Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ss2abi | Structured version Visualization version GIF version |
Description: Inference of abstraction subclass from implication. (Contributed by NM, 31-Mar-1995.) Avoid ax-8 2107, ax-10 2136, ax-11 2153, ax-12 2170. (Revised by Gino Giotto, 28-Jun-2024.) |
Ref | Expression |
---|---|
ss2abi.1 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
ss2abi | ⊢ {𝑥 ∣ 𝜑} ⊆ {𝑥 ∣ 𝜓} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tru 1544 | . 2 ⊢ ⊤ | |
2 | ss2abi.1 | . . . 4 ⊢ (𝜑 → 𝜓) | |
3 | 2 | a1i 11 | . . 3 ⊢ (⊤ → (𝜑 → 𝜓)) |
4 | 3 | ss2abdv 4008 | . 2 ⊢ (⊤ → {𝑥 ∣ 𝜑} ⊆ {𝑥 ∣ 𝜓}) |
5 | 1, 4 | ax-mp 5 | 1 ⊢ {𝑥 ∣ 𝜑} ⊆ {𝑥 ∣ 𝜓} |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ⊤wtru 1541 {cab 2713 ⊆ wss 3898 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-9 2115 ax-ext 2707 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1543 df-ex 1781 df-sb 2067 df-clab 2714 df-cleq 2728 df-in 3905 df-ss 3915 |
This theorem is referenced by: abssi 4015 rabssab 4030 abanssl 4248 abanssr 4249 pwpwssunieq 5051 intabs 5286 abssexg 5325 imassrn 6010 fvclss 7171 fabexg 7849 f1oabexg 7851 mapex 8692 f1osetex 8718 fsetexb 8723 tc2 9599 hta 9754 infmap2 10075 cflm 10107 cflim2 10120 hsmex3 10291 domtriomlem 10299 axdc3lem2 10308 brdom7disj 10388 brdom6disj 10389 npex 10843 hashf1lem2 14270 issubc 17647 isghm 18930 permsetexOLD 19073 symgbas 19074 symgbasfi 19082 tgval 22211 ustfn 23459 ustval 23460 ustn0 23478 birthdaylem1 26207 nosupno 26957 rgrprc 28247 wksfval 28265 mptctf 31339 measbase 32463 measval 32464 ismeas 32465 isrnmeas 32466 ballotlem2 32755 subfaclefac 33437 satfvsuclem1 33620 dfon2lem2 34043 poimirlem4 35894 poimirlem9 35899 poimirlem26 35916 poimirlem27 35917 poimirlem28 35918 poimirlem32 35922 sdclem2 36013 lineset 38014 lautset 38358 pautsetN 38374 tendoset 39035 eldiophb 40849 rmxyelqirr 41002 hbtlem1 41219 hbtlem7 41221 relopabVD 42850 rabexgf 42896 prprval 45325 upwlksfval 45656 |
Copyright terms: Public domain | W3C validator |