![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > abvALT | Structured version Visualization version GIF version |
Description: Alternate proof of abv 3500, shorter but using more axioms. (Contributed by BJ, 19-Mar-2021.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
abvALT | ⊢ ({𝑥 ∣ 𝜑} = V ↔ ∀𝑥𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-clab 2718 | . . 3 ⊢ (𝑦 ∈ {𝑥 ∣ 𝜑} ↔ [𝑦 / 𝑥]𝜑) | |
2 | 1 | albii 1817 | . 2 ⊢ (∀𝑦 𝑦 ∈ {𝑥 ∣ 𝜑} ↔ ∀𝑦[𝑦 / 𝑥]𝜑) |
3 | eqv 3498 | . 2 ⊢ ({𝑥 ∣ 𝜑} = V ↔ ∀𝑦 𝑦 ∈ {𝑥 ∣ 𝜑}) | |
4 | sb8v 2358 | . 2 ⊢ (∀𝑥𝜑 ↔ ∀𝑦[𝑦 / 𝑥]𝜑) | |
5 | 2, 3, 4 | 3bitr4i 303 | 1 ⊢ ({𝑥 ∣ 𝜑} = V ↔ ∀𝑥𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∀wal 1535 = wceq 1537 [wsb 2064 ∈ wcel 2108 {cab 2717 Vcvv 3488 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-11 2158 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-v 3490 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |