![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ss2abi | Structured version Visualization version GIF version |
Description: Inference of abstraction subclass from implication. (Contributed by NM, 31-Mar-1995.) Avoid ax-8 2109, ax-10 2138, ax-11 2155, ax-12 2172. (Revised by Gino Giotto, 28-Jun-2024.) |
Ref | Expression |
---|---|
ss2abi.1 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
ss2abi | ⊢ {𝑥 ∣ 𝜑} ⊆ {𝑥 ∣ 𝜓} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tru 1546 | . 2 ⊢ ⊤ | |
2 | ss2abi.1 | . . . 4 ⊢ (𝜑 → 𝜓) | |
3 | 2 | a1i 11 | . . 3 ⊢ (⊤ → (𝜑 → 𝜓)) |
4 | 3 | ss2abdv 4061 | . 2 ⊢ (⊤ → {𝑥 ∣ 𝜑} ⊆ {𝑥 ∣ 𝜓}) |
5 | 1, 4 | ax-mp 5 | 1 ⊢ {𝑥 ∣ 𝜑} ⊆ {𝑥 ∣ 𝜓} |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ⊤wtru 1543 {cab 2710 ⊆ wss 3949 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-9 2117 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-tru 1545 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-in 3956 df-ss 3966 |
This theorem is referenced by: abssi 4068 rabssab 4084 abanssl 4302 abanssr 4303 pwpwssunieq 5108 intabs 5343 abssexg 5381 imassrn 6071 fvclss 7241 fabexg 7925 f1oabexg 7927 mapex 8826 f1osetex 8853 fsetexb 8858 tc2 9737 hta 9892 infmap2 10213 cflm 10245 cflim2 10258 hsmex3 10429 domtriomlem 10437 axdc3lem2 10446 brdom7disj 10526 brdom6disj 10527 npex 10981 hashf1lem2 14417 issubc 17785 isghm 19092 permsetexOLD 19237 symgbas 19238 symgbasfi 19246 tgval 22458 ustfn 23706 ustval 23707 ustn0 23725 birthdaylem1 26456 nosupno 27206 rgrprc 28848 wksfval 28866 mptctf 31942 measbase 33195 measval 33196 ismeas 33197 isrnmeas 33198 ballotlem2 33487 subfaclefac 34167 satfvsuclem1 34350 dfon2lem2 34756 poimirlem4 36492 poimirlem9 36497 poimirlem26 36514 poimirlem27 36515 poimirlem28 36516 poimirlem32 36520 sdclem2 36610 lineset 38609 lautset 38953 pautsetN 38969 tendoset 39630 eldiophb 41495 rmxyelqirr 41648 hbtlem1 41865 hbtlem7 41867 relopabVD 43662 rabexgf 43708 prprval 46182 upwlksfval 46513 |
Copyright terms: Public domain | W3C validator |