Proof of Theorem nosep2o
| Step | Hyp | Ref
| Expression |
| 1 | | simp2 1137 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝐴 ≠ 𝐵) → 𝐵 ∈ No
) |
| 2 | | simp1 1136 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝐴 ≠ 𝐵) → 𝐴 ∈ No
) |
| 3 | | simp3 1138 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝐴 ≠ 𝐵) → 𝐴 ≠ 𝐵) |
| 4 | 3 | necomd 2988 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝐴 ≠ 𝐵) → 𝐵 ≠ 𝐴) |
| 5 | | nosepne 27649 |
. . . . . . . . . . . 12
⊢ ((𝐵 ∈
No ∧ 𝐴 ∈
No ∧ 𝐵 ≠ 𝐴) → (𝐵‘∩ {𝑥 ∈ On ∣ (𝐵‘𝑥) ≠ (𝐴‘𝑥)}) ≠ (𝐴‘∩ {𝑥 ∈ On ∣ (𝐵‘𝑥) ≠ (𝐴‘𝑥)})) |
| 6 | 1, 2, 4, 5 | syl3anc 1373 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝐴 ≠ 𝐵) → (𝐵‘∩ {𝑥 ∈ On ∣ (𝐵‘𝑥) ≠ (𝐴‘𝑥)}) ≠ (𝐴‘∩ {𝑥 ∈ On ∣ (𝐵‘𝑥) ≠ (𝐴‘𝑥)})) |
| 7 | 6 | adantr 480 |
. . . . . . . . . 10
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝐴 ≠ 𝐵) ∧ (𝐴‘∩ {𝑥 ∈ On ∣ (𝐵‘𝑥) ≠ (𝐴‘𝑥)}) = 2o) → (𝐵‘∩ {𝑥
∈ On ∣ (𝐵‘𝑥) ≠ (𝐴‘𝑥)}) ≠ (𝐴‘∩ {𝑥 ∈ On ∣ (𝐵‘𝑥) ≠ (𝐴‘𝑥)})) |
| 8 | | simpr 484 |
. . . . . . . . . 10
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝐴 ≠ 𝐵) ∧ (𝐴‘∩ {𝑥 ∈ On ∣ (𝐵‘𝑥) ≠ (𝐴‘𝑥)}) = 2o) → (𝐴‘∩ {𝑥
∈ On ∣ (𝐵‘𝑥) ≠ (𝐴‘𝑥)}) = 2o) |
| 9 | 7, 8 | neeqtrd 3002 |
. . . . . . . . 9
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝐴 ≠ 𝐵) ∧ (𝐴‘∩ {𝑥 ∈ On ∣ (𝐵‘𝑥) ≠ (𝐴‘𝑥)}) = 2o) → (𝐵‘∩ {𝑥
∈ On ∣ (𝐵‘𝑥) ≠ (𝐴‘𝑥)}) ≠ 2o) |
| 10 | 9 | neneqd 2938 |
. . . . . . . 8
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝐴 ≠ 𝐵) ∧ (𝐴‘∩ {𝑥 ∈ On ∣ (𝐵‘𝑥) ≠ (𝐴‘𝑥)}) = 2o) → ¬ (𝐵‘∩ {𝑥
∈ On ∣ (𝐵‘𝑥) ≠ (𝐴‘𝑥)}) = 2o) |
| 11 | | simpl2 1193 |
. . . . . . . . 9
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝐴 ≠ 𝐵) ∧ (𝐴‘∩ {𝑥 ∈ On ∣ (𝐵‘𝑥) ≠ (𝐴‘𝑥)}) = 2o) → 𝐵 ∈ No
) |
| 12 | | nofv 27626 |
. . . . . . . . 9
⊢ (𝐵 ∈
No → ((𝐵‘∩ {𝑥 ∈ On ∣ (𝐵‘𝑥) ≠ (𝐴‘𝑥)}) = ∅ ∨ (𝐵‘∩ {𝑥 ∈ On ∣ (𝐵‘𝑥) ≠ (𝐴‘𝑥)}) = 1o ∨ (𝐵‘∩ {𝑥 ∈ On ∣ (𝐵‘𝑥) ≠ (𝐴‘𝑥)}) = 2o)) |
| 13 | 11, 12 | syl 17 |
. . . . . . . 8
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝐴 ≠ 𝐵) ∧ (𝐴‘∩ {𝑥 ∈ On ∣ (𝐵‘𝑥) ≠ (𝐴‘𝑥)}) = 2o) → ((𝐵‘∩ {𝑥
∈ On ∣ (𝐵‘𝑥) ≠ (𝐴‘𝑥)}) = ∅ ∨ (𝐵‘∩ {𝑥 ∈ On ∣ (𝐵‘𝑥) ≠ (𝐴‘𝑥)}) = 1o ∨ (𝐵‘∩ {𝑥 ∈ On ∣ (𝐵‘𝑥) ≠ (𝐴‘𝑥)}) = 2o)) |
| 14 | | 3orel3 1488 |
. . . . . . . 8
⊢ (¬
(𝐵‘∩ {𝑥
∈ On ∣ (𝐵‘𝑥) ≠ (𝐴‘𝑥)}) = 2o → (((𝐵‘∩ {𝑥
∈ On ∣ (𝐵‘𝑥) ≠ (𝐴‘𝑥)}) = ∅ ∨ (𝐵‘∩ {𝑥 ∈ On ∣ (𝐵‘𝑥) ≠ (𝐴‘𝑥)}) = 1o ∨ (𝐵‘∩ {𝑥 ∈ On ∣ (𝐵‘𝑥) ≠ (𝐴‘𝑥)}) = 2o) → ((𝐵‘∩ {𝑥
∈ On ∣ (𝐵‘𝑥) ≠ (𝐴‘𝑥)}) = ∅ ∨ (𝐵‘∩ {𝑥 ∈ On ∣ (𝐵‘𝑥) ≠ (𝐴‘𝑥)}) = 1o))) |
| 15 | 10, 13, 14 | sylc 65 |
. . . . . . 7
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝐴 ≠ 𝐵) ∧ (𝐴‘∩ {𝑥 ∈ On ∣ (𝐵‘𝑥) ≠ (𝐴‘𝑥)}) = 2o) → ((𝐵‘∩ {𝑥
∈ On ∣ (𝐵‘𝑥) ≠ (𝐴‘𝑥)}) = ∅ ∨ (𝐵‘∩ {𝑥 ∈ On ∣ (𝐵‘𝑥) ≠ (𝐴‘𝑥)}) = 1o)) |
| 16 | 15 | orcomd 871 |
. . . . . 6
