MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eqv Structured version   Visualization version   GIF version

Theorem eqv 3446
Description: The universe contains every set. (Contributed by NM, 11-Sep-2006.) Remove dependency on ax-10 2144, ax-11 2160, ax-13 2372. (Revised by BJ, 10-Aug-2022.)
Assertion
Ref Expression
eqv (𝐴 = V ↔ ∀𝑥 𝑥𝐴)
Distinct variable group:   𝑥,𝐴

Proof of Theorem eqv
StepHypRef Expression
1 dfcleq 2724 . 2 (𝐴 = V ↔ ∀𝑥(𝑥𝐴𝑥 ∈ V))
2 vex 3440 . . . 4 𝑥 ∈ V
32tbt 369 . . 3 (𝑥𝐴 ↔ (𝑥𝐴𝑥 ∈ V))
43albii 1820 . 2 (∀𝑥 𝑥𝐴 ↔ ∀𝑥(𝑥𝐴𝑥 ∈ V))
51, 4bitr4i 278 1 (𝐴 = V ↔ ∀𝑥 𝑥𝐴)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wal 1539   = wceq 1541  wcel 2111  Vcvv 3436
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1544  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-v 3438
This theorem is referenced by:  abvALT  3449  dmi  5860  dmep  5862  dfac10  10029  dfac10c  10030  dfac10b  10031  uniwun  10631  onvf1odlem1  35147  onvf1odlem4  35150  fnsingle  35961  bj-abvALT  36949  ttac  43077  nev  43811
  Copyright terms: Public domain W3C validator