| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > abvALT | Structured version Visualization version GIF version | ||
| Description: Alternate proof of abv 3448, shorter but using more axioms. (Contributed by BJ, 19-Mar-2021.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| abvALT | ⊢ ({𝑥 ∣ 𝜑} = V ↔ ∀𝑥𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-clab 2710 | . . 3 ⊢ (𝑦 ∈ {𝑥 ∣ 𝜑} ↔ [𝑦 / 𝑥]𝜑) | |
| 2 | 1 | albii 1820 | . 2 ⊢ (∀𝑦 𝑦 ∈ {𝑥 ∣ 𝜑} ↔ ∀𝑦[𝑦 / 𝑥]𝜑) |
| 3 | eqv 3446 | . 2 ⊢ ({𝑥 ∣ 𝜑} = V ↔ ∀𝑦 𝑦 ∈ {𝑥 ∣ 𝜑}) | |
| 4 | sb8v 2353 | . 2 ⊢ (∀𝑥𝜑 ↔ ∀𝑦[𝑦 / 𝑥]𝜑) | |
| 5 | 2, 3, 4 | 3bitr4i 303 | 1 ⊢ ({𝑥 ∣ 𝜑} = V ↔ ∀𝑥𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∀wal 1539 = wceq 1541 [wsb 2067 ∈ wcel 2111 {cab 2709 Vcvv 3436 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-11 2160 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-v 3438 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |