Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > abvALT | Structured version Visualization version GIF version |
Description: Alternate proof of abv 3441, shorter but using more axioms. (Contributed by BJ, 19-Mar-2021.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
abvALT | ⊢ ({𝑥 ∣ 𝜑} = V ↔ ∀𝑥𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-clab 2717 | . . 3 ⊢ (𝑦 ∈ {𝑥 ∣ 𝜑} ↔ [𝑦 / 𝑥]𝜑) | |
2 | 1 | albii 1825 | . 2 ⊢ (∀𝑦 𝑦 ∈ {𝑥 ∣ 𝜑} ↔ ∀𝑦[𝑦 / 𝑥]𝜑) |
3 | eqv 3439 | . 2 ⊢ ({𝑥 ∣ 𝜑} = V ↔ ∀𝑦 𝑦 ∈ {𝑥 ∣ 𝜑}) | |
4 | nfv 1920 | . . 3 ⊢ Ⅎ𝑦𝜑 | |
5 | 4 | sb8v 2353 | . 2 ⊢ (∀𝑥𝜑 ↔ ∀𝑦[𝑦 / 𝑥]𝜑) |
6 | 2, 3, 5 | 3bitr4i 302 | 1 ⊢ ({𝑥 ∣ 𝜑} = V ↔ ∀𝑥𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∀wal 1539 = wceq 1541 [wsb 2070 ∈ wcel 2109 {cab 2716 Vcvv 3430 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1544 df-ex 1786 df-nf 1790 df-sb 2071 df-clab 2717 df-cleq 2731 df-clel 2817 df-v 3432 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |