Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  absnw Structured version   Visualization version   GIF version

Theorem absnw 42635
Description: Replace ax-10 2141, ax-11 2158, ax-12 2178 in absn 4667 with a substitution hypothesis. (Contributed by SN, 27-May-2025.)
Hypothesis
Ref Expression
absnw.y (𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
absnw ({𝑥𝜑} = {𝑌} ↔ ∀𝑥(𝜑𝑥 = 𝑌))
Distinct variable groups:   𝜑,𝑦   𝜓,𝑥   𝑥,𝑦,𝑌
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦)

Proof of Theorem absnw
StepHypRef Expression
1 df-sn 4649 . . 3 {𝑌} = {𝑥𝑥 = 𝑌}
21eqeq2i 2753 . 2 ({𝑥𝜑} = {𝑌} ↔ {𝑥𝜑} = {𝑥𝑥 = 𝑌})
3 absnw.y . . 3 (𝑥 = 𝑦 → (𝜑𝜓))
4 eqeq1 2744 . . 3 (𝑥 = 𝑦 → (𝑥 = 𝑌𝑦 = 𝑌))
53, 4abbibw 42634 . 2 ({𝑥𝜑} = {𝑥𝑥 = 𝑌} ↔ ∀𝑥(𝜑𝑥 = 𝑌))
62, 5bitri 275 1 ({𝑥𝜑} = {𝑌} ↔ ∀𝑥(𝜑𝑥 = 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wal 1535   = wceq 1537  {cab 2717  {csn 4648
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1540  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-v 3490  df-sn 4649
This theorem is referenced by:  euabsn2w  42636
  Copyright terms: Public domain W3C validator