| Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > absnw | Structured version Visualization version GIF version | ||
| Description: Replace ax-10 2140, ax-11 2156, ax-12 2176 in absn 4625 with a substitution hypothesis. (Contributed by SN, 27-May-2025.) |
| Ref | Expression |
|---|---|
| absnw.y | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| absnw | ⊢ ({𝑥 ∣ 𝜑} = {𝑌} ↔ ∀𝑥(𝜑 ↔ 𝑥 = 𝑌)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-sn 4607 | . . 3 ⊢ {𝑌} = {𝑥 ∣ 𝑥 = 𝑌} | |
| 2 | 1 | eqeq2i 2747 | . 2 ⊢ ({𝑥 ∣ 𝜑} = {𝑌} ↔ {𝑥 ∣ 𝜑} = {𝑥 ∣ 𝑥 = 𝑌}) |
| 3 | absnw.y | . . 3 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
| 4 | eqeq1 2738 | . . 3 ⊢ (𝑥 = 𝑦 → (𝑥 = 𝑌 ↔ 𝑦 = 𝑌)) | |
| 5 | 3, 4 | abbibw 42625 | . 2 ⊢ ({𝑥 ∣ 𝜑} = {𝑥 ∣ 𝑥 = 𝑌} ↔ ∀𝑥(𝜑 ↔ 𝑥 = 𝑌)) |
| 6 | 2, 5 | bitri 275 | 1 ⊢ ({𝑥 ∣ 𝜑} = {𝑌} ↔ ∀𝑥(𝜑 ↔ 𝑥 = 𝑌)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∀wal 1537 = wceq 1539 {cab 2712 {csn 4606 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1542 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-v 3465 df-sn 4607 |
| This theorem is referenced by: euabsn2w 42627 |
| Copyright terms: Public domain | W3C validator |