MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  abanssr Structured version   Visualization version   GIF version

Theorem abanssr 4236
Description: A class abstraction with a conjunction is a subset of the class abstraction with the right conjunct only. (Contributed by AV, 7-Aug-2024.) (Proof shortened by SN, 22-Aug-2024.)
Assertion
Ref Expression
abanssr {𝑓 ∣ (𝜑𝜓)} ⊆ {𝑓𝜓}

Proof of Theorem abanssr
StepHypRef Expression
1 simpr 485 . 2 ((𝜑𝜓) → 𝜓)
21ss2abi 4000 1 {𝑓 ∣ (𝜑𝜓)} ⊆ {𝑓𝜓}
Colors of variables: wff setvar class
Syntax hints:  wa 396  {cab 2715  wss 3887
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-9 2116  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-tru 1542  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-in 3894  df-ss 3904
This theorem is referenced by:  hashf1lem1  14168
  Copyright terms: Public domain W3C validator