Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > abvALT | Structured version Visualization version GIF version |
Description: Alternate proof of abv 3452, shorter but using more axioms. (Contributed by BJ, 19-Mar-2021.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
abvALT | ⊢ ({𝑥 ∣ 𝜑} = V ↔ ∀𝑥𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-clab 2714 | . . 3 ⊢ (𝑦 ∈ {𝑥 ∣ 𝜑} ↔ [𝑦 / 𝑥]𝜑) | |
2 | 1 | albii 1820 | . 2 ⊢ (∀𝑦 𝑦 ∈ {𝑥 ∣ 𝜑} ↔ ∀𝑦[𝑦 / 𝑥]𝜑) |
3 | eqv 3450 | . 2 ⊢ ({𝑥 ∣ 𝜑} = V ↔ ∀𝑦 𝑦 ∈ {𝑥 ∣ 𝜑}) | |
4 | sb8v 2348 | . 2 ⊢ (∀𝑥𝜑 ↔ ∀𝑦[𝑦 / 𝑥]𝜑) | |
5 | 2, 3, 4 | 3bitr4i 302 | 1 ⊢ ({𝑥 ∣ 𝜑} = V ↔ ∀𝑥𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∀wal 1538 = wceq 1540 [wsb 2066 ∈ wcel 2105 {cab 2713 Vcvv 3441 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-11 2153 ax-ext 2707 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1543 df-ex 1781 df-sb 2067 df-clab 2714 df-cleq 2728 df-clel 2814 df-v 3443 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |