| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > absn | Structured version Visualization version GIF version | ||
| Description: Condition for a class abstraction to be a singleton. Formerly part of proof of dfiota2 6438. (Contributed by Andrew Salmon, 30-Jun-2011.) (Revised by AV, 24-Aug-2022.) |
| Ref | Expression |
|---|---|
| absn | ⊢ ({𝑥 ∣ 𝜑} = {𝑌} ↔ ∀𝑥(𝜑 ↔ 𝑥 = 𝑌)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-sn 4574 | . . 3 ⊢ {𝑌} = {𝑥 ∣ 𝑥 = 𝑌} | |
| 2 | 1 | eqeq2i 2744 | . 2 ⊢ ({𝑥 ∣ 𝜑} = {𝑌} ↔ {𝑥 ∣ 𝜑} = {𝑥 ∣ 𝑥 = 𝑌}) |
| 3 | abbib 2800 | . 2 ⊢ ({𝑥 ∣ 𝜑} = {𝑥 ∣ 𝑥 = 𝑌} ↔ ∀𝑥(𝜑 ↔ 𝑥 = 𝑌)) | |
| 4 | 2, 3 | bitri 275 | 1 ⊢ ({𝑥 ∣ 𝜑} = {𝑌} ↔ ∀𝑥(𝜑 ↔ 𝑥 = 𝑌)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∀wal 1539 = wceq 1541 {cab 2709 {csn 4573 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-ex 1781 df-nf 1785 df-sb 2068 df-clab 2710 df-cleq 2723 df-sn 4574 |
| This theorem is referenced by: rabeqsn 4617 euabsn2 4675 dfiota2 6438 n0scut 28262 dfaiota2 47196 aiotaval 47205 |
| Copyright terms: Public domain | W3C validator |