MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  absn Structured version   Visualization version   GIF version

Theorem absn 4645
Description: Condition for a class abstraction to be a singleton. Formerly part of proof of dfiota2 6515. (Contributed by Andrew Salmon, 30-Jun-2011.) (Revised by AV, 24-Aug-2022.)
Assertion
Ref Expression
absn ({𝑥𝜑} = {𝑌} ↔ ∀𝑥(𝜑𝑥 = 𝑌))
Distinct variable group:   𝑥,𝑌
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem absn
StepHypRef Expression
1 df-sn 4627 . . 3 {𝑌} = {𝑥𝑥 = 𝑌}
21eqeq2i 2750 . 2 ({𝑥𝜑} = {𝑌} ↔ {𝑥𝜑} = {𝑥𝑥 = 𝑌})
3 abbib 2811 . 2 ({𝑥𝜑} = {𝑥𝑥 = 𝑌} ↔ ∀𝑥(𝜑𝑥 = 𝑌))
42, 3bitri 275 1 ({𝑥𝜑} = {𝑌} ↔ ∀𝑥(𝜑𝑥 = 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wal 1538   = wceq 1540  {cab 2714  {csn 4626
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-tru 1543  df-ex 1780  df-nf 1784  df-sb 2065  df-clab 2715  df-cleq 2729  df-sn 4627
This theorem is referenced by:  rabeqsn  4667  euabsn2  4725  dfiota2  6515  n0scut  28338  dfaiota2  47098  aiotaval  47107
  Copyright terms: Public domain W3C validator