| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ss2abi | Structured version Visualization version GIF version | ||
| Description: Inference of abstraction subclass from implication. (Contributed by NM, 31-Mar-1995.) Avoid ax-8 2110, ax-10 2141, ax-11 2157, ax-12 2177. (Revised by GG, 28-Jun-2024.) |
| Ref | Expression |
|---|---|
| ss2abi.1 | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| ss2abi | ⊢ {𝑥 ∣ 𝜑} ⊆ {𝑥 ∣ 𝜓} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tru 1544 | . 2 ⊢ ⊤ | |
| 2 | ss2abi.1 | . . . 4 ⊢ (𝜑 → 𝜓) | |
| 3 | 2 | a1i 11 | . . 3 ⊢ (⊤ → (𝜑 → 𝜓)) |
| 4 | 3 | ss2abdv 4041 | . 2 ⊢ (⊤ → {𝑥 ∣ 𝜑} ⊆ {𝑥 ∣ 𝜓}) |
| 5 | 1, 4 | ax-mp 5 | 1 ⊢ {𝑥 ∣ 𝜑} ⊆ {𝑥 ∣ 𝜓} |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ⊤wtru 1541 {cab 2713 ⊆ wss 3926 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 |
| This theorem depends on definitions: df-bi 207 df-tru 1543 df-sb 2065 df-clab 2714 df-ss 3943 |
| This theorem is referenced by: abssi 4045 rabssab 4060 abanssl 4286 abanssr 4287 pwpwssunieq 5080 intabs 5319 abssexg 5352 imassrn 6058 fvclss 7233 fabexgOLD 7935 mapex 7937 f1oabexgOLD 7939 mapexOLD 8846 f1osetex 8873 fsetexb 8878 tc2 9756 hta 9911 infmap2 10231 cflm 10264 cflim2 10277 hsmex3 10448 domtriomlem 10456 axdc3lem2 10465 brdom7disj 10545 brdom6disj 10546 npex 11000 hashf1lem2 14474 issubc 17848 isghmOLD 19199 symgbas 19353 symgbasfi 19360 tgval 22893 ustfn 24140 ustval 24141 ustn0 24159 birthdaylem1 26913 nosupno 27667 rgrprc 29571 wksfval 29589 mptctf 32695 measbase 34228 measval 34229 ismeas 34230 isrnmeas 34231 ballotlem2 34521 subfaclefac 35198 satfvsuclem1 35381 dfon2lem2 35802 poimirlem4 37648 poimirlem9 37653 poimirlem26 37670 poimirlem27 37671 poimirlem28 37672 poimirlem32 37676 sdclem2 37766 lineset 39757 lautset 40101 pautsetN 40117 tendoset 40778 eldiophb 42780 rmxyelqirr 42933 hbtlem1 43147 hbtlem7 43149 relopabVD 44925 rabexgf 45048 prprval 47528 upwlksfval 48110 |
| Copyright terms: Public domain | W3C validator |