![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eqv | Structured version Visualization version GIF version |
Description: The universe contains every set. (Contributed by NM, 11-Sep-2006.) Remove dependency on ax-10 2114, ax-11 2128, ax-13 2346. (Revised by BJ, 10-Aug-2022.) |
Ref | Expression |
---|---|
eqv | ⊢ (𝐴 = V ↔ ∀𝑥 𝑥 ∈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfcleq 2791 | . 2 ⊢ (𝐴 = V ↔ ∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ V)) | |
2 | vex 3443 | . . . 4 ⊢ 𝑥 ∈ V | |
3 | 2 | tbt 371 | . . 3 ⊢ (𝑥 ∈ 𝐴 ↔ (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ V)) |
4 | 3 | albii 1805 | . 2 ⊢ (∀𝑥 𝑥 ∈ 𝐴 ↔ ∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ V)) |
5 | 1, 4 | bitr4i 279 | 1 ⊢ (𝐴 = V ↔ ∀𝑥 𝑥 ∈ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 207 ∀wal 1523 = wceq 1525 ∈ wcel 2083 Vcvv 3440 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1781 ax-4 1795 ax-5 1892 ax-6 1951 ax-7 1996 ax-8 2085 ax-9 2093 ax-ext 2771 |
This theorem depends on definitions: df-bi 208 df-an 397 df-ex 1766 df-sb 2045 df-clab 2778 df-cleq 2790 df-clel 2865 df-v 3442 |
This theorem is referenced by: abv 3450 dmi 5684 dfac10 9416 dfac10c 9417 dfac10b 9418 uniwun 10015 fnsingle 32991 bj-abv 33800 ttac 39139 nev 39621 |
Copyright terms: Public domain | W3C validator |