| Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > euabsn2w | Structured version Visualization version GIF version | ||
| Description: Replace ax-10 2144, ax-11 2160, ax-12 2180 in euabsn2 4675 with substitution hypotheses. (Contributed by SN, 27-May-2025.) |
| Ref | Expression |
|---|---|
| absnw.y | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
| euabsn2w.z | ⊢ (𝑥 = 𝑧 → (𝜑 ↔ 𝜃)) |
| Ref | Expression |
|---|---|
| euabsn2w | ⊢ (∃!𝑥𝜑 ↔ ∃𝑦{𝑥 ∣ 𝜑} = {𝑦}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | euabsn2w.z | . . 3 ⊢ (𝑥 = 𝑧 → (𝜑 ↔ 𝜃)) | |
| 2 | absnw.y | . . 3 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
| 3 | 1, 2 | eu6w 42768 | . 2 ⊢ (∃!𝑥𝜑 ↔ ∃𝑦∀𝑥(𝜑 ↔ 𝑥 = 𝑦)) |
| 4 | 1 | absnw 42770 | . . 3 ⊢ ({𝑥 ∣ 𝜑} = {𝑦} ↔ ∀𝑥(𝜑 ↔ 𝑥 = 𝑦)) |
| 5 | 4 | exbii 1849 | . 2 ⊢ (∃𝑦{𝑥 ∣ 𝜑} = {𝑦} ↔ ∃𝑦∀𝑥(𝜑 ↔ 𝑥 = 𝑦)) |
| 6 | 3, 5 | bitr4i 278 | 1 ⊢ (∃!𝑥𝜑 ↔ ∃𝑦{𝑥 ∣ 𝜑} = {𝑦}) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∀wal 1539 = wceq 1541 ∃wex 1780 ∃!weu 2563 {cab 2709 {csn 4573 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-v 3438 df-sn 4574 |
| This theorem is referenced by: sn-tz6.12-2 42772 |
| Copyright terms: Public domain | W3C validator |