Proof of Theorem nosep2o
Step | Hyp | Ref
| Expression |
1 | | simp2 1135 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝐴 ≠ 𝐵) → 𝐵 ∈ No
) |
2 | | simp1 1134 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝐴 ≠ 𝐵) → 𝐴 ∈ No
) |
3 | | simp3 1136 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝐴 ≠ 𝐵) → 𝐴 ≠ 𝐵) |
4 | 3 | necomd 2998 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝐴 ≠ 𝐵) → 𝐵 ≠ 𝐴) |
5 | | nosepne 33810 |
. . . . . . . . . . . 12
⊢ ((𝐵 ∈
No ∧ 𝐴 ∈
No ∧ 𝐵 ≠ 𝐴) → (𝐵‘∩ {𝑥 ∈ On ∣ (𝐵‘𝑥) ≠ (𝐴‘𝑥)}) ≠ (𝐴‘∩ {𝑥 ∈ On ∣ (𝐵‘𝑥) ≠ (𝐴‘𝑥)})) |
6 | 1, 2, 4, 5 | syl3anc 1369 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝐴 ≠ 𝐵) → (𝐵‘∩ {𝑥 ∈ On ∣ (𝐵‘𝑥) ≠ (𝐴‘𝑥)}) ≠ (𝐴‘∩ {𝑥 ∈ On ∣ (𝐵‘𝑥) ≠ (𝐴‘𝑥)})) |
7 | 6 | adantr 480 |
. . . . . . . . . 10
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝐴 ≠ 𝐵) ∧ (𝐴‘∩ {𝑥 ∈ On ∣ (𝐵‘𝑥) ≠ (𝐴‘𝑥)}) = 2o) → (𝐵‘∩ {𝑥
∈ On ∣ (𝐵‘𝑥) ≠ (𝐴‘𝑥)}) ≠ (𝐴‘∩ {𝑥 ∈ On ∣ (𝐵‘𝑥) ≠ (𝐴‘𝑥)})) |
8 | | simpr 484 |
. . . . . . . . . 10
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝐴 ≠ 𝐵) ∧ (𝐴‘∩ {𝑥 ∈ On ∣ (𝐵‘𝑥) ≠ (𝐴‘𝑥)}) = 2o) → (𝐴‘∩ {𝑥
∈ On ∣ (𝐵‘𝑥) ≠ (𝐴‘𝑥)}) = 2o) |
9 | 7, 8 | neeqtrd 3012 |
. . . . . . . . 9
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝐴 ≠ 𝐵) ∧ (𝐴‘∩ {𝑥 ∈ On ∣ (𝐵‘𝑥) ≠ (𝐴‘𝑥)}) = 2o) → (𝐵‘∩ {𝑥
∈ On ∣ (𝐵‘𝑥) ≠ (𝐴‘𝑥)}) ≠ 2o) |
