Step | Hyp | Ref
| Expression |
1 | | relco 6148 |
. 2
⊢ Rel
(t++𝑅 ∘ t++𝑅) |
2 | | eldifi 4061 |
. . . . . . . . . 10
⊢ (𝑛 ∈ (ω ∖
1o) → 𝑛
∈ ω) |
3 | | eldifi 4061 |
. . . . . . . . . 10
⊢ (𝑚 ∈ (ω ∖
1o) → 𝑚
∈ ω) |
4 | | nnacl 8442 |
. . . . . . . . . 10
⊢ ((𝑛 ∈ ω ∧ 𝑚 ∈ ω) → (𝑛 +o 𝑚) ∈
ω) |
5 | 2, 3, 4 | syl2an 596 |
. . . . . . . . 9
⊢ ((𝑛 ∈ (ω ∖
1o) ∧ 𝑚
∈ (ω ∖ 1o)) → (𝑛 +o 𝑚) ∈ ω) |
6 | | eldif 3897 |
. . . . . . . . . . . . 13
⊢ (𝑛 ∈ (ω ∖
1o) ↔ (𝑛
∈ ω ∧ ¬ 𝑛 ∈ 1o)) |
7 | | 1on 8309 |
. . . . . . . . . . . . . . . 16
⊢
1o ∈ On |
8 | 7 | onordi 6371 |
. . . . . . . . . . . . . . 15
⊢ Ord
1o |
9 | | nnord 7720 |
. . . . . . . . . . . . . . 15
⊢ (𝑛 ∈ ω → Ord 𝑛) |
10 | | ordtri1 6299 |
. . . . . . . . . . . . . . 15
⊢ ((Ord
1o ∧ Ord 𝑛)
→ (1o ⊆ 𝑛 ↔ ¬ 𝑛 ∈ 1o)) |
11 | 8, 9, 10 | sylancr 587 |
. . . . . . . . . . . . . 14
⊢ (𝑛 ∈ ω →
(1o ⊆ 𝑛
↔ ¬ 𝑛 ∈
1o)) |
12 | 11 | biimpar 478 |
. . . . . . . . . . . . 13
⊢ ((𝑛 ∈ ω ∧ ¬
𝑛 ∈ 1o)
→ 1o ⊆ 𝑛) |
13 | 6, 12 | sylbi 216 |
. . . . . . . . . . . 12
⊢ (𝑛 ∈ (ω ∖
1o) → 1o ⊆ 𝑛) |
14 | 13 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝑛 ∈ (ω ∖
1o) ∧ 𝑚
∈ (ω ∖ 1o)) → 1o ⊆ 𝑛) |
15 | | nnaword1 8460 |
. . . . . . . . . . . 12
⊢ ((𝑛 ∈ ω ∧ 𝑚 ∈ ω) → 𝑛 ⊆ (𝑛 +o 𝑚)) |
16 | 2, 3, 15 | syl2an 596 |
. . . . . . . . . . 11
⊢ ((𝑛 ∈ (ω ∖
1o) ∧ 𝑚
∈ (ω ∖ 1o)) → 𝑛 ⊆ (𝑛 +o 𝑚)) |
17 | 14, 16 | sstrd 3931 |
. . . . . . . . . 10
⊢ ((𝑛 ∈ (ω ∖
1o) ∧ 𝑚
∈ (ω ∖ 1o)) → 1o ⊆ (𝑛 +o 𝑚)) |
18 | | nnord 7720 |
. . . . . . . . . . . 12
⊢ ((𝑛 +o 𝑚) ∈ ω → Ord
(𝑛 +o 𝑚)) |
19 | 5, 18 | syl 17 |
. . . . . . . . . . 11
⊢ ((𝑛 ∈ (ω ∖
1o) ∧ 𝑚
∈ (ω ∖ 1o)) → Ord (𝑛 +o 𝑚)) |
20 | | ordtri1 6299 |
. . . . . . . . . . 11
⊢ ((Ord
1o ∧ Ord (𝑛
+o 𝑚)) →
(1o ⊆ (𝑛
+o 𝑚) ↔
¬ (𝑛 +o
𝑚) ∈
1o)) |
21 | 8, 19, 20 | sylancr 587 |
. . . . . . . . . 10
⊢ ((𝑛 ∈ (ω ∖
1o) ∧ 𝑚
∈ (ω ∖ 1o)) → (1o ⊆ (𝑛 +o 𝑚) ↔ ¬ (𝑛 +o 𝑚) ∈
1o)) |
22 | 17, 21 | mpbid 231 |
. . . . . . . . 9
⊢ ((𝑛 ∈ (ω ∖
1o) ∧ 𝑚
∈ (ω ∖ 1o)) → ¬ (𝑛 +o 𝑚) ∈ 1o) |
23 | 5, 22 | eldifd 3898 |
. . . . . . . 8
⊢ ((𝑛 ∈ (ω ∖
1o) ∧ 𝑚
∈ (ω ∖ 1o)) → (𝑛 +o 𝑚) ∈ (ω ∖
1o)) |
24 | | 0elsuc 7682 |
. . . . . . . . . . . . 13
⊢ (Ord
(𝑛 +o 𝑚) → ∅ ∈ suc
(𝑛 +o 𝑚)) |
25 | 19, 24 | syl 17 |
. . . . . . . . . . . 12
⊢ ((𝑛 ∈ (ω ∖
1o) ∧ 𝑚
∈ (ω ∖ 1o)) → ∅ ∈ suc (𝑛 +o 𝑚)) |
26 | | eleq1 2826 |
. . . . . . . . . . . . . 14
⊢ (𝑝 = ∅ → (𝑝 ∈ suc 𝑛 ↔ ∅ ∈ suc 𝑛)) |
27 | | fveq2 6774 |
. . . . . . . . . . . . . 14
⊢ (𝑝 = ∅ → (𝑓‘𝑝) = (𝑓‘∅)) |
28 | | eqeq2 2750 |
. . . . . . . . . . . . . . . 16
⊢ (𝑝 = ∅ → ((𝑛 +o 𝑞) = 𝑝 ↔ (𝑛 +o 𝑞) = ∅)) |
29 | 28 | riotabidv 7234 |
. . . . . . . . . . . . . . 15
⊢ (𝑝 = ∅ →
(℩𝑞 ∈
ω (𝑛 +o
𝑞) = 𝑝) = (℩𝑞 ∈ ω (𝑛 +o 𝑞) = ∅)) |
30 | 29 | fveq2d 6778 |
. . . . . . . . . . . . . 14
⊢ (𝑝 = ∅ → (𝑔‘(℩𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑝)) = (𝑔‘(℩𝑞 ∈ ω (𝑛 +o 𝑞) = ∅))) |
31 | 26, 27, 30 | ifbieq12d 4487 |
. . . . . . . . . . . . 13
⊢ (𝑝 = ∅ → if(𝑝 ∈ suc 𝑛, (𝑓‘𝑝), (𝑔‘(℩𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑝))) = if(∅ ∈ suc 𝑛, (𝑓‘∅), (𝑔‘(℩𝑞 ∈ ω (𝑛 +o 𝑞) = ∅)))) |
32 | | eqid 2738 |
. . . . . . . . . . . . 13
⊢ (𝑝 ∈ suc (𝑛 +o 𝑚) ↦ if(𝑝 ∈ suc 𝑛, (𝑓‘𝑝), (𝑔‘(℩𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑝)))) = (𝑝 ∈ suc (𝑛 +o 𝑚) ↦ if(𝑝 ∈ suc 𝑛, (𝑓‘𝑝), (𝑔‘(℩𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑝)))) |
33 | | fvex 6787 |
. . . . . . . . . . . . . 14
⊢ (𝑓‘∅) ∈
V |
34 | | fvex 6787 |
. . . . . . . . . . . . . 14
⊢ (𝑔‘(℩𝑞 ∈ ω (𝑛 +o 𝑞) = ∅)) ∈
V |
35 | 33, 34 | ifex 4509 |
. . . . . . . . . . . . 13
⊢
if(∅ ∈ suc 𝑛, (𝑓‘∅), (𝑔‘(℩𝑞 ∈ ω (𝑛 +o 𝑞) = ∅))) ∈ V |
36 | 31, 32, 35 | fvmpt 6875 |
. . . . . . . . . . . 12
⊢ (∅
∈ suc (𝑛 +o
𝑚) → ((𝑝 ∈ suc (𝑛 +o 𝑚) ↦ if(𝑝 ∈ suc 𝑛, (𝑓‘𝑝), (𝑔‘(℩𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑝))))‘∅) = if(∅ ∈ suc
𝑛, (𝑓‘∅), (𝑔‘(℩𝑞 ∈ ω (𝑛 +o 𝑞) = ∅)))) |
37 | 25, 36 | syl 17 |
. . . . . . . . . . 11
⊢ ((𝑛 ∈ (ω ∖
1o) ∧ 𝑚
∈ (ω ∖ 1o)) → ((𝑝 ∈ suc (𝑛 +o 𝑚) ↦ if(𝑝 ∈ suc 𝑛, (𝑓‘𝑝), (𝑔‘(℩𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑝))))‘∅) = if(∅ ∈ suc
𝑛, (𝑓‘∅), (𝑔‘(℩𝑞 ∈ ω (𝑛 +o 𝑞) = ∅)))) |
38 | 2 | adantr 481 |
. . . . . . . . . . . . . 14
⊢ ((𝑛 ∈ (ω ∖
1o) ∧ 𝑚
∈ (ω ∖ 1o)) → 𝑛 ∈ ω) |
39 | 38, 9 | syl 17 |
. . . . . . . . . . . . 13
⊢ ((𝑛 ∈ (ω ∖
1o) ∧ 𝑚
∈ (ω ∖ 1o)) → Ord 𝑛) |
40 | | 0elsuc 7682 |
. . . . . . . . . . . . 13
⊢ (Ord
𝑛 → ∅ ∈ suc
𝑛) |
41 | 39, 40 | syl 17 |
. . . . . . . . . . . 12
⊢ ((𝑛 ∈ (ω ∖
1o) ∧ 𝑚
∈ (ω ∖ 1o)) → ∅ ∈ suc 𝑛) |
42 | 41 | iftrued 4467 |
. . . . . . . . . . 11
⊢ ((𝑛 ∈ (ω ∖
1o) ∧ 𝑚
∈ (ω ∖ 1o)) → if(∅ ∈ suc 𝑛, (𝑓‘∅), (𝑔‘(℩𝑞 ∈ ω (𝑛 +o 𝑞) = ∅))) = (𝑓‘∅)) |
43 | 37, 42 | eqtrd 2778 |
. . . . . . . . . 10
⊢ ((𝑛 ∈ (ω ∖
1o) ∧ 𝑚
∈ (ω ∖ 1o)) → ((𝑝 ∈ suc (𝑛 +o 𝑚) ↦ if(𝑝 ∈ suc 𝑛, (𝑓‘𝑝), (𝑔‘(℩𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑝))))‘∅) = (𝑓‘∅)) |
44 | | simpl2l 1225 |
. . . . . . . . . 10
⊢ (((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘𝑛) = 𝑧) ∧ ∀𝑎 ∈ 𝑛 (𝑓‘𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘𝑚) = 𝑦) ∧ ∀𝑏 ∈ 𝑚 (𝑔‘𝑏)𝑅(𝑔‘suc 𝑏))) → (𝑓‘∅) = 𝑥) |
45 | 43, 44 | sylan9eq 2798 |
. . . . . . . . 9
⊢ (((𝑛 ∈ (ω ∖
1o) ∧ 𝑚
∈ (ω ∖ 1o)) ∧ ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘𝑛) = 𝑧) ∧ ∀𝑎 ∈ 𝑛 (𝑓‘𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘𝑚) = 𝑦) ∧ ∀𝑏 ∈ 𝑚 (𝑔‘𝑏)𝑅(𝑔‘suc 𝑏)))) → ((𝑝 ∈ suc (𝑛 +o 𝑚) ↦ if(𝑝 ∈ suc 𝑛, (𝑓‘𝑝), (𝑔‘(℩𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑝))))‘∅) = 𝑥) |
46 | | ovex 7308 |
. . . . . . . . . . . . 13
⊢ (𝑛 +o 𝑚) ∈ V |
47 | 46 | sucid 6345 |
. . . . . . . . . . . 12
⊢ (𝑛 +o 𝑚) ∈ suc (𝑛 +o 𝑚) |
48 | | eleq1 2826 |
. . . . . . . . . . . . . 14
⊢ (𝑝 = (𝑛 +o 𝑚) → (𝑝 ∈ suc 𝑛 ↔ (𝑛 +o 𝑚) ∈ suc 𝑛)) |
49 | | fveq2 6774 |
. . . . . . . . . . . . . 14
⊢ (𝑝 = (𝑛 +o 𝑚) → (𝑓‘𝑝) = (𝑓‘(𝑛 +o 𝑚))) |
50 | | eqeq2 2750 |
. . . . . . . . . . . . . . . 16
⊢ (𝑝 = (𝑛 +o 𝑚) → ((𝑛 +o 𝑞) = 𝑝 ↔ (𝑛 +o 𝑞) = (𝑛 +o 𝑚))) |
51 | 50 | riotabidv 7234 |
. . . . . . . . . . . . . . 15
⊢ (𝑝 = (𝑛 +o 𝑚) → (℩𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑝) = (℩𝑞 ∈ ω (𝑛 +o 𝑞) = (𝑛 +o 𝑚))) |
52 | 51 | fveq2d 6778 |
. . . . . . . . . . . . . 14
⊢ (𝑝 = (𝑛 +o 𝑚) → (𝑔‘(℩𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑝)) = (𝑔‘(℩𝑞 ∈ ω (𝑛 +o 𝑞) = (𝑛 +o 𝑚)))) |
53 | 48, 49, 52 | ifbieq12d 4487 |
. . . . . . . . . . . . 13
⊢ (𝑝 = (𝑛 +o 𝑚) → if(𝑝 ∈ suc 𝑛, (𝑓‘𝑝), (𝑔‘(℩𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑝))) = if((𝑛 +o 𝑚) ∈ suc 𝑛, (𝑓‘(𝑛 +o 𝑚)), (𝑔‘(℩𝑞 ∈ ω (𝑛 +o 𝑞) = (𝑛 +o 𝑚))))) |
54 | | fvex 6787 |
. . . . . . . . . . . . . 14
⊢ (𝑓‘(𝑛 +o 𝑚)) ∈ V |
55 | | fvex 6787 |
. . . . . . . . . . . . . 14
⊢ (𝑔‘(℩𝑞 ∈ ω (𝑛 +o 𝑞) = (𝑛 +o 𝑚))) ∈ V |
56 | 54, 55 | ifex 4509 |
. . . . . . . . . . . . 13
⊢ if((𝑛 +o 𝑚) ∈ suc 𝑛, (𝑓‘(𝑛 +o 𝑚)), (𝑔‘(℩𝑞 ∈ ω (𝑛 +o 𝑞) = (𝑛 +o 𝑚)))) ∈ V |
57 | 53, 32, 56 | fvmpt 6875 |
. . . . . . . . . . . 12
⊢ ((𝑛 +o 𝑚) ∈ suc (𝑛 +o 𝑚) → ((𝑝 ∈ suc (𝑛 +o 𝑚) ↦ if(𝑝 ∈ suc 𝑛, (𝑓‘𝑝), (𝑔‘(℩𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑝))))‘(𝑛 +o 𝑚)) = if((𝑛 +o 𝑚) ∈ suc 𝑛, (𝑓‘(𝑛 +o 𝑚)), (𝑔‘(℩𝑞 ∈ ω (𝑛 +o 𝑞) = (𝑛 +o 𝑚))))) |
58 | 47, 57 | mp1i 13 |
. . . . . . . . . . 11
⊢ ((𝑛 ∈ (ω ∖
1o) ∧ 𝑚
∈ (ω ∖ 1o)) → ((𝑝 ∈ suc (𝑛 +o 𝑚) ↦ if(𝑝 ∈ suc 𝑛, (𝑓‘𝑝), (𝑔‘(℩𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑝))))‘(𝑛 +o 𝑚)) = if((𝑛 +o 𝑚) ∈ suc 𝑛, (𝑓‘(𝑛 +o 𝑚)), (𝑔‘(℩𝑞 ∈ ω (𝑛 +o 𝑞) = (𝑛 +o 𝑚))))) |
59 | | df-1o 8297 |
. . . . . . . . . . . . . . . . . 18
⊢
1o = suc ∅ |
60 | 59 | difeq2i 4054 |
. . . . . . . . . . . . . . . . 17
⊢ (ω
∖ 1o) = (ω ∖ suc ∅) |
61 | 60 | eleq2i 2830 |
. . . . . . . . . . . . . . . 16
⊢ (𝑛 ∈ (ω ∖
1o) ↔ 𝑛
∈ (ω ∖ suc ∅)) |
62 | | peano1 7735 |
. . . . . . . . . . . . . . . . 17
⊢ ∅
∈ ω |
63 | | eldifsucnn 8494 |
. . . . . . . . . . . . . . . . 17
⊢ (∅
∈ ω → (𝑛
∈ (ω ∖ suc ∅) ↔ ∃𝑥 ∈ (ω ∖ ∅)𝑛 = suc 𝑥)) |
64 | 62, 63 | ax-mp 5 |
. . . . . . . . . . . . . . . 16
⊢ (𝑛 ∈ (ω ∖ suc
∅) ↔ ∃𝑥
∈ (ω ∖ ∅)𝑛 = suc 𝑥) |
65 | | dif0 4306 |
. . . . . . . . . . . . . . . . 17
⊢ (ω
∖ ∅) = ω |
66 | 65 | rexeqi 3347 |
. . . . . . . . . . . . . . . 16
⊢
(∃𝑥 ∈
(ω ∖ ∅)𝑛
= suc 𝑥 ↔ ∃𝑥 ∈ ω 𝑛 = suc 𝑥) |
67 | 61, 64, 66 | 3bitri 297 |
. . . . . . . . . . . . . . 15
⊢ (𝑛 ∈ (ω ∖
1o) ↔ ∃𝑥 ∈ ω 𝑛 = suc 𝑥) |
68 | 60 | eleq2i 2830 |
. . . . . . . . . . . . . . . 16
⊢ (𝑚 ∈ (ω ∖
1o) ↔ 𝑚
∈ (ω ∖ suc ∅)) |
69 | | eldifsucnn 8494 |
. . . . . . . . . . . . . . . . 17
⊢ (∅
∈ ω → (𝑚
∈ (ω ∖ suc ∅) ↔ ∃𝑦 ∈ (ω ∖ ∅)𝑚 = suc 𝑦)) |
70 | 62, 69 | ax-mp 5 |
. . . . . . . . . . . . . . . 16
⊢ (𝑚 ∈ (ω ∖ suc
∅) ↔ ∃𝑦
∈ (ω ∖ ∅)𝑚 = suc 𝑦) |
71 | 65 | rexeqi 3347 |
. . . . . . . . . . . . . . . 16
⊢
(∃𝑦 ∈
(ω ∖ ∅)𝑚
= suc 𝑦 ↔ ∃𝑦 ∈ ω 𝑚 = suc 𝑦) |
72 | 68, 70, 71 | 3bitri 297 |
. . . . . . . . . . . . . . 15
⊢ (𝑚 ∈ (ω ∖
1o) ↔ ∃𝑦 ∈ ω 𝑚 = suc 𝑦) |
73 | 67, 72 | anbi12i 627 |
. . . . . . . . . . . . . 14
⊢ ((𝑛 ∈ (ω ∖
1o) ∧ 𝑚
∈ (ω ∖ 1o)) ↔ (∃𝑥 ∈ ω 𝑛 = suc 𝑥 ∧ ∃𝑦 ∈ ω 𝑚 = suc 𝑦)) |
74 | | reeanv 3294 |
. . . . . . . . . . . . . 14
⊢
(∃𝑥 ∈
ω ∃𝑦 ∈
ω (𝑛 = suc 𝑥 ∧ 𝑚 = suc 𝑦) ↔ (∃𝑥 ∈ ω 𝑛 = suc 𝑥 ∧ ∃𝑦 ∈ ω 𝑚 = suc 𝑦)) |
75 | 73, 74 | bitr4i 277 |
. . . . . . . . . . . . 13
⊢ ((𝑛 ∈ (ω ∖
1o) ∧ 𝑚
∈ (ω ∖ 1o)) ↔ ∃𝑥 ∈ ω ∃𝑦 ∈ ω (𝑛 = suc 𝑥 ∧ 𝑚 = suc 𝑦)) |
76 | | peano2 7737 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑥 ∈ ω → suc 𝑥 ∈
ω) |
77 | | nnaword1 8460 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((suc
𝑥 ∈ ω ∧
𝑦 ∈ ω) →
suc 𝑥 ⊆ (suc 𝑥 +o 𝑦)) |
78 | 76, 77 | sylan 580 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑥 ∈ ω ∧ 𝑦 ∈ ω) → suc
𝑥 ⊆ (suc 𝑥 +o 𝑦)) |
79 | 76 | adantr 481 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑥 ∈ ω ∧ 𝑦 ∈ ω) → suc
𝑥 ∈
ω) |
80 | | nnord 7720 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (suc
𝑥 ∈ ω → Ord
suc 𝑥) |
81 | 79, 80 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑥 ∈ ω ∧ 𝑦 ∈ ω) → Ord suc
𝑥) |
82 | | nnacl 8442 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((suc
𝑥 ∈ ω ∧
𝑦 ∈ ω) →
(suc 𝑥 +o 𝑦) ∈
ω) |
83 | 76, 82 | sylan 580 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑥 ∈ ω ∧ 𝑦 ∈ ω) → (suc
𝑥 +o 𝑦) ∈
ω) |
84 | | nnord 7720 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((suc
𝑥 +o 𝑦) ∈ ω → Ord (suc
𝑥 +o 𝑦)) |
85 | 83, 84 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑥 ∈ ω ∧ 𝑦 ∈ ω) → Ord (suc
𝑥 +o 𝑦)) |
86 | | ordsucsssuc 7670 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((Ord suc
𝑥 ∧ Ord (suc 𝑥 +o 𝑦)) → (suc 𝑥 ⊆ (suc 𝑥 +o 𝑦) ↔ suc suc 𝑥 ⊆ suc (suc 𝑥 +o 𝑦))) |
87 | 81, 85, 86 | syl2anc 584 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑥 ∈ ω ∧ 𝑦 ∈ ω) → (suc
𝑥 ⊆ (suc 𝑥 +o 𝑦) ↔ suc suc 𝑥 ⊆ suc (suc 𝑥 +o 𝑦))) |
88 | 78, 87 | mpbid 231 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑥 ∈ ω ∧ 𝑦 ∈ ω) → suc suc
𝑥 ⊆ suc (suc 𝑥 +o 𝑦)) |
89 | | nnasuc 8437 |
. . . . . . . . . . . . . . . . . 18
⊢ ((suc
𝑥 ∈ ω ∧
𝑦 ∈ ω) →
(suc 𝑥 +o suc
𝑦) = suc (suc 𝑥 +o 𝑦)) |
90 | 76, 89 | sylan 580 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑥 ∈ ω ∧ 𝑦 ∈ ω) → (suc
