Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > eeor | Structured version Visualization version GIF version |
Description: Distribute existential quantifiers. (Contributed by NM, 8-Aug-1994.) |
Ref | Expression |
---|---|
eeor.1 | ⊢ Ⅎ𝑦𝜑 |
eeor.2 | ⊢ Ⅎ𝑥𝜓 |
Ref | Expression |
---|---|
eeor | ⊢ (∃𝑥∃𝑦(𝜑 ∨ 𝜓) ↔ (∃𝑥𝜑 ∨ ∃𝑦𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eeor.1 | . . . 4 ⊢ Ⅎ𝑦𝜑 | |
2 | 1 | 19.45 2234 | . . 3 ⊢ (∃𝑦(𝜑 ∨ 𝜓) ↔ (𝜑 ∨ ∃𝑦𝜓)) |
3 | 2 | exbii 1851 | . 2 ⊢ (∃𝑥∃𝑦(𝜑 ∨ 𝜓) ↔ ∃𝑥(𝜑 ∨ ∃𝑦𝜓)) |
4 | eeor.2 | . . . 4 ⊢ Ⅎ𝑥𝜓 | |
5 | 4 | nfex 2322 | . . 3 ⊢ Ⅎ𝑥∃𝑦𝜓 |
6 | 5 | 19.44 2233 | . 2 ⊢ (∃𝑥(𝜑 ∨ ∃𝑦𝜓) ↔ (∃𝑥𝜑 ∨ ∃𝑦𝜓)) |
7 | 3, 6 | bitri 274 | 1 ⊢ (∃𝑥∃𝑦(𝜑 ∨ 𝜓) ↔ (∃𝑥𝜑 ∨ ∃𝑦𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∨ wo 843 ∃wex 1783 Ⅎwnf 1787 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-10 2139 ax-11 2156 ax-12 2173 |
This theorem depends on definitions: df-bi 206 df-or 844 df-ex 1784 df-nf 1788 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |