![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ss2abi | Structured version Visualization version GIF version |
Description: Inference of abstraction subclass from implication. (Contributed by NM, 31-Mar-1995.) Avoid ax-8 2109, ax-10 2138, ax-11 2155, ax-12 2172. (Revised by Gino Giotto, 28-Jun-2024.) |
Ref | Expression |
---|---|
ss2abi.1 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
ss2abi | ⊢ {𝑥 ∣ 𝜑} ⊆ {𝑥 ∣ 𝜓} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tru 1546 | . 2 ⊢ ⊤ | |
2 | ss2abi.1 | . . . 4 ⊢ (𝜑 → 𝜓) | |
3 | 2 | a1i 11 | . . 3 ⊢ (⊤ → (𝜑 → 𝜓)) |
4 | 3 | ss2abdv 4061 | . 2 ⊢ (⊤ → {𝑥 ∣ 𝜑} ⊆ {𝑥 ∣ 𝜓}) |
5 | 1, 4 | ax-mp 5 | 1 ⊢ {𝑥 ∣ 𝜑} ⊆ {𝑥 ∣ 𝜓} |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ⊤wtru 1543 {cab 2710 ⊆ wss 3949 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-9 2117 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-tru 1545 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-in 3956 df-ss 3966 |
This theorem is referenced by: abssi 4068 rabssab 4084 abanssl 4302 abanssr 4303 pwpwssunieq 5108 intabs 5343 abssexg 5381 imassrn 6071 fvclss 7241 fabexg 7925 f1oabexg 7927 mapex 8826 f1osetex 8853 fsetexb 8858 tc2 9737 hta 9892 infmap2 10213 cflm 10245 cflim2 10258 hsmex3 10429 domtriomlem 10437 axdc3lem2 10446 brdom7disj 10526 brdom6disj 10527 npex 10981 hashf1lem2 14417 issubc 17785 isghm 19092 permsetexOLD 19237 symgbas 19238 symgbasfi 19246 tgval 22458 ustfn 23706 ustval 23707 ustn0 23725 birthdaylem1 26456 nosupno 27206 rgrprc 28879 wksfval 28897 mptctf 31973 measbase 33226 measval 33227 ismeas 33228 isrnmeas 33229 ballotlem2 33518 subfaclefac 34198 satfvsuclem1 34381 dfon2lem2 34787 poimirlem4 36540 poimirlem9 36545 poimirlem26 36562 poimirlem27 36563 poimirlem28 36564 poimirlem32 36568 sdclem2 36658 lineset 38657 lautset 39001 pautsetN 39017 tendoset 39678 eldiophb 41543 rmxyelqirr 41696 hbtlem1 41913 hbtlem7 41915 relopabVD 43710 rabexgf 43756 prprval 46230 upwlksfval 46561 |
Copyright terms: Public domain | W3C validator |