𝑥 +o suc 𝑦) = suc (suc 𝑥 +o 𝑦)) |
91 | 88, 90 | sseqtrrd 3962 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑥 ∈ ω ∧ 𝑦 ∈ ω) → suc suc
𝑥 ⊆ (suc 𝑥 +o suc 𝑦)) |
92 | | peano2 7737 |
. . . . . . . . . . . . . . . . . . 19
⊢ (suc
𝑥 ∈ ω → suc
suc 𝑥 ∈
ω) |
93 | 79, 92 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑥 ∈ ω ∧ 𝑦 ∈ ω) → suc suc
𝑥 ∈
ω) |
94 | | nnord 7720 |
. . . . . . . . . . . . . . . . . 18
⊢ (suc suc
𝑥 ∈ ω → Ord
suc suc 𝑥) |
95 | 93, 94 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑥 ∈ ω ∧ 𝑦 ∈ ω) → Ord suc
suc 𝑥) |
96 | | peano2 7737 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑦 ∈ ω → suc 𝑦 ∈
ω) |
97 | | nnacl 8442 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((suc
𝑥 ∈ ω ∧ suc
𝑦 ∈ ω) →
(suc 𝑥 +o suc
𝑦) ∈
ω) |
98 | 76, 96, 97 | syl2an 596 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑥 ∈ ω ∧ 𝑦 ∈ ω) → (suc
𝑥 +o suc 𝑦) ∈
ω) |
99 | | nnord 7720 |
. . . . . . . . . . . . . . . . . 18
⊢ ((suc
𝑥 +o suc 𝑦) ∈ ω → Ord (suc
𝑥 +o suc 𝑦)) |
100 | 98, 99 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑥 ∈ ω ∧ 𝑦 ∈ ω) → Ord (suc
𝑥 +o suc 𝑦)) |
101 | | ordtri1 6299 |
. . . . . . . . . . . . . . . . 17
⊢ ((Ord suc
suc 𝑥 ∧ Ord (suc 𝑥 +o suc 𝑦)) → (suc suc 𝑥 ⊆ (suc 𝑥 +o suc 𝑦) ↔ ¬ (suc 𝑥 +o suc 𝑦) ∈ suc suc 𝑥)) |
102 | 95, 100, 101 | syl2anc 584 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑥 ∈ ω ∧ 𝑦 ∈ ω) → (suc suc
𝑥 ⊆ (suc 𝑥 +o suc 𝑦) ↔ ¬ (suc 𝑥 +o suc 𝑦) ∈ suc suc 𝑥)) |
103 | 91, 102 | mpbid 231 |
. . . . . . . . . . . . . . 15
⊢ ((𝑥 ∈ ω ∧ 𝑦 ∈ ω) → ¬
(suc 𝑥 +o suc
𝑦) ∈ suc suc 𝑥) |
104 | | oveq12 7284 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑛 = suc 𝑥 ∧ 𝑚 = suc 𝑦) → (𝑛 +o 𝑚) = (suc 𝑥 +o suc 𝑦)) |
105 | | suceq 6331 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑛 = suc 𝑥 → suc 𝑛 = suc suc 𝑥) |
106 | 105 | adantr 481 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑛 = suc 𝑥 ∧ 𝑚 = suc 𝑦) → suc 𝑛 = suc suc 𝑥) |
107 | 104, 106 | eleq12d 2833 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑛 = suc 𝑥 ∧ 𝑚 = suc 𝑦) → ((𝑛 +o 𝑚) ∈ suc 𝑛 ↔ (suc 𝑥 +o suc 𝑦) ∈ suc suc 𝑥)) |
108 | 107 | notbid 318 |
. . . . . . . . . . . . . . 15
⊢ ((𝑛 = suc 𝑥 ∧ 𝑚 = suc 𝑦) → (¬ (𝑛 +o 𝑚) ∈ suc 𝑛 ↔ ¬ (suc 𝑥 +o suc 𝑦) ∈ suc suc 𝑥)) |
109 | 103, 108 | syl5ibrcom 246 |
. . . . . . . . . . . . . 14
⊢ ((𝑥 ∈ ω ∧ 𝑦 ∈ ω) → ((𝑛 = suc 𝑥 ∧ 𝑚 = suc 𝑦) → ¬ (𝑛 +o 𝑚) ∈ suc 𝑛)) |
110 | 109 | rexlimivv 3221 |
. . . . . . . . . . . . 13
⊢
(∃𝑥 ∈
ω ∃𝑦 ∈
ω (𝑛 = suc 𝑥 ∧ 𝑚 = suc 𝑦) → ¬ (𝑛 +o 𝑚) ∈ suc 𝑛) |
111 | 75, 110 | sylbi 216 |
. . . . . . . . . . . 12
⊢ ((𝑛 ∈ (ω ∖
1o) ∧ 𝑚
∈ (ω ∖ 1o)) → ¬ (𝑛 +o 𝑚) ∈ suc 𝑛) |
112 | 111 | iffalsed 4470 |
. . . . . . . . . . 11
⊢ ((𝑛 ∈ (ω ∖
1o) ∧ 𝑚
∈ (ω ∖ 1o)) → if((𝑛 +o 𝑚) ∈ suc 𝑛, (𝑓‘(𝑛 +o 𝑚)), (𝑔‘(℩𝑞 ∈ ω (𝑛 +o 𝑞) = (𝑛 +o 𝑚)))) = (𝑔‘(℩𝑞 ∈ ω (𝑛 +o 𝑞) = (𝑛 +o 𝑚)))) |
113 | 3 | adantl 482 |
. . . . . . . . . . . . 13
⊢ ((𝑛 ∈ (ω ∖
1o) ∧ 𝑚
∈ (ω ∖ 1o)) → 𝑚 ∈ ω) |
114 | 38 | adantr 481 |
. . . . . . . . . . . . . 14
⊢ (((𝑛 ∈ (ω ∖
1o) ∧ 𝑚
∈ (ω ∖ 1o)) ∧ 𝑞 ∈ ω) → 𝑛 ∈ ω) |
115 | | simpr 485 |
. . . . . . . . . . . . . 14
⊢ (((𝑛 ∈ (ω ∖
1o) ∧ 𝑚
∈ (ω ∖ 1o)) ∧ 𝑞 ∈ ω) → 𝑞 ∈ ω) |
116 | 113 | adantr 481 |
. . . . . . . . . . . . . 14
⊢ (((𝑛 ∈ (ω ∖
1o) ∧ 𝑚
∈ (ω ∖ 1o)) ∧ 𝑞 ∈ ω) → 𝑚 ∈ ω) |
117 | | nnacan 8459 |
. . . . . . . . . . . . . 14
⊢ ((𝑛 ∈ ω ∧ 𝑞 ∈ ω ∧ 𝑚 ∈ ω) → ((𝑛 +o 𝑞) = (𝑛 +o 𝑚) ↔ 𝑞 = 𝑚)) |
118 | 114, 115,
116, 117 | syl3anc 1370 |
. . . . . . . . . . . . 13
⊢ (((𝑛 ∈ (ω ∖
1o) ∧ 𝑚
∈ (ω ∖ 1o)) ∧ 𝑞 ∈ ω) → ((𝑛 +o 𝑞) = (𝑛 +o 𝑚) ↔ 𝑞 = 𝑚)) |
119 | 113, 118 | riota5 7262 |
. . . . . . . . . . . 12
⊢ ((𝑛 ∈ (ω ∖
1o) ∧ 𝑚
∈ (ω ∖ 1o)) → (℩𝑞 ∈ ω (𝑛 +o 𝑞) = (𝑛 +o 𝑚)) = 𝑚) |
120 | 119 | fveq2d 6778 |
. . . . . . . . . . 11
⊢ ((𝑛 ∈ (ω ∖
1o) ∧ 𝑚
∈ (ω ∖ 1o)) → (𝑔‘(℩𝑞 ∈ ω (𝑛 +o 𝑞) = (𝑛 +o 𝑚))) = (𝑔‘𝑚)) |
121 | 58, 112, 120 | 3eqtrd 2782 |
. . . . . . . . . 10
⊢ ((𝑛 ∈ (ω ∖
1o) ∧ 𝑚
∈ (ω ∖ 1o)) → ((𝑝 ∈ suc (𝑛 +o 𝑚) ↦ if(𝑝 ∈ suc 𝑛, (𝑓‘𝑝), (𝑔‘(℩𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑝))))‘(𝑛 +o 𝑚)) = (𝑔‘𝑚)) |
122 | | simpr2r 1232 |
. . . . . . . . . 10
⊢ (((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘𝑛) = 𝑧) ∧ ∀𝑎 ∈ 𝑛 (𝑓‘𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘𝑚) = 𝑦) ∧ ∀𝑏 ∈ 𝑚 (𝑔‘𝑏)𝑅(𝑔‘suc 𝑏))) → (𝑔‘𝑚) = 𝑦) |
123 | 121, 122 | sylan9eq 2798 |
. . . . . . . . 9
⊢ (((𝑛 ∈ (ω ∖
1o) ∧ 𝑚
∈ (ω ∖ 1o)) ∧ ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘𝑛) = 𝑧) ∧ ∀𝑎 ∈ 𝑛 (𝑓‘𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘𝑚) = 𝑦) ∧ ∀𝑏 ∈ 𝑚 (𝑔‘𝑏)𝑅(𝑔‘suc 𝑏)))) → ((𝑝 ∈ suc (𝑛 +o 𝑚) ↦ if(𝑝 ∈ suc 𝑛, (𝑓‘𝑝), (𝑔‘(℩𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑝))))‘(𝑛 +o 𝑚)) = 𝑦) |
124 | | simprl3 1219 |
. . . . . . . . . . . . . . 15
⊢ (((𝑛 ∈ (ω ∖
1o) ∧ 𝑚
∈ (ω ∖ 1o)) ∧ ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘𝑛) = 𝑧) ∧ ∀𝑎 ∈ 𝑛 (𝑓‘𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘𝑚) = 𝑦) ∧ ∀𝑏 ∈ 𝑚 (𝑔‘𝑏)𝑅(𝑔‘suc 𝑏)))) → ∀𝑎 ∈ 𝑛 (𝑓‘𝑎)𝑅(𝑓‘suc 𝑎)) |
125 | | fveq2 6774 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑎 = 𝑐 → (𝑓‘𝑎) = (𝑓‘𝑐)) |
126 | | suceq 6331 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑎 = 𝑐 → suc 𝑎 = suc 𝑐) |
127 | 126 | fveq2d 6778 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑎 = 𝑐 → (𝑓‘suc 𝑎) = (𝑓‘suc 𝑐)) |
128 | 125, 127 | breq12d 5087 |
. . . . . . . . . . . . . . . 16
⊢ (𝑎 = 𝑐 → ((𝑓‘𝑎)𝑅(𝑓‘suc 𝑎) ↔ (𝑓‘𝑐)𝑅(𝑓‘suc 𝑐))) |
129 | 128 | rspcv 3557 |
. . . . . . . . . . . . . . 15
⊢ (𝑐 ∈ 𝑛 → (∀𝑎 ∈ 𝑛 (𝑓‘𝑎)𝑅(𝑓‘suc 𝑎) → (𝑓‘𝑐)𝑅(𝑓‘suc 𝑐))) |
130 | 124, 129 | mpan9 507 |
. . . . . . . . . . . . . 14
⊢ ((((𝑛 ∈ (ω ∖
1o) ∧ 𝑚
∈ (ω ∖ 1o)) ∧ ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘𝑛) = 𝑧) ∧ ∀𝑎 ∈ 𝑛 (𝑓‘𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘𝑚) = 𝑦) ∧ ∀𝑏 ∈ 𝑚 (𝑔‘𝑏)𝑅(𝑔‘suc 𝑏)))) ∧ 𝑐 ∈ 𝑛) → (𝑓‘𝑐)𝑅(𝑓‘suc 𝑐)) |
131 | | elelsuc 6338 |
. . . . . . . . . . . . . . . 16
⊢ (𝑐 ∈ 𝑛 → 𝑐 ∈ suc 𝑛) |
132 | 131 | adantl 482 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑛 ∈ (ω ∖
1o) ∧ 𝑚
∈ (ω ∖ 1o)) ∧ ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘𝑛) = 𝑧) ∧ ∀𝑎 ∈ 𝑛 (𝑓‘𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘𝑚) = 𝑦) ∧ ∀𝑏 ∈ 𝑚 (𝑔‘𝑏)𝑅(𝑔‘suc 𝑏)))) ∧ 𝑐 ∈ 𝑛) → 𝑐 ∈ suc 𝑛) |
133 | 132 | iftrued 4467 |
. . . . . . . . . . . . . 14
⊢ ((((𝑛 ∈ (ω ∖
1o) ∧ 𝑚
∈ (ω ∖ 1o)) ∧ ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘𝑛) = 𝑧) ∧ ∀𝑎 ∈ 𝑛 (𝑓‘𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘𝑚) = 𝑦) ∧ ∀𝑏 ∈ 𝑚 (𝑔‘𝑏)𝑅(𝑔‘suc 𝑏)))) ∧ 𝑐 ∈ 𝑛) → if(𝑐 ∈ suc 𝑛, (𝑓‘𝑐), (𝑔‘(℩𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑐))) = (𝑓‘𝑐)) |
134 | | ordsucelsuc 7669 |
. . . . . . . . . . . . . . . . . 18
⊢ (Ord
𝑛 → (𝑐 ∈ 𝑛 ↔ suc 𝑐 ∈ suc 𝑛)) |
135 | 39, 134 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑛 ∈ (ω ∖
1o) ∧ 𝑚
∈ (ω ∖ 1o)) → (𝑐 ∈ 𝑛 ↔ suc 𝑐 ∈ suc 𝑛)) |
136 | 135 | adantr 481 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑛 ∈ (ω ∖
1o) ∧ 𝑚
∈ (ω ∖ 1o)) ∧ ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘𝑛) = 𝑧) ∧ ∀𝑎 ∈ 𝑛 (𝑓‘𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘𝑚) = 𝑦) ∧ ∀𝑏 ∈ 𝑚 (𝑔‘𝑏)𝑅(𝑔‘suc 𝑏)))) → (𝑐 ∈ 𝑛 ↔ suc 𝑐 ∈ suc 𝑛)) |
137 | 136 | biimpa 477 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑛 ∈ (ω ∖
1o) ∧ 𝑚
∈ (ω ∖ 1o)) ∧ ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘𝑛) = 𝑧) ∧ ∀𝑎 ∈ 𝑛 (𝑓‘𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘𝑚) = 𝑦) ∧ ∀𝑏 ∈ 𝑚 (𝑔‘𝑏)𝑅(𝑔‘suc 𝑏)))) ∧ 𝑐 ∈ 𝑛) → suc 𝑐 ∈ suc 𝑛) |
138 | 137 | iftrued 4467 |
. . . . . . . . . . . . . 14
⊢ ((((𝑛 ∈ (ω ∖
1o) ∧ 𝑚
∈ (ω ∖ 1o)) ∧ ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘𝑛) = 𝑧) ∧ ∀𝑎 ∈ 𝑛 (𝑓‘𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘𝑚) = 𝑦) ∧ ∀𝑏 ∈ 𝑚 (𝑔‘𝑏)𝑅(𝑔‘suc 𝑏)))) ∧ 𝑐 ∈ 𝑛) → if(suc 𝑐 ∈ suc 𝑛, (𝑓‘suc 𝑐), (𝑔‘(℩𝑞 ∈ ω (𝑛 +o 𝑞) = suc 𝑐))) = (𝑓‘suc 𝑐)) |
139 | 130, 133,
138 | 3brtr4d 5106 |
. . . . . . . . . . . . 13
⊢ ((((𝑛 ∈ (ω ∖
1o) ∧ 𝑚
∈ (ω ∖ 1o)) ∧ ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘𝑛) = 𝑧) ∧ ∀𝑎 ∈ 𝑛 (𝑓‘𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘𝑚) = 𝑦) ∧ ∀𝑏 ∈ 𝑚 (𝑔‘𝑏)𝑅(𝑔‘suc 𝑏)))) ∧ 𝑐 ∈ 𝑛) → if(𝑐 ∈ suc 𝑛, (𝑓‘𝑐), (𝑔‘(℩𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑐)))𝑅if(suc 𝑐 ∈ suc 𝑛, (𝑓‘suc 𝑐), (𝑔‘(℩𝑞 ∈ ω (𝑛 +o 𝑞) = suc 𝑐)))) |
140 | 139 | adantlr 712 |
. . . . . . . . . . . 12
⊢
(((((𝑛 ∈
(ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o))
∧ ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘𝑛) = 𝑧) ∧ ∀𝑎 ∈ 𝑛 (𝑓‘𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘𝑚) = 𝑦) ∧ ∀𝑏 ∈ 𝑚 (𝑔‘𝑏)𝑅(𝑔‘suc 𝑏)))) ∧ 𝑐 ∈ (𝑛 +o 𝑚)) ∧ 𝑐 ∈ 𝑛) → if(𝑐 ∈ suc 𝑛, (𝑓‘𝑐), (𝑔‘(℩𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑐)))𝑅if(suc 𝑐 ∈ suc 𝑛, (𝑓‘suc 𝑐), (𝑔‘(℩𝑞 ∈ ω (𝑛 +o 𝑞) = suc 𝑐)))) |
141 | 39 | adantr 481 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑛 ∈ (ω ∖
1o) ∧ 𝑚
∈ (ω ∖ 1o)) ∧ ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘𝑛) = 𝑧) ∧ ∀𝑎 ∈ 𝑛 (𝑓‘𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘𝑚) = 𝑦) ∧ ∀𝑏 ∈ 𝑚 (𝑔‘𝑏)𝑅(𝑔‘suc 𝑏)))) → Ord 𝑛) |
142 | 5 | adantr 481 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑛 ∈ (ω ∖
1o) ∧ 𝑚
∈ (ω ∖ 1o)) ∧ ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘𝑛) = 𝑧) ∧ ∀𝑎 ∈ 𝑛 (𝑓‘𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘𝑚) = 𝑦) ∧ ∀𝑏 ∈ 𝑚 (𝑔‘𝑏)𝑅(𝑔‘suc 𝑏)))) → (𝑛 +o 𝑚) ∈ ω) |
143 | | elnn 7723 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑐 ∈ (𝑛 +o 𝑚) ∧ (𝑛 +o 𝑚) ∈ ω) → 𝑐 ∈ ω) |
144 | 143 | ancoms 459 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑛 +o 𝑚) ∈ ω ∧ 𝑐 ∈ (𝑛 +o 𝑚)) → 𝑐 ∈ ω) |
145 | 142, 144 | sylan 580 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝑛 ∈ (ω ∖
1o) ∧ 𝑚
∈ (ω ∖ 1o)) ∧ ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘𝑛) = 𝑧) ∧ ∀𝑎 ∈ 𝑛 (𝑓‘𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘𝑚) = 𝑦) ∧ ∀𝑏 ∈ 𝑚 (𝑔‘𝑏)𝑅(𝑔‘suc 𝑏)))) ∧ 𝑐 ∈ (𝑛 +o 𝑚)) → 𝑐 ∈ ω) |
146 | | nnord 7720 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑐 ∈ ω → Ord 𝑐) |
147 | 145, 146 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝑛 ∈ (ω ∖
1o) ∧ 𝑚
∈ (ω ∖ 1o)) ∧ ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘𝑛) = 𝑧) ∧ ∀𝑎 ∈ 𝑛 (𝑓‘𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘𝑚) = 𝑦) ∧ ∀𝑏 ∈ 𝑚 (𝑔‘𝑏)𝑅(𝑔‘suc 𝑏)))) ∧ 𝑐 ∈ (𝑛 +o 𝑚)) → Ord 𝑐) |
148 | | ordtri3or 6298 |
. . . . . . . . . . . . . . . . 17
⊢ ((Ord
𝑛 ∧ Ord 𝑐) → (𝑛 ∈ 𝑐 ∨ 𝑛 = 𝑐 ∨ 𝑐 ∈ 𝑛)) |
149 | 141, 147,
148 | syl2an2r 682 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝑛 ∈ (ω ∖
1o) ∧ 𝑚
∈ (ω ∖ 1o)) ∧ ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘𝑛) = 𝑧) ∧ ∀𝑎 ∈ 𝑛 (𝑓‘𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘𝑚) = 𝑦) ∧ ∀𝑏 ∈ 𝑚 (𝑔‘𝑏)𝑅(𝑔‘suc 𝑏)))) ∧ 𝑐 ∈ (𝑛 +o 𝑚)) → (𝑛 ∈ 𝑐 ∨ 𝑛 = 𝑐 ∨ 𝑐 ∈ 𝑛)) |
150 | | 3orel3 1485 |
. . . . . . . . . . . . . . . 16
⊢ (¬
𝑐 ∈ 𝑛 → ((𝑛 ∈ 𝑐 ∨ 𝑛 = 𝑐 ∨ 𝑐 ∈ 𝑛) → (𝑛 ∈ 𝑐 ∨ 𝑛 = 𝑐))) |
151 | 149, 150 | syl5com 31 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑛 ∈ (ω ∖
