![]() |
Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > euabsn2w | Structured version Visualization version GIF version |
Description: Replace ax-10 2141, ax-11 2158, ax-12 2178 in euabsn2 4750 with substitution hypotheses. (Contributed by SN, 27-May-2025.) |
Ref | Expression |
---|---|
absnw.y | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
euabsn2w.z | ⊢ (𝑥 = 𝑧 → (𝜑 ↔ 𝜃)) |
Ref | Expression |
---|---|
euabsn2w | ⊢ (∃!𝑥𝜑 ↔ ∃𝑦{𝑥 ∣ 𝜑} = {𝑦}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | euabsn2w.z | . . 3 ⊢ (𝑥 = 𝑧 → (𝜑 ↔ 𝜃)) | |
2 | absnw.y | . . 3 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
3 | 1, 2 | eu6w 42624 | . 2 ⊢ (∃!𝑥𝜑 ↔ ∃𝑦∀𝑥(𝜑 ↔ 𝑥 = 𝑦)) |
4 | 1 | absnw 42626 | . . 3 ⊢ ({𝑥 ∣ 𝜑} = {𝑦} ↔ ∀𝑥(𝜑 ↔ 𝑥 = 𝑦)) |
5 | 4 | exbii 1846 | . 2 ⊢ (∃𝑦{𝑥 ∣ 𝜑} = {𝑦} ↔ ∃𝑦∀𝑥(𝜑 ↔ 𝑥 = 𝑦)) |
6 | 3, 5 | bitr4i 278 | 1 ⊢ (∃!𝑥𝜑 ↔ ∃𝑦{𝑥 ∣ 𝜑} = {𝑦}) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∀wal 1535 = wceq 1537 ∃wex 1777 ∃!weu 2571 {cab 2717 {csn 4648 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-v 3490 df-sn 4649 |
This theorem is referenced by: sn-tz6.12-2 42628 |
Copyright terms: Public domain | W3C validator |