Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nosep2o Structured version   Visualization version   GIF version

Theorem nosep2o 33873
Description: If the value of a surreal at a separator is 2o then the surreal is greater. (Contributed by Scott Fenton, 7-Dec-2021.)
Assertion
Ref Expression
nosep2o (((𝐴 No 𝐵 No 𝐴𝐵) ∧ (𝐴 {𝑥 ∈ On ∣ (𝐵𝑥) ≠ (𝐴𝑥)}) = 2o) → 𝐵 <s 𝐴)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem nosep2o
StepHypRef Expression
1 simp2 1136 . . . . . . . . . . . 12 ((𝐴 No 𝐵 No 𝐴𝐵) → 𝐵 No )
2 simp1 1135 . . . . . . . . . . . 12 ((𝐴 No 𝐵 No 𝐴𝐵) → 𝐴 No )
3 simp3 1137 . . . . . . . . . . . . 13 ((𝐴 No 𝐵 No 𝐴𝐵) → 𝐴𝐵)
43necomd 3001 . . . . . . . . . . . 12 ((𝐴 No 𝐵 No 𝐴𝐵) → 𝐵𝐴)
5 nosepne 33871 . . . . . . . . . . . 12 ((𝐵 No 𝐴 No 𝐵𝐴) → (𝐵 {𝑥 ∈ On ∣ (𝐵𝑥) ≠ (𝐴𝑥)}) ≠ (𝐴 {𝑥 ∈ On ∣ (𝐵𝑥) ≠ (𝐴𝑥)}))
61, 2, 4, 5syl3anc 1370 . . . . . . . . . . 11 ((𝐴 No 𝐵 No 𝐴𝐵) → (𝐵 {𝑥 ∈ On ∣ (𝐵𝑥) ≠ (𝐴𝑥)}) ≠ (𝐴 {𝑥 ∈ On ∣ (𝐵𝑥) ≠ (𝐴𝑥)}))
76adantr 481 . . . . . . . . . 10 (((𝐴 No 𝐵 No 𝐴𝐵) ∧ (𝐴 {𝑥 ∈ On ∣ (𝐵𝑥) ≠ (𝐴𝑥)}) = 2o) → (𝐵 {𝑥 ∈ On ∣ (𝐵𝑥) ≠ (𝐴𝑥)}) ≠ (𝐴 {𝑥 ∈ On ∣ (𝐵𝑥) ≠ (𝐴𝑥)}))
8 simpr 485 . . . . . . . . . 10 (((𝐴 No 𝐵 No 𝐴𝐵) ∧ (𝐴 {𝑥 ∈ On ∣ (𝐵𝑥) ≠ (𝐴𝑥)}) = 2o) → (𝐴 {𝑥 ∈ On ∣ (𝐵𝑥) ≠ (𝐴𝑥)}) = 2o)
97, 8neeqtrd 3015 . . . . . . . . 9 (((𝐴 No 𝐵 No 𝐴𝐵) ∧ (𝐴 {𝑥 ∈ On ∣ (𝐵𝑥) ≠ (𝐴𝑥)}) = 2o) → (𝐵 {𝑥 ∈ On ∣ (𝐵𝑥) ≠ (𝐴𝑥)}) ≠ 2o)
109neneqd 2950 . . . . . . . 8 (((𝐴 No 𝐵 No 𝐴𝐵) ∧ (𝐴 {𝑥 ∈ On ∣ (𝐵𝑥) ≠ (𝐴𝑥)}) = 2o) → ¬ (𝐵 {𝑥 ∈ On ∣ (𝐵𝑥) ≠ (𝐴𝑥)}) = 2o)
11 simpl2 1191 . . . . . . . . 9 (((𝐴 No 𝐵 No 𝐴𝐵) ∧ (𝐴 {𝑥 ∈ On ∣ (𝐵𝑥) ≠ (𝐴𝑥)}) = 2o) → 𝐵 No )
12 nofv 33848 . . . . . . . . 9 (𝐵 No → ((𝐵 {𝑥 ∈ On ∣ (𝐵𝑥) ≠ (𝐴𝑥)}) = ∅ ∨ (𝐵 {𝑥 ∈ On ∣ (𝐵𝑥) ≠ (𝐴𝑥)}) = 1o ∨ (𝐵 {𝑥 ∈ On ∣ (𝐵𝑥) ≠ (𝐴𝑥)}) = 2o))
