| Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > absnw | Structured version Visualization version GIF version | ||
| Description: Replace ax-10 2142, ax-11 2158, ax-12 2178 in absn 4617 with a substitution hypothesis. (Contributed by SN, 27-May-2025.) |
| Ref | Expression |
|---|---|
| absnw.y | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| absnw | ⊢ ({𝑥 ∣ 𝜑} = {𝑌} ↔ ∀𝑥(𝜑 ↔ 𝑥 = 𝑌)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-sn 4598 | . . 3 ⊢ {𝑌} = {𝑥 ∣ 𝑥 = 𝑌} | |
| 2 | 1 | eqeq2i 2743 | . 2 ⊢ ({𝑥 ∣ 𝜑} = {𝑌} ↔ {𝑥 ∣ 𝜑} = {𝑥 ∣ 𝑥 = 𝑌}) |
| 3 | absnw.y | . . 3 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
| 4 | eqeq1 2734 | . . 3 ⊢ (𝑥 = 𝑦 → (𝑥 = 𝑌 ↔ 𝑦 = 𝑌)) | |
| 5 | 3, 4 | abbibw 42637 | . 2 ⊢ ({𝑥 ∣ 𝜑} = {𝑥 ∣ 𝑥 = 𝑌} ↔ ∀𝑥(𝜑 ↔ 𝑥 = 𝑌)) |
| 6 | 2, 5 | bitri 275 | 1 ⊢ ({𝑥 ∣ 𝜑} = {𝑌} ↔ ∀𝑥(𝜑 ↔ 𝑥 = 𝑌)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∀wal 1538 = wceq 1540 {cab 2708 {csn 4597 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-v 3457 df-sn 4598 |
| This theorem is referenced by: euabsn2w 42639 |
| Copyright terms: Public domain | W3C validator |