Proof of Theorem nosep2o
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | simp2 1137 | . . . . . . . . . . . 12
⊢ ((𝐴 ∈ 
No  ∧ 𝐵 ∈
 No  ∧ 𝐴 ≠ 𝐵) → 𝐵 ∈  No
) | 
| 2 |  | simp1 1136 | . . . . . . . . . . . 12
⊢ ((𝐴 ∈ 
No  ∧ 𝐵 ∈
 No  ∧ 𝐴 ≠ 𝐵) → 𝐴 ∈  No
) | 
| 3 |  | simp3 1138 | . . . . . . . . . . . . 13
⊢ ((𝐴 ∈ 
No  ∧ 𝐵 ∈
 No  ∧ 𝐴 ≠ 𝐵) → 𝐴 ≠ 𝐵) | 
| 4 | 3 | necomd 2995 | . . . . . . . . . . . 12
⊢ ((𝐴 ∈ 
No  ∧ 𝐵 ∈
 No  ∧ 𝐴 ≠ 𝐵) → 𝐵 ≠ 𝐴) | 
| 5 |  | nosepne 27726 | . . . . . . . . . . . 12
⊢ ((𝐵 ∈ 
No  ∧ 𝐴 ∈
 No  ∧ 𝐵 ≠ 𝐴) → (𝐵‘∩ {𝑥 ∈ On ∣ (𝐵‘𝑥) ≠ (𝐴‘𝑥)}) ≠ (𝐴‘∩ {𝑥 ∈ On ∣ (𝐵‘𝑥) ≠ (𝐴‘𝑥)})) | 
| 6 | 1, 2, 4, 5 | syl3anc 1372 | . . . . . . . . . . 11
⊢ ((𝐴 ∈ 
No  ∧ 𝐵 ∈
 No  ∧ 𝐴 ≠ 𝐵) → (𝐵‘∩ {𝑥 ∈ On ∣ (𝐵‘𝑥) ≠ (𝐴‘𝑥)}) ≠ (𝐴‘∩ {𝑥 ∈ On ∣ (𝐵‘𝑥) ≠ (𝐴‘𝑥)})) | 
| 7 | 6 | adantr 480 | . . . . . . . . . 10
⊢ (((𝐴 ∈ 
No  ∧ 𝐵 ∈
 No  ∧ 𝐴 ≠ 𝐵) ∧ (𝐴‘∩ {𝑥 ∈ On ∣ (𝐵‘𝑥) ≠ (𝐴‘𝑥)}) = 2o) → (𝐵‘∩ {𝑥
∈ On ∣ (𝐵‘𝑥) ≠ (𝐴‘𝑥)}) ≠ (𝐴‘∩ {𝑥 ∈ On ∣ (𝐵‘𝑥) ≠ (𝐴‘𝑥)})) | 
| 8 |  | simpr 484 | . . . . . . . . . 10
⊢ (((𝐴 ∈ 
No  ∧ 𝐵 ∈
 No  ∧ 𝐴 ≠ 𝐵) ∧ (𝐴‘∩ {𝑥 ∈ On ∣ (𝐵‘𝑥) ≠ (𝐴‘𝑥)}) = 2o) → (𝐴‘∩ {𝑥
∈ On ∣ (𝐵‘𝑥) ≠ (𝐴‘𝑥)}) = 2o) | 
| 9 | 7, 8 | neeqtrd 3009 | . . . . . . . . 9
⊢ (((𝐴 ∈ 
No  ∧ 𝐵 ∈
 No  ∧ 𝐴 ≠ 𝐵) ∧ (𝐴‘∩ {𝑥 ∈ On ∣ (𝐵‘𝑥) ≠ (𝐴‘𝑥)}) = 2o) → (𝐵‘∩ {𝑥
∈ On ∣ (𝐵‘𝑥) ≠ (𝐴‘𝑥)}) ≠ 2o) | 
| 10 | 9 | neneqd 2944 | . . . . . . . 8
⊢ (((𝐴 ∈ 
No  ∧ 𝐵 ∈
 No  ∧ 𝐴 ≠ 𝐵) ∧ (𝐴‘∩ {𝑥 ∈ On ∣ (𝐵‘𝑥) ≠ (𝐴‘𝑥)}) = 2o) → ¬ (𝐵‘∩ {𝑥
∈ On ∣ (𝐵‘𝑥) ≠ (𝐴‘𝑥)}) = 2o) | 
| 11 |  | simpl2 1192 | . . . . . . . . 9
⊢ (((𝐴 ∈ 
No  ∧ 𝐵 ∈
 No  ∧ 𝐴 ≠ 𝐵) ∧ (𝐴‘∩ {𝑥 ∈ On ∣ (𝐵‘𝑥) ≠ (𝐴‘𝑥)}) = 2o) → 𝐵 ∈  No
) | 
| 12 |  | nofv 27703 | . . . . . . . . 9
⊢ (𝐵 ∈ 
No  → ((𝐵‘∩ {𝑥 ∈ On ∣ (𝐵‘𝑥) ≠ (𝐴‘𝑥)}) = ∅ ∨ (𝐵‘∩ {𝑥 ∈ On ∣ (𝐵‘𝑥) ≠ (𝐴‘𝑥)}) = 1o ∨ (𝐵‘∩ {𝑥 ∈ On ∣ (𝐵‘𝑥) ≠ (𝐴‘𝑥)}) = 2o)) | 
| 13 | 11, 12 | syl 17 | . . . . . . . 8
⊢ (((𝐴 ∈ 
No  ∧ 𝐵 ∈
 No  ∧ 𝐴 ≠ 𝐵) ∧ (𝐴‘∩ {𝑥 ∈ On ∣ (𝐵‘𝑥) ≠ (𝐴‘𝑥)}) = 2o) → ((𝐵‘∩ {𝑥
∈ On ∣ (𝐵‘𝑥) ≠ (𝐴‘𝑥)}) = ∅ ∨ (𝐵‘∩ {𝑥 ∈ On ∣ (𝐵‘𝑥) ≠ (𝐴‘𝑥)}) = 1o ∨ (𝐵‘∩ {𝑥 ∈ On ∣ (𝐵‘𝑥) ≠ (𝐴‘𝑥)}) = 2o)) | 
| 14 |  | 3orel3 1487 | . . . . . . . 8
⊢ (¬
(𝐵‘∩ {𝑥
∈ On ∣ (𝐵‘𝑥) ≠ (𝐴‘𝑥)}) = 2o → (((𝐵‘∩ {𝑥
∈ On ∣ (𝐵‘𝑥) ≠ (𝐴‘𝑥)}) = ∅ ∨ (𝐵‘∩ {𝑥 ∈ On ∣ (𝐵‘𝑥) ≠ (𝐴‘𝑥)}) = 1o ∨ (𝐵‘∩ {𝑥 ∈ On ∣ (𝐵‘𝑥) ≠ (𝐴‘𝑥)}) = 2o) → ((𝐵‘∩ {𝑥
∈ On ∣ (𝐵‘𝑥) ≠ (𝐴‘𝑥)}) = ∅ ∨ (𝐵‘∩ {𝑥 ∈ On ∣ (𝐵‘𝑥) ≠ (𝐴‘𝑥)}) = 1o))) | 
| 15 | 10, 13, 14 | sylc 65 | . . . . . . 7
⊢ (((𝐴 ∈ 
No  ∧ 𝐵 ∈
 No  ∧ 𝐴 ≠ 𝐵) ∧ (𝐴‘∩ {𝑥 ∈ On ∣ (𝐵‘𝑥) ≠ (𝐴‘𝑥)}) = 2o) → ((𝐵‘∩ {𝑥
∈ On ∣ (𝐵‘𝑥) ≠ (𝐴‘𝑥)}) = ∅ ∨ (𝐵‘∩ {𝑥 ∈ On ∣ (𝐵‘𝑥) ≠ (𝐴‘𝑥)}) = 1o)) | 
| 16 | 15 | orcomd 871 | . . . . . 6
⊢ (((𝐴 ∈ 
No  ∧ 𝐵 ∈
 No  ∧ 𝐴 ≠ 𝐵) ∧ (𝐴‘∩ {𝑥 ∈ On ∣ (𝐵‘𝑥) ≠ (𝐴‘𝑥)}) = 2o) → ((𝐵‘∩ {𝑥
∈ On ∣ (𝐵‘𝑥) ≠ (𝐴‘𝑥)}) = 1o ∨ (𝐵‘∩ {𝑥 ∈ On ∣ (𝐵‘𝑥) ≠ (𝐴‘𝑥)}) = ∅)) | 
| 17 | 16, 8 | jca 511 | . . . . 5
⊢ (((𝐴 ∈ 
No  ∧ 𝐵 ∈
 No  ∧ 𝐴 ≠ 𝐵) ∧ (𝐴‘∩ {𝑥 ∈ On ∣ (𝐵‘𝑥) ≠ (𝐴‘𝑥)}) = 2o) → (((𝐵‘∩ {𝑥
∈ On ∣ (𝐵‘𝑥) ≠ (𝐴‘𝑥)}) = 1o ∨ (𝐵‘∩ {𝑥 ∈ On ∣ (𝐵‘𝑥) ≠ (𝐴‘𝑥)}) = ∅) ∧ (𝐴‘∩ {𝑥 ∈ On ∣ (𝐵‘𝑥) ≠ (𝐴‘𝑥)}) = 2o)) | 
| 18 |  | andir 1010 | . . . . 5
⊢ ((((𝐵‘∩ {𝑥
∈ On ∣ (𝐵‘𝑥) ≠ (𝐴‘𝑥)}) = 1o ∨ (𝐵‘∩ {𝑥 ∈ On ∣ (𝐵‘𝑥) ≠ (𝐴‘𝑥)}) = ∅) ∧ (𝐴‘∩ {𝑥 ∈ On ∣ (𝐵‘𝑥) ≠ (𝐴‘𝑥)}) = 2o) ↔ (((𝐵‘∩ {𝑥
∈ On ∣ (𝐵‘𝑥) ≠ (𝐴‘𝑥)}) = 1o ∧ (𝐴‘∩ {𝑥 ∈ On ∣ (𝐵‘𝑥) ≠ (𝐴‘𝑥)}) = 2o) ∨ ((𝐵‘∩ {𝑥 ∈ On ∣ (𝐵‘𝑥) ≠ (𝐴‘𝑥)}) = ∅ ∧ (𝐴‘∩ {𝑥 ∈ On ∣ (𝐵‘𝑥) ≠ (𝐴‘𝑥)}) = 2o))) | 
| 19 | 17, 18 | sylib 218 | . . . 4
⊢ (((𝐴 ∈ 
No  ∧ 𝐵 ∈
 No  ∧ 𝐴 ≠ 𝐵) ∧ (𝐴‘∩ {𝑥 ∈ On ∣ (𝐵‘𝑥) ≠ (𝐴‘𝑥)}) = 2o) → (((𝐵‘∩ {𝑥
∈ On ∣ (𝐵‘𝑥) ≠ (𝐴‘𝑥)}) = 1o ∧ (𝐴‘∩ {𝑥 ∈ On ∣ (𝐵‘𝑥) ≠ (𝐴‘𝑥)}) = 2o) ∨ ((𝐵‘∩ {𝑥 ∈ On ∣ (𝐵‘𝑥) ≠ (𝐴‘𝑥)}) = ∅ ∧ (𝐴‘∩ {𝑥 ∈ On ∣ (𝐵‘𝑥) ≠ (𝐴‘𝑥)}) = 2o))) | 
| 20 |  | 3mix2 1331 | . . . . 5
⊢ (((𝐵‘∩ {𝑥
∈ On ∣ (𝐵‘𝑥) ≠ (𝐴‘𝑥)}) = 1o ∧ (𝐴‘∩ {𝑥 ∈ On ∣ (𝐵‘𝑥) ≠ (𝐴‘𝑥)}) = 2o) → (((𝐵‘∩ {𝑥
∈ On ∣ (𝐵‘𝑥) ≠ (𝐴‘𝑥)}) = 1o ∧ (𝐴‘∩ {𝑥 ∈ On ∣ (𝐵‘𝑥) ≠ (𝐴‘𝑥)}) = ∅) ∨ ((𝐵‘∩ {𝑥 ∈ On ∣ (𝐵‘𝑥) ≠ (𝐴‘𝑥)}) = 1o ∧ (𝐴‘∩ {𝑥 ∈ On ∣ (𝐵‘𝑥) ≠ (𝐴‘𝑥)}) = 2o) ∨ ((𝐵‘∩ {𝑥 ∈ On ∣ (𝐵‘𝑥) ≠ (𝐴‘𝑥)}) = ∅ ∧ (𝐴‘∩ {𝑥 ∈ On ∣ (𝐵‘𝑥) ≠ (𝐴‘𝑥)}) = 2o))) | 
| 21 |  | 3mix3 1332 | . . . . 5
⊢ (((𝐵‘∩ {𝑥
∈ On ∣ (𝐵‘𝑥) ≠ (𝐴‘𝑥)}) = ∅ ∧ (𝐴‘∩ {𝑥 ∈ On ∣ (𝐵‘𝑥) ≠ (𝐴‘𝑥)}) = 2o) → (((𝐵‘∩ {𝑥
∈ On ∣ (𝐵‘𝑥) ≠ (𝐴‘𝑥)}) = 1o ∧ (𝐴‘∩ {𝑥 ∈ On ∣ (𝐵‘𝑥) ≠ (𝐴‘𝑥)}) = ∅) ∨ ((𝐵‘∩ {𝑥 ∈ On ∣ (𝐵‘𝑥) ≠ (𝐴‘𝑥)}) = 1o ∧ (𝐴‘∩ {𝑥 ∈ On ∣ (𝐵‘𝑥) ≠ (𝐴‘𝑥)}) = 2o) ∨ ((𝐵‘∩ {𝑥 ∈ On ∣ (𝐵‘𝑥) ≠ (𝐴‘𝑥)}) = ∅ ∧ (𝐴‘∩ {𝑥 ∈ On ∣ (𝐵‘𝑥) ≠ (𝐴‘𝑥)}) = 2o))) | 
| 22 | 20, 21 | jaoi 857 | . . . 4
⊢ ((((𝐵‘∩ {𝑥
∈ On ∣ (𝐵‘𝑥) ≠ (𝐴‘𝑥)}) = 1o ∧ (𝐴‘∩ {𝑥 ∈ On ∣ (𝐵‘𝑥) ≠ (𝐴‘𝑥)}) = 2o) ∨ ((𝐵‘∩ {𝑥 ∈ On ∣ (𝐵‘𝑥) ≠ (𝐴‘𝑥)}) = ∅ ∧ (𝐴‘∩ {𝑥 ∈ On ∣ (𝐵‘𝑥) ≠ (𝐴‘𝑥)}) = 2o)) → (((𝐵‘∩ {𝑥
∈ On ∣ (𝐵‘𝑥) ≠ (𝐴‘𝑥)}) = 1o ∧ (𝐴‘∩ {𝑥 ∈ On ∣ (𝐵‘𝑥) ≠ (𝐴‘𝑥)}) = ∅) ∨ ((𝐵‘∩ {𝑥 ∈ On ∣ (𝐵‘𝑥) ≠ (𝐴‘𝑥)}) = 1o ∧ (𝐴‘∩ {𝑥 ∈ On ∣ (𝐵‘𝑥) ≠ (𝐴‘𝑥)}) = 2o) ∨ ((𝐵‘∩ {𝑥 ∈ On ∣ (𝐵‘𝑥) ≠ (𝐴‘𝑥)}) = ∅ ∧ (𝐴‘∩ {𝑥 ∈ On ∣ (𝐵‘𝑥) ≠ (𝐴‘𝑥)}) = 2o))) | 
| 23 | 19, 22 | syl 17 | . . 3
⊢ (((𝐴 ∈ 
No  ∧ 𝐵 ∈
 No  ∧ 𝐴 ≠ 𝐵) ∧ (𝐴‘∩ {𝑥 ∈ On ∣ (𝐵‘𝑥) ≠ (𝐴‘𝑥)}) = 2o) → (((𝐵‘∩ {𝑥
∈ On ∣ (𝐵‘𝑥) ≠ (𝐴‘𝑥)}) = 1o ∧ (𝐴‘∩ {𝑥 ∈ On ∣ (𝐵‘𝑥) ≠ (𝐴‘𝑥)}) = ∅) ∨ ((𝐵‘∩ {𝑥 ∈ On ∣ (𝐵‘𝑥) ≠ (𝐴‘𝑥)}) = 1o ∧ (𝐴‘∩ {𝑥 ∈ On ∣ (𝐵‘𝑥) ≠ (𝐴‘𝑥)}) = 2o) ∨ ((𝐵‘∩ {𝑥 ∈ On ∣ (𝐵‘𝑥) ≠ (𝐴‘𝑥)}) = ∅ ∧ (𝐴‘∩ {𝑥 ∈ On ∣ (𝐵‘𝑥) ≠ (𝐴‘𝑥)}) = 2o))) | 
| 24 |  | fvex 6918 | . . . 4
⊢ (𝐵‘∩ {𝑥
∈ On ∣ (𝐵‘𝑥) ≠ (𝐴‘𝑥)}) ∈ V | 