1o) ∧ 𝑚
∈ (ω ∖ 1o)) ∧ ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘𝑛) = 𝑧) ∧ ∀𝑎 ∈ 𝑛 (𝑓‘𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘𝑚) = 𝑦) ∧ ∀𝑏 ∈ 𝑚 (𝑔‘𝑏)𝑅(𝑔‘suc 𝑏)))) ∧ 𝑐 ∈ (𝑛 +o 𝑚)) → (¬ 𝑐 ∈ 𝑛 → (𝑛 ∈ 𝑐 ∨ 𝑛 = 𝑐))) |
152 | | fveq2 6774 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑏 = (℩𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑐) → (𝑔‘𝑏) = (𝑔‘(℩𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑐))) |
153 | | suceq 6331 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑏 = (℩𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑐) → suc 𝑏 = suc (℩𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑐)) |
154 | 153 | fveq2d 6778 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑏 = (℩𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑐) → (𝑔‘suc 𝑏) = (𝑔‘suc (℩𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑐))) |
155 | 152, 154 | breq12d 5087 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑏 = (℩𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑐) → ((𝑔‘𝑏)𝑅(𝑔‘suc 𝑏) ↔ (𝑔‘(℩𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑐))𝑅(𝑔‘suc (℩𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑐)))) |
156 | | simprr3 1222 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝑛 ∈ (ω ∖
1o) ∧ 𝑚
∈ (ω ∖ 1o)) ∧ ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘𝑛) = 𝑧) ∧ ∀𝑎 ∈ 𝑛 (𝑓‘𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘𝑚) = 𝑦) ∧ ∀𝑏 ∈ 𝑚 (𝑔‘𝑏)𝑅(𝑔‘suc 𝑏)))) → ∀𝑏 ∈ 𝑚 (𝑔‘𝑏)𝑅(𝑔‘suc 𝑏)) |
157 | 156 | adantr 481 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝑛 ∈ (ω ∖
1o) ∧ 𝑚
∈ (ω ∖ 1o)) ∧ ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘𝑛) = 𝑧) ∧ ∀𝑎 ∈ 𝑛 (𝑓‘𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘𝑚) = 𝑦) ∧ ∀𝑏 ∈ 𝑚 (𝑔‘𝑏)𝑅(𝑔‘suc 𝑏)))) ∧ 𝑐 ∈ (𝑛 +o 𝑚)) → ∀𝑏 ∈ 𝑚 (𝑔‘𝑏)𝑅(𝑔‘suc 𝑏)) |
158 | 157 | adantr 481 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝑛 ∈
(ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o))
∧ ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘𝑛) = 𝑧) ∧ ∀𝑎 ∈ 𝑛 (𝑓‘𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘𝑚) = 𝑦) ∧ ∀𝑏 ∈ 𝑚 (𝑔‘𝑏)𝑅(𝑔‘suc 𝑏)))) ∧ 𝑐 ∈ (𝑛 +o 𝑚)) ∧ 𝑛 ∈ 𝑐) → ∀𝑏 ∈ 𝑚 (𝑔‘𝑏)𝑅(𝑔‘suc 𝑏)) |
159 | | ordelss 6282 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((Ord
𝑐 ∧ 𝑛 ∈ 𝑐) → 𝑛 ⊆ 𝑐) |
160 | 147, 159 | sylan 580 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
(((((𝑛 ∈
(ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o))
∧ ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘𝑛) = 𝑧) ∧ ∀𝑎 ∈ 𝑛 (𝑓‘𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘𝑚) = 𝑦) ∧ ∀𝑏 ∈ 𝑚 (𝑔‘𝑏)𝑅(𝑔‘suc 𝑏)))) ∧ 𝑐 ∈ (𝑛 +o 𝑚)) ∧ 𝑛 ∈ 𝑐) → 𝑛 ⊆ 𝑐) |
161 | 38 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝑛 ∈ (ω ∖
1o) ∧ 𝑚
∈ (ω ∖ 1o)) ∧ ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘𝑛) = 𝑧) ∧ ∀𝑎 ∈ 𝑛 (𝑓‘𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘𝑚) = 𝑦) ∧ ∀𝑏 ∈ 𝑚 (𝑔‘𝑏)𝑅(𝑔‘suc 𝑏)))) → 𝑛 ∈ ω) |
162 | 161 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((((𝑛 ∈ (ω ∖
1o) ∧ 𝑚
∈ (ω ∖ 1o)) ∧ ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘𝑛) = 𝑧) ∧ ∀𝑎 ∈ 𝑛 (𝑓‘𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘𝑚) = 𝑦) ∧ ∀𝑏 ∈ 𝑚 (𝑔‘𝑏)𝑅(𝑔‘suc 𝑏)))) ∧ 𝑐 ∈ (𝑛 +o 𝑚)) → 𝑛 ∈ ω) |
163 | 145 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
(((((𝑛 ∈
(ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o))
∧ ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘𝑛) = 𝑧) ∧ ∀𝑎 ∈ 𝑛 (𝑓‘𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘𝑚) = 𝑦) ∧ ∀𝑏 ∈ 𝑚 (𝑔‘𝑏)𝑅(𝑔‘suc 𝑏)))) ∧ 𝑐 ∈ (𝑛 +o 𝑚)) ∧ 𝑛 ∈ 𝑐) → 𝑐 ∈ ω) |
164 | | nnawordex 8468 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑛 ∈ ω ∧ 𝑐 ∈ ω) → (𝑛 ⊆ 𝑐 ↔ ∃𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑐)) |
165 | 162, 163,
164 | syl2an2r 682 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
(((((𝑛 ∈
(ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o))
∧ ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘𝑛) = 𝑧) ∧ ∀𝑎 ∈ 𝑛 (𝑓‘𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘𝑚) = 𝑦) ∧ ∀𝑏 ∈ 𝑚 (𝑔‘𝑏)𝑅(𝑔‘suc 𝑏)))) ∧ 𝑐 ∈ (𝑛 +o 𝑚)) ∧ 𝑛 ∈ 𝑐) → (𝑛 ⊆ 𝑐 ↔ ∃𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑐)) |
166 | 160, 165 | mpbid 231 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
(((((𝑛 ∈
(ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o))
∧ ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘𝑛) = 𝑧) ∧ ∀𝑎 ∈ 𝑛 (𝑓‘𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘𝑚) = 𝑦) ∧ ∀𝑏 ∈ 𝑚 (𝑔‘𝑏)𝑅(𝑔‘suc 𝑏)))) ∧ 𝑐 ∈ (𝑛 +o 𝑚)) ∧ 𝑛 ∈ 𝑐) → ∃𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑐) |
167 | | oveq2 7283 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑞 = 𝑝 → (𝑛 +o 𝑞) = (𝑛 +o 𝑝)) |
168 | 167 | eqeq1d 2740 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑞 = 𝑝 → ((𝑛 +o 𝑞) = 𝑐 ↔ (𝑛 +o 𝑝) = 𝑐)) |
169 | 168 | cbvrexvw 3384 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
(∃𝑞 ∈
ω (𝑛 +o
𝑞) = 𝑐 ↔ ∃𝑝 ∈ ω (𝑛 +o 𝑝) = 𝑐) |
170 | 166, 169 | sylib 217 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(((((𝑛 ∈
(ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o))
∧ ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘𝑛) = 𝑧) ∧ ∀𝑎 ∈ 𝑛 (𝑓‘𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘𝑚) = 𝑦) ∧ ∀𝑏 ∈ 𝑚 (𝑔‘𝑏)𝑅(𝑔‘suc 𝑏)))) ∧ 𝑐 ∈ (𝑛 +o 𝑚)) ∧ 𝑛 ∈ 𝑐) → ∃𝑝 ∈ ω (𝑛 +o 𝑝) = 𝑐) |
171 | | simprr 770 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
((((((𝑛 ∈
(ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o))
∧ ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘𝑛) = 𝑧) ∧ ∀𝑎 ∈ 𝑛 (𝑓‘𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘𝑚) = 𝑦) ∧ ∀𝑏 ∈ 𝑚 (𝑔‘𝑏)𝑅(𝑔‘suc 𝑏)))) ∧ 𝑐 ∈ (𝑛 +o 𝑚)) ∧ 𝑛 ∈ 𝑐) ∧ (𝑝 ∈ ω ∧ (𝑛 +o 𝑝) = 𝑐)) → (𝑛 +o 𝑝) = 𝑐) |
172 | | simpllr 773 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
((((((𝑛 ∈
(ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o))
∧ ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘𝑛) = 𝑧) ∧ ∀𝑎 ∈ 𝑛 (𝑓‘𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘𝑚) = 𝑦) ∧ ∀𝑏 ∈ 𝑚 (𝑔‘𝑏)𝑅(𝑔‘suc 𝑏)))) ∧ 𝑐 ∈ (𝑛 +o 𝑚)) ∧ 𝑛 ∈ 𝑐) ∧ (𝑝 ∈ ω ∧ (𝑛 +o 𝑝) = 𝑐)) → 𝑐 ∈ (𝑛 +o 𝑚)) |
173 | 171, 172 | eqeltrd 2839 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
((((((𝑛 ∈
(ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o))
∧ ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘𝑛) = 𝑧) ∧ ∀𝑎 ∈ 𝑛 (𝑓‘𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘𝑚) = 𝑦) ∧ ∀𝑏 ∈ 𝑚 (𝑔‘𝑏)𝑅(𝑔‘suc 𝑏)))) ∧ 𝑐 ∈ (𝑛 +o 𝑚)) ∧ 𝑛 ∈ 𝑐) ∧ (𝑝 ∈ ω ∧ (𝑛 +o 𝑝) = 𝑐)) → (𝑛 +o 𝑝) ∈ (𝑛 +o 𝑚)) |
174 | | simprl 768 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
((((((𝑛 ∈
(ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o))
∧ ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘𝑛) = 𝑧) ∧ ∀𝑎 ∈ 𝑛 (𝑓‘𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘𝑚) = 𝑦) ∧ ∀𝑏 ∈ 𝑚 (𝑔‘𝑏)𝑅(𝑔‘suc 𝑏)))) ∧ 𝑐 ∈ (𝑛 +o 𝑚)) ∧ 𝑛 ∈ 𝑐) ∧ (𝑝 ∈ ω ∧ (𝑛 +o 𝑝) = 𝑐)) → 𝑝 ∈ ω) |
175 | 3 | ad4antlr 730 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
(((((𝑛 ∈
(ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o))
∧ ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘𝑛) = 𝑧) ∧ ∀𝑎 ∈ 𝑛 (𝑓‘𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘𝑚) = 𝑦) ∧ ∀𝑏 ∈ 𝑚 (𝑔‘𝑏)𝑅(𝑔‘suc 𝑏)))) ∧ 𝑐 ∈ (𝑛 +o 𝑚)) ∧ 𝑛 ∈ 𝑐) → 𝑚 ∈ ω) |
176 | 175 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
((((((𝑛 ∈
(ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o))
∧ ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘𝑛) = 𝑧) ∧ ∀𝑎 ∈ 𝑛 (𝑓‘𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘𝑚) = 𝑦) ∧ ∀𝑏 ∈ 𝑚 (𝑔‘𝑏)𝑅(𝑔‘suc 𝑏)))) ∧ 𝑐 ∈ (𝑛 +o 𝑚)) ∧ 𝑛 ∈ 𝑐) ∧ (𝑝 ∈ ω ∧ (𝑛 +o 𝑝) = 𝑐)) → 𝑚 ∈ ω) |
177 | 162 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
(((((𝑛 ∈
(ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o))
∧ ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘𝑛) = 𝑧) ∧ ∀𝑎 ∈ 𝑛 (𝑓‘𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘𝑚) = 𝑦) ∧ ∀𝑏 ∈ 𝑚 (𝑔‘𝑏)𝑅(𝑔‘suc 𝑏)))) ∧ 𝑐 ∈ (𝑛 +o 𝑚)) ∧ 𝑛 ∈ 𝑐) → 𝑛 ∈ ω) |
178 | 177 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
((((((𝑛 ∈
(ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o))
∧ ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘𝑛) = 𝑧) ∧ ∀𝑎 ∈ 𝑛 (𝑓‘𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘𝑚) = 𝑦) ∧ ∀𝑏 ∈ 𝑚 (𝑔‘𝑏)𝑅(𝑔‘suc 𝑏)))) ∧ 𝑐 ∈ (𝑛 +o 𝑚)) ∧ 𝑛 ∈ 𝑐) ∧ (𝑝 ∈ ω ∧ (𝑛 +o 𝑝) = 𝑐)) → 𝑛 ∈ ω) |
179 | | nnaord 8450 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑝 ∈ ω ∧ 𝑚 ∈ ω ∧ 𝑛 ∈ ω) → (𝑝 ∈ 𝑚 ↔ (𝑛 +o 𝑝) ∈ (𝑛 +o 𝑚))) |
180 | 174, 176,
178, 179 | syl3anc 1370 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
((((((𝑛 ∈
(ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o))
∧ ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘𝑛) = 𝑧) ∧ ∀𝑎 ∈ 𝑛 (𝑓‘𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘𝑚) = 𝑦) ∧ ∀𝑏 ∈ 𝑚 (𝑔‘𝑏)𝑅(𝑔‘suc 𝑏)))) ∧ 𝑐 ∈ (𝑛 +o 𝑚)) ∧ 𝑛 ∈ 𝑐) ∧ (𝑝 ∈ ω ∧ (𝑛 +o 𝑝) = 𝑐)) → (𝑝 ∈ 𝑚 ↔ (𝑛 +o 𝑝) ∈ (𝑛 +o 𝑚))) |
181 | 173, 180 | mpbird 256 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
((((((𝑛 ∈
(ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o))
∧ ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘𝑛) = 𝑧) ∧ ∀𝑎 ∈ 𝑛 (𝑓‘𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘𝑚) = 𝑦) ∧ ∀𝑏 ∈ 𝑚 (𝑔‘𝑏)𝑅(𝑔‘suc 𝑏)))) ∧ 𝑐 ∈ (𝑛 +o 𝑚)) ∧ 𝑛 ∈ 𝑐) ∧ (𝑝 ∈ ω ∧ (𝑛 +o 𝑝) = 𝑐)) → 𝑝 ∈ 𝑚) |
182 | 170, 181,
171 | reximssdv 3205 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(((((𝑛 ∈
(ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o))
∧ ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘𝑛) = 𝑧) ∧ ∀𝑎 ∈ 𝑛 (𝑓‘𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘𝑚) = 𝑦) ∧ ∀𝑏 ∈ 𝑚 (𝑔‘𝑏)𝑅(𝑔‘suc 𝑏)))) ∧ 𝑐 ∈ (𝑛 +o 𝑚)) ∧ 𝑛 ∈ 𝑐) → ∃𝑝 ∈ 𝑚 (𝑛 +o 𝑝) = 𝑐) |
183 | | elnn 7723 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝑝 ∈ 𝑚 ∧ 𝑚 ∈ ω) → 𝑝 ∈ ω) |
184 | 183 | ancoms 459 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑚 ∈ ω ∧ 𝑝 ∈ 𝑚) → 𝑝 ∈ ω) |
185 | 175, 184 | sylan 580 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
((((((𝑛 ∈
(ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o))
∧ ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘𝑛) = 𝑧) ∧ ∀𝑎 ∈ 𝑛 (𝑓‘𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘𝑚) = 𝑦) ∧ ∀𝑏 ∈ 𝑚 (𝑔‘𝑏)𝑅(𝑔‘suc 𝑏)))) ∧ 𝑐 ∈ (𝑛 +o 𝑚)) ∧ 𝑛 ∈ 𝑐) ∧ 𝑝 ∈ 𝑚) → 𝑝 ∈ ω) |
186 | | nnasmo 8493 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑛 ∈ ω →
∃*𝑞 ∈ ω
(𝑛 +o 𝑞) = 𝑐) |
187 | 177, 186 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
(((((𝑛 ∈
(ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o))
∧ ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘𝑛) = 𝑧) ∧ ∀𝑎 ∈ 𝑛 (𝑓‘𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘𝑚) = 𝑦) ∧ ∀𝑏 ∈ 𝑚 (𝑔‘𝑏)𝑅(𝑔‘suc 𝑏)))) ∧ 𝑐 ∈ (𝑛 +o 𝑚)) ∧ 𝑛 ∈ 𝑐) → ∃*𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑐) |
188 | | reu5 3361 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
(∃!𝑞 ∈
ω (𝑛 +o
𝑞) = 𝑐 ↔ (∃𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑐 ∧ ∃*𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑐)) |
189 | 166, 187,
188 | sylanbrc 583 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
(((((𝑛 ∈
(ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o))
∧ ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘𝑛) = 𝑧) ∧ ∀𝑎 ∈ 𝑛 (𝑓‘𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘𝑚) = 𝑦) ∧ ∀𝑏 ∈ 𝑚 (𝑔‘𝑏)𝑅(𝑔‘suc 𝑏)))) ∧ 𝑐 ∈ (𝑛 +o 𝑚)) ∧ 𝑛 ∈ 𝑐) → ∃!𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑐) |
190 | 189 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
((((((𝑛 ∈
(ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o))
∧ ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘𝑛) = 𝑧) ∧ ∀𝑎 ∈ 𝑛 (𝑓‘𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘𝑚) = 𝑦) ∧ ∀𝑏 ∈ 𝑚 (𝑔‘𝑏)𝑅(𝑔‘suc 𝑏)))) ∧ 𝑐 ∈ (𝑛 +o 𝑚)) ∧ 𝑛 ∈ 𝑐) ∧ 𝑝 ∈ 𝑚) → ∃!𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑐) |
191 | 168 | riota2 7258 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑝 ∈ ω ∧
∃!𝑞 ∈ ω
(𝑛 +o 𝑞) = 𝑐) → ((𝑛 +o 𝑝) = 𝑐 ↔ (℩𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑐) = 𝑝)) |
192 | 185, 190,
191 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
((((((𝑛 ∈
(ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o))
∧ ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘𝑛) = 𝑧) ∧ ∀𝑎 ∈ 𝑛 (𝑓‘𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘𝑚) = 𝑦) ∧ ∀𝑏 ∈ 𝑚 (𝑔‘𝑏)𝑅(𝑔‘suc 𝑏)))) ∧ 𝑐 ∈ (𝑛 +o 𝑚)) ∧ 𝑛 ∈ 𝑐) ∧ 𝑝 ∈ 𝑚) → ((𝑛 +o 𝑝) = 𝑐 ↔ (℩𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑐) = 𝑝)) |
193 | | eqcom 2745 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
((℩𝑞
∈ ω (𝑛
+o 𝑞) = 𝑐) = 𝑝 ↔ 𝑝 = (℩𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑐)) |
194 | 192, 193 | bitrdi 287 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
((((((𝑛 ∈
(ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o))
∧ ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘𝑛) = 𝑧) ∧ ∀𝑎 ∈ 𝑛 (𝑓‘𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘𝑚) = 𝑦) ∧ ∀𝑏 ∈ 𝑚 (𝑔‘𝑏)𝑅(𝑔‘suc 𝑏)))) ∧ 𝑐 ∈ (𝑛 +o 𝑚)) ∧ 𝑛 ∈ 𝑐) ∧ 𝑝 ∈ 𝑚) → ((𝑛 +o 𝑝) = 𝑐 ↔ 𝑝 = (℩𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑐))) |
195 | 194 | rexbidva 3225 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(((((𝑛 ∈
(ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o))
∧ ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘𝑛) = 𝑧) ∧ ∀𝑎 ∈ 𝑛 (𝑓‘𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘𝑚) = 𝑦) ∧ ∀𝑏 ∈ 𝑚 (𝑔‘𝑏)𝑅(𝑔‘suc 𝑏)))) ∧ 𝑐 ∈ (𝑛 +o 𝑚)) ∧ 𝑛 ∈ 𝑐) → (∃𝑝 ∈ 𝑚 (𝑛 +o 𝑝) = 𝑐 ↔ ∃𝑝 ∈ 𝑚 𝑝 = (℩𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑐))) |
196 | 182, 195 | mpbid 231 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((𝑛 ∈
(ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o))
∧ ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘𝑛) = 𝑧) ∧ ∀𝑎 ∈ 𝑛 (𝑓‘𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘𝑚) = 𝑦) ∧ ∀𝑏 ∈ 𝑚 (𝑔‘𝑏)𝑅(𝑔‘suc 𝑏)))) ∧ 𝑐 ∈ (𝑛 +o 𝑚)) ∧ 𝑛 ∈ 𝑐) → ∃𝑝 ∈ 𝑚 𝑝 = (℩𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑐)) |
197 | | risset 3194 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((℩𝑞
∈ ω (𝑛
+o 𝑞) = 𝑐) ∈ 𝑚 ↔ ∃𝑝 ∈ 𝑚 𝑝 = (℩𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑐)) |
198 | 196, 197 | sylibr 233 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝑛 ∈
(ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o))
∧ ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘𝑛) = 𝑧) ∧ ∀𝑎 ∈ 𝑛 (𝑓‘𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘𝑚) = 𝑦) ∧ ∀𝑏 ∈ 𝑚 (𝑔‘𝑏)𝑅(𝑔‘suc 𝑏)))) ∧ 𝑐 ∈ (𝑛 +o 𝑚)) ∧ 𝑛 ∈ 𝑐) → (℩𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑐) ∈ 𝑚) |
199 | 155, 158,
198 | rspcdva 3562 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝑛 ∈
(ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o))
∧ ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘𝑛) = 𝑧) ∧ ∀𝑎 ∈ 𝑛 (𝑓‘𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘𝑚) = 𝑦) ∧ ∀𝑏 ∈ 𝑚 (𝑔‘𝑏)𝑅(𝑔‘suc 𝑏)))) ∧ 𝑐 ∈ (𝑛 +o 𝑚)) ∧ 𝑛 ∈ 𝑐) → (𝑔‘(℩𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑐))𝑅(𝑔‘suc (℩𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑐))) |
200 | | simpr 485 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((𝑛 ∈
(ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o))
∧ ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘𝑛) = 𝑧) ∧ ∀𝑎 ∈ 𝑛 (𝑓‘𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘𝑚) = 𝑦) ∧ ∀𝑏 ∈ 𝑚 (𝑔‘𝑏)𝑅(𝑔‘suc 𝑏)))) ∧ 𝑐 ∈ (𝑛 +o 𝑚)) ∧ 𝑛 ∈ 𝑐) → 𝑛 ∈ 𝑐) |
201 | | vex 3436 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ 𝑛 ∈ V |
202 | 147 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(((((𝑛 ∈
(ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o))
∧ ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘𝑛) = 𝑧) ∧ ∀𝑎 ∈ 𝑛 (𝑓‘𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘𝑚) = 𝑦) ∧ ∀𝑏 ∈ 𝑚 (𝑔‘𝑏)𝑅(𝑔‘suc 𝑏)))) ∧ 𝑐 ∈ (𝑛 +o 𝑚)) ∧ 𝑛 ∈ 𝑐) → Ord 𝑐) |
203 | | ordelsuc 7667 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑛 ∈ V ∧ Ord 𝑐) → (𝑛 ∈ 𝑐 ↔ suc 𝑛 ⊆ 𝑐)) |
204 | 201, 202,
203 | sylancr 587 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(((((𝑛 ∈
(ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o))
∧ ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘𝑛) = 𝑧) ∧ ∀𝑎 ∈ 𝑛 (𝑓‘𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘𝑚) = 𝑦) ∧ ∀𝑏 ∈ 𝑚 (𝑔‘𝑏)𝑅(𝑔‘suc 𝑏)))) ∧ 𝑐 ∈ (𝑛 +o 𝑚)) ∧ 𝑛 ∈ 𝑐) → (𝑛 ∈ 𝑐 ↔ suc 𝑛 ⊆ 𝑐)) |
205 | | peano2 7737 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑛 ∈ ω → suc 𝑛 ∈
ω) |
206 | 38, 205 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑛 ∈ (ω ∖
1o) ∧ 𝑚
∈ (ω ∖ 1o)) → suc 𝑛 ∈ ω) |
207 | | nnord 7720 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (suc
𝑛 ∈ ω → Ord
suc 𝑛) |
208 | 206, 207 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑛 ∈ (ω ∖
1o) ∧ 𝑚
∈ (ω ∖ 1o)) → Ord suc 𝑛) |
209 | 208 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝑛 ∈ (ω ∖
1o) ∧ 𝑚
∈ (ω ∖ 1o)) ∧ ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘𝑛) = 𝑧) ∧ ∀𝑎 ∈ 𝑛 (𝑓‘𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘𝑚) = 𝑦) ∧ ∀𝑏 ∈ 𝑚 (𝑔‘𝑏)𝑅(𝑔‘suc 𝑏)))) → Ord suc 𝑛) |
210 | 209 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝑛 ∈ (ω ∖
1o) ∧ 𝑚
∈ (ω ∖ 1o)) ∧ ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘𝑛) = 𝑧) ∧ ∀𝑎 ∈ 𝑛 (𝑓‘𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘𝑚) = 𝑦) ∧ ∀𝑏 ∈ 𝑚 (𝑔‘𝑏)𝑅(𝑔‘suc 𝑏)))) ∧ 𝑐 ∈ (𝑛 +o 𝑚)) → Ord suc 𝑛) |
211 | | ordtri1 6299 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((Ord suc
𝑛 ∧ Ord 𝑐) → (suc 𝑛 ⊆ 𝑐 ↔ ¬ 𝑐 ∈ suc 𝑛)) |
212 | 210, 202,
211 | syl2an2r 682 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(((((𝑛 ∈
(ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o))
∧ ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘𝑛) = 𝑧) ∧ ∀𝑎 ∈ 𝑛 (𝑓‘𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘𝑚) = 𝑦) ∧ ∀𝑏 ∈ 𝑚 (𝑔‘𝑏)𝑅(𝑔‘suc 𝑏)))) ∧ 𝑐 ∈ (𝑛 +o 𝑚)) ∧ 𝑛 ∈ 𝑐) → (suc 𝑛 ⊆ 𝑐 ↔ ¬ 𝑐 ∈ suc 𝑛)) |
213 | 204, 212 | bitrd 278 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((𝑛 ∈
(ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o))
∧ ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘𝑛) = 𝑧) ∧ ∀𝑎 ∈ 𝑛 (𝑓‘𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘𝑚) = 𝑦) ∧ ∀𝑏 ∈ 𝑚 (𝑔‘𝑏)𝑅(𝑔‘suc 𝑏)))) ∧ 𝑐 ∈ (𝑛 +o 𝑚)) ∧ 𝑛 ∈ 𝑐) → (𝑛 ∈ 𝑐 ↔ ¬ 𝑐 ∈ suc 𝑛)) |
214 | 200, 213 | mpbid 231 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝑛 ∈
(ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o))
∧ ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘𝑛) = 𝑧) ∧ ∀𝑎 ∈ 𝑛 (𝑓‘𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘𝑚) = 𝑦) ∧ ∀𝑏 ∈ 𝑚 (𝑔‘𝑏)𝑅(𝑔‘suc 𝑏)))) ∧ 𝑐 ∈ (𝑛 +o 𝑚)) ∧ 𝑛 ∈ 𝑐) → ¬ 𝑐 ∈ suc 𝑛) |
215 | 214 | iffalsed 4470 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝑛 ∈
(ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o))
∧ ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘𝑛) = 𝑧) ∧ ∀𝑎 ∈ 𝑛 (𝑓‘𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘𝑚) = 𝑦) ∧ ∀𝑏 ∈ 𝑚 (𝑔‘𝑏)𝑅(𝑔‘suc 𝑏)))) ∧ 𝑐 ∈ (𝑛 +o 𝑚)) ∧ 𝑛 ∈ 𝑐) → if(𝑐 ∈ suc 𝑛, (𝑓‘𝑐), (𝑔‘(℩𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑐))) = (𝑔‘(℩𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑐))) |
216 | | riotacl 7250 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
(∃!𝑞 ∈
ω (𝑛 +o
𝑞) = 𝑐 → (℩𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑐) ∈ ω) |
217 | 189, 216 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(((((𝑛 ∈
(ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o))
∧ ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘𝑛) = 𝑧) ∧ ∀𝑎 ∈ 𝑛 (𝑓‘𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘𝑚) = 𝑦) ∧ ∀𝑏 ∈ 𝑚 (𝑔‘𝑏)𝑅(𝑔‘suc 𝑏)))) ∧ 𝑐 ∈ (𝑛 +o 𝑚)) ∧ 𝑛 ∈ 𝑐) → (℩𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑐) ∈ ω) |
218 | | nnasuc 8437 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑛 ∈ ω ∧
(℩𝑞 ∈
ω (𝑛 +o
𝑞) = 𝑐) ∈ ω) → (𝑛 +o suc (℩𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑐)) = suc (𝑛 +o (℩𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑐))) |
219 | 162, 217,
218 | syl2an2r 682 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(((((𝑛 ∈
(ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o))
∧ ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘𝑛) = 𝑧) ∧ ∀𝑎 ∈ 𝑛 (𝑓‘𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘𝑚) = 𝑦) ∧ ∀𝑏 ∈ 𝑚 (𝑔‘𝑏)𝑅(𝑔‘suc 𝑏)))) ∧ 𝑐 ∈ (𝑛 +o 𝑚)) ∧ 𝑛 ∈ 𝑐) → (𝑛 +o suc (℩𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑐)) = suc (𝑛 +o (℩𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑐))) |
220 | | eqidd 2739 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
(((((𝑛 ∈
(ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o))
∧ ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘𝑛) = 𝑧) ∧ ∀𝑎 ∈ 𝑛 (𝑓‘𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘𝑚) = 𝑦) ∧ ∀𝑏 ∈ 𝑚 (𝑔‘𝑏)𝑅(𝑔‘suc 𝑏)))) ∧ 𝑐 ∈ (𝑛 +o 𝑚)) ∧ 𝑛 ∈ 𝑐) → (℩𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑐) = (℩𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑐)) |
221 | | nfriota1 7239 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
Ⅎ𝑞(℩𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑐) |
222 | | nfcv 2907 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢
Ⅎ𝑞𝑛 |
223 | | nfcv 2907 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢
Ⅎ𝑞
+o |
224 | 222, 223,
221 | nfov 7305 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
Ⅎ𝑞(𝑛 +o (℩𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑐)) |
225 | 224 | nfeq1 2922 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
Ⅎ𝑞(𝑛 +o
(℩𝑞 ∈
ω (𝑛 +o
𝑞) = 𝑐)) = 𝑐 |
226 | | oveq2 7283 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑞 = (℩𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑐) → (𝑛 +o 𝑞) = (𝑛 +o (℩𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑐))) |
227 | 226 | eqeq1d 2740 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑞 = (℩𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑐) → ((𝑛 +o 𝑞) = 𝑐 ↔ (𝑛 +o (℩𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑐)) = 𝑐)) |
228 | 221, 225,
227 | riota2f 7257 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
(((℩𝑞
∈ ω (𝑛
+o 𝑞) = 𝑐) ∈ ω ∧
∃!𝑞 ∈ ω
(𝑛 +o 𝑞) = 𝑐) → ((𝑛 +o (℩𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑐)) = 𝑐 ↔ (℩𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑐) = (℩𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑐))) |
229 | 217, 189,
228 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
(((((𝑛 ∈
(ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o))
∧ ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘𝑛) = 𝑧) ∧ ∀𝑎 ∈ 𝑛 (𝑓‘𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘𝑚) = 𝑦) ∧ ∀𝑏 ∈ 𝑚 (𝑔‘𝑏)𝑅(𝑔‘suc 𝑏)))) ∧ 𝑐 ∈ (𝑛 +o 𝑚)) ∧ 𝑛 ∈ 𝑐) → ((𝑛 +o (℩𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑐)) = 𝑐 ↔ (℩𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑐) = (℩𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑐))) |
230 | 220, 229 | mpbird 256 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(((((𝑛 ∈
(ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o))
∧ ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘𝑛) = 𝑧) ∧ ∀𝑎 ∈ 𝑛 (𝑓‘𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘𝑚) = 𝑦) ∧ ∀𝑏 ∈ 𝑚 (𝑔‘𝑏)𝑅(𝑔‘suc 𝑏)))) ∧ 𝑐 ∈ (𝑛 +o 𝑚)) ∧ 𝑛 ∈ 𝑐) → (𝑛 +o (℩𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑐)) = 𝑐) |
231 | | suceq 6331 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑛 +o
(℩𝑞 ∈
ω (𝑛 +o
𝑞) = 𝑐)) = 𝑐 → suc (𝑛 +o (℩𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑐)) = suc 𝑐) |
232 | 230, 231 | syl 17 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(((((𝑛 ∈
(ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o))
∧ ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘𝑛) = 𝑧) ∧ ∀𝑎 ∈ 𝑛 (𝑓‘𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘𝑚) = 𝑦) ∧ ∀𝑏 ∈ 𝑚 (𝑔‘𝑏)𝑅(𝑔‘suc 𝑏)))) ∧ 𝑐 ∈ (𝑛 +o 𝑚)) ∧ 𝑛 ∈ 𝑐) → suc (𝑛 +o (℩𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑐)) = suc 𝑐) |
233 | 219, 232 | eqtrd 2778 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((𝑛 ∈
(ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o))
∧ ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘𝑛) = 𝑧) ∧ ∀𝑎 ∈ 𝑛 (𝑓‘𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘𝑚) = 𝑦) ∧ ∀𝑏 ∈ 𝑚 (𝑔‘𝑏)𝑅(𝑔‘suc 𝑏)))) ∧ 𝑐 ∈ (𝑛 +o 𝑚)) ∧ 𝑛 ∈ 𝑐) → (𝑛 +o suc (℩𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑐)) = suc 𝑐) |
234 | | peano2 7737 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
((℩𝑞
∈ ω (𝑛
+o 𝑞) = 𝑐) ∈ ω → suc
(℩𝑞 ∈
ω (𝑛 +o
𝑞) = 𝑐) ∈ ω) |
235 | 217, 234 | syl 17 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(((((𝑛 ∈
(ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o))
∧ ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘𝑛) = 𝑧) ∧ ∀𝑎 ∈ 𝑛 (𝑓‘𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘𝑚) = 𝑦) ∧ ∀𝑏 ∈ 𝑚 (𝑔‘𝑏)𝑅(𝑔‘suc 𝑏)))) ∧ 𝑐 ∈ (𝑛 +o 𝑚)) ∧ 𝑛 ∈ 𝑐) → suc (℩𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑐) ∈ ω) |
236 | | peano2 7737 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑝 ∈ ω → suc 𝑝 ∈
ω) |
237 | | nnasuc 8437 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝑛 ∈ ω ∧ 𝑝 ∈ ω) → (𝑛 +o suc 𝑝) = suc (𝑛 +o 𝑝)) |
238 | 177, 237 | sylan 580 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
((((((𝑛 ∈
(ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o))
∧ ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘𝑛) = 𝑧) ∧ ∀𝑎 ∈ 𝑛 (𝑓‘𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘𝑚) = 𝑦) ∧ ∀𝑏 ∈ 𝑚 (𝑔‘𝑏)𝑅(𝑔‘suc 𝑏)))) ∧ 𝑐 ∈ (𝑛 +o 𝑚)) ∧ 𝑛 ∈ 𝑐) ∧ 𝑝 ∈ ω) → (𝑛 +o suc 𝑝) = suc (𝑛 +o 𝑝)) |
239 | | oveq2 7283 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑞 = suc 𝑝 → (𝑛 +o 𝑞) = (𝑛 +o suc 𝑝)) |
240 | 239 | eqeq1d 2740 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑞 = suc 𝑝 → ((𝑛 +o 𝑞) = suc (𝑛 +o 𝑝) ↔ (𝑛 +o suc 𝑝) = suc (𝑛 +o 𝑝))) |
241 | 240 | rspcev 3561 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((suc
𝑝 ∈ ω ∧
(𝑛 +o suc 𝑝) = suc (𝑛 +o 𝑝)) → ∃𝑞 ∈ ω (𝑛 +o 𝑞) = suc (𝑛 +o 𝑝)) |
242 | 236, 238,
241 | syl2an2 683 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
((((((𝑛 ∈
(ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o))
∧ ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘𝑛) = 𝑧) ∧ ∀𝑎 ∈ 𝑛 (𝑓‘𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘𝑚) = 𝑦) ∧ ∀𝑏 ∈ 𝑚 (𝑔‘𝑏)𝑅(𝑔‘suc 𝑏)))) ∧ 𝑐 ∈ (𝑛 +o 𝑚)) ∧ 𝑛 ∈ 𝑐) ∧ 𝑝 ∈ ω) → ∃𝑞 ∈ ω (𝑛 +o 𝑞) = suc (𝑛 +o 𝑝)) |
243 | | suceq 6331 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝑛 +o 𝑝) = 𝑐 → suc (𝑛 +o 𝑝) = suc 𝑐) |
244 | 243 | eqeq2d 2749 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝑛 +o 𝑝) = 𝑐 → ((𝑛 +o 𝑞) = suc (𝑛 +o 𝑝) ↔ (𝑛 +o 𝑞) = suc 𝑐)) |
245 | 244 | rexbidv 3226 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑛 +o 𝑝) = 𝑐 → (∃𝑞 ∈ ω (𝑛 +o 𝑞) = suc (𝑛 +o 𝑝) ↔ ∃𝑞 ∈ ω (𝑛 +o 𝑞) = suc 𝑐)) |
246 | 242, 245 | syl5ibcom 244 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
((((((𝑛 ∈
(ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o))
∧ ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘𝑛) = 𝑧) ∧ ∀𝑎 ∈ 𝑛 (𝑓‘𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘𝑚) = 𝑦) ∧ ∀𝑏 ∈ 𝑚 (𝑔‘𝑏)𝑅(𝑔‘suc 𝑏)))) ∧ 𝑐 ∈ (𝑛 +o 𝑚)) ∧ 𝑛 ∈ 𝑐) ∧ 𝑝 ∈ ω) → ((𝑛 +o 𝑝) = 𝑐 → ∃𝑞 ∈ ω (𝑛 +o 𝑞) = suc 𝑐)) |
247 | 246 | rexlimdva 3213 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
(((((𝑛 ∈
(ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o))
∧ ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘𝑛) = 𝑧) ∧ ∀𝑎 ∈ 𝑛 (𝑓‘𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘𝑚) = 𝑦) ∧ ∀𝑏 ∈ 𝑚 (𝑔‘𝑏)𝑅(𝑔‘suc 𝑏)))) ∧ 𝑐 ∈ (𝑛 +o 𝑚)) ∧ 𝑛 ∈ 𝑐) → (∃𝑝 ∈ ω (𝑛 +o 𝑝) = 𝑐 → ∃𝑞 ∈ ω (𝑛 +o 𝑞) = suc 𝑐)) |
248 | 170, 247 | mpd 15 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(((((𝑛 ∈
(ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o))
∧ ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘𝑛) = 𝑧) ∧ ∀𝑎 ∈ 𝑛 (𝑓‘𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘𝑚) = 𝑦) ∧ ∀𝑏 ∈ 𝑚 (𝑔‘𝑏)𝑅(𝑔‘suc 𝑏)))) ∧ 𝑐 ∈ (𝑛 +o 𝑚)) ∧ 𝑛 ∈ 𝑐) → ∃𝑞 ∈ ω (𝑛 +o 𝑞) = suc 𝑐) |
249 | | nnasmo 8493 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑛 ∈ ω →
∃*𝑞 ∈ ω
(𝑛 +o 𝑞) = suc 𝑐) |
250 | 177, 249 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(((((𝑛 ∈
(ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o))
∧ ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘𝑛) = 𝑧) ∧ ∀𝑎 ∈ 𝑛 (𝑓‘𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘𝑚) = 𝑦) ∧ ∀𝑏 ∈ 𝑚 (𝑔‘𝑏)𝑅(𝑔‘suc 𝑏)))) ∧ 𝑐 ∈ (𝑛 +o 𝑚)) ∧ 𝑛 ∈ 𝑐) → ∃*𝑞 ∈ ω (𝑛 +o 𝑞) = suc 𝑐) |
251 | | reu5 3361 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(∃!𝑞 ∈
ω (𝑛 +o
𝑞) = suc 𝑐 ↔ (∃𝑞 ∈ ω (𝑛 +o 𝑞) = suc 𝑐 ∧ ∃*𝑞 ∈ ω (𝑛 +o 𝑞) = suc 𝑐)) |
252 | 248, 250,
251 | sylanbrc 583 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(((((𝑛 ∈
(ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o))
∧ ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘𝑛) = 𝑧) ∧ ∀𝑎 ∈ 𝑛 (𝑓‘𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘𝑚) = 𝑦) ∧ ∀𝑏 ∈ 𝑚 (𝑔‘𝑏)𝑅(𝑔‘suc 𝑏)))) ∧ 𝑐 ∈ (𝑛 +o 𝑚)) ∧ 𝑛 ∈ 𝑐) → ∃!𝑞 ∈ ω (𝑛 +o 𝑞) = suc 𝑐) |
253 | 221 | nfsuc 6337 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
Ⅎ𝑞 suc
(℩𝑞 ∈
ω (𝑛 +o
𝑞) = 𝑐) |
254 | 222, 223,
253 | nfov 7305 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
Ⅎ𝑞(𝑛 +o suc (℩𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑐)) |
255 | 254 | nfeq1 2922 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
Ⅎ𝑞(𝑛 +o suc
(℩𝑞 ∈
ω (𝑛 +o
𝑞) = 𝑐)) = suc 𝑐 |
256 | | oveq2 7283 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑞 = suc (℩𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑐) → (𝑛 +o 𝑞) = (𝑛 +o suc (℩𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑐))) |
257 | 256 | eqeq1d 2740 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑞 = suc (℩𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑐) → ((𝑛 +o 𝑞) = suc 𝑐 ↔ (𝑛 +o suc (℩𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑐)) = suc 𝑐)) |
258 | 253, 255,
257 | riota2f 7257 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((suc
(℩𝑞 ∈
ω (𝑛 +o
𝑞) = 𝑐) ∈ ω ∧ ∃!𝑞 ∈ ω (𝑛 +o 𝑞) = suc 𝑐) → ((𝑛 +o suc (℩𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑐)) = suc 𝑐 ↔ (℩𝑞 ∈ ω (𝑛 +o 𝑞) = suc 𝑐) = suc (℩𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑐))) |
259 | 235, 252,
258 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((𝑛 ∈
(ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o))
∧ ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘𝑛) = 𝑧) ∧ ∀𝑎 ∈ 𝑛 (𝑓‘𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘𝑚) = 𝑦) ∧ ∀𝑏 ∈ 𝑚 (𝑔‘𝑏)𝑅(𝑔‘suc 𝑏)))) ∧ 𝑐 ∈ (𝑛 +o 𝑚)) ∧ 𝑛 ∈ 𝑐) → ((𝑛 +o suc (℩𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑐)) = suc 𝑐 ↔ (℩𝑞 ∈ ω (𝑛 +o 𝑞) = suc 𝑐) = suc (℩𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑐))) |
260 | 233, 259 | mpbid 231 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝑛 ∈
(ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o))
∧ ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘𝑛) = 𝑧) ∧ ∀𝑎 ∈ 𝑛 (𝑓‘𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘𝑚) = 𝑦) ∧ ∀𝑏 ∈ 𝑚 (𝑔‘𝑏)𝑅(𝑔‘suc 𝑏)))) ∧ 𝑐 ∈ (𝑛 +o 𝑚)) ∧ 𝑛 ∈ 𝑐) → (℩𝑞 ∈ ω (𝑛 +o 𝑞) = suc 𝑐) = suc (℩𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑐)) |
261 | 260 | fveq2d 6778 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝑛 ∈
(ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o))
∧ ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘𝑛) = 𝑧) ∧ ∀𝑎 ∈ 𝑛 (𝑓‘𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘𝑚) = 𝑦) ∧ ∀𝑏 ∈ 𝑚 (𝑔‘𝑏)𝑅(𝑔‘suc 𝑏)))) ∧ 𝑐 ∈ (𝑛 +o 𝑚)) ∧ 𝑛 ∈ 𝑐) → (𝑔‘(℩𝑞 ∈ ω (𝑛 +o 𝑞) = suc 𝑐)) = (𝑔‘suc (℩𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑐))) |
262 | 199, 215,
261 | 3brtr4d 5106 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝑛 ∈
(ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o))
∧ ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘𝑛) = 𝑧) ∧ ∀𝑎 ∈ 𝑛 (𝑓‘𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘𝑚) = 𝑦) ∧ ∀𝑏 ∈ 𝑚 (𝑔‘𝑏)𝑅(𝑔‘suc 𝑏)))) ∧ 𝑐 ∈ (𝑛 +o 𝑚)) ∧ 𝑛 ∈ 𝑐) → if(𝑐 ∈ suc 𝑛, (𝑓‘𝑐), (𝑔‘(℩𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑐)))𝑅(𝑔‘(℩𝑞 ∈ ω (𝑛 +o 𝑞) = suc 𝑐))) |
263 | 262 | ex 413 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝑛 ∈ (ω ∖
1o) ∧ 𝑚
∈ (ω ∖ 1o)) ∧ ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘𝑛) = 𝑧) ∧ ∀𝑎 ∈ 𝑛 (𝑓‘𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘𝑚) = 𝑦) ∧ ∀𝑏 ∈ 𝑚 (𝑔‘𝑏)𝑅(𝑔‘suc 𝑏)))) ∧ 𝑐 ∈ (𝑛 +o 𝑚)) → (𝑛 ∈ 𝑐 → if(𝑐 ∈ suc 𝑛, (𝑓‘𝑐), (𝑔‘(℩𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑐)))𝑅(𝑔‘(℩𝑞 ∈ ω (𝑛 +o 𝑞) = suc 𝑐)))) |
