MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  abanssl Structured version   Visualization version   GIF version

Theorem abanssl 4311
Description: A class abstraction with a conjunction is a subset of the class abstraction with the left conjunct only. (Contributed by AV, 7-Aug-2024.) (Proof shortened by SN, 22-Aug-2024.)
Assertion
Ref Expression
abanssl {𝑓 ∣ (𝜑𝜓)} ⊆ {𝑓𝜑}

Proof of Theorem abanssl
StepHypRef Expression
1 simpl 482 . 2 ((𝜑𝜓) → 𝜑)
21ss2abi 4067 1 {𝑓 ∣ (𝜑𝜓)} ⊆ {𝑓𝜑}
Colors of variables: wff setvar class
Syntax hints:  wa 395  {cab 2714  wss 3951
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-sb 2065  df-clab 2715  df-ss 3968
This theorem is referenced by:  f1setex  8897  isghm  19233  sn-isghm  42683  fsetprcnexALT  47074
  Copyright terms: Public domain W3C validator