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝐴 ≠ 𝐵) ∧ (𝐴‘∩ {𝑥 ∈ On ∣ (𝐵‘𝑥) ≠ (𝐴‘𝑥)}) = 2o) → ((𝐵‘∩ {𝑥
∈ On ∣ (𝐵‘𝑥) ≠ (𝐴‘𝑥)}) = 1o ∨ (𝐵‘∩ {𝑥 ∈ On ∣ (𝐵‘𝑥) ≠ (𝐴‘𝑥)}) = ∅)) |
| 17 | 16, 8 | jca 511 |
. . . . 5
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝐴 ≠ 𝐵) ∧ (𝐴‘∩ {𝑥 ∈ On ∣ (𝐵‘𝑥) ≠ (𝐴‘𝑥)}) = 2o) → (((𝐵‘∩ {𝑥
∈ On ∣ (𝐵‘𝑥) ≠ (𝐴‘𝑥)}) = 1o ∨ (𝐵‘∩ {𝑥 ∈ On ∣ (𝐵‘𝑥) ≠ (𝐴‘𝑥)}) = ∅) ∧ (𝐴‘∩ {𝑥 ∈ On ∣ (𝐵‘𝑥) ≠ (𝐴‘𝑥)}) = 2o)) |
| 18 | | andir 1010 |
. . . . 5
⊢ ((((𝐵‘∩ {𝑥
∈ On ∣ (𝐵‘𝑥) ≠ (𝐴‘𝑥)}) = 1o ∨ (𝐵‘∩ {𝑥 ∈ On ∣ (𝐵‘𝑥) ≠ (𝐴‘𝑥)}) = ∅) ∧ (𝐴‘∩ {𝑥 ∈ On ∣ (𝐵‘𝑥) ≠ (𝐴‘𝑥)}) = 2o) ↔ (((𝐵‘∩ {𝑥
∈ On ∣ (𝐵‘𝑥) ≠ (𝐴‘𝑥)}) = 1o ∧ (𝐴‘∩ {𝑥 ∈ On ∣ (𝐵‘𝑥) ≠ (𝐴‘𝑥)}) = 2o) ∨ ((𝐵‘∩ {𝑥 ∈ On ∣ (𝐵‘𝑥) ≠ (𝐴‘𝑥)}) = ∅ ∧ (𝐴‘∩ {𝑥 ∈ On ∣ (𝐵‘𝑥) ≠ (𝐴‘𝑥)}) = 2o))) |
| 19 | 17, 18 | sylib 218 |
. . . 4
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝐴 ≠ 𝐵) ∧ (𝐴‘∩ {𝑥 ∈ On ∣ (𝐵‘𝑥) ≠ (𝐴‘𝑥)}) = 2o) → (((𝐵‘∩ {𝑥
∈ On ∣ (𝐵‘𝑥) ≠ (𝐴‘𝑥)}) = 1o ∧ (𝐴‘∩ {𝑥 ∈ On ∣ (𝐵‘𝑥) ≠ (𝐴‘𝑥)}) = 2o) ∨ ((𝐵‘∩ {𝑥 ∈ On ∣ (𝐵‘𝑥) ≠ (𝐴‘𝑥)}) = ∅ ∧ (𝐴‘∩ {𝑥 ∈ On ∣ (𝐵‘𝑥) ≠ (𝐴‘𝑥)}) = 2o))) |
| 20 | | 3mix2 1332 |
. . . . 5
⊢ (((𝐵‘∩ {𝑥
∈ On ∣ (𝐵‘𝑥) ≠ (𝐴‘𝑥)}) = 1o ∧ (𝐴‘∩ {𝑥 ∈ On ∣ (𝐵‘𝑥) ≠ (𝐴‘𝑥)}) = 2o) → (((𝐵‘∩ {𝑥
∈ On ∣ (𝐵‘𝑥) ≠ (𝐴‘𝑥)}) = 1o ∧ (𝐴‘∩ {𝑥 ∈ On ∣ (𝐵‘𝑥) ≠ (𝐴‘𝑥)}) = ∅) ∨ ((𝐵‘∩ {𝑥 ∈ On ∣ (𝐵‘𝑥) ≠ (𝐴‘𝑥)}) = 1o ∧ (𝐴‘∩ {𝑥 ∈ On ∣ (𝐵‘𝑥) ≠ (𝐴‘𝑥)}) = 2o) ∨ ((𝐵‘∩ {𝑥 ∈ On ∣ (𝐵‘𝑥) ≠ (𝐴‘𝑥)}) = ∅ ∧ (𝐴‘∩ {𝑥 ∈ On ∣ (𝐵‘𝑥) ≠ (𝐴‘𝑥)}) = 2o))) |
| 21 | | 3mix3 1333 |
. . . . 5
⊢ (((𝐵‘∩ {𝑥
∈ On ∣ (𝐵‘𝑥) ≠ (𝐴‘𝑥)}) = ∅ ∧ (𝐴‘∩ {𝑥 ∈ On ∣ (𝐵‘𝑥) ≠ (𝐴‘𝑥)}) = 2o) → (((𝐵‘∩ {𝑥
∈ On ∣ (𝐵‘𝑥) ≠ (𝐴‘𝑥)}) = 1o ∧ (𝐴‘∩ {𝑥 ∈ On ∣ (𝐵‘𝑥) ≠ (𝐴‘𝑥)}) = ∅) ∨ ((𝐵‘∩ {𝑥 ∈ On ∣ (𝐵‘𝑥) ≠ (𝐴‘𝑥)}) = 1o ∧ (𝐴‘∩ {𝑥 ∈ On ∣ (𝐵‘𝑥) ≠ (𝐴‘𝑥)}) = 2o) ∨ ((𝐵‘∩ {𝑥 ∈ On ∣ (𝐵‘𝑥) ≠ (𝐴‘𝑥)}) = ∅ ∧ (𝐴‘∩ {𝑥 ∈ On ∣ (𝐵‘𝑥) ≠ (𝐴‘𝑥)}) = 2o))) |
| 22 | 20, 21 | jaoi 857 |
. . . 4
⊢ ((((𝐵‘∩ {𝑥
∈ On ∣ (𝐵‘𝑥) ≠ (𝐴‘𝑥)}) = 1o ∧ (𝐴‘∩ {𝑥 ∈ On ∣ (𝐵‘𝑥) ≠ (𝐴‘𝑥)}) = 2o) ∨ ((𝐵‘∩ {𝑥 ∈ On ∣ (𝐵‘𝑥) ≠ (𝐴‘𝑥)}) = ∅ ∧ (𝐴‘∩ {𝑥 ∈ On ∣ (𝐵‘𝑥) ≠ (𝐴‘𝑥)}) = 2o)) → (((𝐵‘∩ {𝑥
∈ On ∣ (𝐵‘𝑥) ≠ (𝐴‘𝑥)}) = 1o ∧ (𝐴‘∩ {𝑥 ∈ On ∣ (𝐵‘𝑥) ≠ (𝐴‘𝑥)}) = ∅) ∨ ((𝐵‘∩ {𝑥 ∈ On ∣ (𝐵‘𝑥) ≠ (𝐴‘𝑥)}) = 1o ∧ (𝐴‘∩ {𝑥 ∈ On ∣ (𝐵‘𝑥) ≠ (𝐴‘𝑥)}) = 2o) ∨ ((𝐵‘∩ {𝑥 ∈ On ∣ (𝐵‘𝑥) ≠ (𝐴‘𝑥)}) = ∅ ∧ (𝐴‘∩ {𝑥 ∈ On ∣ (𝐵‘𝑥) ≠ (𝐴‘𝑥)}) = 2o))) |
| 23 | 19, 22 | syl 17 |
. . 3
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝐴 ≠ 𝐵) ∧ (𝐴‘∩ {𝑥 ∈ On ∣ (𝐵‘𝑥) ≠ (𝐴‘𝑥)}) = 2o) → (((𝐵‘∩ {𝑥
∈ On ∣ (𝐵‘𝑥) ≠ (𝐴‘𝑥)}) = 1o ∧ (𝐴‘∩ {𝑥 ∈ On ∣ (𝐵‘𝑥) ≠ (𝐴‘𝑥)}) = ∅) ∨ ((𝐵‘∩ {𝑥 ∈ On ∣ (𝐵‘𝑥) ≠ (𝐴‘𝑥)}) = 1o ∧ (𝐴‘∩ {𝑥 ∈ On ∣ (𝐵‘𝑥) ≠ (𝐴‘𝑥)}) = 2o) ∨ ((𝐵‘∩ {𝑥 ∈ On ∣ (𝐵‘𝑥) ≠ (𝐴‘𝑥)}) = ∅ ∧ (𝐴‘∩ {𝑥 ∈ On ∣ (𝐵‘𝑥) ≠ (𝐴‘𝑥)}) = 2o))) |
| 24 | | fvex 6894 |
. . . 4
⊢ (𝐵‘∩ {𝑥
∈ On ∣ (𝐵‘𝑥) ≠ (𝐴‘𝑥)}) ∈ V |
| 25 | | fvex 6894 |
. . . 4
⊢ (𝐴‘∩ {𝑥
∈ On ∣ (𝐵‘𝑥) ≠ (𝐴‘𝑥)}) ∈ V |
| 26 | 24, 25 | brtp 5503 |
. . 3
⊢ ((𝐵‘∩ {𝑥
∈ On ∣ (𝐵‘𝑥) ≠ (𝐴‘𝑥)}){〈1o, ∅〉,
〈1o, 2o〉, 〈∅, 2o〉}
(𝐴‘∩ {𝑥
∈ On ∣ (𝐵‘𝑥) ≠ (𝐴‘𝑥)}) ↔ (((𝐵‘∩ {𝑥 ∈ On ∣ (𝐵‘𝑥) ≠ (𝐴‘𝑥)}) = 1o ∧ (𝐴‘∩ {𝑥 ∈ On ∣ (𝐵‘𝑥) ≠ (𝐴‘𝑥)}) = ∅) ∨ ((𝐵‘∩ {𝑥 ∈ On ∣ (𝐵‘𝑥) ≠ (𝐴‘𝑥)}) = 1o ∧ (𝐴‘∩ {𝑥 ∈ On ∣ (𝐵‘𝑥) ≠ (𝐴‘𝑥)}) = 2o) ∨ ((𝐵‘∩ {𝑥 ∈ On ∣ (𝐵‘𝑥) ≠ (𝐴‘𝑥)}) = ∅ ∧ (𝐴‘∩ {𝑥 ∈ On ∣ (𝐵‘𝑥) ≠ (𝐴‘𝑥)}) = 2o))) |
| 27 | 23, 26 | sylibr 234 |
. 2
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝐴 ≠ 𝐵) ∧ (𝐴‘∩ {𝑥 ∈ On ∣ (𝐵‘𝑥) ≠ (𝐴‘𝑥)}) = 2o) → (𝐵‘∩ {𝑥
∈ On ∣ (𝐵‘𝑥) ≠ (𝐴‘𝑥)}){〈1o, ∅〉,
〈1o, 2o〉, 〈∅, 2o〉}
(𝐴‘∩ {𝑥
∈ On ∣ (𝐵‘𝑥) ≠ (𝐴‘𝑥)})) |
| 28 | | simpl1 1192 |
. . 3
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝐴 ≠ 𝐵) ∧ (𝐴‘∩ {𝑥 ∈ On ∣ (𝐵‘𝑥) ≠ (𝐴‘𝑥)}) = 2o) → 𝐴 ∈ No
) |
| 29 | | sltval2 27625 |
. . 3
⊢ ((𝐵 ∈
No ∧ 𝐴 ∈
No ) → (𝐵 <s 𝐴 ↔ (𝐵‘∩ {𝑥 ∈ On ∣ (𝐵‘𝑥) ≠ (𝐴‘𝑥)}){〈1o, ∅〉,
〈1o, 2o〉, 〈∅, 2o〉}
(𝐴‘∩ {𝑥
∈ On ∣ (𝐵‘𝑥) ≠ (𝐴‘𝑥)}))) |
| 30 | 11, 28, 29 | syl2anc 584 |
. 2
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝐴 ≠ 𝐵) ∧ (𝐴‘∩ {𝑥 ∈ On ∣ (𝐵‘𝑥) ≠ (𝐴‘𝑥)}) = 2o) → (𝐵 <s 𝐴 ↔ (𝐵‘∩ {𝑥 ∈ On ∣ (𝐵‘𝑥) ≠ (𝐴‘𝑥)}){〈1o, ∅〉,
〈1o, 2o〉, 〈∅, 2o〉}
(𝐴‘∩ {𝑥
∈ On ∣ (𝐵‘𝑥) ≠ (𝐴‘𝑥)}))) |
| 31 | 27, 30 | mpbird 257 |
1
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝐴 ≠ 𝐵) ∧ (𝐴‘∩ {𝑥 ∈ On ∣ (𝐵‘𝑥) ≠ (𝐴‘𝑥)}) = 2o) → 𝐵 <s 𝐴) |