264 | | fveq2 6774 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑏 = ∅ → (𝑔‘𝑏) = (𝑔‘∅)) |
265 | | suceq 6331 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑏 = ∅ → suc 𝑏 = suc ∅) |
266 | 265, 59 | eqtr4di 2796 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑏 = ∅ → suc 𝑏 =
1o) |
267 | 266 | fveq2d 6778 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑏 = ∅ → (𝑔‘suc 𝑏) = (𝑔‘1o)) |
268 | 264, 267 | breq12d 5087 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑏 = ∅ → ((𝑔‘𝑏)𝑅(𝑔‘suc 𝑏) ↔ (𝑔‘∅)𝑅(𝑔‘1o))) |
269 | | eldif 3897 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑚 ∈ (ω ∖
1o) ↔ (𝑚
∈ ω ∧ ¬ 𝑚 ∈ 1o)) |
270 | | nnord 7720 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑚 ∈ ω → Ord 𝑚) |
271 | | ordtri1 6299 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((Ord
1o ∧ Ord 𝑚)
→ (1o ⊆ 𝑚 ↔ ¬ 𝑚 ∈ 1o)) |
272 | 8, 270, 271 | sylancr 587 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑚 ∈ ω →
(1o ⊆ 𝑚
↔ ¬ 𝑚 ∈
1o)) |
273 | 272 | biimpar 478 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑚 ∈ ω ∧ ¬
𝑚 ∈ 1o)
→ 1o ⊆ 𝑚) |
274 | 269, 273 | sylbi 216 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑚 ∈ (ω ∖
1o) → 1o ⊆ 𝑚) |
275 | 274 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑛 ∈ (ω ∖
1o) ∧ 𝑚
∈ (ω ∖ 1o)) → 1o ⊆ 𝑚) |
276 | 59, 275 | eqsstrrid 3970 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑛 ∈ (ω ∖
1o) ∧ 𝑚
∈ (ω ∖ 1o)) → suc ∅ ⊆ 𝑚) |
277 | | 0ex 5231 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ∅
∈ V |
278 | 113, 270 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑛 ∈ (ω ∖
1o) ∧ 𝑚
∈ (ω ∖ 1o)) → Ord 𝑚) |
279 | | ordelsuc 7667 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((∅
∈ V ∧ Ord 𝑚)
→ (∅ ∈ 𝑚
↔ suc ∅ ⊆ 𝑚)) |
280 | 277, 278,
279 | sylancr 587 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑛 ∈ (ω ∖
1o) ∧ 𝑚
∈ (ω ∖ 1o)) → (∅ ∈ 𝑚 ↔ suc ∅ ⊆
𝑚)) |
281 | 276, 280 | mpbird 256 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑛 ∈ (ω ∖
1o) ∧ 𝑚
∈ (ω ∖ 1o)) → ∅ ∈ 𝑚) |
282 | 281 | adantr 481 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑛 ∈ (ω ∖
1o) ∧ 𝑚
∈ (ω ∖ 1o)) ∧ ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘𝑛) = 𝑧) ∧ ∀𝑎 ∈ 𝑛 (𝑓‘𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘𝑚) = 𝑦) ∧ ∀𝑏 ∈ 𝑚 (𝑔‘𝑏)𝑅(𝑔‘suc 𝑏)))) → ∅ ∈ 𝑚) |
283 | 268, 156,
282 | rspcdva 3562 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑛 ∈ (ω ∖
1o) ∧ 𝑚
∈ (ω ∖ 1o)) ∧ ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘𝑛) = 𝑧) ∧ ∀𝑎 ∈ 𝑛 (𝑓‘𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘𝑚) = 𝑦) ∧ ∀𝑏 ∈ 𝑚 (𝑔‘𝑏)𝑅(𝑔‘suc 𝑏)))) → (𝑔‘∅)𝑅(𝑔‘1o)) |
284 | | simpl2r 1226 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘𝑛) = 𝑧) ∧ ∀𝑎 ∈ 𝑛 (𝑓‘𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘𝑚) = 𝑦) ∧ ∀𝑏 ∈ 𝑚 (𝑔‘𝑏)𝑅(𝑔‘suc 𝑏))) → (𝑓‘𝑛) = 𝑧) |
285 | | simpr2l 1231 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘𝑛) = 𝑧) ∧ ∀𝑎 ∈ 𝑛 (𝑓‘𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘𝑚) = 𝑦) ∧ ∀𝑏 ∈ 𝑚 (𝑔‘𝑏)𝑅(𝑔‘suc 𝑏))) → (𝑔‘∅) = 𝑧) |
286 | 284, 285 | eqtr4d 2781 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘𝑛) = 𝑧) ∧ ∀𝑎 ∈ 𝑛 (𝑓‘𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘𝑚) = 𝑦) ∧ ∀𝑏 ∈ 𝑚 (𝑔‘𝑏)𝑅(𝑔‘suc 𝑏))) → (𝑓‘𝑛) = (𝑔‘∅)) |
287 | 286 | adantl 482 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑛 ∈ (ω ∖
1o) ∧ 𝑚
∈ (ω ∖ 1o)) ∧ ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘𝑛) = 𝑧) ∧ ∀𝑎 ∈ 𝑛 (𝑓‘𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘𝑚) = 𝑦) ∧ ∀𝑏 ∈ 𝑚 (𝑔‘𝑏)𝑅(𝑔‘suc 𝑏)))) → (𝑓‘𝑛) = (𝑔‘∅)) |
288 | | nnon 7718 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑛 ∈ ω → 𝑛 ∈ On) |
289 | 38, 288 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑛 ∈ (ω ∖
1o) ∧ 𝑚
∈ (ω ∖ 1o)) → 𝑛 ∈ On) |
290 | | oa1suc 8361 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑛 ∈ On → (𝑛 +o 1o) =
suc 𝑛) |
291 | 289, 290 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑛 ∈ (ω ∖
1o) ∧ 𝑚
∈ (ω ∖ 1o)) → (𝑛 +o 1o) = suc 𝑛) |
292 | | 1onn 8470 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
1o ∈ ω |
293 | | oveq2 7283 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑞 = 1o → (𝑛 +o 𝑞) = (𝑛 +o
1o)) |
294 | 293 | eqeq1d 2740 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑞 = 1o → ((𝑛 +o 𝑞) = suc 𝑛 ↔ (𝑛 +o 1o) = suc 𝑛)) |
295 | 294 | rspcev 3561 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
((1o ∈ ω ∧ (𝑛 +o 1o) = suc 𝑛) → ∃𝑞 ∈ ω (𝑛 +o 𝑞) = suc 𝑛) |
296 | 292, 291,
295 | sylancr 587 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑛 ∈ (ω ∖
1o) ∧ 𝑚
∈ (ω ∖ 1o)) → ∃𝑞 ∈ ω (𝑛 +o 𝑞) = suc 𝑛) |
297 | | nnasmo 8493 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑛 ∈ ω →
∃*𝑞 ∈ ω
(𝑛 +o 𝑞) = suc 𝑛) |
298 | 38, 297 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑛 ∈ (ω ∖
1o) ∧ 𝑚
∈ (ω ∖ 1o)) → ∃*𝑞 ∈ ω (𝑛 +o 𝑞) = suc 𝑛) |
299 | | reu5 3361 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
(∃!𝑞 ∈
ω (𝑛 +o
𝑞) = suc 𝑛 ↔ (∃𝑞 ∈ ω (𝑛 +o 𝑞) = suc 𝑛 ∧ ∃*𝑞 ∈ ω (𝑛 +o 𝑞) = suc 𝑛)) |
300 | 296, 298,
299 | sylanbrc 583 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑛 ∈ (ω ∖
1o) ∧ 𝑚
∈ (ω ∖ 1o)) → ∃!𝑞 ∈ ω (𝑛 +o 𝑞) = suc 𝑛) |
301 | 294 | riota2 7258 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
((1o ∈ ω ∧ ∃!𝑞 ∈ ω (𝑛 +o 𝑞) = suc 𝑛) → ((𝑛 +o 1o) = suc 𝑛 ↔ (℩𝑞 ∈ ω (𝑛 +o 𝑞) = suc 𝑛) = 1o)) |
302 | 292, 300,
301 | sylancr 587 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑛 ∈ (ω ∖
1o) ∧ 𝑚
∈ (ω ∖ 1o)) → ((𝑛 +o 1o) = suc 𝑛 ↔ (℩𝑞 ∈ ω (𝑛 +o 𝑞) = suc 𝑛) = 1o)) |
303 | 291, 302 | mpbid 231 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑛 ∈ (ω ∖
1o) ∧ 𝑚
∈ (ω ∖ 1o)) → (℩𝑞 ∈ ω (𝑛 +o 𝑞) = suc 𝑛) = 1o) |
304 | 303 | adantr 481 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑛 ∈ (ω ∖
1o) ∧ 𝑚
∈ (ω ∖ 1o)) ∧ ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘𝑛) = 𝑧) ∧ ∀𝑎 ∈ 𝑛 (𝑓‘𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘𝑚) = 𝑦) ∧ ∀𝑏 ∈ 𝑚 (𝑔‘𝑏)𝑅(𝑔‘suc 𝑏)))) → (℩𝑞 ∈ ω (𝑛 +o 𝑞) = suc 𝑛) = 1o) |
305 | 304 | fveq2d 6778 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑛 ∈ (ω ∖
1o) ∧ 𝑚
∈ (ω ∖ 1o)) ∧ ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘𝑛) = 𝑧) ∧ ∀𝑎 ∈ 𝑛 (𝑓‘𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘𝑚) = 𝑦) ∧ ∀𝑏 ∈ 𝑚 (𝑔‘𝑏)𝑅(𝑔‘suc 𝑏)))) → (𝑔‘(℩𝑞 ∈ ω (𝑛 +o 𝑞) = suc 𝑛)) = (𝑔‘1o)) |
306 | 283, 287,
305 | 3brtr4d 5106 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑛 ∈ (ω ∖
1o) ∧ 𝑚
∈ (ω ∖ 1o)) ∧ ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘𝑛) = 𝑧) ∧ ∀𝑎 ∈ 𝑛 (𝑓‘𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘𝑚) = 𝑦) ∧ ∀𝑏 ∈ 𝑚 (𝑔‘𝑏)𝑅(𝑔‘suc 𝑏)))) → (𝑓‘𝑛)𝑅(𝑔‘(℩𝑞 ∈ ω (𝑛 +o 𝑞) = suc 𝑛))) |
307 | 201 | sucid 6345 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ 𝑛 ∈ suc 𝑛 |
308 | 307 | iftruei 4466 |
. . . . . . . . . . . . . . . . . . . 20
⊢ if(𝑛 ∈ suc 𝑛, (𝑓‘𝑛), (𝑔‘(℩𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑐))) = (𝑓‘𝑛) |
309 | | eleq1 2826 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑛 = 𝑐 → (𝑛 ∈ suc 𝑛 ↔ 𝑐 ∈ suc 𝑛)) |
310 | | fveq2 6774 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑛 = 𝑐 → (𝑓‘𝑛) = (𝑓‘𝑐)) |
311 | 309, 310 | ifbieq1d 4483 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑛 = 𝑐 → if(𝑛 ∈ suc 𝑛, (𝑓‘𝑛), (𝑔‘(℩𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑐))) = if(𝑐 ∈ suc 𝑛, (𝑓‘𝑐), (𝑔‘(℩𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑐)))) |
312 | 308, 311 | eqtr3id 2792 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑛 = 𝑐 → (𝑓‘𝑛) = if(𝑐 ∈ suc 𝑛, (𝑓‘𝑐), (𝑔‘(℩𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑐)))) |
313 | | suceq 6331 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑛 = 𝑐 → suc 𝑛 = suc 𝑐) |
314 | 313 | eqeq2d 2749 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑛 = 𝑐 → ((𝑛 +o 𝑞) = suc 𝑛 ↔ (𝑛 +o 𝑞) = suc 𝑐)) |
315 | 314 | riotabidv 7234 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑛 = 𝑐 → (℩𝑞 ∈ ω (𝑛 +o 𝑞) = suc 𝑛) = (℩𝑞 ∈ ω (𝑛 +o 𝑞) = suc 𝑐)) |
316 | 315 | fveq2d 6778 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑛 = 𝑐 → (𝑔‘(℩𝑞 ∈ ω (𝑛 +o 𝑞) = suc 𝑛)) = (𝑔‘(℩𝑞 ∈ ω (𝑛 +o 𝑞) = suc 𝑐))) |
317 | 312, 316 | breq12d 5087 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑛 = 𝑐 → ((𝑓‘𝑛)𝑅(𝑔‘(℩𝑞 ∈ ω (𝑛 +o 𝑞) = suc 𝑛)) ↔ if(𝑐 ∈ suc 𝑛, (𝑓‘𝑐), (𝑔‘(℩𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑐)))𝑅(𝑔‘(℩𝑞 ∈ ω (𝑛 +o 𝑞) = suc 𝑐)))) |
318 | 306, 317 | syl5ibcom 244 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑛 ∈ (ω ∖
1o) ∧ 𝑚
∈ (ω ∖ 1o)) ∧ ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘𝑛) = 𝑧) ∧ ∀𝑎 ∈ 𝑛 (𝑓‘𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘𝑚) = 𝑦) ∧ ∀𝑏 ∈ 𝑚 (𝑔‘𝑏)𝑅(𝑔‘suc 𝑏)))) → (𝑛 = 𝑐 → if(𝑐 ∈ suc 𝑛, (𝑓‘𝑐), (𝑔‘(℩𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑐)))𝑅(𝑔‘(℩𝑞 ∈ ω (𝑛 +o 𝑞) = suc 𝑐)))) |
319 | 318 | adantr 481 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝑛 ∈ (ω ∖
1o) ∧ 𝑚
∈ (ω ∖ 1o)) ∧ ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘𝑛) = 𝑧) ∧ ∀𝑎 ∈ 𝑛 (𝑓‘𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘𝑚) = 𝑦) ∧ ∀𝑏 ∈ 𝑚 (𝑔‘𝑏)𝑅(𝑔‘suc 𝑏)))) ∧ 𝑐 ∈ (𝑛 +o 𝑚)) → (𝑛 = 𝑐 → if(𝑐 ∈ suc 𝑛, (𝑓‘𝑐), (𝑔‘(℩𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑐)))𝑅(𝑔‘(℩𝑞 ∈ ω (𝑛 +o 𝑞) = suc 𝑐)))) |
320 | 263, 319 | jaod 856 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑛 ∈ (ω ∖
1o) ∧ 𝑚
∈ (ω ∖ 1o)) ∧ ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘𝑛) = 𝑧) ∧ ∀𝑎 ∈ 𝑛 (𝑓‘𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘𝑚) = 𝑦) ∧ ∀𝑏 ∈ 𝑚 (𝑔‘𝑏)𝑅(𝑔‘suc 𝑏)))) ∧ 𝑐 ∈ (𝑛 +o 𝑚)) → ((𝑛 ∈ 𝑐 ∨ 𝑛 = 𝑐) → if(𝑐 ∈ suc 𝑛, (𝑓‘𝑐), (𝑔‘(℩𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑐)))𝑅(𝑔‘(℩𝑞 ∈ ω (𝑛 +o 𝑞) = suc 𝑐)))) |
321 | 151, 320 | syld 47 |
. . . . . . . . . . . . . 14
⊢ ((((𝑛 ∈ (ω ∖
1o) ∧ 𝑚
∈ (ω ∖ 1o)) ∧ ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘𝑛) = 𝑧) ∧ ∀𝑎 ∈ 𝑛 (𝑓‘𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘𝑚) = 𝑦) ∧ ∀𝑏 ∈ 𝑚 (𝑔‘𝑏)𝑅(𝑔‘suc 𝑏)))) ∧ 𝑐 ∈ (𝑛 +o 𝑚)) → (¬ 𝑐 ∈ 𝑛 → if(𝑐 ∈ suc 𝑛, (𝑓‘𝑐), (𝑔‘(℩𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑐)))𝑅(𝑔‘(℩𝑞 ∈ ω (𝑛 +o 𝑞) = suc 𝑐)))) |
322 | 321 | imp 407 |
. . . . . . . . . . . . 13
⊢
(((((𝑛 ∈
(ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o))
∧ ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘𝑛) = 𝑧) ∧ ∀𝑎 ∈ 𝑛 (𝑓‘𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘𝑚) = 𝑦) ∧ ∀𝑏 ∈ 𝑚 (𝑔‘𝑏)𝑅(𝑔‘suc 𝑏)))) ∧ 𝑐 ∈ (𝑛 +o 𝑚)) ∧ ¬ 𝑐 ∈ 𝑛) → if(𝑐 ∈ suc 𝑛, (𝑓‘𝑐), (𝑔‘(℩𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑐)))𝑅(𝑔‘(℩𝑞 ∈ ω (𝑛 +o 𝑞) = suc 𝑐))) |
323 | 135 | notbid 318 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑛 ∈ (ω ∖
1o) ∧ 𝑚
∈ (ω ∖ 1o)) → (¬ 𝑐 ∈ 𝑛 ↔ ¬ suc 𝑐 ∈ suc 𝑛)) |
324 | 323 | adantr 481 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑛 ∈ (ω ∖
1o) ∧ 𝑚
