Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > abv | Structured version Visualization version GIF version |
Description: The class of sets verifying a property is the universal class if and only if that property is a tautology. The reverse implication (bj-abv 35018) requires fewer axioms. (Contributed by BJ, 19-Mar-2021.) Avoid df-clel 2817, ax-8 2110. (Revised by Gino Giotto, 30-Aug-2024.) (Proof shortened by BJ, 30-Aug-2024.) |
Ref | Expression |
---|---|
abv | ⊢ ({𝑥 ∣ 𝜑} = V ↔ ∀𝑥𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfcleq 2731 | . . 3 ⊢ ({𝑥 ∣ 𝜑} = {𝑥 ∣ ⊤} ↔ ∀𝑦(𝑦 ∈ {𝑥 ∣ 𝜑} ↔ 𝑦 ∈ {𝑥 ∣ ⊤})) | |
2 | vextru 2722 | . . . . . 6 ⊢ 𝑦 ∈ {𝑥 ∣ ⊤} | |
3 | 2 | tbt 369 | . . . . 5 ⊢ (𝑦 ∈ {𝑥 ∣ 𝜑} ↔ (𝑦 ∈ {𝑥 ∣ 𝜑} ↔ 𝑦 ∈ {𝑥 ∣ ⊤})) |
4 | df-clab 2716 | . . . . 5 ⊢ (𝑦 ∈ {𝑥 ∣ 𝜑} ↔ [𝑦 / 𝑥]𝜑) | |
5 | 3, 4 | bitr3i 276 | . . . 4 ⊢ ((𝑦 ∈ {𝑥 ∣ 𝜑} ↔ 𝑦 ∈ {𝑥 ∣ ⊤}) ↔ [𝑦 / 𝑥]𝜑) |
6 | 5 | albii 1823 | . . 3 ⊢ (∀𝑦(𝑦 ∈ {𝑥 ∣ 𝜑} ↔ 𝑦 ∈ {𝑥 ∣ ⊤}) ↔ ∀𝑦[𝑦 / 𝑥]𝜑) |
7 | 1, 6 | bitri 274 | . 2 ⊢ ({𝑥 ∣ 𝜑} = {𝑥 ∣ ⊤} ↔ ∀𝑦[𝑦 / 𝑥]𝜑) |
8 | dfv2 3425 | . . 3 ⊢ V = {𝑥 ∣ ⊤} | |
9 | 8 | eqeq2i 2751 | . 2 ⊢ ({𝑥 ∣ 𝜑} = V ↔ {𝑥 ∣ 𝜑} = {𝑥 ∣ ⊤}) |
10 | nfv 1918 | . . 3 ⊢ Ⅎ𝑦𝜑 | |
11 | 10 | sb8v 2352 | . 2 ⊢ (∀𝑥𝜑 ↔ ∀𝑦[𝑦 / 𝑥]𝜑) |
12 | 7, 9, 11 | 3bitr4i 302 | 1 ⊢ ({𝑥 ∣ 𝜑} = V ↔ ∀𝑥𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∀wal 1537 = wceq 1539 ⊤wtru 1540 [wsb 2068 ∈ wcel 2108 {cab 2715 Vcvv 3422 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1542 df-ex 1784 df-nf 1788 df-sb 2069 df-clab 2716 df-cleq 2730 df-v 3424 |
This theorem is referenced by: dfnf5 4308 |
Copyright terms: Public domain | W3C validator |