10 | 9 | neneqd 2947 |
. . . . . . . 8
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝐴 ≠ 𝐵) ∧ (𝐴‘∩ {𝑥 ∈ On ∣ (𝐵‘𝑥) ≠ (𝐴‘𝑥)}) = 2o) → ¬ (𝐵‘∩ {𝑥
∈ On ∣ (𝐵‘𝑥) ≠ (𝐴‘𝑥)}) = 2o) |
11 | | simpl2 1190 |
. . . . . . . . 9
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝐴 ≠ 𝐵) ∧ (𝐴‘∩ {𝑥 ∈ On ∣ (𝐵‘𝑥) ≠ (𝐴‘𝑥)}) = 2o) → 𝐵 ∈ No
) |
12 | | nofv 33787 |
. . . . . . . . 9
⊢ (𝐵 ∈
No → ((𝐵‘∩ {𝑥 ∈ On ∣ (𝐵‘𝑥) ≠ (𝐴‘𝑥)}) = ∅ ∨ (𝐵‘∩ {𝑥 ∈ On ∣ (𝐵‘𝑥) ≠ (𝐴‘𝑥)}) = 1o ∨ (𝐵‘∩ {𝑥 ∈ On ∣ (𝐵‘𝑥) ≠ (𝐴‘𝑥)}) = 2o)) |
13 | 11, 12 | syl 17 |
. . . . . . . 8
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝐴 ≠ 𝐵) ∧ (𝐴‘∩ {𝑥 ∈ On ∣ (𝐵‘𝑥) ≠ (𝐴‘𝑥)}) = 2o) → ((𝐵‘∩ {𝑥
∈ On ∣ (𝐵‘𝑥) ≠ (𝐴‘𝑥)}) = ∅ ∨ (𝐵‘∩ {𝑥 ∈ On ∣ (𝐵‘𝑥) ≠ (𝐴‘𝑥)}) = 1o ∨ (𝐵‘∩ {𝑥 ∈ On ∣ (𝐵‘𝑥) ≠ (𝐴‘𝑥)}) = 2o)) |
14 | | 3orel3 33557 |
. . . . . . . 8
⊢ (¬
(𝐵‘∩ {𝑥
∈ On ∣ (𝐵‘𝑥) ≠ (𝐴‘𝑥)}) = 2o → (((𝐵‘∩ {𝑥
∈ On ∣ (𝐵‘𝑥) ≠ (𝐴‘𝑥)}) = ∅ ∨ (𝐵‘∩ {𝑥 ∈ On ∣ (𝐵‘𝑥) ≠ (𝐴‘𝑥)}) = 1o ∨ (𝐵‘∩ {𝑥 ∈ On ∣ (𝐵‘𝑥) ≠ (𝐴‘𝑥)}) = 2o) → ((𝐵‘∩ {𝑥
∈ On ∣ (𝐵‘𝑥) ≠ (𝐴‘𝑥)}) = ∅ ∨ (𝐵‘∩ {𝑥 ∈ On ∣ (𝐵‘𝑥) ≠ (𝐴‘𝑥)}) = 1o))) |
15 | 10, 13, 14 | sylc 65 |
. . . . . . 7
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝐴 ≠ 𝐵) ∧ (𝐴‘∩ {𝑥 ∈ On ∣ (𝐵‘𝑥) ≠ (𝐴‘𝑥)}) = 2o) → ((𝐵‘∩ {𝑥
∈ On ∣ (𝐵‘𝑥) ≠ (𝐴‘𝑥)}) = ∅ ∨ (𝐵‘∩ {𝑥 ∈ On ∣ (𝐵‘𝑥) ≠ (𝐴‘𝑥)}) = 1o)) |
16 | 15 | orcomd 867 |
. . . . . 6
