MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  absn Structured version   Visualization version   GIF version

Theorem absn 4585
Description: Condition for a class abstraction to be a singleton. Formerly part of proof of dfiota2 6391. (Contributed by Andrew Salmon, 30-Jun-2011.) (Revised by AV, 24-Aug-2022.)
Assertion
Ref Expression
absn ({𝑥𝜑} = {𝑌} ↔ ∀𝑥(𝜑𝑥 = 𝑌))
Distinct variable group:   𝑥,𝑌
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem absn
StepHypRef Expression
1 df-sn 4568 . . 3 {𝑌} = {𝑥𝑥 = 𝑌}
21eqeq2i 2753 . 2 ({𝑥𝜑} = {𝑌} ↔ {𝑥𝜑} = {𝑥𝑥 = 𝑌})
3 abbi 2812 . 2 (∀𝑥(𝜑𝑥 = 𝑌) ↔ {𝑥𝜑} = {𝑥𝑥 = 𝑌})
42, 3bitr4i 277 1 ({𝑥𝜑} = {𝑌} ↔ ∀𝑥(𝜑𝑥 = 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wal 1540   = wceq 1542  {cab 2717  {csn 4567
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-tru 1545  df-ex 1787  df-nf 1791  df-sb 2072  df-clab 2718  df-cleq 2732  df-sn 4568
This theorem is referenced by:  rabeqsn  4608  euabsn2  4667  dfiota2  6391  dfaiota2  44546  aiotaval  44555
  Copyright terms: Public domain W3C validator