MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  abv Structured version   Visualization version   GIF version

Theorem abv 3409
Description: The class of sets verifying a property is the universal class if and only if that property is a tautology. The reverse implication (bj-abv 34778) requires fewer axioms. (Contributed by BJ, 19-Mar-2021.) Avoid df-clel 2809, ax-8 2114. (Revised by Gino Giotto, 30-Aug-2024.) (Proof shortened by BJ, 30-Aug-2024.)
Assertion
Ref Expression
abv ({𝑥𝜑} = V ↔ ∀𝑥𝜑)

Proof of Theorem abv
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 dfcleq 2729 . . 3 ({𝑥𝜑} = {𝑥 ∣ ⊤} ↔ ∀𝑦(𝑦 ∈ {𝑥𝜑} ↔ 𝑦 ∈ {𝑥 ∣ ⊤}))
2 vextru 2721 . . . . . 6 𝑦 ∈ {𝑥 ∣ ⊤}
32tbt 373 . . . . 5 (𝑦 ∈ {𝑥𝜑} ↔ (𝑦 ∈ {𝑥𝜑} ↔ 𝑦 ∈ {𝑥 ∣ ⊤}))
4 df-clab 2715 . . . . 5 (𝑦 ∈ {𝑥𝜑} ↔ [𝑦 / 𝑥]𝜑)
53, 4bitr3i 280 . . . 4 ((𝑦 ∈ {𝑥𝜑} ↔ 𝑦 ∈ {𝑥 ∣ ⊤}) ↔ [𝑦 / 𝑥]𝜑)
65albii 1827 . . 3 (∀𝑦(𝑦 ∈ {𝑥𝜑} ↔ 𝑦 ∈ {𝑥 ∣ ⊤}) ↔ ∀𝑦[𝑦 / 𝑥]𝜑)
71, 6bitri 278 . 2 ({𝑥𝜑} = {𝑥 ∣ ⊤} ↔ ∀𝑦[𝑦 / 𝑥]𝜑)
8 dfv2 3401 . . 3 V = {𝑥 ∣ ⊤}
98eqeq2i 2749 . 2 ({𝑥𝜑} = V ↔ {𝑥𝜑} = {𝑥 ∣ ⊤})
10 nfv 1922 . . 3 𝑦𝜑
1110sb8v 2354 . 2 (∀𝑥𝜑 ↔ ∀𝑦[𝑦 / 𝑥]𝜑)
127, 9, 113bitr4i 306 1 ({𝑥𝜑} = V ↔ ∀𝑥𝜑)
Colors of variables: wff setvar class
Syntax hints:  wb 209  wal 1541   = wceq 1543  wtru 1544  [wsb 2072  wcel 2112  {cab 2714  Vcvv 3398
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2708
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-tru 1546  df-ex 1788  df-nf 1792  df-sb 2073  df-clab 2715  df-cleq 2728  df-v 3400
This theorem is referenced by:  dfnf5  4278
  Copyright terms: Public domain W3C validator