| Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > abbibw | Structured version Visualization version GIF version | ||
| Description: Replace ax-10 2144, ax-11 2160, ax-12 2180 in abbib 2800 with substitution hypotheses. (Contributed by SN, 27-May-2025.) |
| Ref | Expression |
|---|---|
| abbibw.ph | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜃)) |
| abbibw.ps | ⊢ (𝑥 = 𝑦 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| abbibw | ⊢ ({𝑥 ∣ 𝜑} = {𝑥 ∣ 𝜓} ↔ ∀𝑥(𝜑 ↔ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfcleq 2724 | . 2 ⊢ ({𝑥 ∣ 𝜑} = {𝑥 ∣ 𝜓} ↔ ∀𝑦(𝑦 ∈ {𝑥 ∣ 𝜑} ↔ 𝑦 ∈ {𝑥 ∣ 𝜓})) | |
| 2 | vex 3440 | . . . . 5 ⊢ 𝑦 ∈ V | |
| 3 | abbibw.ph | . . . . 5 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜃)) | |
| 4 | 2, 3 | elab 3630 | . . . 4 ⊢ (𝑦 ∈ {𝑥 ∣ 𝜑} ↔ 𝜃) |
| 5 | abbibw.ps | . . . . 5 ⊢ (𝑥 = 𝑦 → (𝜓 ↔ 𝜒)) | |
| 6 | 2, 5 | elab 3630 | . . . 4 ⊢ (𝑦 ∈ {𝑥 ∣ 𝜓} ↔ 𝜒) |
| 7 | 4, 6 | bibi12i 339 | . . 3 ⊢ ((𝑦 ∈ {𝑥 ∣ 𝜑} ↔ 𝑦 ∈ {𝑥 ∣ 𝜓}) ↔ (𝜃 ↔ 𝜒)) |
| 8 | 7 | albii 1820 | . 2 ⊢ (∀𝑦(𝑦 ∈ {𝑥 ∣ 𝜑} ↔ 𝑦 ∈ {𝑥 ∣ 𝜓}) ↔ ∀𝑦(𝜃 ↔ 𝜒)) |
| 9 | 3, 5 | bibi12d 345 | . . . . 5 ⊢ (𝑥 = 𝑦 → ((𝜑 ↔ 𝜓) ↔ (𝜃 ↔ 𝜒))) |
| 10 | 9 | bicomd 223 | . . . 4 ⊢ (𝑥 = 𝑦 → ((𝜃 ↔ 𝜒) ↔ (𝜑 ↔ 𝜓))) |
| 11 | 10 | equcoms 2021 | . . 3 ⊢ (𝑦 = 𝑥 → ((𝜃 ↔ 𝜒) ↔ (𝜑 ↔ 𝜓))) |
| 12 | 11 | cbvalvw 2037 | . 2 ⊢ (∀𝑦(𝜃 ↔ 𝜒) ↔ ∀𝑥(𝜑 ↔ 𝜓)) |
| 13 | 1, 8, 12 | 3bitri 297 | 1 ⊢ ({𝑥 ∣ 𝜑} = {𝑥 ∣ 𝜓} ↔ ∀𝑥(𝜑 ↔ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∀wal 1539 = wceq 1541 ∈ wcel 2111 {cab 2709 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-v 3438 |
| This theorem is referenced by: absnw 42781 |
| Copyright terms: Public domain | W3C validator |