Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > eqv | Structured version Visualization version GIF version |
Description: The universe contains every set. (Contributed by NM, 11-Sep-2006.) Remove dependency on ax-10 2139, ax-11 2156, ax-13 2372. (Revised by BJ, 10-Aug-2022.) |
Ref | Expression |
---|---|
eqv | ⊢ (𝐴 = V ↔ ∀𝑥 𝑥 ∈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfcleq 2731 | . 2 ⊢ (𝐴 = V ↔ ∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ V)) | |
2 | vex 3426 | . . . 4 ⊢ 𝑥 ∈ V | |
3 | 2 | tbt 369 | . . 3 ⊢ (𝑥 ∈ 𝐴 ↔ (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ V)) |
4 | 3 | albii 1823 | . 2 ⊢ (∀𝑥 𝑥 ∈ 𝐴 ↔ ∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ V)) |
5 | 1, 4 | bitr4i 277 | 1 ⊢ (𝐴 = V ↔ ∀𝑥 𝑥 ∈ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∀wal 1537 = wceq 1539 ∈ wcel 2108 Vcvv 3422 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-v 3424 |
This theorem is referenced by: abvALT 3434 dmi 5819 dmep 5821 dfac10 9824 dfac10c 9825 dfac10b 9826 uniwun 10427 fnsingle 34148 bj-abvALT 35019 ttac 40774 nev 41267 |
Copyright terms: Public domain | W3C validator |