MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nosep2o Structured version   Visualization version   GIF version

Theorem nosep2o 27174
Description: If the value of a surreal at a separator is 2o then the surreal is greater. (Contributed by Scott Fenton, 7-Dec-2021.)
Assertion
Ref Expression
nosep2o (((𝐴 No 𝐵 No 𝐴𝐵) ∧ (𝐴 {𝑥 ∈ On ∣ (𝐵𝑥) ≠ (𝐴𝑥)}) = 2o) → 𝐵 <s 𝐴)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem nosep2o
StepHypRef Expression
1 simp2 1137 . . . . . . . . . . . 12 ((𝐴 No 𝐵 No 𝐴𝐵) → 𝐵 No )
2 simp1 1136 . . . . . . . . . . . 12 ((𝐴 No 𝐵 No 𝐴𝐵) → 𝐴 No )
3 simp3 1138 . . . . . . . . . . . . 13 ((𝐴 No 𝐵 No 𝐴𝐵) → 𝐴𝐵)
43necomd 2996 . . . . . . . . . . . 12 ((𝐴 No 𝐵 No 𝐴𝐵) → 𝐵𝐴)
5 nosepne 27172 . . . . . . . . . . . 12 ((𝐵 No 𝐴 No 𝐵𝐴) → (𝐵 {𝑥 ∈ On ∣ (𝐵𝑥) ≠ (𝐴𝑥)}) ≠ (𝐴 {𝑥 ∈ On ∣ (𝐵𝑥) ≠ (𝐴𝑥)}))
61, 2, 4, 5syl3anc 1371 . . . . . . . . . . 11 ((𝐴 No 𝐵 No 𝐴𝐵) → (𝐵 {𝑥 ∈ On ∣ (𝐵𝑥) ≠ (𝐴𝑥)}) ≠ (𝐴 {𝑥 ∈ On ∣ (𝐵𝑥) ≠ (𝐴𝑥)}))
76adantr 481 . . . . . . . . . 10 (((𝐴 No 𝐵 No 𝐴𝐵) ∧ (𝐴 {𝑥 ∈ On ∣ (𝐵𝑥) ≠ (𝐴𝑥)}) = 2o) → (𝐵 {𝑥 ∈ On ∣ (𝐵𝑥) ≠ (𝐴𝑥)}) ≠ (𝐴 {𝑥 ∈ On ∣ (𝐵𝑥) ≠ (𝐴𝑥)}))
8 simpr 485 . . . . . . . . . 10 (((𝐴 No 𝐵 No 𝐴𝐵) ∧ (𝐴 {𝑥 ∈ On ∣ (𝐵𝑥) ≠ (𝐴𝑥)}) = 2o) → (𝐴 {𝑥 ∈ On ∣ (𝐵𝑥) ≠ (𝐴𝑥)}) = 2o)
97, 8neeqtrd 3010 . . . . . . . . 9 (((𝐴 No 𝐵 No 𝐴𝐵) ∧ (𝐴 {𝑥 ∈ On ∣ (𝐵𝑥) ≠ (𝐴𝑥)}) = 2o) → (𝐵 {𝑥 ∈ On ∣ (𝐵𝑥) ≠ (𝐴𝑥)}) ≠ 2o)
109neneqd 2945 . . . . . . . 8 (((𝐴 No 𝐵 No 𝐴𝐵) ∧ (𝐴 {𝑥 ∈ On ∣ (𝐵𝑥) ≠ (𝐴𝑥)}) = 2o) → ¬ (𝐵 {𝑥 ∈ On ∣ (𝐵𝑥) ≠ (𝐴𝑥)}) = 2o)
11 simpl2 1192 . . . . . . . . 9 (((𝐴 No 𝐵 No 𝐴𝐵) ∧ (𝐴 {𝑥 ∈ On ∣ (𝐵𝑥) ≠ (𝐴𝑥)}) = 2o) → 𝐵 No )
12 nofv 27149 . . . . . . . . 9 (𝐵 No → ((𝐵 {𝑥 ∈ On ∣ (𝐵𝑥) ≠ (𝐴𝑥)}) = ∅ ∨ (𝐵 {𝑥 ∈ On ∣ (𝐵𝑥) ≠ (𝐴𝑥)}) = 1o ∨ (𝐵 {𝑥 ∈ On ∣ (𝐵𝑥) ≠ (𝐴𝑥)}) = 2o))
1311, 12syl 17 . . . . . . . 8 (((𝐴 No 𝐵 No 𝐴𝐵) ∧ (𝐴 {𝑥 ∈ On ∣ (𝐵𝑥) ≠ (𝐴𝑥)}) = 2o) → ((𝐵 {𝑥 ∈ On ∣ (𝐵𝑥) ≠ (𝐴𝑥)}) = ∅ ∨ (𝐵 {𝑥 ∈ On ∣ (𝐵𝑥) ≠ (𝐴𝑥)}) = 1o ∨ (𝐵 {𝑥 ∈ On ∣ (𝐵𝑥) ≠ (𝐴𝑥)}) = 2o))
14 3orel3 1486 . . . . . . . 8 (¬ (𝐵 {𝑥 ∈ On ∣ (𝐵𝑥) ≠ (𝐴𝑥)}) = 2o → (((𝐵 {𝑥 ∈ On ∣ (𝐵𝑥) ≠ (𝐴𝑥)}) = ∅ ∨ (𝐵 {𝑥 ∈ On ∣ (𝐵𝑥) ≠ (𝐴𝑥)}) = 1o ∨ (𝐵 {𝑥 ∈ On ∣ (𝐵𝑥) ≠ (𝐴𝑥)}) = 2o) → ((𝐵 {𝑥 ∈ On ∣ (𝐵𝑥) ≠ (𝐴𝑥)}) = ∅ ∨ (𝐵 {𝑥 ∈ On ∣ (𝐵𝑥) ≠ (𝐴𝑥)}) = 1o)))
1510, 13, 14sylc 65 . . . . . . 7 (((𝐴 No 𝐵 No 𝐴𝐵) ∧ (𝐴 {𝑥 ∈ On ∣ (𝐵𝑥) ≠ (𝐴𝑥)}) = 2o) → ((𝐵 {𝑥 ∈ On ∣ (𝐵𝑥) ≠ (𝐴𝑥)}) = ∅ ∨ (𝐵 {𝑥 ∈ On ∣ (𝐵𝑥) ≠ (𝐴𝑥)}) = 1o))
1615orcomd 869 . . . . . 6 (((𝐴 No 𝐵 No 𝐴𝐵) ∧ (𝐴 {𝑥 ∈ On ∣ (𝐵𝑥) ≠ (𝐴𝑥)}) = 2o) → ((𝐵 {𝑥 ∈ On ∣ (𝐵𝑥) ≠ (𝐴𝑥)}) = 1o ∨ (𝐵 {𝑥 ∈ On ∣ (𝐵𝑥) ≠ (𝐴𝑥)}) = ∅))
1716, 8jca 512 . . . . 5 (((𝐴 No 𝐵 No 𝐴𝐵) ∧ (𝐴 {𝑥 ∈ On ∣ (𝐵𝑥) ≠ (𝐴𝑥)}) = 2o) → (((𝐵 {𝑥 ∈ On ∣ (𝐵𝑥) ≠ (𝐴𝑥)}) = 1o ∨ (𝐵 {𝑥 ∈ On ∣ (𝐵𝑥) ≠ (𝐴𝑥)}) = ∅) ∧ (𝐴 {𝑥 ∈ On ∣ (𝐵𝑥) ≠ (𝐴𝑥)}) = 2o))
18 andir 1007 . . . . 5 ((((𝐵 {𝑥 ∈ On ∣ (𝐵𝑥) ≠ (𝐴𝑥)}) = 1o ∨ (𝐵 {𝑥 ∈ On ∣ (𝐵𝑥) ≠ (𝐴𝑥)}) = ∅) ∧ (𝐴 {𝑥 ∈ On ∣ (𝐵𝑥) ≠ (𝐴𝑥)}) = 2o) ↔ (((𝐵 {𝑥 ∈ On ∣ (𝐵𝑥) ≠ (𝐴𝑥)}) = 1o ∧ (𝐴 {𝑥 ∈ On ∣ (𝐵𝑥) ≠ (𝐴𝑥)}) = 2o) ∨ ((𝐵 {𝑥 ∈ On ∣ (𝐵𝑥) ≠ (𝐴𝑥)}) = ∅ ∧ (𝐴 {𝑥 ∈ On ∣ (𝐵𝑥) ≠ (𝐴𝑥)}) = 2o)))
1917, 18sylib 217 . . . 4 (((𝐴 No 𝐵 No 𝐴𝐵) ∧ (𝐴 {𝑥 ∈ On ∣ (𝐵𝑥) ≠ (𝐴𝑥)}) = 2o) → (((𝐵 {𝑥 ∈ On ∣ (𝐵𝑥) ≠ (𝐴𝑥)}) = 1o ∧ (𝐴 {𝑥 ∈ On ∣ (𝐵𝑥) ≠ (𝐴𝑥)}) = 2o) ∨ ((𝐵 {𝑥 ∈ On ∣ (𝐵𝑥) ≠ (𝐴𝑥)}) = ∅ ∧ (𝐴 {𝑥 ∈ On ∣ (𝐵𝑥) ≠ (𝐴𝑥)}) = 2o)))
