| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eeor | Structured version Visualization version GIF version | ||
| Description: Distribute existential quantifiers. (Contributed by NM, 8-Aug-1994.) Avoid ax-10 2141. (Revised by GG, 21-Nov-2024.) |
| Ref | Expression |
|---|---|
| eeor.1 | ⊢ Ⅎ𝑦𝜑 |
| eeor.2 | ⊢ Ⅎ𝑥𝜓 |
| Ref | Expression |
|---|---|
| eeor | ⊢ (∃𝑥∃𝑦(𝜑 ∨ 𝜓) ↔ (∃𝑥𝜑 ∨ ∃𝑦𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 19.43 1882 | . . 3 ⊢ (∃𝑦(𝜑 ∨ 𝜓) ↔ (∃𝑦𝜑 ∨ ∃𝑦𝜓)) | |
| 2 | 1 | exbii 1848 | . 2 ⊢ (∃𝑥∃𝑦(𝜑 ∨ 𝜓) ↔ ∃𝑥(∃𝑦𝜑 ∨ ∃𝑦𝜓)) |
| 3 | 19.43 1882 | . . 3 ⊢ (∃𝑥(∃𝑦𝜑 ∨ ∃𝑦𝜓) ↔ (∃𝑥∃𝑦𝜑 ∨ ∃𝑥∃𝑦𝜓)) | |
| 4 | eeor.1 | . . . . . 6 ⊢ Ⅎ𝑦𝜑 | |
| 5 | 4 | 19.9 2205 | . . . . 5 ⊢ (∃𝑦𝜑 ↔ 𝜑) |
| 6 | 5 | exbii 1848 | . . . 4 ⊢ (∃𝑥∃𝑦𝜑 ↔ ∃𝑥𝜑) |
| 7 | excom 2162 | . . . . 5 ⊢ (∃𝑥∃𝑦𝜓 ↔ ∃𝑦∃𝑥𝜓) | |
| 8 | eeor.2 | . . . . . . 7 ⊢ Ⅎ𝑥𝜓 | |
| 9 | 8 | 19.9 2205 | . . . . . 6 ⊢ (∃𝑥𝜓 ↔ 𝜓) |
| 10 | 9 | exbii 1848 | . . . . 5 ⊢ (∃𝑦∃𝑥𝜓 ↔ ∃𝑦𝜓) |
| 11 | 7, 10 | bitri 275 | . . . 4 ⊢ (∃𝑥∃𝑦𝜓 ↔ ∃𝑦𝜓) |
| 12 | 6, 11 | orbi12i 914 | . . 3 ⊢ ((∃𝑥∃𝑦𝜑 ∨ ∃𝑥∃𝑦𝜓) ↔ (∃𝑥𝜑 ∨ ∃𝑦𝜓)) |
| 13 | 3, 12 | bitri 275 | . 2 ⊢ (∃𝑥(∃𝑦𝜑 ∨ ∃𝑦𝜓) ↔ (∃𝑥𝜑 ∨ ∃𝑦𝜓)) |
| 14 | 2, 13 | bitri 275 | 1 ⊢ (∃𝑥∃𝑦(𝜑 ∨ 𝜓) ↔ (∃𝑥𝜑 ∨ ∃𝑦𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∨ wo 847 ∃wex 1779 Ⅎwnf 1783 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-11 2157 ax-12 2177 |
| This theorem depends on definitions: df-bi 207 df-or 848 df-ex 1780 df-nf 1784 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |