Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ss2abi | Structured version Visualization version GIF version |
Description: Inference of abstraction subclass from implication. (Contributed by NM, 31-Mar-1995.) Avoid ax-8 2109, ax-10 2138, ax-11 2155, ax-12 2172. (Revised by Gino Giotto, 28-Jun-2024.) |
Ref | Expression |
---|---|
ss2abi.1 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
ss2abi | ⊢ {𝑥 ∣ 𝜑} ⊆ {𝑥 ∣ 𝜓} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tru 1543 | . 2 ⊢ ⊤ | |
2 | ss2abi.1 | . . . 4 ⊢ (𝜑 → 𝜓) | |
3 | 2 | a1i 11 | . . 3 ⊢ (⊤ → (𝜑 → 𝜓)) |
4 | 3 | ss2abdv 3998 | . 2 ⊢ (⊤ → {𝑥 ∣ 𝜑} ⊆ {𝑥 ∣ 𝜓}) |
5 | 1, 4 | ax-mp 5 | 1 ⊢ {𝑥 ∣ 𝜑} ⊆ {𝑥 ∣ 𝜓} |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ⊤wtru 1540 {cab 2716 ⊆ wss 3888 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-9 2117 ax-ext 2710 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-ex 1783 df-sb 2069 df-clab 2717 df-cleq 2731 df-in 3895 df-ss 3905 |
This theorem is referenced by: abssi 4004 rabssab 4019 abanssl 4236 abanssr 4237 pwpwssunieq 5034 intabs 5267 abssexg 5306 imassrn 5983 fvclss 7124 fabexg 7790 f1oabexg 7792 mapex 8630 f1osetex 8656 fsetexb 8661 tc2 9509 hta 9664 infmap2 9983 cflm 10015 cflim2 10028 hsmex3 10199 domtriomlem 10207 axdc3lem2 10216 brdom7disj 10296 brdom6disj 10297 npex 10751 hashf1lem2 14179 issubc 17559 isghm 18843 permsetexOLD 18986 symgbas 18987 symgbasfi 18995 tgval 22114 ustfn 23362 ustval 23363 ustn0 23381 birthdaylem1 26110 rgrprc 27967 wksfval 27985 mptctf 31061 measbase 32174 measval 32175 ismeas 32176 isrnmeas 32177 ballotlem2 32464 subfaclefac 33147 satfvsuclem1 33330 dfon2lem2 33769 nosupno 33915 poimirlem4 35790 poimirlem9 35795 poimirlem26 35812 poimirlem27 35813 poimirlem28 35814 poimirlem32 35818 sdclem2 35909 lineset 37759 lautset 38103 pautsetN 38119 tendoset 38780 eldiophb 40586 hbtlem1 40955 hbtlem7 40957 relopabVD 42528 rabexgf 42574 prprval 44977 upwlksfval 45308 |
Copyright terms: Public domain | W3C validator |