![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > absn | Structured version Visualization version GIF version |
Description: Condition for a class abstraction to be a singleton. Formerly part of proof of dfiota2 6507. (Contributed by Andrew Salmon, 30-Jun-2011.) (Revised by AV, 24-Aug-2022.) |
Ref | Expression |
---|---|
absn | ⊢ ({𝑥 ∣ 𝜑} = {𝑌} ↔ ∀𝑥(𝜑 ↔ 𝑥 = 𝑌)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-sn 4634 | . . 3 ⊢ {𝑌} = {𝑥 ∣ 𝑥 = 𝑌} | |
2 | 1 | eqeq2i 2739 | . 2 ⊢ ({𝑥 ∣ 𝜑} = {𝑌} ↔ {𝑥 ∣ 𝜑} = {𝑥 ∣ 𝑥 = 𝑌}) |
3 | abbib 2798 | . 2 ⊢ ({𝑥 ∣ 𝜑} = {𝑥 ∣ 𝑥 = 𝑌} ↔ ∀𝑥(𝜑 ↔ 𝑥 = 𝑌)) | |
4 | 2, 3 | bitri 274 | 1 ⊢ ({𝑥 ∣ 𝜑} = {𝑌} ↔ ∀𝑥(𝜑 ↔ 𝑥 = 𝑌)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∀wal 1532 = wceq 1534 {cab 2703 {csn 4633 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-tru 1537 df-ex 1775 df-nf 1779 df-sb 2061 df-clab 2704 df-cleq 2718 df-sn 4634 |
This theorem is referenced by: rabeqsn 4674 euabsn2 4734 dfiota2 6507 n0scut 28306 dfaiota2 46699 aiotaval 46708 |
Copyright terms: Public domain | W3C validator |