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝐴 ≠ 𝐵) ∧ (𝐴‘∩ {𝑥 ∈ On ∣ (𝐵‘𝑥) ≠ (𝐴‘𝑥)}) = 2o) → ((𝐵‘∩ {𝑥
∈ On ∣ (𝐵‘𝑥) ≠ (𝐴‘𝑥)}) = 1o ∨ (𝐵‘∩ {𝑥 ∈ On ∣ (𝐵‘𝑥) ≠ (𝐴‘𝑥)}) = ∅)) |
17 | 16, 8 | jca 511 |
. . . . 5
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝐴 ≠ 𝐵) ∧ (𝐴‘∩ {𝑥 ∈ On ∣ (𝐵‘𝑥) ≠ (𝐴‘𝑥)}) = 2o) → (((𝐵‘∩ {𝑥
∈ On ∣ (𝐵‘𝑥) ≠ (𝐴‘𝑥)}) = 1o ∨ (𝐵‘∩ {𝑥 ∈ On ∣ (𝐵‘𝑥) ≠ (𝐴‘𝑥)}) = ∅) ∧ (𝐴‘∩ {𝑥 ∈ On ∣ (𝐵‘𝑥) ≠ (𝐴‘𝑥)}) = 2o)) |
18 | | andir 1005 |
. . . . 5
⊢ ((((𝐵‘∩ {𝑥
∈ On ∣ (𝐵‘𝑥) ≠ (𝐴‘𝑥)}) = 1o ∨ (𝐵‘∩ {𝑥 ∈ On ∣ (𝐵‘𝑥) ≠ (𝐴‘𝑥)}) = ∅) ∧ (𝐴‘∩ {𝑥 ∈ On ∣ (𝐵‘𝑥) ≠ (𝐴‘𝑥)}) = 2o) ↔ (((𝐵‘∩ {𝑥
∈ On ∣ (𝐵‘𝑥) ≠ (𝐴‘𝑥)}) = 1o ∧ (𝐴‘∩ {𝑥 ∈ On ∣ (𝐵‘𝑥) ≠ (𝐴‘𝑥)}) = 2o) ∨ ((𝐵‘∩ {𝑥 ∈ On ∣ (𝐵‘𝑥) ≠ (𝐴‘𝑥)}) = ∅ ∧ (𝐴‘∩ {𝑥 ∈ On ∣ (𝐵‘𝑥) ≠ (𝐴‘𝑥)}) = 2o))) |
19 | 17, 18 | sylib 217 |
. . . 4
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝐴 ≠ 𝐵) ∧ (𝐴‘∩ {𝑥 ∈ On ∣ (𝐵‘𝑥) ≠ (𝐴‘𝑥)}) = 2o) → (((𝐵‘∩ {𝑥
∈ On ∣ (𝐵‘𝑥) ≠ (𝐴‘𝑥)}) = 1o ∧ (𝐴‘∩ {𝑥 ∈ On ∣ (𝐵‘𝑥) ≠ (𝐴‘𝑥)}) = 2o) ∨ ((𝐵‘∩ {𝑥 ∈ On ∣ (𝐵‘𝑥) ≠ (𝐴‘𝑥)}) = ∅ ∧ (𝐴‘∩ {𝑥 ∈ On ∣ (𝐵‘𝑥) ≠ (𝐴‘𝑥)}) = 2o))) |
20 | | 3mix2 1329 |
. . . . 5
⊢ (((𝐵‘∩ {𝑥
∈ On ∣ (𝐵‘𝑥) ≠ (𝐴‘𝑥)}) = 1o ∧ (𝐴‘∩ {𝑥 ∈ On ∣ (𝐵‘𝑥) ≠ (𝐴‘𝑥)}) = 2o) → (((𝐵‘∩ {𝑥
∈ On ∣ (𝐵‘𝑥) ≠ (𝐴‘𝑥)}) = 1o ∧ (𝐴‘∩ {𝑥 ∈ On ∣ (𝐵‘𝑥) ≠ (𝐴‘𝑥)}) = ∅) ∨ ((𝐵‘∩ {𝑥 ∈ On ∣ (𝐵‘𝑥) ≠ (𝐴‘𝑥)}) = 1o ∧ (𝐴‘∩ {𝑥 ∈ On ∣ (𝐵‘𝑥) ≠ (𝐴‘𝑥)}) = 2o) ∨ ((𝐵‘∩ {𝑥 ∈ On ∣ (𝐵‘𝑥) ≠ (𝐴‘𝑥)}) = ∅ ∧ (𝐴‘∩ {𝑥 ∈ On ∣ (𝐵‘𝑥) ≠ (𝐴‘𝑥)}) = 2o))) |
21 | | 3mix3 1330 |
. . . . 5
⊢ (((𝐵‘∩ {𝑥
∈ On ∣ (𝐵‘𝑥) ≠ (𝐴‘𝑥)}) = ∅ ∧ (𝐴‘∩ {𝑥 ∈ On ∣ (𝐵‘𝑥) ≠ (𝐴‘𝑥)}) = 2o) → (((𝐵‘∩ {𝑥
∈ On ∣ (𝐵‘𝑥) ≠ (𝐴‘𝑥)}) = 1o ∧ (𝐴‘∩ {𝑥 ∈ On ∣ (𝐵‘𝑥) ≠ (𝐴‘𝑥)}) = ∅) ∨ ((𝐵‘∩ {𝑥 ∈ On ∣ (𝐵‘𝑥) ≠ (𝐴‘𝑥)}) = 1o ∧ (𝐴‘∩ {𝑥 ∈ On ∣ (𝐵‘𝑥) ≠ (𝐴‘𝑥)}) = 2o) ∨ ((𝐵‘∩ {𝑥 ∈ On ∣ (𝐵‘𝑥) ≠ (𝐴‘𝑥)}) = ∅ ∧ (𝐴‘∩ {𝑥 ∈ On ∣ (𝐵‘𝑥) ≠ (𝐴‘𝑥)}) = 2o))) |
22 | 20, 21 | jaoi 853 |
. . . 4
⊢ ((((𝐵‘∩ {𝑥
∈ On ∣ (𝐵‘𝑥) ≠ (𝐴‘𝑥)}) = 1o ∧ (𝐴‘∩ {𝑥 ∈ On ∣ (𝐵‘𝑥) ≠ (𝐴‘𝑥)}) = 2o) ∨ ((𝐵‘∩ {𝑥 ∈ On ∣ (𝐵‘𝑥) ≠ (𝐴‘𝑥)}) = ∅ ∧ (𝐴‘∩ {𝑥 ∈ On ∣ (𝐵‘𝑥) ≠ (𝐴‘𝑥)}) = 2o)) → (((𝐵‘∩ {𝑥
∈ On ∣ (𝐵‘𝑥) ≠ (𝐴‘𝑥)}) = 1o ∧ (𝐴‘∩ {𝑥 ∈ On ∣ (𝐵‘𝑥) ≠ (𝐴‘𝑥)}) = ∅) ∨ ((𝐵‘∩ {𝑥 ∈ On ∣ (𝐵‘𝑥) ≠ (𝐴‘𝑥)}) = 1o ∧ (𝐴‘∩ {𝑥 ∈ On ∣ (𝐵‘𝑥) ≠ (𝐴‘𝑥)}) = 2o) ∨ ((𝐵‘∩ {𝑥 ∈ On ∣ (𝐵‘𝑥) ≠ (𝐴‘𝑥)}) = ∅ ∧ (𝐴‘∩ {𝑥 ∈ On ∣ (𝐵‘𝑥) ≠ (𝐴‘𝑥)}) = 2o))) |
23 | 19, 22 | syl 17 |
. . 3
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝐴 ≠ 𝐵) ∧ (𝐴‘∩ {𝑥 ∈ On ∣ (𝐵‘𝑥) ≠ (𝐴‘𝑥)}) = 2o) → (((𝐵‘∩ {𝑥
∈ On ∣ (𝐵‘𝑥) ≠ (𝐴‘𝑥)}) = 1o ∧ (𝐴‘∩ {𝑥 ∈ On ∣ (𝐵‘𝑥) ≠ (𝐴‘𝑥)}) = ∅) ∨ ((𝐵‘∩ {𝑥 ∈ On ∣ (𝐵‘𝑥) ≠ (𝐴‘𝑥)}) = 1o ∧ (𝐴‘∩ {𝑥 ∈ On ∣ (𝐵‘𝑥) ≠ (𝐴‘𝑥)}) = 2o) ∨ ((𝐵‘∩ {𝑥 ∈ On ∣ (𝐵‘𝑥) ≠ (𝐴‘𝑥)}) = ∅ ∧ (𝐴‘∩ {𝑥 ∈ On ∣ (𝐵‘𝑥) ≠ (𝐴‘𝑥)}) = 2o))) |
24 | | fvex 6769 |
. . . 4
⊢ (𝐵‘∩ {𝑥
∈ On ∣ (𝐵‘𝑥) ≠ (𝐴‘𝑥)}) ∈ V |
25 | | fvex 6769 |
. . . 4