∈ (ω ∖ 1o)) ∧ ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘𝑛) = 𝑧) ∧ ∀𝑎 ∈ 𝑛 (𝑓‘𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘𝑚) = 𝑦) ∧ ∀𝑏 ∈ 𝑚 (𝑔‘𝑏)𝑅(𝑔‘suc 𝑏)))) → (¬ 𝑐 ∈ 𝑛 ↔ ¬ suc 𝑐 ∈ suc 𝑛)) |
325 | 324 | adantr 481 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑛 ∈ (ω ∖
1o) ∧ 𝑚
∈ (ω ∖ 1o)) ∧ ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘𝑛) = 𝑧) ∧ ∀𝑎 ∈ 𝑛 (𝑓‘𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘𝑚) = 𝑦) ∧ ∀𝑏 ∈ 𝑚 (𝑔‘𝑏)𝑅(𝑔‘suc 𝑏)))) ∧ 𝑐 ∈ (𝑛 +o 𝑚)) → (¬ 𝑐 ∈ 𝑛 ↔ ¬ suc 𝑐 ∈ suc 𝑛)) |
326 | 325 | biimpa 477 |
. . . . . . . . . . . . . 14
⊢
(((((𝑛 ∈
(ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o))
∧ ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘𝑛) = 𝑧) ∧ ∀𝑎 ∈ 𝑛 (𝑓‘𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘𝑚) = 𝑦) ∧ ∀𝑏 ∈ 𝑚 (𝑔‘𝑏)𝑅(𝑔‘suc 𝑏)))) ∧ 𝑐 ∈ (𝑛 +o 𝑚)) ∧ ¬ 𝑐 ∈ 𝑛) → ¬ suc 𝑐 ∈ suc 𝑛) |
327 | 326 | iffalsed 4470 |
. . . . . . . . . . . . 13
⊢
(((((𝑛 ∈
(ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o))
∧ ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘𝑛) = 𝑧) ∧ ∀𝑎 ∈ 𝑛 (𝑓‘𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘𝑚) = 𝑦) ∧ ∀𝑏 ∈ 𝑚 (𝑔‘𝑏)𝑅(𝑔‘suc 𝑏)))) ∧ 𝑐 ∈ (𝑛 +o 𝑚)) ∧ ¬ 𝑐 ∈ 𝑛) → if(suc 𝑐 ∈ suc 𝑛, (𝑓‘suc 𝑐), (𝑔‘(℩𝑞 ∈ ω (𝑛 +o 𝑞) = suc 𝑐))) = (𝑔‘(℩𝑞 ∈ ω (𝑛 +o 𝑞) = suc 𝑐))) |
328 | 322, 327 | breqtrrd 5102 |
. . . . . . . . . . . 12
⊢
(((((𝑛 ∈
(ω ∖ 1o) ∧ 𝑚 ∈ (ω ∖ 1o))
∧ ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘𝑛) = 𝑧) ∧ ∀𝑎 ∈ 𝑛 (𝑓‘𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘𝑚) = 𝑦) ∧ ∀𝑏 ∈ 𝑚 (𝑔‘𝑏)𝑅(𝑔‘suc 𝑏)))) ∧ 𝑐 ∈ (𝑛 +o 𝑚)) ∧ ¬ 𝑐 ∈ 𝑛) → if(𝑐 ∈ suc 𝑛, (𝑓‘𝑐), (𝑔‘(℩𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑐)))𝑅if(suc 𝑐 ∈ suc 𝑛, (𝑓‘suc 𝑐), (𝑔‘(℩𝑞 ∈ ω (𝑛 +o 𝑞) = suc 𝑐)))) |
329 | 140, 328 | pm2.61dan 810 |
. . . . . . . . . . 11
⊢ ((((𝑛 ∈ (ω ∖
1o) ∧ 𝑚
∈ (ω ∖ 1o)) ∧ ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘𝑛) = 𝑧) ∧ ∀𝑎 ∈ 𝑛 (𝑓‘𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘𝑚) = 𝑦) ∧ ∀𝑏 ∈ 𝑚 (𝑔‘𝑏)𝑅(𝑔‘suc 𝑏)))) ∧ 𝑐 ∈ (𝑛 +o 𝑚)) → if(𝑐 ∈ suc 𝑛, (𝑓‘𝑐), (𝑔‘(℩𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑐)))𝑅if(suc 𝑐 ∈ suc 𝑛, (𝑓‘suc 𝑐), (𝑔‘(℩𝑞 ∈ ω (𝑛 +o 𝑞) = suc 𝑐)))) |
330 | | elelsuc 6338 |
. . . . . . . . . . . . 13
⊢ (𝑐 ∈ (𝑛 +o 𝑚) → 𝑐 ∈ suc (𝑛 +o 𝑚)) |
331 | 330 | adantl 482 |
. . . . . . . . . . . 12
⊢ ((((𝑛 ∈ (ω ∖
1o) ∧ 𝑚
∈ (ω ∖ 1o)) ∧ ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘𝑛) = 𝑧) ∧ ∀𝑎 ∈ 𝑛 (𝑓‘𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘𝑚) = 𝑦) ∧ ∀𝑏 ∈ 𝑚 (𝑔‘𝑏)𝑅(𝑔‘suc 𝑏)))) ∧ 𝑐 ∈ (𝑛 +o 𝑚)) → 𝑐 ∈ suc (𝑛 +o 𝑚)) |
332 | | eleq1 2826 |
. . . . . . . . . . . . . 14
⊢ (𝑝 = 𝑐 → (𝑝 ∈ suc 𝑛 ↔ 𝑐 ∈ suc 𝑛)) |
333 | | fveq2 6774 |
. . . . . . . . . . . . . 14
⊢ (𝑝 = 𝑐 → (𝑓‘𝑝) = (𝑓‘𝑐)) |
334 | | eqeq2 2750 |
. . . . . . . . . . . . . . . 16
⊢ (𝑝 = 𝑐 → ((𝑛 +o 𝑞) = 𝑝 ↔ (𝑛 +o 𝑞) = 𝑐)) |
335 | 334 | riotabidv 7234 |
. . . . . . . . . . . . . . 15
⊢ (𝑝 = 𝑐 → (℩𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑝) = (℩𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑐)) |
336 | 335 | fveq2d 6778 |
. . . . . . . . . . . . . 14
⊢ (𝑝 = 𝑐 → (𝑔‘(℩𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑝)) = (𝑔‘(℩𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑐))) |
337 | 332, 333,
336 | ifbieq12d 4487 |
. . . . . . . . . . . . 13
⊢ (𝑝 = 𝑐 → if(𝑝 ∈ suc 𝑛, (𝑓‘𝑝), (𝑔‘(℩𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑝))) = if(𝑐 ∈ suc 𝑛, (𝑓‘𝑐), (𝑔‘(℩𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑐)))) |
338 | | fvex 6787 |
. . . . . . . . . . . . . 14
⊢ (𝑓‘𝑐) ∈ V |
339 | | fvex 6787 |
. . . . . . . . . . . . . 14
⊢ (𝑔‘(℩𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑐)) ∈ V |
340 | 338, 339 | ifex 4509 |
. . . . . . . . . . . . 13
⊢ if(𝑐 ∈ suc 𝑛, (𝑓‘𝑐), (𝑔‘(℩𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑐))) ∈ V |
341 | 337, 32, 340 | fvmpt 6875 |
. . . . . . . . . . . 12
⊢ (𝑐 ∈ suc (𝑛 +o 𝑚) → ((𝑝 ∈ suc (𝑛 +o 𝑚) ↦ if(𝑝 ∈ suc 𝑛, (𝑓‘𝑝), (𝑔‘(℩𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑝))))‘𝑐) = if(𝑐 ∈ suc 𝑛, (𝑓‘𝑐), (𝑔‘(℩𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑐)))) |
342 | 331, 341 | syl 17 |
. . . . . . . . . . 11
⊢ ((((𝑛 ∈ (ω ∖
1o) ∧ 𝑚
∈ (ω ∖ 1o)) ∧ ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘𝑛) = 𝑧) ∧ ∀𝑎 ∈ 𝑛 (𝑓‘𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘𝑚) = 𝑦) ∧ ∀𝑏 ∈ 𝑚 (𝑔‘𝑏)𝑅(𝑔‘suc 𝑏)))) ∧ 𝑐 ∈ (𝑛 +o 𝑚)) → ((𝑝 ∈ suc (𝑛 +o 𝑚) ↦ if(𝑝 ∈ suc 𝑛, (𝑓‘𝑝), (𝑔‘(℩𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑝))))‘𝑐) = if(𝑐 ∈ suc 𝑛, (𝑓‘𝑐), (𝑔‘(℩𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑐)))) |
343 | | ordsucelsuc 7669 |
. . . . . . . . . . . . . . 15
⊢ (Ord
(𝑛 +o 𝑚) → (𝑐 ∈ (𝑛 +o 𝑚) ↔ suc 𝑐 ∈ suc (𝑛 +o 𝑚))) |
344 | 19, 343 | syl 17 |
. . . . . . . . . . . . . 14
⊢ ((𝑛 ∈ (ω ∖
1o) ∧ 𝑚
∈ (ω ∖ 1o)) → (𝑐 ∈ (𝑛 +o 𝑚) ↔ suc 𝑐 ∈ suc (𝑛 +o 𝑚))) |
345 | 344 | adantr 481 |
. . . . . . . . . . . . 13
⊢ (((𝑛 ∈ (ω ∖
1o) ∧ 𝑚
∈ (ω ∖ 1o)) ∧ ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘𝑛) = 𝑧) ∧ ∀𝑎 ∈ 𝑛 (𝑓‘𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘𝑚) = 𝑦) ∧ ∀𝑏 ∈ 𝑚 (𝑔‘𝑏)𝑅(𝑔‘suc 𝑏)))) → (𝑐 ∈ (𝑛 +o 𝑚) ↔ suc 𝑐 ∈ suc (𝑛 +o 𝑚))) |
346 | 345 | biimpa 477 |
. . . . . . . . . . . 12
⊢ ((((𝑛 ∈ (ω ∖
1o) ∧ 𝑚
∈ (ω ∖ 1o)) ∧ ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘𝑛) = 𝑧) ∧ ∀𝑎 ∈ 𝑛 (𝑓‘𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘𝑚) = 𝑦) ∧ ∀𝑏 ∈ 𝑚 (𝑔‘𝑏)𝑅(𝑔‘suc 𝑏)))) ∧ 𝑐 ∈ (𝑛 +o 𝑚)) → suc 𝑐 ∈ suc (𝑛 +o 𝑚)) |
347 | | eleq1 2826 |
. . . . . . . . . . . . . 14
⊢ (𝑝 = suc 𝑐 → (𝑝 ∈ suc 𝑛 ↔ suc 𝑐 ∈ suc 𝑛)) |
348 | | fveq2 6774 |
. . . . . . . . . . . . . 14
⊢ (𝑝 = suc 𝑐 → (𝑓‘𝑝) = (𝑓‘suc 𝑐)) |
349 | | eqeq2 2750 |
. . . . . . . . . . . . . . . 16
⊢ (𝑝 = suc 𝑐 → ((𝑛 +o 𝑞) = 𝑝 ↔ (𝑛 +o 𝑞) = suc 𝑐)) |
350 | 349 | riotabidv 7234 |
. . . . . . . . . . . . . . 15
⊢ (𝑝 = suc 𝑐 → (℩𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑝) = (℩𝑞 ∈ ω (𝑛 +o 𝑞) = suc 𝑐)) |
351 | 350 | fveq2d 6778 |
. . . . . . . . . . . . . 14
⊢ (𝑝 = suc 𝑐 → (𝑔‘(℩𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑝)) = (𝑔‘(℩𝑞 ∈ ω (𝑛 +o 𝑞) = suc 𝑐))) |
352 | 347, 348,
351 | ifbieq12d 4487 |
. . . . . . . . . . . . 13
⊢ (𝑝 = suc 𝑐 → if(𝑝 ∈ suc 𝑛, (𝑓‘𝑝), (𝑔‘(℩𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑝))) = if(suc 𝑐 ∈ suc 𝑛, (𝑓‘suc 𝑐), (𝑔‘(℩𝑞 ∈ ω (𝑛 +o 𝑞) = suc 𝑐)))) |
353 | | fvex 6787 |
. . . . . . . . . . . . . 14
⊢ (𝑓‘suc 𝑐) ∈ V |
354 | | fvex 6787 |
. . . . . . . . . . . . . 14
⊢ (𝑔‘(℩𝑞 ∈ ω (𝑛 +o 𝑞) = suc 𝑐)) ∈ V |
355 | 353, 354 | ifex 4509 |
. . . . . . . . . . . . 13
⊢ if(suc
𝑐 ∈ suc 𝑛, (𝑓‘suc 𝑐), (𝑔‘(℩𝑞 ∈ ω (𝑛 +o 𝑞) = suc 𝑐))) ∈ V |
356 | 352, 32, 355 | fvmpt 6875 |
. . . . . . . . . . . 12
⊢ (suc
𝑐 ∈ suc (𝑛 +o 𝑚) → ((𝑝 ∈ suc (𝑛 +o 𝑚) ↦ if(𝑝 ∈ suc 𝑛, (𝑓‘𝑝), (𝑔‘(℩𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑝))))‘suc 𝑐) = if(suc 𝑐 ∈ suc 𝑛, (𝑓‘suc 𝑐), (𝑔‘(℩𝑞 ∈ ω (𝑛 +o 𝑞) = suc 𝑐)))) |
357 | 346, 356 | syl 17 |
. . . . . . . . . . 11
⊢ ((((𝑛 ∈ (ω ∖
1o) ∧ 𝑚
∈ (ω ∖ 1o)) ∧ ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘𝑛) = 𝑧) ∧ ∀𝑎 ∈ 𝑛 (𝑓‘𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘𝑚) = 𝑦) ∧ ∀𝑏 ∈ 𝑚 (𝑔‘𝑏)𝑅(𝑔‘suc 𝑏)))) ∧ 𝑐 ∈ (𝑛 +o 𝑚)) → ((𝑝 ∈ suc (𝑛 +o 𝑚) ↦ if(𝑝 ∈ suc 𝑛, (𝑓‘𝑝), (𝑔‘(℩𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑝))))‘suc 𝑐) = if(suc 𝑐 ∈ suc 𝑛, (𝑓‘suc 𝑐), (𝑔‘(℩𝑞 ∈ ω (𝑛 +o 𝑞) = suc 𝑐)))) |
358 | 329, 342,
357 | 3brtr4d 5106 |
. . . . . . . . . 10
⊢ ((((𝑛 ∈ (ω ∖
1o) ∧ 𝑚
∈ (ω ∖ 1o)) ∧ ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘𝑛) = 𝑧) ∧ ∀𝑎 ∈ 𝑛 (𝑓‘𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘𝑚) = 𝑦) ∧ ∀𝑏 ∈ 𝑚 (𝑔‘𝑏)𝑅(𝑔‘suc 𝑏)))) ∧ 𝑐 ∈ (𝑛 +o 𝑚)) → ((𝑝 ∈ suc (𝑛 +o 𝑚) ↦ if(𝑝 ∈ suc 𝑛, (𝑓‘𝑝), (𝑔‘(℩𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑝))))‘𝑐)𝑅((𝑝 ∈ suc (𝑛 +o 𝑚) ↦ if(𝑝 ∈ suc 𝑛, (𝑓‘𝑝), (𝑔‘(℩𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑝))))‘suc 𝑐)) |
359 | 358 | ralrimiva 3103 |
. . . . . . . . 9
⊢ (((𝑛 ∈ (ω ∖
1o) ∧ 𝑚
∈ (ω ∖ 1o)) ∧ ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘𝑛) = 𝑧) ∧ ∀𝑎 ∈ 𝑛 (𝑓‘𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘𝑚) = 𝑦) ∧ ∀𝑏 ∈ 𝑚 (𝑔‘𝑏)𝑅(𝑔‘suc 𝑏)))) → ∀𝑐 ∈ (𝑛 +o 𝑚)((𝑝 ∈ suc (𝑛 +o 𝑚) ↦ if(𝑝 ∈ suc 𝑛, (𝑓‘𝑝), (𝑔‘(℩𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑝))))‘𝑐)𝑅((𝑝 ∈ suc (𝑛 +o 𝑚) ↦ if(𝑝 ∈ suc 𝑛, (𝑓‘𝑝), (𝑔‘(℩𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑝))))‘suc 𝑐)) |
360 | | fvex 6787 |
. . . . . . . . . . . 12
⊢ (𝑓‘𝑝) ∈ V |
361 | | fvex 6787 |
. . . . . . . . . . . 12
⊢ (𝑔‘(℩𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑝)) ∈ V |
362 | 360, 361 | ifex 4509 |
. . . . . . . . . . 11
⊢ if(𝑝 ∈ suc 𝑛, (𝑓‘𝑝), (𝑔‘(℩𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑝))) ∈ V |
363 | 362, 32 | fnmpti 6576 |
. . . . . . . . . 10
⊢ (𝑝 ∈ suc (𝑛 +o 𝑚) ↦ if(𝑝 ∈ suc 𝑛, (𝑓‘𝑝), (𝑔‘(℩𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑝)))) Fn suc (𝑛 +o 𝑚) |
364 | 46 | sucex 7656 |
. . . . . . . . . . . 12
⊢ suc
(𝑛 +o 𝑚) ∈ V |
365 | 364 | mptex 7099 |
. . . . . . . . . . 11
⊢ (𝑝 ∈ suc (𝑛 +o 𝑚) ↦ if(𝑝 ∈ suc 𝑛, (𝑓‘𝑝), (𝑔‘(℩𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑝)))) ∈ V |
366 | | fneq1 6524 |
. . . . . . . . . . . 12
⊢ (ℎ = (𝑝 ∈ suc (𝑛 +o 𝑚) ↦ if(𝑝 ∈ suc 𝑛, (𝑓‘𝑝), (𝑔‘(℩𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑝)))) → (ℎ Fn suc (𝑛 +o 𝑚) ↔ (𝑝 ∈ suc (𝑛 +o 𝑚) ↦ if(𝑝 ∈ suc 𝑛, (𝑓‘𝑝), (𝑔‘(℩𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑝)))) Fn suc (𝑛 +o 𝑚))) |
367 | | fveq1 6773 |
. . . . . . . . . . . . . 14
⊢ (ℎ = (𝑝 ∈ suc (𝑛 +o 𝑚) ↦ if(𝑝 ∈ suc 𝑛, (𝑓‘𝑝), (𝑔‘(℩𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑝)))) → (ℎ‘∅) = ((𝑝 ∈ suc (𝑛 +o 𝑚) ↦ if(𝑝 ∈ suc 𝑛, (𝑓‘𝑝), (𝑔‘(℩𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑝))))‘∅)) |
368 | 367 | eqeq1d 2740 |
. . . . . . . . . . . . 13
⊢ (ℎ = (𝑝 ∈ suc (𝑛 +o 𝑚) ↦ if(𝑝 ∈ suc 𝑛, (𝑓‘𝑝), (𝑔‘(℩𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑝)))) → ((ℎ‘∅) = 𝑥 ↔ ((𝑝 ∈ suc (𝑛 +o 𝑚) ↦ if(𝑝 ∈ suc 𝑛, (𝑓‘𝑝), (𝑔‘(℩𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑝))))‘∅) = 𝑥)) |
369 | | fveq1 6773 |
. . . . . . . . . . . . . 14
⊢ (ℎ = (𝑝 ∈ suc (𝑛 +o 𝑚) ↦ if(𝑝 ∈ suc 𝑛, (𝑓‘𝑝), (𝑔‘(℩𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑝)))) → (ℎ‘(𝑛 +o 𝑚)) = ((𝑝 ∈ suc (𝑛 +o 𝑚) ↦ if(𝑝 ∈ suc 𝑛, (𝑓‘𝑝), (𝑔‘(℩𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑝))))‘(𝑛 +o 𝑚))) |
370 | 369 | eqeq1d 2740 |
. . . . . . . . . . . . 13
⊢ (ℎ = (𝑝 ∈ suc (𝑛 +o 𝑚) ↦ if(𝑝 ∈ suc 𝑛, (𝑓‘𝑝), (𝑔‘(℩𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑝)))) → ((ℎ‘(𝑛 +o 𝑚)) = 𝑦 ↔ ((𝑝 ∈ suc (𝑛 +o 𝑚) ↦ if(𝑝 ∈ suc 𝑛, (𝑓‘𝑝), (𝑔‘(℩𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑝))))‘(𝑛 +o 𝑚)) = 𝑦)) |
371 | 368, 370 | anbi12d 631 |
. . . . . . . . . . . 12