20 3mix2 1331 . . . . 5 (((𝐵 {𝑥 ∈ On ∣ (𝐵𝑥) ≠ (𝐴𝑥)}) = 1o ∧ (𝐴 {𝑥 ∈ On ∣ (𝐵𝑥) ≠ (𝐴𝑥)}) = 2o) → (((𝐵 {𝑥 ∈ On ∣ (𝐵𝑥) ≠ (𝐴𝑥)}) = 1o ∧ (𝐴 {𝑥 ∈ On ∣ (𝐵𝑥) ≠ (𝐴𝑥)}) = ∅) ∨ ((𝐵 {𝑥 ∈ On ∣ (𝐵𝑥) ≠ (𝐴𝑥)}) = 1o ∧ (𝐴 {𝑥 ∈ On ∣ (𝐵𝑥) ≠ (𝐴𝑥)}) = 2o) ∨ ((𝐵 {𝑥 ∈ On ∣ (𝐵𝑥) ≠ (𝐴𝑥)}) = ∅ ∧ (𝐴 {𝑥 ∈ On ∣ (𝐵𝑥) ≠ (𝐴𝑥)}) = 2o)))
21 3mix3 1332 . . . . 5 (((𝐵 {𝑥 ∈ On ∣ (𝐵𝑥) ≠ (𝐴𝑥)}) = ∅ ∧ (𝐴 {𝑥 ∈ On ∣ (𝐵𝑥) ≠ (𝐴𝑥)}) = 2o) → (((𝐵 {𝑥 ∈ On ∣ (𝐵𝑥) ≠ (𝐴𝑥)}) = 1o ∧ (𝐴 {𝑥 ∈ On ∣ (𝐵𝑥) ≠ (𝐴𝑥)}) = ∅) ∨ ((𝐵 {𝑥 ∈ On ∣ (𝐵𝑥) ≠ (𝐴𝑥)}) = 1o ∧ (𝐴 {𝑥 ∈ On ∣ (𝐵𝑥) ≠ (𝐴𝑥)}) = 2o) ∨ ((𝐵 {𝑥 ∈ On ∣ (𝐵𝑥) ≠ (𝐴𝑥)}) = ∅ ∧ (𝐴 {𝑥 ∈ On ∣ (𝐵𝑥) ≠ (𝐴𝑥)}) = 2o)))
2220, 21jaoi 855 . . . 4 ((((𝐵 {𝑥 ∈ On ∣ (𝐵𝑥) ≠ (𝐴𝑥)}) = 1o ∧ (𝐴 {𝑥 ∈ On ∣ (𝐵𝑥) ≠ (𝐴𝑥)}) = 2o) ∨ ((𝐵 {𝑥 ∈ On ∣ (𝐵𝑥) ≠ (𝐴𝑥)}) = ∅ ∧ (𝐴 {𝑥 ∈ On ∣ (𝐵𝑥) ≠ (𝐴𝑥)}) = 2o)) → (((𝐵 {𝑥 ∈ On ∣ (𝐵𝑥) ≠ (𝐴𝑥)}) = 1o ∧ (𝐴 {𝑥 ∈ On ∣ (𝐵𝑥) ≠ (𝐴𝑥)}) = ∅) ∨ ((𝐵 {𝑥 ∈ On ∣ (𝐵𝑥) ≠ (𝐴𝑥)}) = 1o ∧ (𝐴 {𝑥 ∈ On ∣ (𝐵𝑥) ≠ (𝐴𝑥)}) = 2o) ∨ ((𝐵 {𝑥 ∈ On ∣ (𝐵𝑥) ≠ (𝐴𝑥)}) = ∅ ∧ (𝐴 {𝑥 ∈ On ∣ (𝐵𝑥) ≠ (𝐴𝑥)}) = 2o)))
2319, 22syl 17 . . 3 (((𝐴 No 𝐵 No 𝐴𝐵) ∧ (𝐴 {𝑥 ∈ On ∣ (𝐵𝑥) ≠ (𝐴𝑥)}) = 2o) → (((𝐵 {𝑥 ∈ On ∣ (𝐵𝑥) ≠ (𝐴𝑥)}) = 1o ∧ (𝐴 {𝑥 ∈ On ∣ (𝐵𝑥) ≠ (𝐴𝑥)}) = ∅) ∨ ((𝐵 {𝑥 ∈ On ∣ (𝐵𝑥) ≠ (𝐴𝑥)}) = 1o ∧ (𝐴 {𝑥 ∈ On ∣ (𝐵𝑥) ≠ (𝐴𝑥)}) = 2o) ∨ ((𝐵 {𝑥 ∈ On ∣ (𝐵𝑥) ≠ (𝐴𝑥)}) = ∅ ∧ (𝐴 {𝑥 ∈ On ∣ (𝐵𝑥) ≠ (𝐴𝑥)}) = 2o)))
24 fvex 6901 . . . 4 (𝐵 {𝑥 ∈ On ∣ (𝐵𝑥) ≠ (𝐴𝑥)}) ∈ V
25 fvex 6901 . . . 4 (𝐴 {𝑥 ∈ On ∣ (𝐵𝑥) ≠ (𝐴𝑥)}) ∈ V
2624, 25brtp 5522 . . 3 ((𝐵 {𝑥 ∈ On ∣ (𝐵𝑥) ≠ (𝐴𝑥)}){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐴 {𝑥 ∈ On ∣ (𝐵𝑥) ≠ (𝐴𝑥)}) ↔ (((𝐵 {𝑥 ∈ On ∣ (𝐵𝑥) ≠ (𝐴𝑥)}) = 1o ∧ (𝐴 {𝑥 ∈ On ∣ (𝐵𝑥) ≠ (𝐴𝑥)}) = ∅) ∨ ((𝐵 {𝑥 ∈ On ∣ (𝐵𝑥) ≠ (𝐴𝑥)}) = 1o ∧ (𝐴 {𝑥 ∈ On ∣ (𝐵𝑥) ≠ (𝐴𝑥)}) = 2o) ∨ ((𝐵 {𝑥 ∈ On ∣ (𝐵𝑥) ≠ (𝐴𝑥)}) = ∅ ∧ (𝐴 {𝑥 ∈ On ∣ (𝐵𝑥) ≠ (𝐴𝑥)}) = 2o)))