⊢ (𝐴‘∩ {𝑥
∈ On ∣ (𝐵‘𝑥) ≠ (𝐴‘𝑥)}) ∈ V |
26 | 24, 25 | brtp 33623 |
. . 3
⊢ ((𝐵‘∩ {𝑥
∈ On ∣ (𝐵‘𝑥) ≠ (𝐴‘𝑥)}){〈1o, ∅〉,
〈1o, 2o〉, 〈∅, 2o〉}
(𝐴‘∩ {𝑥
∈ On ∣ (𝐵‘𝑥) ≠ (𝐴‘𝑥)}) ↔ (((𝐵‘∩ {𝑥 ∈ On ∣ (𝐵‘𝑥) ≠ (𝐴‘𝑥)}) = 1o ∧ (𝐴‘∩ {𝑥 ∈ On ∣ (𝐵‘𝑥) ≠ (𝐴‘𝑥)}) = ∅) ∨ ((𝐵‘∩ {𝑥 ∈ On ∣ (𝐵‘𝑥) ≠ (𝐴‘𝑥)}) = 1o ∧ (𝐴‘∩ {𝑥 ∈ On ∣ (𝐵‘𝑥) ≠ (𝐴‘𝑥)}) = 2o) ∨ ((𝐵‘∩ {𝑥 ∈ On ∣ (𝐵‘𝑥) ≠ (𝐴‘𝑥)}) = ∅ ∧ (𝐴‘∩ {𝑥 ∈ On ∣ (𝐵‘𝑥) ≠ (𝐴‘𝑥)}) = 2o))) |
27 | 23, 26 | sylibr 233 |
. 2
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝐴 ≠ 𝐵) ∧ (𝐴‘∩ {𝑥 ∈ On ∣ (𝐵‘𝑥) ≠ (𝐴‘𝑥)}) = 2o) → (𝐵‘∩ {𝑥
∈ On ∣ (𝐵‘𝑥) ≠ (𝐴‘𝑥)}){〈1o, ∅〉,
〈1o, 2o〉, 〈∅, 2o〉}
(𝐴‘∩ {𝑥
∈ On ∣ (𝐵‘𝑥) ≠ (𝐴‘𝑥)})) |
28 | | simpl1 1189 |
. . 3
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝐴 ≠ 𝐵) ∧ (𝐴‘∩ {𝑥 ∈ On ∣ (𝐵‘𝑥) ≠ (𝐴‘𝑥)}) = 2o) → 𝐴 ∈ No
) |
29 | | sltval2 33786 |
. . 3
⊢ ((𝐵 ∈
No ∧ 𝐴 ∈
No ) → (𝐵 <s 𝐴 ↔ (𝐵‘∩ {𝑥 ∈ On ∣ (𝐵‘𝑥) ≠ (𝐴‘𝑥)}){〈1o, ∅〉,
〈1o, 2o〉, 〈∅, 2o〉}
(𝐴‘∩ {𝑥
∈ On ∣ (𝐵‘𝑥) ≠ (𝐴‘𝑥)}))) |
30 | 11, 28, 29 | syl2anc 583 |
. 2
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝐴 ≠ 𝐵) ∧ (𝐴‘∩ {𝑥 ∈ On ∣ (𝐵‘𝑥) ≠ (𝐴‘𝑥)}) = 2o) → (𝐵 <s 𝐴 ↔ (𝐵‘∩ {𝑥 ∈ On ∣ (𝐵‘𝑥) ≠ (𝐴‘𝑥)}){〈1o, ∅〉,
〈1o, 2o〉, 〈∅, 2o〉}
(𝐴‘∩ {𝑥
∈ On ∣ (𝐵‘𝑥) ≠ (𝐴‘𝑥)}))) |
31 | 27, 30 | mpbird 256 |
1
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝐴 ≠ 𝐵) ∧ (𝐴‘∩ {𝑥 ∈ On ∣ (𝐵‘𝑥) ≠ (𝐴‘𝑥)}) = 2o) → 𝐵 <s 𝐴) |