⊢ (ℎ = (𝑝 ∈ suc (𝑛 +o 𝑚) ↦ if(𝑝 ∈ suc 𝑛, (𝑓‘𝑝), (𝑔‘(℩𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑝)))) → (((ℎ‘∅) = 𝑥 ∧ (ℎ‘(𝑛 +o 𝑚)) = 𝑦) ↔ (((𝑝 ∈ suc (𝑛 +o 𝑚) ↦ if(𝑝 ∈ suc 𝑛, (𝑓‘𝑝), (𝑔‘(℩𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑝))))‘∅) = 𝑥 ∧ ((𝑝 ∈ suc (𝑛 +o 𝑚) ↦ if(𝑝 ∈ suc 𝑛, (𝑓‘𝑝), (𝑔‘(℩𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑝))))‘(𝑛 +o 𝑚)) = 𝑦))) |
372 | | fveq1 6773 |
. . . . . . . . . . . . . 14
⊢ (ℎ = (𝑝 ∈ suc (𝑛 +o 𝑚) ↦ if(𝑝 ∈ suc 𝑛, (𝑓‘𝑝), (𝑔‘(℩𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑝)))) → (ℎ‘𝑐) = ((𝑝 ∈ suc (𝑛 +o 𝑚) ↦ if(𝑝 ∈ suc 𝑛, (𝑓‘𝑝), (𝑔‘(℩𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑝))))‘𝑐)) |
373 | | fveq1 6773 |
. . . . . . . . . . . . . 14
⊢ (ℎ = (𝑝 ∈ suc (𝑛 +o 𝑚) ↦ if(𝑝 ∈ suc 𝑛, (𝑓‘𝑝), (𝑔‘(℩𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑝)))) → (ℎ‘suc 𝑐) = ((𝑝 ∈ suc (𝑛 +o 𝑚) ↦ if(𝑝 ∈ suc 𝑛, (𝑓‘𝑝), (𝑔‘(℩𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑝))))‘suc 𝑐)) |
374 | 372, 373 | breq12d 5087 |
. . . . . . . . . . . . 13
⊢ (ℎ = (𝑝 ∈ suc (𝑛 +o 𝑚) ↦ if(𝑝 ∈ suc 𝑛, (𝑓‘𝑝), (𝑔‘(℩𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑝)))) → ((ℎ‘𝑐)𝑅(ℎ‘suc 𝑐) ↔ ((𝑝 ∈ suc (𝑛 +o 𝑚) ↦ if(𝑝 ∈ suc 𝑛, (𝑓‘𝑝), (𝑔‘(℩𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑝))))‘𝑐)𝑅((𝑝 ∈ suc (𝑛 +o 𝑚) ↦ if(𝑝 ∈ suc 𝑛, (𝑓‘𝑝), (𝑔‘(℩𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑝))))‘suc 𝑐))) |
375 | 374 | ralbidv 3112 |
. . . . . . . . . . . 12
⊢ (ℎ = (𝑝 ∈ suc (𝑛 +o 𝑚) ↦ if(𝑝 ∈ suc 𝑛, (𝑓‘𝑝), (𝑔‘(℩𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑝)))) → (∀𝑐 ∈ (𝑛 +o 𝑚)(ℎ‘𝑐)𝑅(ℎ‘suc 𝑐) ↔ ∀𝑐 ∈ (𝑛 +o 𝑚)((𝑝 ∈ suc (𝑛 +o 𝑚) ↦ if(𝑝 ∈ suc 𝑛, (𝑓‘𝑝), (𝑔‘(℩𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑝))))‘𝑐)𝑅((𝑝 ∈ suc (𝑛 +o 𝑚) ↦ if(𝑝 ∈ suc 𝑛, (𝑓‘𝑝), (𝑔‘(℩𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑝))))‘suc 𝑐))) |
376 | 366, 371,
375 | 3anbi123d 1435 |
. . . . . . . . . . 11
⊢ (ℎ = (𝑝 ∈ suc (𝑛 +o 𝑚) ↦ if(𝑝 ∈ suc 𝑛, (𝑓‘𝑝), (𝑔‘(℩𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑝)))) → ((ℎ Fn suc (𝑛 +o 𝑚) ∧ ((ℎ‘∅) = 𝑥 ∧ (ℎ‘(𝑛 +o 𝑚)) = 𝑦) ∧ ∀𝑐 ∈ (𝑛 +o 𝑚)(ℎ‘𝑐)𝑅(ℎ‘suc 𝑐)) ↔ ((𝑝 ∈ suc (𝑛 +o 𝑚) ↦ if(𝑝 ∈ suc 𝑛, (𝑓‘𝑝), (𝑔‘(℩𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑝)))) Fn suc (𝑛 +o 𝑚) ∧ (((𝑝 ∈ suc (𝑛 +o 𝑚) ↦ if(𝑝 ∈ suc 𝑛, (𝑓‘𝑝), (𝑔‘(℩𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑝))))‘∅) = 𝑥 ∧ ((𝑝 ∈ suc (𝑛 +o 𝑚) ↦ if(𝑝 ∈ suc 𝑛, (𝑓‘𝑝), (𝑔‘(℩𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑝))))‘(𝑛 +o 𝑚)) = 𝑦) ∧ ∀𝑐 ∈ (𝑛 +o 𝑚)((𝑝 ∈ suc (𝑛 +o 𝑚) ↦ if(𝑝 ∈ suc 𝑛, (𝑓‘𝑝), (𝑔‘(℩𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑝))))‘𝑐)𝑅((𝑝 ∈ suc (𝑛 +o 𝑚) ↦ if(𝑝 ∈ suc 𝑛, (𝑓‘𝑝), (𝑔‘(℩𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑝))))‘suc 𝑐)))) |
377 | 365, 376 | spcev 3545 |
. . . . . . . . . 10
⊢ (((𝑝 ∈ suc (𝑛 +o 𝑚) ↦ if(𝑝 ∈ suc 𝑛, (𝑓‘𝑝), (𝑔‘(℩𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑝)))) Fn suc (𝑛 +o 𝑚) ∧ (((𝑝 ∈ suc (𝑛 +o 𝑚) ↦ if(𝑝 ∈ suc 𝑛, (𝑓‘𝑝), (𝑔‘(℩𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑝))))‘∅) = 𝑥 ∧ ((𝑝 ∈ suc (𝑛 +o 𝑚) ↦ if(𝑝 ∈ suc 𝑛, (𝑓‘𝑝), (𝑔‘(℩𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑝))))‘(𝑛 +o 𝑚)) = 𝑦) ∧ ∀𝑐 ∈ (𝑛 +o 𝑚)((𝑝 ∈ suc (𝑛 +o 𝑚) ↦ if(𝑝 ∈ suc 𝑛, (𝑓‘𝑝), (𝑔‘(℩𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑝))))‘𝑐)𝑅((𝑝 ∈ suc (𝑛 +o 𝑚) ↦ if(𝑝 ∈ suc 𝑛, (𝑓‘𝑝), (𝑔‘(℩𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑝))))‘suc 𝑐)) → ∃ℎ(ℎ Fn suc (𝑛 +o 𝑚) ∧ ((ℎ‘∅) = 𝑥 ∧ (ℎ‘(𝑛 +o 𝑚)) = 𝑦) ∧ ∀𝑐 ∈ (𝑛 +o 𝑚)(ℎ‘𝑐)𝑅(ℎ‘suc 𝑐))) |
378 | 363, 377 | mp3an1 1447 |
. . . . . . . . 9
⊢
(((((𝑝 ∈ suc
(𝑛 +o 𝑚) ↦ if(𝑝 ∈ suc 𝑛, (𝑓‘𝑝), (𝑔‘(℩𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑝))))‘∅) = 𝑥 ∧ ((𝑝 ∈ suc (𝑛 +o 𝑚) ↦ if(𝑝 ∈ suc 𝑛, (𝑓‘𝑝), (𝑔‘(℩𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑝))))‘(𝑛 +o 𝑚)) = 𝑦) ∧ ∀𝑐 ∈ (𝑛 +o 𝑚)((𝑝 ∈ suc (𝑛 +o 𝑚) ↦ if(𝑝 ∈ suc 𝑛, (𝑓‘𝑝), (𝑔‘(℩𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑝))))‘𝑐)𝑅((𝑝 ∈ suc (𝑛 +o 𝑚) ↦ if(𝑝 ∈ suc 𝑛, (𝑓‘𝑝), (𝑔‘(℩𝑞 ∈ ω (𝑛 +o 𝑞) = 𝑝))))‘suc 𝑐)) → ∃ℎ(ℎ Fn suc (𝑛 +o 𝑚) ∧ ((ℎ‘∅) = 𝑥 ∧ (ℎ‘(𝑛 +o 𝑚)) = 𝑦) ∧ ∀𝑐 ∈ (𝑛 +o 𝑚)(ℎ‘𝑐)𝑅(ℎ‘suc 𝑐))) |
379 | 45, 123, 359, 378 | syl21anc 835 |
. . . . . . . 8
⊢ (((𝑛 ∈ (ω ∖
1o) ∧ 𝑚
∈ (ω ∖ 1o)) ∧ ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘𝑛) = 𝑧) ∧ ∀𝑎 ∈ 𝑛 (𝑓‘𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘𝑚) = 𝑦) ∧ ∀𝑏 ∈ 𝑚 (𝑔‘𝑏)𝑅(𝑔‘suc 𝑏)))) → ∃ℎ(ℎ Fn suc (𝑛 +o 𝑚) ∧ ((ℎ‘∅) = 𝑥 ∧ (ℎ‘(𝑛 +o 𝑚)) = 𝑦) ∧ ∀𝑐 ∈ (𝑛 +o 𝑚)(ℎ‘𝑐)𝑅(ℎ‘suc 𝑐))) |
380 | | suceq 6331 |
. . . . . . . . . . . 12
⊢ (𝑝 = (𝑛 +o 𝑚) → suc 𝑝 = suc (𝑛 +o 𝑚)) |
381 | 380 | fneq2d 6527 |
. . . . . . . . . . 11
⊢ (𝑝 = (𝑛 +o 𝑚) → (ℎ Fn suc 𝑝 ↔ ℎ Fn suc (𝑛 +o 𝑚))) |
382 | | fveqeq2 6783 |
. . . . . . . . . . . 12
⊢ (𝑝 = (𝑛 +o 𝑚) → ((ℎ‘𝑝) = 𝑦 ↔ (ℎ‘(𝑛 +o 𝑚)) = 𝑦)) |
383 | 382 | anbi2d 629 |
. . . . . . . . . . 11
⊢ (𝑝 = (𝑛 +o 𝑚) → (((ℎ‘∅) = 𝑥 ∧ (ℎ‘𝑝) = 𝑦) ↔ ((ℎ‘∅) = 𝑥 ∧ (ℎ‘(𝑛 +o 𝑚)) = 𝑦))) |
384 | | raleq 3342 |
. . . . . . . . . . 11
⊢ (𝑝 = (𝑛 +o 𝑚) → (∀𝑐 ∈ 𝑝 (ℎ‘𝑐)𝑅(ℎ‘suc 𝑐) ↔ ∀𝑐 ∈ (𝑛 +o 𝑚)(ℎ‘𝑐)𝑅(ℎ‘suc 𝑐))) |
385 | 381, 383,
384 | 3anbi123d 1435 |
. . . . . . . . . 10
⊢ (𝑝 = (𝑛 +o 𝑚) → ((ℎ Fn suc 𝑝 ∧ ((ℎ‘∅) = 𝑥 ∧ (ℎ‘𝑝) = 𝑦) ∧ ∀𝑐 ∈ 𝑝 (ℎ‘𝑐)𝑅(ℎ‘suc 𝑐)) ↔ (ℎ Fn suc (𝑛 +o 𝑚) ∧ ((ℎ‘∅) = 𝑥 ∧ (ℎ‘(𝑛 +o 𝑚)) = 𝑦) ∧ ∀𝑐 ∈ (𝑛 +o 𝑚)(ℎ‘𝑐)𝑅(ℎ‘suc 𝑐)))) |
386 | 385 | exbidv 1924 |
. . . . . . . . 9
⊢ (𝑝 = (𝑛 +o 𝑚) → (∃ℎ(ℎ Fn suc 𝑝 ∧ ((ℎ‘∅) = 𝑥 ∧ (ℎ‘𝑝) = 𝑦) ∧ ∀𝑐 ∈ 𝑝 (ℎ‘𝑐)𝑅(ℎ‘suc 𝑐)) ↔ ∃ℎ(ℎ Fn suc (𝑛 +o 𝑚) ∧ ((ℎ‘∅) = 𝑥 ∧ (ℎ‘(𝑛 +o 𝑚)) = 𝑦) ∧ ∀𝑐 ∈ (𝑛 +o 𝑚)(ℎ‘𝑐)𝑅(ℎ‘suc 𝑐)))) |
387 | 386 | rspcev 3561 |
. . . . . . . 8
⊢ (((𝑛 +o 𝑚) ∈ (ω ∖
1o) ∧ ∃ℎ(ℎ Fn suc (𝑛 +o 𝑚) ∧ ((ℎ‘∅) = 𝑥 ∧ (ℎ‘(𝑛 +o 𝑚)) = 𝑦) ∧ ∀𝑐 ∈ (𝑛 +o 𝑚)(ℎ‘𝑐)𝑅(ℎ‘suc 𝑐))) → ∃𝑝 ∈ (ω ∖
1o)∃ℎ(ℎ Fn suc 𝑝 ∧ ((ℎ‘∅) = 𝑥 ∧ (ℎ‘𝑝) = 𝑦) ∧ ∀𝑐 ∈ 𝑝 (ℎ‘𝑐)𝑅(ℎ‘suc 𝑐))) |
388 | 23, 379, 387 | syl2an2r 682 |
. . . . . . 7
⊢ (((𝑛 ∈ (ω ∖
1o) ∧ 𝑚
∈ (ω ∖ 1o)) ∧ ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘𝑛) = 𝑧) ∧ ∀𝑎 ∈ 𝑛 (𝑓‘𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘𝑚) = 𝑦) ∧ ∀𝑏 ∈ 𝑚 (𝑔‘𝑏)𝑅(𝑔‘suc 𝑏)))) → ∃𝑝 ∈ (ω ∖
1o)∃ℎ(ℎ Fn suc 𝑝 ∧ ((ℎ‘∅) = 𝑥 ∧ (ℎ‘𝑝) = 𝑦) ∧ ∀𝑐 ∈ 𝑝 (ℎ‘𝑐)𝑅(ℎ‘suc 𝑐))) |
389 | 388 | ex 413 |
. . . . . 6
⊢ ((𝑛 ∈ (ω ∖
1o) ∧ 𝑚
∈ (ω ∖ 1o)) → (((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘𝑛) = 𝑧) ∧ ∀𝑎 ∈ 𝑛 (𝑓‘𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘𝑚) = 𝑦) ∧ ∀𝑏 ∈ 𝑚 (𝑔‘𝑏)𝑅(𝑔‘suc 𝑏))) → ∃𝑝 ∈ (ω ∖
1o)∃ℎ(ℎ Fn suc 𝑝 ∧ ((ℎ‘∅) = 𝑥 ∧ (ℎ‘𝑝) = 𝑦) ∧ ∀𝑐 ∈ 𝑝 (ℎ‘𝑐)𝑅(ℎ‘suc 𝑐)))) |
390 | 389 | exlimdvv 1937 |
. . . . 5
⊢ ((𝑛 ∈ (ω ∖
1o) ∧ 𝑚
∈ (ω ∖ 1o)) → (∃𝑓∃𝑔((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘𝑛) = 𝑧) ∧ ∀𝑎 ∈ 𝑛 (𝑓‘𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘𝑚) = 𝑦) ∧ ∀𝑏 ∈ 𝑚 (𝑔‘𝑏)𝑅(𝑔‘suc 𝑏))) → ∃𝑝 ∈ (ω ∖
1o)∃ℎ(ℎ Fn suc 𝑝 ∧ ((ℎ‘∅) = 𝑥 ∧ (ℎ‘𝑝) = 𝑦) ∧ ∀𝑐 ∈ 𝑝 (ℎ‘𝑐)𝑅(ℎ‘suc 𝑐)))) |
391 | 390 | rexlimivv 3221 |
. . . 4
⊢
(∃𝑛 ∈
(ω ∖ 1o)∃𝑚 ∈ (ω ∖
1o)∃𝑓∃𝑔((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘𝑛) = 𝑧) ∧ ∀𝑎 ∈ 𝑛 (𝑓‘𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘𝑚) = 𝑦) ∧ ∀𝑏 ∈ 𝑚 (𝑔‘𝑏)𝑅(𝑔‘suc 𝑏))) → ∃𝑝 ∈ (ω ∖
1o)∃ℎ(ℎ Fn suc 𝑝 ∧ ((ℎ‘∅) = 𝑥 ∧ (ℎ‘𝑝) = 𝑦) ∧ ∀𝑐 ∈ 𝑝 (ℎ‘𝑐)𝑅(ℎ‘suc 𝑐))) |
392 | 391 | exlimiv 1933 |
. . 3
⊢
(∃𝑧∃𝑛 ∈ (ω ∖
1o)∃𝑚
∈ (ω ∖ 1o)∃𝑓∃𝑔((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘𝑛) = 𝑧) ∧ ∀𝑎 ∈ 𝑛 (𝑓‘𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘𝑚) = 𝑦) ∧ ∀𝑏 ∈ 𝑚 (𝑔‘𝑏)𝑅(𝑔‘suc 𝑏))) → ∃𝑝 ∈ (ω ∖
1o)∃ℎ(ℎ Fn suc 𝑝 ∧ ((ℎ‘∅) = 𝑥 ∧ (ℎ‘𝑝) = 𝑦) ∧ ∀𝑐 ∈ 𝑝 (ℎ‘𝑐)𝑅(ℎ‘suc 𝑐))) |
393 | | vex 3436 |
. . . . 5
⊢ 𝑥 ∈ V |
394 | | vex 3436 |
. . . . 5
⊢ 𝑦 ∈ V |
395 | 393, 394 | opelco 5780 |
. . . 4
⊢
(〈𝑥, 𝑦〉 ∈ (t++𝑅 ∘ t++𝑅) ↔ ∃𝑧(𝑥t++𝑅𝑧 ∧ 𝑧t++𝑅𝑦)) |
396 | | reeanv 3294 |
. . . . . 6
⊢
(∃𝑛 ∈
(ω ∖ 1o)∃𝑚 ∈ (ω ∖
1o)(∃𝑓(𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘𝑛) = 𝑧) ∧ ∀𝑎 ∈ 𝑛 (𝑓‘𝑎)𝑅(𝑓‘suc 𝑎)) ∧ ∃𝑔(𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘𝑚) = 𝑦) ∧ ∀𝑏 ∈ 𝑚 (𝑔‘𝑏)𝑅(𝑔‘suc 𝑏))) ↔ (∃𝑛 ∈ (ω ∖
1o)∃𝑓(𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘𝑛) = 𝑧) ∧ ∀𝑎 ∈ 𝑛 (𝑓‘𝑎)𝑅(𝑓‘suc 𝑎)) ∧ ∃𝑚 ∈ (ω ∖
1o)∃𝑔(𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘𝑚) = 𝑦) ∧ ∀𝑏 ∈ 𝑚 (𝑔‘𝑏)𝑅(𝑔‘suc 𝑏)))) |
397 | | eeanv 2347 |
. . . . . . 7
⊢
(∃𝑓∃𝑔((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘𝑛) = 𝑧) ∧ ∀𝑎 ∈ 𝑛 (𝑓‘𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘𝑚) = 𝑦) ∧ ∀𝑏 ∈ 𝑚 (𝑔‘𝑏)𝑅(𝑔‘suc 𝑏))) ↔ (∃𝑓(𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘𝑛) = 𝑧) ∧ ∀𝑎 ∈ 𝑛 (𝑓‘𝑎)𝑅(𝑓‘suc 𝑎)) ∧ ∃𝑔(𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘𝑚) = 𝑦) ∧ ∀𝑏 ∈ 𝑚 (𝑔‘𝑏)𝑅(𝑔‘suc 𝑏)))) |
398 | 397 | 2rexbii 3182 |
. . . . . 6
⊢
(∃𝑛 ∈
(ω ∖ 1o)∃𝑚 ∈ (ω ∖
1o)∃𝑓∃𝑔((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘𝑛) = 𝑧) ∧ ∀𝑎 ∈ 𝑛 (𝑓‘𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘𝑚) = 𝑦) ∧ ∀𝑏 ∈ 𝑚 (𝑔‘𝑏)𝑅(𝑔‘suc 𝑏))) ↔ ∃𝑛 ∈ (ω ∖
1o)∃𝑚
∈ (ω ∖ 1o)(∃𝑓(𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘𝑛) = 𝑧) ∧ ∀𝑎 ∈ 𝑛 (𝑓‘𝑎)𝑅(𝑓‘suc 𝑎)) ∧ ∃𝑔(𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘𝑚) = 𝑦) ∧ ∀𝑏 ∈ 𝑚 (𝑔‘𝑏)𝑅(𝑔‘suc 𝑏)))) |
399 | | brttrcl 9471 |
. . . . . . 7
⊢ (𝑥t++𝑅𝑧 ↔ ∃𝑛 ∈ (ω ∖
1o)∃𝑓(𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘𝑛) = 𝑧) ∧ ∀𝑎 ∈ 𝑛 (𝑓‘𝑎)𝑅(𝑓‘suc 𝑎))) |
400 | | brttrcl 9471 |
. . . . . . 7
⊢ (𝑧t++𝑅𝑦 ↔ ∃𝑚 ∈ (ω ∖
1o)∃𝑔(𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘𝑚) = 𝑦) ∧ ∀𝑏 ∈ 𝑚 (𝑔‘𝑏)𝑅(𝑔‘suc 𝑏))) |
401 | 399, 400 | anbi12i 627 |
. . . . . 6
⊢ ((𝑥t++𝑅𝑧 ∧ 𝑧t++𝑅𝑦) ↔ (∃𝑛 ∈ (ω ∖
1o)∃𝑓(𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘𝑛) = 𝑧) ∧ ∀𝑎 ∈ 𝑛 (𝑓‘𝑎)𝑅(𝑓‘suc 𝑎)) ∧ ∃𝑚 ∈ (ω ∖
1o)∃𝑔(𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘𝑚) = 𝑦) ∧ ∀𝑏 ∈ 𝑚 (𝑔‘𝑏)𝑅(𝑔‘suc 𝑏)))) |
402 | 396, 398,
401 | 3bitr4ri 304 |
. . . . 5
⊢ ((𝑥t++𝑅𝑧 ∧ 𝑧t++𝑅𝑦) ↔ ∃𝑛 ∈ (ω ∖
1o)∃𝑚
∈ (ω ∖ 1o)∃𝑓∃𝑔((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘𝑛) = 𝑧) ∧ ∀𝑎 ∈ 𝑛 (𝑓‘𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘𝑚) = 𝑦) ∧ ∀𝑏 ∈ 𝑚 (𝑔‘𝑏)𝑅(𝑔‘suc 𝑏)))) |
403 | 402 | exbii 1850 |
. . . 4
⊢
(∃𝑧(𝑥t++𝑅𝑧 ∧ 𝑧t++𝑅𝑦) ↔ ∃𝑧∃𝑛 ∈ (ω ∖
1o)∃𝑚
∈ (ω ∖ 1o)∃𝑓∃𝑔((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘𝑛) = 𝑧) ∧ ∀𝑎 ∈ 𝑛 (𝑓‘𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘𝑚) = 𝑦) ∧ ∀𝑏 ∈ 𝑚 (𝑔‘𝑏)𝑅(𝑔‘suc 𝑏)))) |
404 | 395, 403 | bitri 274 |
. . 3
⊢
(〈𝑥, 𝑦〉 ∈ (t++𝑅 ∘ t++𝑅) ↔ ∃𝑧∃𝑛 ∈ (ω ∖
1o)∃𝑚
∈ (ω ∖ 1o)∃𝑓∃𝑔((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘𝑛) = 𝑧) ∧ ∀𝑎 ∈ 𝑛 (𝑓‘𝑎)𝑅(𝑓‘suc 𝑎)) ∧ (𝑔 Fn suc 𝑚 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘𝑚) = 𝑦) ∧ ∀𝑏 ∈ 𝑚 (𝑔‘𝑏)𝑅(𝑔‘suc 𝑏)))) |
405 | | df-br 5075 |
. . . 4
⊢ (𝑥t++𝑅𝑦 ↔ 〈𝑥, 𝑦〉 ∈ t++𝑅) |
406 | | brttrcl 9471 |
. . . 4
⊢ (𝑥t++𝑅𝑦 ↔ ∃𝑝 ∈ (ω ∖
1o)∃ℎ(ℎ Fn suc 𝑝 ∧ ((ℎ‘∅) = 𝑥 ∧ (ℎ‘𝑝) = 𝑦) ∧ ∀𝑐 ∈ 𝑝 (ℎ‘𝑐)𝑅(ℎ‘suc 𝑐))) |
407 | 405, 406 | bitr3i 276 |
. . 3
⊢
(〈𝑥, 𝑦〉 ∈ t++𝑅 ↔ ∃𝑝 ∈ (ω ∖
1o)∃ℎ(ℎ Fn suc 𝑝 ∧ ((ℎ‘∅) = 𝑥 ∧ (ℎ‘𝑝) = 𝑦) ∧ ∀𝑐 ∈ 𝑝 (ℎ‘𝑐)𝑅(ℎ‘suc 𝑐))) |
408 | 392, 404,
407 | 3imtr4i 292 |
. 2
⊢
(〈𝑥, 𝑦〉 ∈ (t++𝑅 ∘ t++𝑅) → 〈𝑥, 𝑦〉 ∈ t++𝑅) |
409 | 1, 408 | relssi 5697 |
1
⊢ (t++𝑅 ∘ t++𝑅) ⊆ t++𝑅 |