| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ss2abi | Structured version Visualization version GIF version | ||
| Description: Inference of abstraction subclass from implication. (Contributed by NM, 31-Mar-1995.) Avoid ax-8 2111, ax-10 2142, ax-11 2158, ax-12 2178. (Revised by GG, 28-Jun-2024.) |
| Ref | Expression |
|---|---|
| ss2abi.1 | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| ss2abi | ⊢ {𝑥 ∣ 𝜑} ⊆ {𝑥 ∣ 𝜓} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tru 1544 | . 2 ⊢ ⊤ | |
| 2 | ss2abi.1 | . . . 4 ⊢ (𝜑 → 𝜓) | |
| 3 | 2 | a1i 11 | . . 3 ⊢ (⊤ → (𝜑 → 𝜓)) |
| 4 | 3 | ss2abdv 4032 | . 2 ⊢ (⊤ → {𝑥 ∣ 𝜑} ⊆ {𝑥 ∣ 𝜓}) |
| 5 | 1, 4 | ax-mp 5 | 1 ⊢ {𝑥 ∣ 𝜑} ⊆ {𝑥 ∣ 𝜓} |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ⊤wtru 1541 {cab 2708 ⊆ wss 3917 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 |
| This theorem depends on definitions: df-bi 207 df-tru 1543 df-sb 2066 df-clab 2709 df-ss 3934 |
| This theorem is referenced by: abssi 4036 rabssab 4051 abanssl 4277 abanssr 4278 pwpwssunieq 5071 intabs 5307 abssexg 5340 imassrn 6045 fvclss 7218 fabexgOLD 7918 mapex 7920 f1oabexgOLD 7922 mapexOLD 8808 f1osetex 8835 fsetexb 8840 tc2 9702 hta 9857 infmap2 10177 cflm 10210 cflim2 10223 hsmex3 10394 domtriomlem 10402 axdc3lem2 10411 brdom7disj 10491 brdom6disj 10492 npex 10946 hashf1lem2 14428 issubc 17804 isghmOLD 19155 symgbas 19309 symgbasfi 19316 tgval 22849 ustfn 24096 ustval 24097 ustn0 24115 birthdaylem1 26868 nosupno 27622 rgrprc 29526 wksfval 29544 mptctf 32648 measbase 34194 measval 34195 ismeas 34196 isrnmeas 34197 ballotlem2 34487 subfaclefac 35170 satfvsuclem1 35353 dfon2lem2 35779 poimirlem4 37625 poimirlem9 37630 poimirlem26 37647 poimirlem27 37648 poimirlem28 37649 poimirlem32 37653 sdclem2 37743 lineset 39739 lautset 40083 pautsetN 40099 tendoset 40760 eldiophb 42752 rmxyelqirr 42905 hbtlem1 43119 hbtlem7 43121 relopabVD 44897 rabexgf 45025 prprval 47519 upwlksfval 48127 |
| Copyright terms: Public domain | W3C validator |