Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > absn | Structured version Visualization version GIF version |
Description: Condition for a class abstraction to be a singleton. Formerly part of proof of dfiota2 6392. (Contributed by Andrew Salmon, 30-Jun-2011.) (Revised by AV, 24-Aug-2022.) |
Ref | Expression |
---|---|
absn | ⊢ ({𝑥 ∣ 𝜑} = {𝑌} ↔ ∀𝑥(𝜑 ↔ 𝑥 = 𝑌)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-sn 4562 | . . 3 ⊢ {𝑌} = {𝑥 ∣ 𝑥 = 𝑌} | |
2 | 1 | eqeq2i 2751 | . 2 ⊢ ({𝑥 ∣ 𝜑} = {𝑌} ↔ {𝑥 ∣ 𝜑} = {𝑥 ∣ 𝑥 = 𝑌}) |
3 | abbi 2810 | . 2 ⊢ (∀𝑥(𝜑 ↔ 𝑥 = 𝑌) ↔ {𝑥 ∣ 𝜑} = {𝑥 ∣ 𝑥 = 𝑌}) | |
4 | 2, 3 | bitr4i 277 | 1 ⊢ ({𝑥 ∣ 𝜑} = {𝑌} ↔ ∀𝑥(𝜑 ↔ 𝑥 = 𝑌)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∀wal 1537 = wceq 1539 {cab 2715 {csn 4561 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1542 df-ex 1783 df-nf 1787 df-sb 2068 df-clab 2716 df-cleq 2730 df-sn 4562 |
This theorem is referenced by: rabeqsn 4602 euabsn2 4661 dfiota2 6392 dfaiota2 44578 aiotaval 44587 |
Copyright terms: Public domain | W3C validator |