| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ss2abi | Structured version Visualization version GIF version | ||
| Description: Inference of abstraction subclass from implication. (Contributed by NM, 31-Mar-1995.) Avoid ax-8 2115, ax-10 2146, ax-11 2162, ax-12 2182. (Revised by GG, 28-Jun-2024.) |
| Ref | Expression |
|---|---|
| ss2abi.1 | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| ss2abi | ⊢ {𝑥 ∣ 𝜑} ⊆ {𝑥 ∣ 𝜓} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tru 1545 | . 2 ⊢ ⊤ | |
| 2 | ss2abi.1 | . . . 4 ⊢ (𝜑 → 𝜓) | |
| 3 | 2 | a1i 11 | . . 3 ⊢ (⊤ → (𝜑 → 𝜓)) |
| 4 | 3 | ss2abdv 4014 | . 2 ⊢ (⊤ → {𝑥 ∣ 𝜑} ⊆ {𝑥 ∣ 𝜓}) |
| 5 | 1, 4 | ax-mp 5 | 1 ⊢ {𝑥 ∣ 𝜑} ⊆ {𝑥 ∣ 𝜓} |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ⊤wtru 1542 {cab 2711 ⊆ wss 3898 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2712 df-ss 3915 |
| This theorem is referenced by: abssi 4017 rabssab 4034 abanssl 4260 abanssr 4261 pwpwssunieq 5054 intabs 5289 abssexg 5322 imassrn 6024 fvclss 7181 fabexgOLD 7875 mapex 7877 f1oabexgOLD 7879 mapexOLD 8762 f1osetex 8789 fsetexb 8794 tc2 9637 hta 9797 infmap2 10115 cflm 10148 cflim2 10161 hsmex3 10332 domtriomlem 10340 axdc3lem2 10349 brdom7disj 10429 brdom6disj 10430 npex 10884 hashf1lem2 14365 issubc 17744 isghmOLD 19130 symgbas 19286 symgbasfi 19293 tgval 22871 ustfn 24118 ustval 24119 ustn0 24137 birthdaylem1 26889 nosupno 27643 rgrprc 29572 wksfval 29590 mptctf 32703 measbase 34231 measval 34232 ismeas 34233 isrnmeas 34234 ballotlem2 34523 subfaclefac 35241 satfvsuclem1 35424 dfon2lem2 35847 poimirlem4 37684 poimirlem9 37689 poimirlem26 37706 poimirlem27 37707 poimirlem28 37708 poimirlem32 37712 sdclem2 37802 lineset 39857 lautset 40201 pautsetN 40217 tendoset 40878 eldiophb 42874 rmxyelqirr 43027 hbtlem1 43240 hbtlem7 43242 relopabVD 45017 rabexgf 45145 prprval 47638 upwlksfval 48259 |
| Copyright terms: Public domain | W3C validator |