![]() |
Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > abbibw | Structured version Visualization version GIF version |
Description: Replace ax-10 2141, ax-11 2158, ax-12 2178 in abbib 2814 with substitution hypotheses. (Contributed by SN, 27-May-2025.) |
Ref | Expression |
---|---|
abbibw.ph | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜃)) |
abbibw.ps | ⊢ (𝑥 = 𝑦 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
abbibw | ⊢ ({𝑥 ∣ 𝜑} = {𝑥 ∣ 𝜓} ↔ ∀𝑥(𝜑 ↔ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfcleq 2733 | . 2 ⊢ ({𝑥 ∣ 𝜑} = {𝑥 ∣ 𝜓} ↔ ∀𝑦(𝑦 ∈ {𝑥 ∣ 𝜑} ↔ 𝑦 ∈ {𝑥 ∣ 𝜓})) | |
2 | vex 3492 | . . . . 5 ⊢ 𝑦 ∈ V | |
3 | abbibw.ph | . . . . 5 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜃)) | |
4 | 2, 3 | elab 3694 | . . . 4 ⊢ (𝑦 ∈ {𝑥 ∣ 𝜑} ↔ 𝜃) |
5 | abbibw.ps | . . . . 5 ⊢ (𝑥 = 𝑦 → (𝜓 ↔ 𝜒)) | |
6 | 2, 5 | elab 3694 | . . . 4 ⊢ (𝑦 ∈ {𝑥 ∣ 𝜓} ↔ 𝜒) |
7 | 4, 6 | bibi12i 339 | . . 3 ⊢ ((𝑦 ∈ {𝑥 ∣ 𝜑} ↔ 𝑦 ∈ {𝑥 ∣ 𝜓}) ↔ (𝜃 ↔ 𝜒)) |
8 | 7 | albii 1817 | . 2 ⊢ (∀𝑦(𝑦 ∈ {𝑥 ∣ 𝜑} ↔ 𝑦 ∈ {𝑥 ∣ 𝜓}) ↔ ∀𝑦(𝜃 ↔ 𝜒)) |
9 | 3, 5 | bibi12d 345 | . . . . 5 ⊢ (𝑥 = 𝑦 → ((𝜑 ↔ 𝜓) ↔ (𝜃 ↔ 𝜒))) |
10 | 9 | bicomd 223 | . . . 4 ⊢ (𝑥 = 𝑦 → ((𝜃 ↔ 𝜒) ↔ (𝜑 ↔ 𝜓))) |
11 | 10 | equcoms 2019 | . . 3 ⊢ (𝑦 = 𝑥 → ((𝜃 ↔ 𝜒) ↔ (𝜑 ↔ 𝜓))) |
12 | 11 | cbvalvw 2035 | . 2 ⊢ (∀𝑦(𝜃 ↔ 𝜒) ↔ ∀𝑥(𝜑 ↔ 𝜓)) |
13 | 1, 8, 12 | 3bitri 297 | 1 ⊢ ({𝑥 ∣ 𝜑} = {𝑥 ∣ 𝜓} ↔ ∀𝑥(𝜑 ↔ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∀wal 1535 = wceq 1537 ∈ wcel 2108 {cab 2717 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-v 3490 |
This theorem is referenced by: absnw 42633 |
Copyright terms: Public domain | W3C validator |