| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ss2abi | Structured version Visualization version GIF version | ||
| Description: Inference of abstraction subclass from implication. (Contributed by NM, 31-Mar-1995.) Avoid ax-8 2113, ax-10 2144, ax-11 2160, ax-12 2180. (Revised by GG, 28-Jun-2024.) |
| Ref | Expression |
|---|---|
| ss2abi.1 | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| ss2abi | ⊢ {𝑥 ∣ 𝜑} ⊆ {𝑥 ∣ 𝜓} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tru 1545 | . 2 ⊢ ⊤ | |
| 2 | ss2abi.1 | . . . 4 ⊢ (𝜑 → 𝜓) | |
| 3 | 2 | a1i 11 | . . 3 ⊢ (⊤ → (𝜑 → 𝜓)) |
| 4 | 3 | ss2abdv 4017 | . 2 ⊢ (⊤ → {𝑥 ∣ 𝜑} ⊆ {𝑥 ∣ 𝜓}) |
| 5 | 1, 4 | ax-mp 5 | 1 ⊢ {𝑥 ∣ 𝜑} ⊆ {𝑥 ∣ 𝜓} |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ⊤wtru 1542 {cab 2709 ⊆ wss 3902 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 |
| This theorem depends on definitions: df-bi 207 df-tru 1544 df-sb 2068 df-clab 2710 df-ss 3919 |
| This theorem is referenced by: abssi 4020 rabssab 4035 abanssl 4261 abanssr 4262 pwpwssunieq 5052 intabs 5287 abssexg 5320 imassrn 6020 fvclss 7175 fabexgOLD 7869 mapex 7871 f1oabexgOLD 7873 mapexOLD 8756 f1osetex 8783 fsetexb 8788 tc2 9632 hta 9787 infmap2 10105 cflm 10138 cflim2 10151 hsmex3 10322 domtriomlem 10330 axdc3lem2 10339 brdom7disj 10419 brdom6disj 10420 npex 10874 hashf1lem2 14360 issubc 17739 isghmOLD 19126 symgbas 19282 symgbasfi 19289 tgval 22868 ustfn 24115 ustval 24116 ustn0 24134 birthdaylem1 26886 nosupno 27640 rgrprc 29568 wksfval 29586 mptctf 32694 measbase 34205 measval 34206 ismeas 34207 isrnmeas 34208 ballotlem2 34497 subfaclefac 35208 satfvsuclem1 35391 dfon2lem2 35817 poimirlem4 37663 poimirlem9 37668 poimirlem26 37685 poimirlem27 37686 poimirlem28 37687 poimirlem32 37691 sdclem2 37781 lineset 39776 lautset 40120 pautsetN 40136 tendoset 40797 eldiophb 42789 rmxyelqirr 42942 hbtlem1 43155 hbtlem7 43157 relopabVD 44932 rabexgf 45060 prprval 47544 upwlksfval 48165 |
| Copyright terms: Public domain | W3C validator |