MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  abvALT Structured version   Visualization version   GIF version

Theorem abvALT 3442
Description: Alternate proof of abv 3441, shorter but using more axioms. (Contributed by BJ, 19-Mar-2021.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
abvALT ({𝑥𝜑} = V ↔ ∀𝑥𝜑)

Proof of Theorem abvALT
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 df-clab 2717 . . 3 (𝑦 ∈ {𝑥𝜑} ↔ [𝑦 / 𝑥]𝜑)
21albii 1825 . 2 (∀𝑦 𝑦 ∈ {𝑥𝜑} ↔ ∀𝑦[𝑦 / 𝑥]𝜑)
3 eqv 3439 . 2 ({𝑥𝜑} = V ↔ ∀𝑦 𝑦 ∈ {𝑥𝜑})
4 nfv 1920 . . 3 𝑦𝜑
54sb8v 2353 . 2 (∀𝑥𝜑 ↔ ∀𝑦[𝑦 / 𝑥]𝜑)
62, 3, 53bitr4i 302 1 ({𝑥𝜑} = V ↔ ∀𝑥𝜑)
Colors of variables: wff setvar class
Syntax hints:  wb 205  wal 1539   = wceq 1541  [wsb 2070  wcel 2109  {cab 2716  Vcvv 3430
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-tru 1544  df-ex 1786  df-nf 1790  df-sb 2071  df-clab 2717  df-cleq 2731  df-clel 2817  df-v 3432
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator