Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  abbibw Structured version   Visualization version   GIF version

Theorem abbibw 42632
Description: Replace ax-10 2141, ax-11 2158, ax-12 2178 in abbib 2814 with substitution hypotheses. (Contributed by SN, 27-May-2025.)
Hypotheses
Ref Expression
abbibw.ph (𝑥 = 𝑦 → (𝜑𝜃))
abbibw.ps (𝑥 = 𝑦 → (𝜓𝜒))
Assertion
Ref Expression
abbibw ({𝑥𝜑} = {𝑥𝜓} ↔ ∀𝑥(𝜑𝜓))
Distinct variable groups:   𝑥,𝑦   𝜃,𝑥   𝜒,𝑥   𝜑,𝑦   𝜓,𝑦
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑥)   𝜒(𝑦)   𝜃(𝑦)

Proof of Theorem abbibw
StepHypRef Expression
1 dfcleq 2733 . 2 ({𝑥𝜑} = {𝑥𝜓} ↔ ∀𝑦(𝑦 ∈ {𝑥𝜑} ↔ 𝑦 ∈ {𝑥𝜓}))
2 vex 3492 . . . . 5 𝑦 ∈ V
3 abbibw.ph . . . . 5 (𝑥 = 𝑦 → (𝜑𝜃))
42, 3elab 3694 . . . 4 (𝑦 ∈ {𝑥𝜑} ↔ 𝜃)
5 abbibw.ps . . . . 5 (𝑥 = 𝑦 → (𝜓𝜒))
62, 5elab 3694 . . . 4 (𝑦 ∈ {𝑥𝜓} ↔ 𝜒)
74, 6bibi12i 339 . . 3 ((𝑦 ∈ {𝑥𝜑} ↔ 𝑦 ∈ {𝑥𝜓}) ↔ (𝜃𝜒))
87albii 1817 . 2 (∀𝑦(𝑦 ∈ {𝑥𝜑} ↔ 𝑦 ∈ {𝑥𝜓}) ↔ ∀𝑦(𝜃𝜒))
93, 5bibi12d 345 . . . . 5 (𝑥 = 𝑦 → ((𝜑𝜓) ↔ (𝜃𝜒)))
109bicomd 223 . . . 4 (𝑥 = 𝑦 → ((𝜃𝜒) ↔ (𝜑𝜓)))
1110equcoms 2019 . . 3 (𝑦 = 𝑥 → ((𝜃𝜒) ↔ (𝜑𝜓)))
1211cbvalvw 2035 . 2 (∀𝑦(𝜃𝜒) ↔ ∀𝑥(𝜑𝜓))
131, 8, 123bitri 297 1 ({𝑥𝜑} = {𝑥𝜓} ↔ ∀𝑥(𝜑𝜓))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wal 1535   = wceq 1537  wcel 2108  {cab 2717
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1540  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-v 3490
This theorem is referenced by:  absnw  42633
  Copyright terms: Public domain W3C validator