MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  abanssr Structured version   Visualization version   GIF version

Theorem abanssr 4331
Description: A class abstraction with a conjunction is a subset of the class abstraction with the right conjunct only. (Contributed by AV, 7-Aug-2024.) (Proof shortened by SN, 22-Aug-2024.)
Assertion
Ref Expression
abanssr {𝑓 ∣ (𝜑𝜓)} ⊆ {𝑓𝜓}

Proof of Theorem abanssr
StepHypRef Expression
1 simpr 484 . 2 ((𝜑𝜓) → 𝜓)
21ss2abi 4090 1 {𝑓 ∣ (𝜑𝜓)} ⊆ {𝑓𝜓}
Colors of variables: wff setvar class
Syntax hints:  wa 395  {cab 2717  wss 3976
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1540  df-sb 2065  df-clab 2718  df-ss 3993
This theorem is referenced by:  hashf1lem1  14504
  Copyright terms: Public domain W3C validator