![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ss2abi | Structured version Visualization version GIF version |
Description: Inference of abstraction subclass from implication. (Contributed by NM, 31-Mar-1995.) Avoid ax-8 2108, ax-10 2137, ax-11 2154, ax-12 2171. (Revised by Gino Giotto, 28-Jun-2024.) |
Ref | Expression |
---|---|
ss2abi.1 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
ss2abi | ⊢ {𝑥 ∣ 𝜑} ⊆ {𝑥 ∣ 𝜓} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tru 1545 | . 2 ⊢ ⊤ | |
2 | ss2abi.1 | . . . 4 ⊢ (𝜑 → 𝜓) | |
3 | 2 | a1i 11 | . . 3 ⊢ (⊤ → (𝜑 → 𝜓)) |
4 | 3 | ss2abdv 4059 | . 2 ⊢ (⊤ → {𝑥 ∣ 𝜑} ⊆ {𝑥 ∣ 𝜓}) |
5 | 1, 4 | ax-mp 5 | 1 ⊢ {𝑥 ∣ 𝜑} ⊆ {𝑥 ∣ 𝜓} |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ⊤wtru 1542 {cab 2709 ⊆ wss 3947 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-9 2116 ax-ext 2703 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1544 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-in 3954 df-ss 3964 |
This theorem is referenced by: abssi 4066 rabssab 4082 abanssl 4300 abanssr 4301 pwpwssunieq 5106 intabs 5341 abssexg 5379 imassrn 6068 fvclss 7237 fabexg 7921 f1oabexg 7923 mapex 8822 f1osetex 8849 fsetexb 8854 tc2 9733 hta 9888 infmap2 10209 cflm 10241 cflim2 10254 hsmex3 10425 domtriomlem 10433 axdc3lem2 10442 brdom7disj 10522 brdom6disj 10523 npex 10977 hashf1lem2 14413 issubc 17781 isghm 19086 permsetexOLD 19231 symgbas 19232 symgbasfi 19240 tgval 22449 ustfn 23697 ustval 23698 ustn0 23716 birthdaylem1 26445 nosupno 27195 rgrprc 28837 wksfval 28855 mptctf 31929 measbase 33183 measval 33184 ismeas 33185 isrnmeas 33186 ballotlem2 33475 subfaclefac 34155 satfvsuclem1 34338 dfon2lem2 34744 poimirlem4 36480 poimirlem9 36485 poimirlem26 36502 poimirlem27 36503 poimirlem28 36504 poimirlem32 36508 sdclem2 36598 lineset 38597 lautset 38941 pautsetN 38957 tendoset 39618 eldiophb 41480 rmxyelqirr 41633 hbtlem1 41850 hbtlem7 41852 relopabVD 43647 rabexgf 43693 prprval 46168 upwlksfval 46499 |
Copyright terms: Public domain | W3C validator |