1311, 12syl 17 . . . . . . . 8 (((𝐴 No 𝐵 No 𝐴𝐵) ∧ (𝐴 {𝑥 ∈ On ∣ (𝐵𝑥) ≠ (𝐴𝑥)}) = 2o) → ((𝐵 {𝑥 ∈ On ∣ (𝐵𝑥) ≠ (𝐴𝑥)}) = ∅ ∨ (𝐵 {𝑥 ∈ On ∣ (𝐵𝑥) ≠ (𝐴𝑥)}) = 1o ∨ (𝐵 {𝑥 ∈ On ∣ (𝐵𝑥) ≠ (𝐴𝑥)}) = 2o))
14 3orel3 1485 . . . . . . . 8 (¬ (𝐵 {𝑥 ∈ On ∣ (𝐵𝑥) ≠ (𝐴𝑥)}) = 2o → (((𝐵 {𝑥 ∈ On ∣ (𝐵𝑥) ≠ (𝐴𝑥)}) = ∅ ∨ (𝐵 {𝑥 ∈ On ∣ (𝐵𝑥) ≠ (𝐴𝑥)}) = 1o ∨ (𝐵 {𝑥 ∈ On ∣ (𝐵𝑥) ≠ (𝐴𝑥)}) = 2o) → ((𝐵 {𝑥 ∈ On ∣ (𝐵𝑥) ≠ (𝐴𝑥)}) = ∅ ∨ (𝐵 {𝑥 ∈ On ∣ (𝐵𝑥) ≠ (𝐴𝑥)}) = 1o)))
1510, 13, 14sylc 65 . . . . . . 7 (((𝐴 No 𝐵 No 𝐴𝐵) ∧ (𝐴 {𝑥 ∈ On ∣ (𝐵𝑥) ≠ (𝐴𝑥)}) = 2o) → ((𝐵 {𝑥 ∈ On ∣ (𝐵𝑥) ≠ (𝐴𝑥)}) = ∅ ∨ (𝐵 {𝑥 ∈ On ∣ (𝐵𝑥) ≠ (𝐴𝑥)}) = 1o))
1615orcomd 868 . . . . . 6 (((𝐴 No 𝐵 No 𝐴𝐵) ∧ (𝐴 {𝑥 ∈ On ∣ (𝐵𝑥) ≠ (𝐴𝑥)}) = 2o) → ((𝐵 {𝑥 ∈ On ∣ (𝐵𝑥) ≠ (𝐴𝑥)}) = 1o ∨ (𝐵 {𝑥 ∈ On ∣ (𝐵𝑥) ≠ (𝐴𝑥)}) = ∅))
1716, 8jca 512 . . . . 5 (((𝐴 No 𝐵 No 𝐴𝐵) ∧ (𝐴 {𝑥 ∈ On ∣ (𝐵𝑥) ≠ (𝐴𝑥)}) = 2o) → (((𝐵 {𝑥 ∈ On ∣ (𝐵𝑥) ≠ (𝐴𝑥)}) = 1o ∨ (𝐵 {𝑥 ∈ On ∣ (𝐵𝑥) ≠ (𝐴𝑥)}) = ∅) ∧ (𝐴 {𝑥 ∈ On ∣ (𝐵𝑥) ≠ (𝐴𝑥)}) = 2o))
18 andir 1006 . . . . 5 ((((𝐵 {𝑥 ∈ On ∣ (𝐵𝑥) ≠ (𝐴𝑥)}) = 1o ∨ (𝐵 {𝑥 ∈ On ∣ (𝐵𝑥) ≠ (𝐴𝑥)}) = ∅) ∧ (𝐴 {𝑥 ∈ On ∣ (𝐵𝑥) ≠ (𝐴𝑥)}) = 2o) ↔ (((𝐵 {𝑥 ∈ On ∣ (𝐵𝑥) ≠ (𝐴𝑥)}) = 1o ∧ (𝐴 {𝑥 ∈ On ∣ (𝐵𝑥) ≠ (𝐴𝑥)}) = 2o) ∨ ((𝐵 {𝑥 ∈ On ∣ (𝐵𝑥) ≠ (𝐴𝑥)}) = ∅ ∧ (𝐴 {𝑥 ∈ On ∣ (𝐵𝑥) ≠ (𝐴𝑥)}) = 2o)))
1917, 18sylib 217 . . . 4 (((𝐴 No 𝐵 No 𝐴𝐵) ∧ (𝐴 {𝑥 ∈ On ∣ (𝐵𝑥) ≠ (𝐴𝑥)}) = 2o) → (((𝐵 {𝑥 ∈ On ∣ (𝐵𝑥) ≠ (𝐴𝑥)}) = 1o ∧ (𝐴 {𝑥 ∈ On ∣ (𝐵𝑥) ≠ (𝐴𝑥)}) = 2o) ∨ ((𝐵 {𝑥 ∈ On ∣ (𝐵𝑥) ≠ (𝐴𝑥)}) = ∅ ∧ (𝐴 {𝑥 ∈ On ∣ (𝐵𝑥) ≠ (𝐴𝑥)}) = 2o)))
20 3mix2 1330 . . . . 5 (((𝐵 {𝑥 ∈ On ∣ (𝐵𝑥) ≠ (𝐴𝑥)}) = 1o ∧ (𝐴 {𝑥 ∈ On ∣ (𝐵𝑥) ≠ (𝐴𝑥)}) = 2o) → (((𝐵 {𝑥 ∈ On ∣ (𝐵𝑥) ≠ (𝐴𝑥)}) = 1o ∧ (𝐴 {𝑥 ∈ On ∣ (𝐵𝑥) ≠ (𝐴𝑥)}) = ∅) ∨ ((𝐵 {𝑥 ∈ On ∣ (𝐵𝑥) ≠ (𝐴𝑥)}) = 1o ∧ (𝐴 {𝑥 ∈ On ∣ (𝐵𝑥) ≠ (𝐴𝑥)}) = 2o) ∨ ((𝐵 {𝑥 ∈ On ∣ (𝐵𝑥) ≠ (𝐴𝑥)}) = ∅ ∧ (𝐴 {𝑥 ∈ On ∣ (𝐵𝑥) ≠ (𝐴𝑥)}) = 2o)))
