| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > abvALT | Structured version Visualization version GIF version | ||
| Description: Alternate proof of abv 3462, shorter but using more axioms. (Contributed by BJ, 19-Mar-2021.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| abvALT | ⊢ ({𝑥 ∣ 𝜑} = V ↔ ∀𝑥𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-clab 2709 | . . 3 ⊢ (𝑦 ∈ {𝑥 ∣ 𝜑} ↔ [𝑦 / 𝑥]𝜑) | |
| 2 | 1 | albii 1819 | . 2 ⊢ (∀𝑦 𝑦 ∈ {𝑥 ∣ 𝜑} ↔ ∀𝑦[𝑦 / 𝑥]𝜑) |
| 3 | eqv 3460 | . 2 ⊢ ({𝑥 ∣ 𝜑} = V ↔ ∀𝑦 𝑦 ∈ {𝑥 ∣ 𝜑}) | |
| 4 | sb8v 2351 | . 2 ⊢ (∀𝑥𝜑 ↔ ∀𝑦[𝑦 / 𝑥]𝜑) | |
| 5 | 2, 3, 4 | 3bitr4i 303 | 1 ⊢ ({𝑥 ∣ 𝜑} = V ↔ ∀𝑥𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∀wal 1538 = wceq 1540 [wsb 2065 ∈ wcel 2109 {cab 2708 Vcvv 3450 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-11 2158 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-v 3452 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |