|   | Mathbox for Steven Nguyen | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > abbibw | Structured version Visualization version GIF version | ||
| Description: Replace ax-10 2141, ax-11 2157, ax-12 2177 in abbib 2811 with substitution hypotheses. (Contributed by SN, 27-May-2025.) | 
| Ref | Expression | 
|---|---|
| abbibw.ph | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜃)) | 
| abbibw.ps | ⊢ (𝑥 = 𝑦 → (𝜓 ↔ 𝜒)) | 
| Ref | Expression | 
|---|---|
| abbibw | ⊢ ({𝑥 ∣ 𝜑} = {𝑥 ∣ 𝜓} ↔ ∀𝑥(𝜑 ↔ 𝜓)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | dfcleq 2730 | . 2 ⊢ ({𝑥 ∣ 𝜑} = {𝑥 ∣ 𝜓} ↔ ∀𝑦(𝑦 ∈ {𝑥 ∣ 𝜑} ↔ 𝑦 ∈ {𝑥 ∣ 𝜓})) | |
| 2 | vex 3484 | . . . . 5 ⊢ 𝑦 ∈ V | |
| 3 | abbibw.ph | . . . . 5 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜃)) | |
| 4 | 2, 3 | elab 3679 | . . . 4 ⊢ (𝑦 ∈ {𝑥 ∣ 𝜑} ↔ 𝜃) | 
| 5 | abbibw.ps | . . . . 5 ⊢ (𝑥 = 𝑦 → (𝜓 ↔ 𝜒)) | |
| 6 | 2, 5 | elab 3679 | . . . 4 ⊢ (𝑦 ∈ {𝑥 ∣ 𝜓} ↔ 𝜒) | 
| 7 | 4, 6 | bibi12i 339 | . . 3 ⊢ ((𝑦 ∈ {𝑥 ∣ 𝜑} ↔ 𝑦 ∈ {𝑥 ∣ 𝜓}) ↔ (𝜃 ↔ 𝜒)) | 
| 8 | 7 | albii 1819 | . 2 ⊢ (∀𝑦(𝑦 ∈ {𝑥 ∣ 𝜑} ↔ 𝑦 ∈ {𝑥 ∣ 𝜓}) ↔ ∀𝑦(𝜃 ↔ 𝜒)) | 
| 9 | 3, 5 | bibi12d 345 | . . . . 5 ⊢ (𝑥 = 𝑦 → ((𝜑 ↔ 𝜓) ↔ (𝜃 ↔ 𝜒))) | 
| 10 | 9 | bicomd 223 | . . . 4 ⊢ (𝑥 = 𝑦 → ((𝜃 ↔ 𝜒) ↔ (𝜑 ↔ 𝜓))) | 
| 11 | 10 | equcoms 2019 | . . 3 ⊢ (𝑦 = 𝑥 → ((𝜃 ↔ 𝜒) ↔ (𝜑 ↔ 𝜓))) | 
| 12 | 11 | cbvalvw 2035 | . 2 ⊢ (∀𝑦(𝜃 ↔ 𝜒) ↔ ∀𝑥(𝜑 ↔ 𝜓)) | 
| 13 | 1, 8, 12 | 3bitri 297 | 1 ⊢ ({𝑥 ∣ 𝜑} = {𝑥 ∣ 𝜓} ↔ ∀𝑥(𝜑 ↔ 𝜓)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ↔ wb 206 ∀wal 1538 = wceq 1540 ∈ wcel 2108 {cab 2714 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2708 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-v 3482 | 
| This theorem is referenced by: absnw 42688 | 
| Copyright terms: Public domain | W3C validator |