| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eqv | Structured version Visualization version GIF version | ||
| Description: The universe contains every set. (Contributed by NM, 11-Sep-2006.) Remove dependency on ax-10 2142, ax-11 2158, ax-13 2371. (Revised by BJ, 10-Aug-2022.) |
| Ref | Expression |
|---|---|
| eqv | ⊢ (𝐴 = V ↔ ∀𝑥 𝑥 ∈ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfcleq 2723 | . 2 ⊢ (𝐴 = V ↔ ∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ V)) | |
| 2 | vex 3454 | . . . 4 ⊢ 𝑥 ∈ V | |
| 3 | 2 | tbt 369 | . . 3 ⊢ (𝑥 ∈ 𝐴 ↔ (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ V)) |
| 4 | 3 | albii 1819 | . 2 ⊢ (∀𝑥 𝑥 ∈ 𝐴 ↔ ∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ V)) |
| 5 | 1, 4 | bitr4i 278 | 1 ⊢ (𝐴 = V ↔ ∀𝑥 𝑥 ∈ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∀wal 1538 = wceq 1540 ∈ wcel 2109 Vcvv 3450 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-v 3452 |
| This theorem is referenced by: abvALT 3463 dmi 5888 dmep 5890 dfac10 10098 dfac10c 10099 dfac10b 10100 uniwun 10700 onvf1odlem1 35097 onvf1odlem4 35100 fnsingle 35914 bj-abvALT 36902 ttac 43032 nev 43766 |
| Copyright terms: Public domain | W3C validator |