MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eqv Structured version   Visualization version   GIF version

Theorem eqv 3448
Description: The universe contains every set. (Contributed by NM, 11-Sep-2006.) Remove dependency on ax-10 2114, ax-11 2128, ax-13 2346. (Revised by BJ, 10-Aug-2022.)
Assertion
Ref Expression
eqv (𝐴 = V ↔ ∀𝑥 𝑥𝐴)
Distinct variable group:   𝑥,𝐴

Proof of Theorem eqv
StepHypRef Expression
1 dfcleq 2791 . 2 (𝐴 = V ↔ ∀𝑥(𝑥𝐴𝑥 ∈ V))
2 vex 3443 . . . 4 𝑥 ∈ V
32tbt 371 . . 3 (𝑥𝐴 ↔ (𝑥𝐴𝑥 ∈ V))
43albii 1805 . 2 (∀𝑥 𝑥𝐴 ↔ ∀𝑥(𝑥𝐴𝑥 ∈ V))
51, 4bitr4i 279 1 (𝐴 = V ↔ ∀𝑥 𝑥𝐴)
Colors of variables: wff setvar class
Syntax hints:  wb 207  wal 1523   = wceq 1525  wcel 2083  Vcvv 3440
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1781  ax-4 1795  ax-5 1892  ax-6 1951  ax-7 1996  ax-8 2085  ax-9 2093  ax-ext 2771
This theorem depends on definitions:  df-bi 208  df-an 397  df-ex 1766  df-sb 2045  df-clab 2778  df-cleq 2790  df-clel 2865  df-v 3442
This theorem is referenced by:  abv  3450  dmi  5684  dfac10  9416  dfac10c  9417  dfac10b  9418  uniwun  10015  fnsingle  32991  bj-abv  33800  ttac  39139  nev  39621
  Copyright terms: Public domain W3C validator