21 3mix3 1331 . . . . 5 (((𝐵 {𝑥 ∈ On ∣ (𝐵𝑥) ≠ (𝐴𝑥)}) = ∅ ∧ (𝐴 {𝑥 ∈ On ∣ (𝐵𝑥) ≠ (𝐴𝑥)}) = 2o) → (((𝐵 {𝑥 ∈ On ∣ (𝐵𝑥) ≠ (𝐴𝑥)}) = 1o ∧ (𝐴 {𝑥 ∈ On ∣ (𝐵𝑥) ≠ (𝐴𝑥)}) = ∅) ∨ ((𝐵 {𝑥 ∈ On ∣ (𝐵𝑥) ≠ (𝐴𝑥)}) = 1o ∧ (𝐴 {𝑥 ∈ On ∣ (𝐵𝑥) ≠ (𝐴𝑥)}) = 2o) ∨ ((𝐵 {𝑥 ∈ On ∣ (𝐵𝑥) ≠ (𝐴𝑥)}) = ∅ ∧ (𝐴 {𝑥 ∈ On ∣ (𝐵𝑥) ≠ (𝐴𝑥)}) = 2o)))
2220, 21jaoi 854 . . . 4 ((((𝐵 {𝑥 ∈ On ∣ (𝐵𝑥) ≠ (𝐴𝑥)}) = 1o ∧ (𝐴 {𝑥 ∈ On ∣ (𝐵𝑥) ≠ (𝐴𝑥)}) = 2o) ∨ ((𝐵 {𝑥 ∈ On ∣ (𝐵𝑥) ≠ (𝐴𝑥)}) = ∅ ∧ (𝐴 {𝑥 ∈ On ∣ (𝐵𝑥) ≠ (𝐴𝑥)}) = 2o)) → (((𝐵 {𝑥 ∈ On ∣ (𝐵𝑥) ≠ (𝐴𝑥)}) = 1o ∧ (𝐴 {𝑥 ∈ On ∣ (𝐵𝑥) ≠ (𝐴𝑥)}) = ∅) ∨ ((𝐵 {𝑥 ∈ On ∣ (𝐵𝑥) ≠ (𝐴𝑥)}) = 1o ∧ (𝐴 {𝑥 ∈ On ∣ (𝐵𝑥) ≠ (𝐴𝑥)}) = 2o) ∨ ((𝐵 {𝑥 ∈ On ∣ (𝐵𝑥) ≠ (𝐴𝑥)}) = ∅ ∧ (𝐴 {𝑥 ∈ On ∣ (𝐵𝑥) ≠ (𝐴𝑥)}) = 2o)))
2319, 22syl 17 . . 3 (((𝐴 No 𝐵 No 𝐴𝐵) ∧ (𝐴 {𝑥 ∈ On ∣ (𝐵𝑥) ≠ (𝐴𝑥)}) = 2o) → (((𝐵 {𝑥 ∈ On ∣ (𝐵𝑥) ≠ (𝐴𝑥)}) = 1o ∧ (𝐴 {𝑥 ∈ On ∣ (𝐵𝑥) ≠ (𝐴𝑥)}) = ∅) ∨ ((𝐵 {𝑥 ∈ On ∣ (𝐵𝑥) ≠ (𝐴𝑥)}) = 1o ∧ (𝐴 {𝑥 ∈ On ∣ (𝐵𝑥) ≠ (𝐴𝑥)}) = 2o) ∨ ((𝐵 {𝑥 ∈ On ∣ (𝐵𝑥) ≠ (𝐴𝑥)}) = ∅ ∧ (𝐴 {𝑥 ∈ On ∣ (𝐵𝑥) ≠ (𝐴𝑥)}) = 2o)))
24 fvex 6782 . . . 4 (𝐵 {𝑥 ∈ On ∣ (𝐵𝑥) ≠ (𝐴𝑥)}) ∈ V
25 fvex 6782 . . . 4 (𝐴 {𝑥 ∈ On ∣ (𝐵𝑥) ≠ (𝐴𝑥)}) ∈ V
2624, 25brtp 33705 . . 3 ((𝐵 {𝑥 ∈ On ∣ (𝐵𝑥) ≠ (𝐴𝑥)}){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐴 {𝑥 ∈ On ∣ (𝐵𝑥) ≠ (𝐴𝑥)}) ↔ (((𝐵 {𝑥 ∈ On ∣ (𝐵𝑥) ≠ (𝐴𝑥)}) = 1o ∧ (𝐴 {𝑥 ∈ On ∣ (𝐵𝑥) ≠ (𝐴𝑥)}) = ∅) ∨ ((𝐵 {𝑥 ∈ On ∣ (𝐵𝑥) ≠ (𝐴𝑥)}) = 1o ∧ (𝐴 {𝑥 ∈ On ∣ (𝐵𝑥) ≠ (𝐴𝑥)}) = 2o) ∨ ((𝐵 {𝑥 ∈ On ∣ (𝐵𝑥) ≠ (𝐴𝑥)}) = ∅ ∧ (𝐴 {𝑥 ∈ On ∣ (𝐵𝑥) ≠ (𝐴𝑥)}) = 2o)))
2723, 26sylibr 233 . 2 (((𝐴 No 𝐵 No 𝐴𝐵) ∧ (𝐴 {𝑥 ∈ On ∣ (𝐵𝑥) ≠ (𝐴𝑥)}) = 2o) → (𝐵 {𝑥 ∈ On ∣ (𝐵𝑥) ≠ (𝐴𝑥)}){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐴 {𝑥 ∈ On ∣ (𝐵𝑥) ≠ (𝐴𝑥)}))
28 simpl1 1190 . . 3 (((𝐴 No 𝐵 No 𝐴𝐵) ∧ (𝐴 {𝑥 ∈ On ∣ (𝐵𝑥) ≠ (𝐴𝑥)}) = 2o) → 𝐴 No )
29 sltval2 33847 . . 3 ((𝐵 No 𝐴 No ) → (𝐵 <s 𝐴 ↔ (𝐵 {𝑥 ∈ On ∣ (𝐵𝑥) ≠ (𝐴𝑥)}){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐴 {𝑥 ∈ On ∣ (𝐵𝑥) ≠ (𝐴𝑥)})))
3011, 28, 29syl2anc 584 . 2 (((𝐴 No 𝐵 No 𝐴𝐵) ∧ (𝐴 {𝑥 ∈ On ∣ (𝐵𝑥) ≠ (𝐴𝑥)}) = 2o) → (𝐵 <s 𝐴 ↔ (𝐵 {𝑥 ∈ On ∣ (𝐵𝑥) ≠ (𝐴𝑥)}){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐴 {𝑥 ∈ On ∣ (𝐵𝑥) ≠ (𝐴𝑥)})))
3127, 30mpbird 256 1 (((𝐴 No 𝐵 No 𝐴𝐵) ∧ (𝐴 {𝑥 ∈ On ∣ (𝐵𝑥) ≠ (𝐴𝑥)}) = 2o) → 𝐵 <s 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wo 844  w3o 1085  w3a 1086   = wceq 1542  wcel 2110  wne 2945  {crab 3070  c0 4262  {ctp 4571  cop 4573   cint 4885   class class class wbr 5079  Oncon0 6264  cfv 6431  1oc1o 8275  2oc2o 8276   No csur 33831   <s cslt 33832
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-rep 5214  ax-sep 5227  ax-nul 5234  ax-pr 5356  ax-un 7580
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-ral 3071  df-rex 3072  df-reu 3073  df-rab 3075  df-v 3433  df-sbc 3721  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4846  df-int 4886  df-iun 4932  df-br 5080  df-opab 5142  df-mpt 5163  df-tr 5197  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-ord 6267  df-on 6268  df-suc 6270  df-iota 6389  df-fun 6433  df-fn 6434  df-f 6435  df-f1 6436  df-fo 6437  df-f1o 6438  df-fv 6439  df-1o 8282  df-2o 8283  df-no 33834  df-slt 33835
This theorem is referenced by:  noetainflem4  33931
  Copyright terms: Public domain W3C validator