MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eqv Structured version   Visualization version   GIF version

Theorem eqv 3457
Description: The universe contains every set. (Contributed by NM, 11-Sep-2006.) Remove dependency on ax-10 2142, ax-11 2158, ax-13 2370. (Revised by BJ, 10-Aug-2022.)
Assertion
Ref Expression
eqv (𝐴 = V ↔ ∀𝑥 𝑥𝐴)
Distinct variable group:   𝑥,𝐴

Proof of Theorem eqv
StepHypRef Expression
1 dfcleq 2722 . 2 (𝐴 = V ↔ ∀𝑥(𝑥𝐴𝑥 ∈ V))
2 vex 3451 . . . 4 𝑥 ∈ V
32tbt 369 . . 3 (𝑥𝐴 ↔ (𝑥𝐴𝑥 ∈ V))
43albii 1819 . 2 (∀𝑥 𝑥𝐴 ↔ ∀𝑥(𝑥𝐴𝑥 ∈ V))
51, 4bitr4i 278 1 (𝐴 = V ↔ ∀𝑥 𝑥𝐴)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wal 1538   = wceq 1540  wcel 2109  Vcvv 3447
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-v 3449
This theorem is referenced by:  abvALT  3460  dmi  5885  dmep  5887  dfac10  10091  dfac10c  10092  dfac10b  10093  uniwun  10693  onvf1odlem1  35090  onvf1odlem4  35093  fnsingle  35907  bj-abvALT  36895  ttac  43025  nev  43759
  Copyright terms: Public domain W3C validator