| 25 |  | fvex 6918 | . . . 4
⊢ (𝐴‘∩ {𝑥
∈ On ∣ (𝐵‘𝑥) ≠ (𝐴‘𝑥)}) ∈ V | 
| 26 | 24, 25 | brtp 5527 | . . 3
⊢ ((𝐵‘∩ {𝑥
∈ On ∣ (𝐵‘𝑥) ≠ (𝐴‘𝑥)}){〈1o, ∅〉,
〈1o, 2o〉, 〈∅, 2o〉}
(𝐴‘∩ {𝑥
∈ On ∣ (𝐵‘𝑥) ≠ (𝐴‘𝑥)}) ↔ (((𝐵‘∩ {𝑥 ∈ On ∣ (𝐵‘𝑥) ≠ (𝐴‘𝑥)}) = 1o ∧ (𝐴‘∩ {𝑥 ∈ On ∣ (𝐵‘𝑥) ≠ (𝐴‘𝑥)}) = ∅) ∨ ((𝐵‘∩ {𝑥 ∈ On ∣ (𝐵‘𝑥) ≠ (𝐴‘𝑥)}) = 1o ∧ (𝐴‘∩ {𝑥 ∈ On ∣ (𝐵‘𝑥) ≠ (𝐴‘𝑥)}) = 2o) ∨ ((𝐵‘∩ {𝑥 ∈ On ∣ (𝐵‘𝑥) ≠ (𝐴‘𝑥)}) = ∅ ∧ (𝐴‘∩ {𝑥 ∈ On ∣ (𝐵‘𝑥) ≠ (𝐴‘𝑥)}) = 2o))) | 
| 27 | 23, 26 | sylibr 234 | . 2
⊢ (((𝐴 ∈ 
No  ∧ 𝐵 ∈
 No  ∧ 𝐴 ≠ 𝐵) ∧ (𝐴‘∩ {𝑥 ∈ On ∣ (𝐵‘𝑥) ≠ (𝐴‘𝑥)}) = 2o) → (𝐵‘∩ {𝑥
∈ On ∣ (𝐵‘𝑥) ≠ (𝐴‘𝑥)}){〈1o, ∅〉,
〈1o, 2o〉, 〈∅, 2o〉}
(𝐴‘∩ {𝑥
∈ On ∣ (𝐵‘𝑥) ≠ (𝐴‘𝑥)})) | 
| 28 |  | simpl1 1191 | . . 3
⊢ (((𝐴 ∈ 
No  ∧ 𝐵 ∈
 No  ∧ 𝐴 ≠ 𝐵) ∧ (𝐴‘∩ {𝑥 ∈ On ∣ (𝐵‘𝑥) ≠ (𝐴‘𝑥)}) = 2o) → 𝐴 ∈  No
) | 
| 29 |  | sltval2 27702 | . . 3
⊢ ((𝐵 ∈ 
No  ∧ 𝐴 ∈
 No ) → (𝐵 <s 𝐴 ↔ (𝐵‘∩ {𝑥 ∈ On ∣ (𝐵‘𝑥) ≠ (𝐴‘𝑥)}){〈1o, ∅〉,
〈1o, 2o〉, 〈∅, 2o〉}
(𝐴‘∩ {𝑥
∈ On ∣ (𝐵‘𝑥) ≠ (𝐴‘𝑥)}))) | 
| 30 | 11, 28, 29 | syl2anc 584 | . 2
⊢ (((𝐴 ∈ 
No  ∧ 𝐵 ∈
 No  ∧ 𝐴 ≠ 𝐵) ∧ (𝐴‘∩ {𝑥 ∈ On ∣ (𝐵‘𝑥) ≠ (𝐴‘𝑥)}) = 2o) → (𝐵 <s 𝐴 ↔ (𝐵‘∩ {𝑥 ∈ On ∣ (𝐵‘𝑥) ≠ (𝐴‘𝑥)}){〈1o, ∅〉,
〈1o, 2o〉, 〈∅, 2o〉}
(𝐴‘∩ {𝑥
∈ On ∣ (𝐵‘𝑥) ≠ (𝐴‘𝑥)}))) | 
| 31 | 27, 30 | mpbird 257 | 1
⊢ (((𝐴 ∈ 
No  ∧ 𝐵 ∈
 No  ∧ 𝐴 ≠ 𝐵) ∧ (𝐴‘∩ {𝑥 ∈ On ∣ (𝐵‘𝑥) ≠ (𝐴‘𝑥)}) = 2o) → 𝐵 <s 𝐴) |