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o)) ∧ ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑧) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔𝑚) = 𝑦) ∧ ∀𝑏𝑚 (𝑔𝑏)𝑅(𝑔‘suc 𝑏)))) → (¬ 𝑐𝑛 ↔ ¬ suc 𝑐 ∈ suc 𝑛))
325324adantr 481 . . . . . . . . . . . . . . 15 ((((𝑛 ∈ (ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o)) ∧ ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑧) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔𝑚) = 𝑦) ∧ ∀𝑏𝑚 (𝑔𝑏)𝑅(𝑔‘suc 𝑏)))) ∧ 𝑐 ∈ (𝑛 +o 𝑚)) → (¬ 𝑐𝑛 ↔ ¬ suc 𝑐 ∈ suc 𝑛))
326325biimpa 477 . . . . . . . . . . . . . 14 (((((𝑛 ∈ (ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o)) ∧ ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑧) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔𝑚) = 𝑦) ∧ ∀𝑏𝑚 (𝑔𝑏)𝑅(𝑔‘suc 𝑏)))) ∧ 𝑐 ∈ (𝑛 +o 𝑚)) ∧ ¬ 𝑐𝑛) → ¬ suc 𝑐 ∈ suc 𝑛)
327326iffalsed 4470 . . . . . . . . . . . . 13 (((((𝑛 ∈ (ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o)) ∧ ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑧) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔𝑚) = 𝑦) ∧ ∀𝑏𝑚 (𝑔𝑏)𝑅(𝑔‘suc 𝑏)))) ∧ 𝑐 ∈ (𝑛 +o 𝑚)) ∧ ¬ 𝑐𝑛) → if(suc 𝑐 ∈ suc 𝑛, (𝑓‘suc 𝑐), (𝑔‘(𝑞 ∈ ω (𝑛 +o 𝑞) = suc 𝑐))) = (𝑔‘(𝑞 ∈ ω (𝑛 +o 𝑞) = suc 𝑐)))
328322, 327breqtrrd 5102 . . . . . . . . . . . 12 (((((𝑛 ∈ (ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o)) ∧ ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑧) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔𝑚) = 𝑦) ∧ ∀𝑏𝑚 (𝑔𝑏)𝑅(𝑔‘suc 𝑏)))) ∧ 𝑐 ∈ (𝑛 +o 𝑚)) ∧ ¬ 𝑐𝑛) → if(𝑐 ∈ suc 𝑛, (𝑓𝑐), (𝑔‘(𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑐)))𝑅if(suc 𝑐 ∈ suc 𝑛, (𝑓‘suc 𝑐), (𝑔‘(𝑞 ∈ ω (𝑛 +o 𝑞) = suc 𝑐))))
329140, 328pm2.61dan 810 . . . . . . . . . . 11 ((((𝑛 ∈ (ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o)) ∧ ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑧) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔𝑚) = 𝑦) ∧ ∀𝑏𝑚 (𝑔𝑏)𝑅(𝑔‘suc 𝑏)))) ∧ 𝑐 ∈ (𝑛 +o 𝑚)) → if(𝑐 ∈ suc 𝑛, (𝑓𝑐), (𝑔‘(𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑐)))𝑅if(suc 𝑐 ∈ suc 𝑛, (𝑓‘suc 𝑐), (𝑔‘(𝑞 ∈ ω (𝑛 +o 𝑞) = suc 𝑐))))
330 elelsuc 6338 . . . . . . . . . . . . 13 (𝑐 ∈ (𝑛 +o 𝑚) → 𝑐 ∈ suc (𝑛 +o 𝑚))
331330adantl 482 . . . . . . . . . . . 12 ((((𝑛 ∈ (ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o)) ∧ ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑧) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔𝑚) = 𝑦) ∧ ∀𝑏𝑚 (𝑔𝑏)𝑅(𝑔‘suc 𝑏)))) ∧ 𝑐 ∈ (𝑛 +o 𝑚)) → 𝑐 ∈ suc (𝑛 +o 𝑚))
332 eleq1 2826 . . . . . . . . . . . . . 14 (𝑝 = 𝑐 → (𝑝 ∈ suc 𝑛𝑐 ∈ suc 𝑛))
333 fveq2 6774 . . . . . . . . . . . . . 14 (𝑝 = 𝑐 → (𝑓𝑝) = (𝑓𝑐))
