![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > absn | Structured version Visualization version GIF version |
Description: Condition for a class abstraction to be a singleton. Formerly part of proof of dfiota2 6487. (Contributed by Andrew Salmon, 30-Jun-2011.) (Revised by AV, 24-Aug-2022.) |
Ref | Expression |
---|---|
absn | ⊢ ({𝑥 ∣ 𝜑} = {𝑌} ↔ ∀𝑥(𝜑 ↔ 𝑥 = 𝑌)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-sn 4622 | . . 3 ⊢ {𝑌} = {𝑥 ∣ 𝑥 = 𝑌} | |
2 | 1 | eqeq2i 2737 | . 2 ⊢ ({𝑥 ∣ 𝜑} = {𝑌} ↔ {𝑥 ∣ 𝜑} = {𝑥 ∣ 𝑥 = 𝑌}) |
3 | abbib 2796 | . 2 ⊢ ({𝑥 ∣ 𝜑} = {𝑥 ∣ 𝑥 = 𝑌} ↔ ∀𝑥(𝜑 ↔ 𝑥 = 𝑌)) | |
4 | 2, 3 | bitri 275 | 1 ⊢ ({𝑥 ∣ 𝜑} = {𝑌} ↔ ∀𝑥(𝜑 ↔ 𝑥 = 𝑌)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∀wal 1531 = wceq 1533 {cab 2701 {csn 4621 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-tru 1536 df-ex 1774 df-nf 1778 df-sb 2060 df-clab 2702 df-cleq 2716 df-sn 4622 |
This theorem is referenced by: rabeqsn 4662 euabsn2 4722 dfiota2 6487 n0scut 28122 dfaiota2 46304 aiotaval 46313 |
Copyright terms: Public domain | W3C validator |