MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  absn Structured version   Visualization version   GIF version

Theorem absn 4579
Description: Condition for a class abstraction to be a singleton. Formerly part of proof of dfiota2 6392. (Contributed by Andrew Salmon, 30-Jun-2011.) (Revised by AV, 24-Aug-2022.)
Assertion
Ref Expression
absn ({𝑥𝜑} = {𝑌} ↔ ∀𝑥(𝜑𝑥 = 𝑌))
Distinct variable group:   𝑥,𝑌
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem absn
StepHypRef Expression
1 df-sn 4562 . . 3 {𝑌} = {𝑥𝑥 = 𝑌}
21eqeq2i 2751 . 2 ({𝑥𝜑} = {𝑌} ↔ {𝑥𝜑} = {𝑥𝑥 = 𝑌})
3 abbi 2810 . 2 (∀𝑥(𝜑𝑥 = 𝑌) ↔ {𝑥𝜑} = {𝑥𝑥 = 𝑌})
42, 3bitr4i 277 1 ({𝑥𝜑} = {𝑌} ↔ ∀𝑥(𝜑𝑥 = 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wal 1537   = wceq 1539  {cab 2715  {csn 4561
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-tru 1542  df-ex 1783  df-nf 1787  df-sb 2068  df-clab 2716  df-cleq 2730  df-sn 4562
This theorem is referenced by:  rabeqsn  4602  euabsn2  4661  dfiota2  6392  dfaiota2  44578  aiotaval  44587
  Copyright terms: Public domain W3C validator