334 eqeq2 2750 . . . . . . . . . . . . . . . 16 (𝑝 = 𝑐 → ((𝑛 +o 𝑞) = 𝑝 ↔ (𝑛 +o 𝑞) = 𝑐))
335334riotabidv 7234 . . . . . . . . . . . . . . 15 (𝑝 = 𝑐 → (𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑝) = (𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑐))
336335fveq2d 6778 . . . . . . . . . . . . . 14 (𝑝 = 𝑐 → (𝑔‘(𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑝)) = (𝑔‘(𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑐)))
337332, 333, 336ifbieq12d 4487 . . . . . . . . . . . . 13 (𝑝 = 𝑐 → if(𝑝 ∈ suc 𝑛, (𝑓𝑝), (𝑔‘(𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑝))) = if(𝑐 ∈ suc 𝑛, (𝑓𝑐), (𝑔‘(𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑐))))
338 fvex 6787 . . . . . . . . . . . . . 14 (𝑓𝑐) ∈ V
339 fvex 6787 . . . . . . . . . . . . . 14 (𝑔‘(𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑐)) ∈ V
340338, 339ifex 4509 . . . . . . . . . . . . 13 if(𝑐 ∈ suc 𝑛, (𝑓𝑐), (𝑔‘(𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑐))) ∈ V
341337, 32, 340fvmpt 6875 . . . . . . . . . . . 12 (𝑐 ∈ suc (𝑛 +o 𝑚) → ((𝑝 ∈ suc (𝑛 +o 𝑚) ↦ if(𝑝 ∈ suc 𝑛, (𝑓𝑝), (𝑔‘(𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑝))))‘𝑐) = if(𝑐 ∈ suc 𝑛, (𝑓𝑐), (𝑔‘(𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑐))))
342331, 341syl 17 . . . . . . . . . . 11 ((((𝑛 ∈ (ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o)) ∧ ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑧) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔𝑚) = 𝑦) ∧ ∀𝑏𝑚 (𝑔𝑏)𝑅(𝑔‘suc 𝑏)))) ∧ 𝑐 ∈ (𝑛 +o 𝑚)) → ((𝑝 ∈ suc (𝑛 +o 𝑚) ↦ if(𝑝 ∈ suc 𝑛, (𝑓𝑝), (𝑔‘(𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑝))))‘𝑐) = if(𝑐 ∈ suc 𝑛, (𝑓𝑐), (𝑔‘(𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑐))))
343 ordsucelsuc 7669 . . . . . . . . . . . . . . 15 (Ord (𝑛 +o 𝑚) → (𝑐 ∈ (𝑛 +o 𝑚) ↔ suc 𝑐 ∈ suc (𝑛 +o 𝑚)))
34419, 343syl 17 . . . . . . . . . . . . . 14 ((𝑛 ∈ (ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o)) → (𝑐 ∈ (𝑛 +o 𝑚) ↔ suc 𝑐 ∈ suc (𝑛 +o 𝑚)))
345344adantr 481 . . . . . . . . . . . . 13 (((𝑛 ∈ (ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o)) ∧ ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑧) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔𝑚) = 𝑦) ∧ ∀𝑏𝑚 (𝑔𝑏)𝑅(𝑔‘suc 𝑏)))) → (𝑐 ∈ (𝑛 +o 𝑚) ↔ suc 𝑐 ∈ suc (𝑛 +o 𝑚)))
346345biimpa 477 . . . . . . . . . . . 12 ((((𝑛 ∈ (ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o)) ∧ ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑧) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔𝑚) = 𝑦) ∧ ∀𝑏𝑚 (𝑔𝑏)𝑅(𝑔‘suc 𝑏)))) ∧ 𝑐 ∈ (𝑛 +o 𝑚)) → suc 𝑐 ∈ suc (𝑛 +o 𝑚))
347 eleq1 2826 . . . . . . . . . . . . . 14 (𝑝 = suc 𝑐 → (𝑝 ∈ suc 𝑛 ↔ suc 𝑐 ∈ suc 𝑛))
348 fveq2 6774 . . . . . . . . . . . . . 14 (𝑝 = suc 𝑐 → (𝑓𝑝) = (𝑓‘suc 𝑐))
349 eqeq2 2750 . . . . . . . . . . . . . . . 16 (𝑝 = suc 𝑐 → ((𝑛 +o 𝑞) = 𝑝 ↔ (𝑛 +o 𝑞) = suc 𝑐))
350349riotabidv 7234 . . . . . . . . . . . . . . 15 (𝑝 = suc 𝑐 → (𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑝) = (𝑞 ∈ ω (𝑛 +o 𝑞) = suc 𝑐))
351350fveq2d 6778 . . . . . . . . . . . . . 14 (𝑝 = suc 𝑐 → (𝑔‘(𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑝)) = (𝑔‘(𝑞 ∈ ω (𝑛 +o 𝑞) = suc 𝑐)))
352347, 348, 351ifbieq12d 4487 . . . . . . . . . . . . 13 (𝑝 = suc 𝑐 → if(𝑝 ∈ suc 𝑛, (𝑓𝑝), (𝑔‘(𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑝))) = if(suc 𝑐 ∈ suc 𝑛, (𝑓‘suc 𝑐), (𝑔‘(𝑞 ∈ ω (𝑛 +o 𝑞) = suc 𝑐))))
353 fvex 6787 . . . . . . . . . . . . . 14 (𝑓‘suc 𝑐) ∈ V
354 fvex 6787 . . . . . . . . . . . . . 14 (𝑔‘(𝑞 ∈ ω (𝑛 +o 𝑞) = suc 𝑐)) ∈ V
355353, 354ifex 4509 . . . . . . . . . . . . 13 if(suc 𝑐 ∈ suc 𝑛, (𝑓‘suc 𝑐), (𝑔‘(𝑞 ∈ ω (𝑛 +o 𝑞) = suc 𝑐))) ∈ V
356352, 32, 355fvmpt 6875 . . . . . . . . . . . 12 (suc 𝑐 ∈ suc (𝑛 +o 𝑚) → ((𝑝 ∈ suc (𝑛 +o 𝑚) ↦ if(𝑝 ∈ suc 𝑛, (𝑓𝑝), (𝑔‘(𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑝))))‘suc 𝑐) = if(suc 𝑐 ∈ suc 𝑛, (𝑓‘suc 𝑐), (𝑔‘(𝑞 ∈ ω (𝑛 +o 𝑞) = suc 𝑐))))
357346, 356syl 17 . . . . . . . . . . 11 ((((𝑛 ∈ (ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o)) ∧ ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑧) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔𝑚) = 𝑦) ∧ ∀𝑏𝑚 (𝑔𝑏)𝑅(𝑔‘suc 𝑏)))) ∧ 𝑐 ∈ (𝑛 +o 𝑚)) → ((𝑝 ∈ suc (𝑛 +o 𝑚) ↦ if(𝑝 ∈ suc 𝑛, (𝑓𝑝), (𝑔‘(𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑝))))‘suc 𝑐) = if(suc 𝑐 ∈ suc 𝑛, (𝑓‘suc 𝑐), (𝑔‘(𝑞 ∈ ω (𝑛 +o 𝑞) = suc 𝑐))))
358329, 342, 3573brtr4d 5106 . . . . . . . . . 10 ((((𝑛 ∈ (ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o)) ∧ ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑧) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔𝑚) = 𝑦) ∧ ∀𝑏𝑚 (𝑔𝑏)𝑅(𝑔‘suc 𝑏)))) ∧ 𝑐 ∈ (𝑛 +o 𝑚)) → ((𝑝 ∈ suc (𝑛 +o 𝑚) ↦ if(𝑝 ∈ suc 𝑛, (𝑓𝑝), (𝑔‘(𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑝))))‘𝑐)𝑅((𝑝 ∈ suc (𝑛 +o 𝑚) ↦ if(𝑝 ∈ suc 𝑛, (𝑓𝑝), (𝑔‘(𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑝))))‘suc 𝑐))
359358ralrimiva 3103 . . . . . . . . 9 (((𝑛 ∈ (ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o)) ∧ ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑧) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔𝑚) = 𝑦) ∧ ∀𝑏𝑚 (𝑔𝑏)𝑅(𝑔‘suc 𝑏)))) → ∀𝑐 ∈ (𝑛 +o 𝑚)((𝑝 ∈ suc (𝑛 +o 𝑚) ↦ if(𝑝 ∈ suc 𝑛, (𝑓𝑝), (𝑔‘(𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑝))))‘𝑐)𝑅((𝑝 ∈ suc (𝑛 +o 𝑚) ↦ if(𝑝 ∈ suc 𝑛, (𝑓𝑝), (𝑔‘(𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑝))))‘suc 𝑐))
360 fvex 6787 . . . . . . . . . . . 12 (𝑓𝑝) ∈ V
361 fvex 6787 . . . . . . . . . . . 12 (𝑔‘(𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑝)) ∈ V
362360, 361ifex 4509 . . . . . . . . . . 11 if(𝑝 ∈ suc 𝑛, (𝑓𝑝), (𝑔‘(𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑝))) ∈ V
363362, 32fnmpti 6576 . . . . . . . . . 10 (𝑝 ∈ suc (𝑛 +o 𝑚) ↦ if(𝑝 ∈ suc 𝑛, (𝑓𝑝), (𝑔‘(𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑝)))) Fn suc (𝑛 +o 𝑚)
36446sucex 7656 . . . . . . . . . . . 12 suc (𝑛 +o 𝑚) ∈ V
365364mptex 7099 . . . . . . . . . . 11 (𝑝 ∈ suc (𝑛 +o 𝑚) ↦ if(𝑝 ∈ suc 𝑛, (𝑓𝑝), (𝑔‘(𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑝)))) ∈ V
366 fneq1 6524 . . . . . . . . . . . 12 ( = (𝑝 ∈ suc (𝑛 +o 𝑚) ↦ if(𝑝 ∈ suc 𝑛, (𝑓𝑝), (𝑔‘(𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑝)))) → ( Fn suc (𝑛 +o 𝑚) ↔ (𝑝 ∈ suc (𝑛 +o 𝑚) ↦ if(𝑝 ∈ suc 𝑛, (𝑓𝑝), (𝑔‘(𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑝)))) Fn suc (𝑛 +o 𝑚)))
367 fveq1 6773 . . . . . . . . . . . . . 14 ( = (𝑝 ∈ suc (𝑛 +o 𝑚) ↦ if(𝑝 ∈ suc 𝑛, (𝑓𝑝), (𝑔‘(𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑝)))) → (‘∅) = ((𝑝 ∈ suc (𝑛 +o 𝑚) ↦ if(𝑝 ∈ suc 𝑛, (𝑓𝑝), (𝑔‘(𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑝))))‘∅))
368367eqeq1d 2740 . . . . . . . . . . . . 13 ( = (𝑝 ∈ suc (𝑛 +o 𝑚) ↦ if(𝑝 ∈ suc 𝑛, (𝑓𝑝), (𝑔‘(𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑝)))) → ((‘∅) = 𝑥 ↔ ((𝑝 ∈ suc (𝑛 +o 𝑚) ↦ if(𝑝 ∈ suc 𝑛, (𝑓𝑝), (𝑔‘(𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑝))))‘∅) = 𝑥))
369 fveq1 6773 . . . . . . . . . . . . . 14 ( = (𝑝 ∈ suc (𝑛 +o 𝑚) ↦ if(𝑝 ∈ suc 𝑛, (𝑓𝑝), (𝑔‘(𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑝)))) → (‘(𝑛 +o 𝑚)) = ((𝑝 ∈ suc (𝑛 +o 𝑚) ↦ if(𝑝 ∈ suc 𝑛, (𝑓𝑝), (𝑔‘(𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑝))))‘(𝑛 +o 𝑚)))
370369eqeq1d 2740 . . . . . . . . . . . . 13 ( = (𝑝 ∈ suc (𝑛 +o 𝑚) ↦ if(𝑝 ∈ suc 𝑛, (𝑓𝑝), (𝑔‘(𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑝)))) → ((‘(𝑛 +o 𝑚)) = 𝑦 ↔ ((𝑝 ∈ suc (𝑛 +o 𝑚) ↦ if(𝑝 ∈ suc 𝑛, (𝑓𝑝), (𝑔‘(𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑝))))‘(𝑛 +o 𝑚)) = 𝑦))
371368, 370anbi12d 631 . . . . . . . . . . . 12 ( = (𝑝 ∈ suc (𝑛 +o 𝑚) ↦ if(𝑝 ∈ suc 𝑛, (𝑓𝑝), (𝑔‘(𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑝)))) → (((‘∅) = 𝑥 ∧ (‘(𝑛 +o 𝑚)) = 𝑦) ↔ (((𝑝 ∈ suc (𝑛 +o 𝑚) ↦ if(𝑝 ∈ suc 𝑛, (𝑓𝑝), (𝑔‘(𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑝))))‘∅) = 𝑥 ∧ ((𝑝 ∈ suc (𝑛 +o 𝑚) ↦ if(𝑝 ∈ suc 𝑛, (𝑓𝑝), (𝑔‘(𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑝))))‘(𝑛 +o 𝑚)) = 𝑦)))
