| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ss2abi | Structured version Visualization version GIF version | ||
| Description: Inference of abstraction subclass from implication. (Contributed by NM, 31-Mar-1995.) Avoid ax-8 2111, ax-10 2142, ax-11 2158, ax-12 2178. (Revised by GG, 28-Jun-2024.) |
| Ref | Expression |
|---|---|
| ss2abi.1 | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| ss2abi | ⊢ {𝑥 ∣ 𝜑} ⊆ {𝑥 ∣ 𝜓} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tru 1544 | . 2 ⊢ ⊤ | |
| 2 | ss2abi.1 | . . . 4 ⊢ (𝜑 → 𝜓) | |
| 3 | 2 | a1i 11 | . . 3 ⊢ (⊤ → (𝜑 → 𝜓)) |
| 4 | 3 | ss2abdv 4020 | . 2 ⊢ (⊤ → {𝑥 ∣ 𝜑} ⊆ {𝑥 ∣ 𝜓}) |
| 5 | 1, 4 | ax-mp 5 | 1 ⊢ {𝑥 ∣ 𝜑} ⊆ {𝑥 ∣ 𝜓} |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ⊤wtru 1541 {cab 2707 ⊆ wss 3905 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 |
| This theorem depends on definitions: df-bi 207 df-tru 1543 df-sb 2066 df-clab 2708 df-ss 3922 |
| This theorem is referenced by: abssi 4023 rabssab 4038 abanssl 4264 abanssr 4265 pwpwssunieq 5056 intabs 5291 abssexg 5324 imassrn 6026 fvclss 7181 fabexgOLD 7879 mapex 7881 f1oabexgOLD 7883 mapexOLD 8766 f1osetex 8793 fsetexb 8798 tc2 9657 hta 9812 infmap2 10130 cflm 10163 cflim2 10176 hsmex3 10347 domtriomlem 10355 axdc3lem2 10364 brdom7disj 10444 brdom6disj 10445 npex 10899 hashf1lem2 14381 issubc 17760 isghmOLD 19113 symgbas 19269 symgbasfi 19276 tgval 22858 ustfn 24105 ustval 24106 ustn0 24124 birthdaylem1 26877 nosupno 27631 rgrprc 29555 wksfval 29573 mptctf 32674 measbase 34163 measval 34164 ismeas 34165 isrnmeas 34166 ballotlem2 34456 subfaclefac 35148 satfvsuclem1 35331 dfon2lem2 35757 poimirlem4 37603 poimirlem9 37608 poimirlem26 37625 poimirlem27 37626 poimirlem28 37627 poimirlem32 37631 sdclem2 37721 lineset 39717 lautset 40061 pautsetN 40077 tendoset 40738 eldiophb 42730 rmxyelqirr 42883 hbtlem1 43096 hbtlem7 43098 relopabVD 44874 rabexgf 45002 prprval 47499 upwlksfval 48120 |
| Copyright terms: Public domain | W3C validator |