| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ss2abi | Structured version Visualization version GIF version | ||
| Description: Inference of abstraction subclass from implication. (Contributed by NM, 31-Mar-1995.) Avoid ax-8 2111, ax-10 2142, ax-11 2158, ax-12 2178. (Revised by GG, 28-Jun-2024.) |
| Ref | Expression |
|---|---|
| ss2abi.1 | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| ss2abi | ⊢ {𝑥 ∣ 𝜑} ⊆ {𝑥 ∣ 𝜓} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tru 1544 | . 2 ⊢ ⊤ | |
| 2 | ss2abi.1 | . . . 4 ⊢ (𝜑 → 𝜓) | |
| 3 | 2 | a1i 11 | . . 3 ⊢ (⊤ → (𝜑 → 𝜓)) |
| 4 | 3 | ss2abdv 4029 | . 2 ⊢ (⊤ → {𝑥 ∣ 𝜑} ⊆ {𝑥 ∣ 𝜓}) |
| 5 | 1, 4 | ax-mp 5 | 1 ⊢ {𝑥 ∣ 𝜑} ⊆ {𝑥 ∣ 𝜓} |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ⊤wtru 1541 {cab 2707 ⊆ wss 3914 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 |
| This theorem depends on definitions: df-bi 207 df-tru 1543 df-sb 2066 df-clab 2708 df-ss 3931 |
| This theorem is referenced by: abssi 4033 rabssab 4048 abanssl 4274 abanssr 4275 pwpwssunieq 5068 intabs 5304 abssexg 5337 imassrn 6042 fvclss 7215 fabexgOLD 7915 mapex 7917 f1oabexgOLD 7919 mapexOLD 8805 f1osetex 8832 fsetexb 8837 tc2 9695 hta 9850 infmap2 10170 cflm 10203 cflim2 10216 hsmex3 10387 domtriomlem 10395 axdc3lem2 10404 brdom7disj 10484 brdom6disj 10485 npex 10939 hashf1lem2 14421 issubc 17797 isghmOLD 19148 symgbas 19302 symgbasfi 19309 tgval 22842 ustfn 24089 ustval 24090 ustn0 24108 birthdaylem1 26861 nosupno 27615 rgrprc 29519 wksfval 29537 mptctf 32641 measbase 34187 measval 34188 ismeas 34189 isrnmeas 34190 ballotlem2 34480 subfaclefac 35163 satfvsuclem1 35346 dfon2lem2 35772 poimirlem4 37618 poimirlem9 37623 poimirlem26 37640 poimirlem27 37641 poimirlem28 37642 poimirlem32 37646 sdclem2 37736 lineset 39732 lautset 40076 pautsetN 40092 tendoset 40753 eldiophb 42745 rmxyelqirr 42898 hbtlem1 43112 hbtlem7 43114 relopabVD 44890 rabexgf 45018 prprval 47515 upwlksfval 48123 |
| Copyright terms: Public domain | W3C validator |