372 fveq1 6773 . . . . . . . . . . . . . 14 ( = (𝑝 ∈ suc (𝑛 +o 𝑚) ↦ if(𝑝 ∈ suc 𝑛, (𝑓𝑝), (𝑔‘(𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑝)))) → (𝑐) = ((𝑝 ∈ suc (𝑛 +o 𝑚) ↦ if(𝑝 ∈ suc 𝑛, (𝑓𝑝), (𝑔‘(𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑝))))‘𝑐))
373 fveq1 6773 . . . . . . . . . . . . . 14 ( = (𝑝 ∈ suc (𝑛 +o 𝑚) ↦ if(𝑝 ∈ suc 𝑛, (𝑓𝑝), (𝑔‘(𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑝)))) → (‘suc 𝑐) = ((𝑝 ∈ suc (𝑛 +o 𝑚) ↦ if(𝑝 ∈ suc 𝑛, (𝑓𝑝), (𝑔‘(𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑝))))‘suc 𝑐))
374372, 373breq12d 5087 . . . . . . . . . . . . 13 ( = (𝑝 ∈ suc (𝑛 +o 𝑚) ↦ if(𝑝 ∈ suc 𝑛, (𝑓𝑝), (𝑔‘(𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑝)))) → ((𝑐)𝑅(‘suc 𝑐) ↔ ((𝑝 ∈ suc (𝑛 +o 𝑚) ↦ if(𝑝 ∈ suc 𝑛, (𝑓𝑝), (𝑔‘(𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑝))))‘𝑐)𝑅((𝑝 ∈ suc (𝑛 +o 𝑚) ↦ if(𝑝 ∈ suc 𝑛, (𝑓𝑝), (𝑔‘(𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑝))))‘suc 𝑐)))
375374ralbidv 3112 . . . . . . . . . . . 12 ( = (𝑝 ∈ suc (𝑛 +o 𝑚) ↦ if(𝑝 ∈ suc 𝑛, (𝑓𝑝), (𝑔‘(𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑝)))) → (∀𝑐 ∈ (𝑛 +o 𝑚)(𝑐)𝑅(‘suc 𝑐) ↔ ∀𝑐 ∈ (𝑛 +o 𝑚)((𝑝 ∈ suc (𝑛 +o 𝑚) ↦ if(𝑝 ∈ suc 𝑛, (𝑓𝑝), (𝑔‘(𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑝))))‘𝑐)𝑅((𝑝 ∈ suc (𝑛 +o 𝑚) ↦ if(𝑝 ∈ suc 𝑛, (𝑓𝑝), (𝑔‘(𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑝))))‘suc 𝑐)))
376366, 371, 3753anbi123d 1435 . . . . . . . . . . 11 ( = (𝑝 ∈ suc (𝑛 +o 𝑚) ↦ if(𝑝 ∈ suc 𝑛, (𝑓𝑝), (𝑔‘(𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑝)))) → (( Fn suc (𝑛 +o 𝑚) ∧ ((‘∅) = 𝑥 ∧ (‘(𝑛 +o 𝑚)) = 𝑦) ∧ ∀𝑐 ∈ (𝑛 +o 𝑚)(𝑐)𝑅(‘suc 𝑐)) ↔ ((𝑝 ∈ suc (𝑛 +o 𝑚) ↦ if(𝑝 ∈ suc 𝑛, (𝑓𝑝), (𝑔‘(𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑝)))) Fn suc (𝑛 +o 𝑚) ∧ (((𝑝 ∈ suc (𝑛 +o 𝑚) ↦ if(𝑝 ∈ suc 𝑛, (𝑓𝑝), (𝑔‘(𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑝))))‘∅) = 𝑥 ∧ ((𝑝 ∈ suc (𝑛 +o 𝑚) ↦ if(𝑝 ∈ suc 𝑛, (𝑓𝑝), (𝑔‘(𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑝))))‘(𝑛 +o 𝑚)) = 𝑦) ∧ ∀𝑐 ∈ (𝑛 +o 𝑚)((𝑝 ∈ suc (𝑛 +o 𝑚) ↦ if(𝑝 ∈ suc 𝑛, (𝑓𝑝), (𝑔‘(𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑝))))‘𝑐)𝑅((𝑝 ∈ suc (𝑛 +o 𝑚) ↦ if(𝑝 ∈ suc 𝑛, (𝑓𝑝), (𝑔‘(𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑝))))‘suc 𝑐))))
