Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ss2abi | Structured version Visualization version GIF version |
Description: Inference of abstraction subclass from implication. (Contributed by NM, 31-Mar-1995.) Avoid ax-8 2110, ax-10 2139, ax-11 2156, ax-12 2173. (Revised by Gino Giotto, 28-Jun-2024.) |
Ref | Expression |
---|---|
ss2abi.1 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
ss2abi | ⊢ {𝑥 ∣ 𝜑} ⊆ {𝑥 ∣ 𝜓} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tru 1543 | . 2 ⊢ ⊤ | |
2 | ss2abi.1 | . . . 4 ⊢ (𝜑 → 𝜓) | |
3 | 2 | a1i 11 | . . 3 ⊢ (⊤ → (𝜑 → 𝜓)) |
4 | 3 | ss2abdv 3993 | . 2 ⊢ (⊤ → {𝑥 ∣ 𝜑} ⊆ {𝑥 ∣ 𝜓}) |
5 | 1, 4 | ax-mp 5 | 1 ⊢ {𝑥 ∣ 𝜑} ⊆ {𝑥 ∣ 𝜓} |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ⊤wtru 1540 {cab 2715 ⊆ wss 3883 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-in 3890 df-ss 3900 |
This theorem is referenced by: abssi 3999 rabssab 4014 abanssl 4232 abanssr 4233 pwpwssunieq 5029 intabs 5261 abssexg 5300 imassrn 5969 fvclss 7097 fabexg 7755 f1oabexg 7757 mapex 8579 f1osetex 8605 fsetexb 8610 tc2 9431 hta 9586 infmap2 9905 cflm 9937 cflim2 9950 hsmex3 10121 domtriomlem 10129 axdc3lem2 10138 brdom7disj 10218 brdom6disj 10219 npex 10673 hashf1lem2 14098 issubc 17466 isghm 18749 permsetexOLD 18892 symgbas 18893 symgbasfi 18901 tgval 22013 ustfn 23261 ustval 23262 ustn0 23280 birthdaylem1 26006 rgrprc 27861 wksfval 27879 mptctf 30954 measbase 32065 measval 32066 ismeas 32067 isrnmeas 32068 ballotlem2 32355 subfaclefac 33038 satfvsuclem1 33221 dfon2lem2 33666 nosupno 33833 poimirlem4 35708 poimirlem9 35713 poimirlem26 35730 poimirlem27 35731 poimirlem28 35732 poimirlem32 35736 sdclem2 35827 lineset 37679 lautset 38023 pautsetN 38039 tendoset 38700 eldiophb 40495 hbtlem1 40864 hbtlem7 40866 relopabVD 42410 rabexgf 42456 prprval 44854 upwlksfval 45185 |
Copyright terms: Public domain | W3C validator |