| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > abv | Structured version Visualization version GIF version | ||
| Description: The class of sets verifying a property is the universal class if and only if that property is a tautology. The reverse implication (bj-abv 36924) requires fewer axioms. (Contributed by BJ, 19-Mar-2021.) Avoid df-clel 2809, ax-8 2110. (Revised by GG, 30-Aug-2024.) (Proof shortened by BJ, 30-Aug-2024.) |
| Ref | Expression |
|---|---|
| abv | ⊢ ({𝑥 ∣ 𝜑} = V ↔ ∀𝑥𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfcleq 2728 | . . 3 ⊢ ({𝑥 ∣ 𝜑} = {𝑥 ∣ ⊤} ↔ ∀𝑦(𝑦 ∈ {𝑥 ∣ 𝜑} ↔ 𝑦 ∈ {𝑥 ∣ ⊤})) | |
| 2 | vextru 2720 | . . . . . 6 ⊢ 𝑦 ∈ {𝑥 ∣ ⊤} | |
| 3 | 2 | tbt 369 | . . . . 5 ⊢ (𝑦 ∈ {𝑥 ∣ 𝜑} ↔ (𝑦 ∈ {𝑥 ∣ 𝜑} ↔ 𝑦 ∈ {𝑥 ∣ ⊤})) |
| 4 | df-clab 2714 | . . . . 5 ⊢ (𝑦 ∈ {𝑥 ∣ 𝜑} ↔ [𝑦 / 𝑥]𝜑) | |
| 5 | 3, 4 | bitr3i 277 | . . . 4 ⊢ ((𝑦 ∈ {𝑥 ∣ 𝜑} ↔ 𝑦 ∈ {𝑥 ∣ ⊤}) ↔ [𝑦 / 𝑥]𝜑) |
| 6 | 5 | albii 1819 | . . 3 ⊢ (∀𝑦(𝑦 ∈ {𝑥 ∣ 𝜑} ↔ 𝑦 ∈ {𝑥 ∣ ⊤}) ↔ ∀𝑦[𝑦 / 𝑥]𝜑) |
| 7 | 1, 6 | bitri 275 | . 2 ⊢ ({𝑥 ∣ 𝜑} = {𝑥 ∣ ⊤} ↔ ∀𝑦[𝑦 / 𝑥]𝜑) |
| 8 | dfv2 3462 | . . 3 ⊢ V = {𝑥 ∣ ⊤} | |
| 9 | 8 | eqeq2i 2748 | . 2 ⊢ ({𝑥 ∣ 𝜑} = V ↔ {𝑥 ∣ 𝜑} = {𝑥 ∣ ⊤}) |
| 10 | sb8v 2354 | . 2 ⊢ (∀𝑥𝜑 ↔ ∀𝑦[𝑦 / 𝑥]𝜑) | |
| 11 | 7, 9, 10 | 3bitr4i 303 | 1 ⊢ ({𝑥 ∣ 𝜑} = V ↔ ∀𝑥𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∀wal 1538 = wceq 1540 ⊤wtru 1541 [wsb 2064 ∈ wcel 2108 {cab 2713 Vcvv 3459 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-9 2118 ax-11 2157 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-v 3461 |
| This theorem is referenced by: dfnf5 4357 |
| Copyright terms: Public domain | W3C validator |