Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > eeor | Structured version Visualization version GIF version |
Description: Distribute existential quantifiers. (Contributed by NM, 8-Aug-1994.) Avoid ax-10 2136. (Revised by Gino Giotto, 21-Nov-2024.) |
Ref | Expression |
---|---|
eeor.1 | ⊢ Ⅎ𝑦𝜑 |
eeor.2 | ⊢ Ⅎ𝑥𝜓 |
Ref | Expression |
---|---|
eeor | ⊢ (∃𝑥∃𝑦(𝜑 ∨ 𝜓) ↔ (∃𝑥𝜑 ∨ ∃𝑦𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 19.43 1884 | . . 3 ⊢ (∃𝑦(𝜑 ∨ 𝜓) ↔ (∃𝑦𝜑 ∨ ∃𝑦𝜓)) | |
2 | 1 | exbii 1849 | . 2 ⊢ (∃𝑥∃𝑦(𝜑 ∨ 𝜓) ↔ ∃𝑥(∃𝑦𝜑 ∨ ∃𝑦𝜓)) |
3 | 19.43 1884 | . . 3 ⊢ (∃𝑥(∃𝑦𝜑 ∨ ∃𝑦𝜓) ↔ (∃𝑥∃𝑦𝜑 ∨ ∃𝑥∃𝑦𝜓)) | |
4 | eeor.1 | . . . . . 6 ⊢ Ⅎ𝑦𝜑 | |
5 | 4 | 19.9 2197 | . . . . 5 ⊢ (∃𝑦𝜑 ↔ 𝜑) |
6 | 5 | exbii 1849 | . . . 4 ⊢ (∃𝑥∃𝑦𝜑 ↔ ∃𝑥𝜑) |
7 | excom 2161 | . . . . 5 ⊢ (∃𝑥∃𝑦𝜓 ↔ ∃𝑦∃𝑥𝜓) | |
8 | eeor.2 | . . . . . . 7 ⊢ Ⅎ𝑥𝜓 | |
9 | 8 | 19.9 2197 | . . . . . 6 ⊢ (∃𝑥𝜓 ↔ 𝜓) |
10 | 9 | exbii 1849 | . . . . 5 ⊢ (∃𝑦∃𝑥𝜓 ↔ ∃𝑦𝜓) |
11 | 7, 10 | bitri 274 | . . . 4 ⊢ (∃𝑥∃𝑦𝜓 ↔ ∃𝑦𝜓) |
12 | 6, 11 | orbi12i 912 | . . 3 ⊢ ((∃𝑥∃𝑦𝜑 ∨ ∃𝑥∃𝑦𝜓) ↔ (∃𝑥𝜑 ∨ ∃𝑦𝜓)) |
13 | 3, 12 | bitri 274 | . 2 ⊢ (∃𝑥(∃𝑦𝜑 ∨ ∃𝑦𝜓) ↔ (∃𝑥𝜑 ∨ ∃𝑦𝜓)) |
14 | 2, 13 | bitri 274 | 1 ⊢ (∃𝑥∃𝑦(𝜑 ∨ 𝜓) ↔ (∃𝑥𝜑 ∨ ∃𝑦𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∨ wo 844 ∃wex 1780 Ⅎwnf 1784 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-11 2153 ax-12 2170 |
This theorem depends on definitions: df-bi 206 df-or 845 df-ex 1781 df-nf 1785 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |