![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eqv | Structured version Visualization version GIF version |
Description: The universe contains every set. (Contributed by NM, 11-Sep-2006.) Remove dependency on ax-10 2141, ax-11 2158, ax-13 2380. (Revised by BJ, 10-Aug-2022.) |
Ref | Expression |
---|---|
eqv | ⊢ (𝐴 = V ↔ ∀𝑥 𝑥 ∈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfcleq 2733 | . 2 ⊢ (𝐴 = V ↔ ∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ V)) | |
2 | vex 3492 | . . . 4 ⊢ 𝑥 ∈ V | |
3 | 2 | tbt 369 | . . 3 ⊢ (𝑥 ∈ 𝐴 ↔ (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ V)) |
4 | 3 | albii 1817 | . 2 ⊢ (∀𝑥 𝑥 ∈ 𝐴 ↔ ∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ V)) |
5 | 1, 4 | bitr4i 278 | 1 ⊢ (𝐴 = V ↔ ∀𝑥 𝑥 ∈ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∀wal 1535 = wceq 1537 ∈ wcel 2108 Vcvv 3488 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-v 3490 |
This theorem is referenced by: abvALT 3501 dmi 5946 dmep 5948 dfac10 10207 dfac10c 10208 dfac10b 10209 uniwun 10809 fnsingle 35883 bj-abvALT 36873 ttac 42993 nev 43732 |
Copyright terms: Public domain | W3C validator |