377365, 376spcev 3545 . . . . . . . . . 10 (((𝑝 ∈ suc (𝑛 +o 𝑚) ↦ if(𝑝 ∈ suc 𝑛, (𝑓𝑝), (𝑔‘(𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑝)))) Fn suc (𝑛 +o 𝑚) ∧ (((𝑝 ∈ suc (𝑛 +o 𝑚) ↦ if(𝑝 ∈ suc 𝑛, (𝑓𝑝), (𝑔‘(𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑝))))‘∅) = 𝑥 ∧ ((𝑝 ∈ suc (𝑛 +o 𝑚) ↦ if(𝑝 ∈ suc 𝑛, (𝑓𝑝), (𝑔‘(𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑝))))‘(𝑛 +o 𝑚)) = 𝑦) ∧ ∀𝑐 ∈ (𝑛 +o 𝑚)((𝑝 ∈ suc (𝑛 +o 𝑚) ↦ if(𝑝 ∈ suc 𝑛, (𝑓𝑝), (𝑔‘(𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑝))))‘𝑐)𝑅((𝑝 ∈ suc (𝑛 +o 𝑚) ↦ if(𝑝 ∈ suc 𝑛, (𝑓𝑝), (𝑔‘(𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑝))))‘suc 𝑐)) → ∃( Fn suc (𝑛 +o 𝑚) ∧ ((‘∅) = 𝑥 ∧ (‘(𝑛 +o 𝑚)) = 𝑦) ∧ ∀𝑐 ∈ (𝑛 +o 𝑚)(𝑐)𝑅(‘suc 𝑐)))
378363, 377mp3an1 1447 . . . . . . . . 9 (((((𝑝 ∈ suc (𝑛 +o 𝑚) ↦ if(𝑝 ∈ suc 𝑛, (𝑓𝑝), (𝑔‘(𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑝))))‘∅) = 𝑥 ∧ ((𝑝 ∈ suc (𝑛 +o 𝑚) ↦ if(𝑝 ∈ suc 𝑛, (𝑓𝑝), (𝑔‘(𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑝))))‘(𝑛 +o 𝑚)) = 𝑦) ∧ ∀𝑐 ∈ (𝑛 +o 𝑚)((𝑝 ∈ suc (𝑛 +o 𝑚) ↦ if(𝑝 ∈ suc 𝑛, (𝑓𝑝), (𝑔‘(𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑝))))‘𝑐)𝑅((𝑝 ∈ suc (𝑛 +o 𝑚) ↦ if(𝑝 ∈ suc 𝑛, (𝑓𝑝), (𝑔‘(𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑝))))‘suc 𝑐)) → ∃( Fn suc (𝑛 +o 𝑚) ∧ ((‘∅) = 𝑥 ∧ (‘(𝑛 +o 𝑚)) = 𝑦) ∧ ∀𝑐 ∈ (𝑛 +o 𝑚)(𝑐)𝑅(‘suc 𝑐)))
37945, 123, 359, 378syl21anc 835 . . . . . . . 8 (((𝑛 ∈ (ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o)) ∧ ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑧) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔𝑚) = 𝑦) ∧ ∀𝑏𝑚 (𝑔𝑏)𝑅(𝑔‘suc 𝑏)))) → ∃( Fn suc (𝑛 +o 𝑚) ∧ ((‘∅) = 𝑥 ∧ (‘(𝑛 +o 𝑚)) = 𝑦) ∧ ∀𝑐 ∈ (𝑛 +o 𝑚)(𝑐)𝑅(‘suc 𝑐)))
380 suceq 6331 . . . . . . . . . . . 12 (𝑝 = (𝑛 +o 𝑚) → suc 𝑝 = suc (𝑛 +o 𝑚))
381380fneq2d 6527 . . . . . . . . . . 11 (𝑝 = (𝑛 +o 𝑚) → ( Fn suc 𝑝 Fn suc (𝑛 +o 𝑚)))
382 fveqeq2 6783 . . . . . . . . . . . 12 (𝑝 = (𝑛 +o 𝑚) → ((𝑝) = 𝑦 ↔ (‘(𝑛 +o 𝑚)) = 𝑦))
383382anbi2d 629 . . . . . . . . . . 11 (𝑝 = (𝑛 +o 𝑚) → (((‘∅) = 𝑥 ∧ (𝑝) = 𝑦) ↔ ((‘∅) = 𝑥 ∧ (‘(𝑛 +o 𝑚)) = 𝑦)))
384 raleq 3342 . . . . . . . . . . 11 (𝑝 = (𝑛 +o 𝑚) → (∀𝑐𝑝 (𝑐)𝑅(‘suc 𝑐) ↔ ∀𝑐 ∈ (𝑛 +o 𝑚)(𝑐)𝑅(‘suc 𝑐)))
385381, 383, 3843anbi123d 1435 . . . . . . . . . 10 (𝑝 = (𝑛 +o 𝑚) → (( Fn suc 𝑝 ∧ ((‘∅) = 𝑥 ∧ (𝑝) = 𝑦) ∧ ∀𝑐𝑝 (𝑐)𝑅(‘suc 𝑐)) ↔ ( Fn suc (𝑛 +o 𝑚) ∧ ((‘∅) = 𝑥 ∧ (‘(𝑛 +o 𝑚)) = 𝑦) ∧ ∀𝑐 ∈ (𝑛 +o 𝑚)(𝑐)𝑅(‘suc 𝑐))))
386385exbidv 1924 . . . . . . . . 9 (𝑝 = (𝑛 +o 𝑚) → (∃( Fn suc 𝑝 ∧ ((‘∅) = 𝑥 ∧ (𝑝) = 𝑦) ∧ ∀𝑐𝑝 (𝑐)𝑅(‘suc 𝑐)) ↔ ∃( Fn suc (𝑛 +o 𝑚) ∧ ((‘∅) = 𝑥 ∧ (‘(𝑛 +o 𝑚)) = 𝑦) ∧ ∀𝑐 ∈ (𝑛 +o 𝑚)(𝑐)𝑅(‘suc 𝑐))))
387386rspcev 3561 . . . . . . . 8 (((𝑛 +o 𝑚) ∈ (ω ∖ 1o) ∧ ∃( Fn suc (𝑛 +o 𝑚) ∧ ((‘∅) = 𝑥 ∧ (‘(𝑛 +o 𝑚)) = 𝑦) ∧ ∀𝑐 ∈ (𝑛 +o 𝑚)(𝑐)𝑅(‘suc 𝑐))) → ∃𝑝 ∈ (ω ∖ 1o)∃( Fn suc 𝑝 ∧ ((‘∅) = 𝑥 ∧ (𝑝) = 𝑦) ∧ ∀𝑐𝑝 (𝑐)𝑅(‘suc 𝑐)))
38823, 379, 387syl2an2r 682 . . . . . . 7 (((𝑛 ∈ (ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o)) ∧ ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑧) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔𝑚) = 𝑦) ∧ ∀𝑏𝑚 (𝑔𝑏)𝑅(𝑔‘suc 𝑏)))) → ∃𝑝 ∈ (ω ∖ 1o)∃( Fn suc 𝑝 ∧ ((‘∅) = 𝑥 ∧ (𝑝) = 𝑦) ∧ ∀𝑐𝑝 (𝑐)𝑅(‘suc 𝑐)))
389388ex 413 . . . . . 6 ((𝑛 ∈ (ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o)) → (((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑧) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔𝑚) = 𝑦) ∧ ∀𝑏𝑚 (𝑔𝑏)𝑅(𝑔‘suc 𝑏))) → ∃𝑝 ∈ (ω ∖ 1o)∃( Fn suc 𝑝 ∧ ((‘∅) = 𝑥 ∧ (𝑝) = 𝑦) ∧ ∀𝑐𝑝 (𝑐)𝑅(‘suc 𝑐))))
390389exlimdvv 1937 . . . . 5 ((𝑛 ∈ (ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o)) → (∃𝑓𝑔((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑧) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔𝑚) = 𝑦) ∧ ∀𝑏𝑚 (𝑔𝑏)𝑅(𝑔‘suc 𝑏))) → ∃𝑝 ∈ (ω ∖ 1o)∃( Fn suc 𝑝 ∧ ((‘∅) = 𝑥 ∧ (𝑝) = 𝑦) ∧ ∀𝑐𝑝 (𝑐)𝑅(‘suc 𝑐))))
391390rexlimivv 3221 . . . 4 (∃𝑛 ∈ (ω ∖ 1o)∃𝑚 ∈ (ω ∖ 1o)∃𝑓𝑔((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑧) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔𝑚) = 𝑦) ∧ ∀𝑏𝑚 (𝑔𝑏)𝑅(𝑔‘suc 𝑏))) → ∃𝑝 ∈ (ω ∖ 1o)∃( Fn suc 𝑝 ∧ ((‘∅) = 𝑥 ∧ (𝑝) = 𝑦) ∧ ∀𝑐𝑝 (𝑐)𝑅(‘suc 𝑐)))
392391exlimiv 1933 . . 3 (∃𝑧𝑛 ∈ (ω ∖ 1o)∃𝑚 ∈ (ω ∖ 1o)∃𝑓𝑔((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑧) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔𝑚) = 𝑦) ∧ ∀𝑏𝑚 (𝑔𝑏)𝑅(𝑔‘suc 𝑏))) → ∃𝑝 ∈ (ω ∖ 1o)∃( Fn suc 𝑝 ∧ ((‘∅) = 𝑥 ∧ (𝑝) = 𝑦) ∧ ∀𝑐𝑝 (𝑐)𝑅(‘suc 𝑐)))
393 vex 3436 . . . . 5 𝑥 ∈ V
394 vex 3436 . . . . 5 𝑦 ∈ V
395393, 394opelco 5780 . . . 4 (⟨𝑥, 𝑦⟩ ∈ (t++𝑅 ∘ t++𝑅) ↔ ∃𝑧(𝑥t++𝑅𝑧𝑧t++𝑅𝑦))
396 reeanv 3294 . . . . . 6 (∃𝑛 ∈ (ω ∖ 1o)∃𝑚 ∈ (ω ∖ 1o)(∃𝑓(𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑧) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎)) ∧ ∃𝑔(𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔𝑚) = 𝑦) ∧ ∀𝑏𝑚 (𝑔𝑏)𝑅(𝑔‘suc 𝑏))) ↔ (∃𝑛 ∈ (ω ∖ 1o)∃𝑓(𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑧) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎)) ∧ ∃𝑚 ∈ (ω ∖ 1o)∃𝑔(𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔𝑚) = 𝑦) ∧ ∀𝑏𝑚 (𝑔𝑏)𝑅(𝑔‘suc 𝑏))))
397 eeanv 2347 . . . . . . 7 (∃𝑓𝑔((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑧) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔𝑚) = 𝑦) ∧ ∀𝑏𝑚 (𝑔𝑏)𝑅(𝑔‘suc 𝑏))) ↔ (∃𝑓(𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑧) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎)) ∧ ∃𝑔(𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔𝑚) = 𝑦) ∧ ∀𝑏𝑚 (𝑔𝑏)𝑅(𝑔‘suc 𝑏))))
3983972rexbii 3182 . . . . . 6 (∃𝑛 ∈ (ω ∖ 1o)∃𝑚 ∈ (ω ∖ 1o)∃𝑓𝑔((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑧) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔𝑚) = 𝑦) ∧ ∀𝑏𝑚 (𝑔𝑏)𝑅(𝑔‘suc 𝑏))) ↔ ∃𝑛 ∈ (ω ∖ 1o)∃𝑚 ∈ (ω ∖ 1o)(∃𝑓(𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑧) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎)) ∧ ∃𝑔(𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔𝑚) = 𝑦) ∧ ∀𝑏𝑚 (𝑔𝑏)𝑅(𝑔‘suc 𝑏))))