2723, 26sylibr 233 . 2 (((𝐴 No 𝐵 No 𝐴𝐵) ∧ (𝐴 {𝑥 ∈ On ∣ (𝐵𝑥) ≠ (𝐴𝑥)}) = 2o) → (𝐵 {𝑥 ∈ On ∣ (𝐵𝑥) ≠ (𝐴𝑥)}){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐴 {𝑥 ∈ On ∣ (𝐵𝑥) ≠ (𝐴𝑥)}))
28 simpl1 1191 . . 3 (((𝐴 No 𝐵 No 𝐴𝐵) ∧ (𝐴 {𝑥 ∈ On ∣ (𝐵𝑥) ≠ (𝐴𝑥)}) = 2o) → 𝐴 No )
29 sltval2 27148 . . 3 ((𝐵 No 𝐴 No ) → (𝐵 <s 𝐴 ↔ (𝐵 {𝑥 ∈ On ∣ (𝐵𝑥) ≠ (𝐴𝑥)}){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐴 {𝑥 ∈ On ∣ (𝐵𝑥) ≠ (𝐴𝑥)})))
3011, 28, 29syl2anc 584 . 2 (((𝐴 No 𝐵 No 𝐴𝐵) ∧ (𝐴 {𝑥 ∈ On ∣ (𝐵𝑥) ≠ (𝐴𝑥)}) = 2o) → (𝐵 <s 𝐴 ↔ (𝐵 {𝑥 ∈ On ∣ (𝐵𝑥) ≠ (𝐴𝑥)}){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐴 {𝑥 ∈ On ∣ (𝐵𝑥) ≠ (𝐴𝑥)})))
3127, 30mpbird 256 1 (((𝐴 No 𝐵 No 𝐴𝐵) ∧ (𝐴 {𝑥 ∈ On ∣ (𝐵𝑥) ≠ (𝐴𝑥)}) = 2o) → 𝐵 <s 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wo 845  w3o 1086  w3a 1087   = wceq 1541  wcel 2106  wne 2940  {crab 3432  c0 4321  {ctp 4631  cop 4633   cint 4949   class class class wbr 5147  Oncon0 6361  cfv 6540  1oc1o 8455  2oc2o 8456   No csur 27132   <s cslt 27133
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pr 5426
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-tp 4632  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-ord 6364  df-on 6365  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-1o 8462  df-2o 8463  df-no 27135  df-slt 27136
This theorem is referenced by:  noetainflem4  27232
  Copyright terms: Public domain W3C validator