![]() |
Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > absnw | Structured version Visualization version GIF version |
Description: Replace ax-10 2141, ax-11 2158, ax-12 2178 in absn 4667 with a substitution hypothesis. (Contributed by SN, 27-May-2025.) |
Ref | Expression |
---|---|
absnw.y | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
absnw | ⊢ ({𝑥 ∣ 𝜑} = {𝑌} ↔ ∀𝑥(𝜑 ↔ 𝑥 = 𝑌)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-sn 4649 | . . 3 ⊢ {𝑌} = {𝑥 ∣ 𝑥 = 𝑌} | |
2 | 1 | eqeq2i 2753 | . 2 ⊢ ({𝑥 ∣ 𝜑} = {𝑌} ↔ {𝑥 ∣ 𝜑} = {𝑥 ∣ 𝑥 = 𝑌}) |
3 | absnw.y | . . 3 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
4 | eqeq1 2744 | . . 3 ⊢ (𝑥 = 𝑦 → (𝑥 = 𝑌 ↔ 𝑦 = 𝑌)) | |
5 | 3, 4 | abbibw 42634 | . 2 ⊢ ({𝑥 ∣ 𝜑} = {𝑥 ∣ 𝑥 = 𝑌} ↔ ∀𝑥(𝜑 ↔ 𝑥 = 𝑌)) |
6 | 2, 5 | bitri 275 | 1 ⊢ ({𝑥 ∣ 𝜑} = {𝑌} ↔ ∀𝑥(𝜑 ↔ 𝑥 = 𝑌)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∀wal 1535 = wceq 1537 {cab 2717 {csn 4648 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-v 3490 df-sn 4649 |
This theorem is referenced by: euabsn2w 42636 |
Copyright terms: Public domain | W3C validator |