399 brttrcl 9471 . . . . . . 7 (𝑥t++𝑅𝑧 ↔ ∃𝑛 ∈ (ω ∖ 1o)∃𝑓(𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑧) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎)))
400 brttrcl 9471 . . . . . . 7 (𝑧t++𝑅𝑦 ↔ ∃𝑚 ∈ (ω ∖ 1o)∃𝑔(𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔𝑚) = 𝑦) ∧ ∀𝑏𝑚 (𝑔𝑏)𝑅(𝑔‘suc 𝑏)))
401399, 400anbi12i 627 . . . . . 6 ((𝑥t++𝑅𝑧𝑧t++𝑅𝑦) ↔ (∃𝑛 ∈ (ω ∖ 1o)∃𝑓(𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑧) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎)) ∧ ∃𝑚 ∈ (ω ∖ 1o)∃𝑔(𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔𝑚) = 𝑦) ∧ ∀𝑏𝑚 (𝑔𝑏)𝑅(𝑔‘suc 𝑏))))
402396, 398, 4013bitr4ri 304 . . . . 5 ((𝑥t++𝑅𝑧𝑧t++𝑅𝑦) ↔ ∃𝑛 ∈ (ω ∖ 1o)∃𝑚 ∈ (ω ∖ 1o)∃𝑓𝑔((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑧) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔𝑚) = 𝑦) ∧ ∀𝑏𝑚 (𝑔𝑏)𝑅(𝑔‘suc 𝑏))))
403402exbii 1850 . . . 4 (∃𝑧(𝑥t++𝑅𝑧𝑧t++𝑅𝑦) ↔ ∃𝑧𝑛 ∈ (ω ∖ 1o)∃𝑚 ∈ (ω ∖ 1o)∃𝑓𝑔((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑧) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔𝑚) = 𝑦) ∧ ∀𝑏𝑚 (𝑔𝑏)𝑅(𝑔‘suc 𝑏))))
404395, 403bitri 274 . . 3 (⟨𝑥, 𝑦⟩ ∈ (t++𝑅 ∘ t++𝑅) ↔ ∃𝑧𝑛 ∈ (ω ∖ 1o)∃𝑚 ∈ (ω ∖ 1o)∃𝑓𝑔((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑧) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔𝑚) = 𝑦) ∧ ∀𝑏𝑚 (𝑔𝑏)𝑅(𝑔‘suc 𝑏))))
405 df-br 5075 . . . 4 (𝑥t++𝑅𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ t++𝑅)
406 brttrcl 9471 . . . 4 (𝑥t++𝑅𝑦 ↔ ∃𝑝 ∈ (ω ∖ 1o)∃( Fn suc 𝑝 ∧ ((‘∅) = 𝑥 ∧ (𝑝) = 𝑦) ∧ ∀𝑐𝑝 (𝑐)𝑅(‘suc 𝑐)))
407405, 406bitr3i 276 . . 3 (⟨𝑥, 𝑦⟩ ∈ t++𝑅 ↔ ∃𝑝 ∈ (ω ∖ 1o)∃( Fn suc 𝑝 ∧ ((‘∅) = 𝑥 ∧ (𝑝) = 𝑦) ∧ ∀𝑐𝑝 (𝑐)𝑅(‘suc 𝑐)))
408392, 404, 4073imtr4i 292 . 2 (⟨𝑥, 𝑦⟩ ∈ (t++𝑅 ∘ t++𝑅) → ⟨𝑥, 𝑦⟩ ∈ t++𝑅)
4091, 408relssi 5697 1 (t++𝑅 ∘ t++𝑅) ⊆ t++𝑅
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wo 844  w3o 1085  w3a 1086   = wceq 1539  wex 1782  wcel 2106  wral 3064  wrex 3065  ∃!wreu 3066  ∃*wrmo 3067  Vcvv 3432  cdif 3884  wss 3887  c0 4256  ifcif 4459  cop 4567   class class class wbr 5074  cmpt 5157  ccom 5593  Ord word 6265  Oncon0 6266  suc csuc 6268   Fn wfn 6428  cfv 6433  crio 7231  (class class class)co 7275  ωcom 7712  1oc1o 8290   +o coa 8294  t++cttrcl 9465
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-oadd 8301  df-ttrcl 9466
This theorem is referenced by:  ttrclco  9476  cottrcl  9477  dfttrcl2  9482  frmin  9507  frrlem16  9516
  Copyright terms: Public domain W3C validator