MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  absn Structured version   Visualization version   GIF version

Theorem absn 4593
Description: Condition for a class abstraction to be a singleton. Formerly part of proof of dfiota2 6438. (Contributed by Andrew Salmon, 30-Jun-2011.) (Revised by AV, 24-Aug-2022.)
Assertion
Ref Expression
absn ({𝑥𝜑} = {𝑌} ↔ ∀𝑥(𝜑𝑥 = 𝑌))
Distinct variable group:   𝑥,𝑌
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem absn
StepHypRef Expression
1 df-sn 4574 . . 3 {𝑌} = {𝑥𝑥 = 𝑌}
21eqeq2i 2744 . 2 ({𝑥𝜑} = {𝑌} ↔ {𝑥𝜑} = {𝑥𝑥 = 𝑌})
3 abbib 2800 . 2 ({𝑥𝜑} = {𝑥𝑥 = 𝑌} ↔ ∀𝑥(𝜑𝑥 = 𝑌))
42, 3bitri 275 1 ({𝑥𝜑} = {𝑌} ↔ ∀𝑥(𝜑𝑥 = 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wal 1539   = wceq 1541  {cab 2709  {csn 4573
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1544  df-ex 1781  df-nf 1785  df-sb 2068  df-clab 2710  df-cleq 2723  df-sn 4574
This theorem is referenced by:  rabeqsn  4617  euabsn2  4675  dfiota2  6438  n0scut  28262  dfaiota2  47196  aiotaval  47205
  Copyright terms: Public domain W3C validator