MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  abv Structured version   Visualization version   GIF version

Theorem abv 3433
Description: The class of sets verifying a property is the universal class if and only if that property is a tautology. The reverse implication (bj-abv 35018) requires fewer axioms. (Contributed by BJ, 19-Mar-2021.) Avoid df-clel 2817, ax-8 2110. (Revised by Gino Giotto, 30-Aug-2024.) (Proof shortened by BJ, 30-Aug-2024.)
Assertion
Ref Expression
abv ({𝑥𝜑} = V ↔ ∀𝑥𝜑)

Proof of Theorem abv
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 dfcleq 2731 . . 3 ({𝑥𝜑} = {𝑥 ∣ ⊤} ↔ ∀𝑦(𝑦 ∈ {𝑥𝜑} ↔ 𝑦 ∈ {𝑥 ∣ ⊤}))
2 vextru 2722 . . . . . 6 𝑦 ∈ {𝑥 ∣ ⊤}
32tbt 369 . . . . 5 (𝑦 ∈ {𝑥𝜑} ↔ (𝑦 ∈ {𝑥𝜑} ↔ 𝑦 ∈ {𝑥 ∣ ⊤}))
4 df-clab 2716 . . . . 5 (𝑦 ∈ {𝑥𝜑} ↔ [𝑦 / 𝑥]𝜑)
53, 4bitr3i 276 . . . 4 ((𝑦 ∈ {𝑥𝜑} ↔ 𝑦 ∈ {𝑥 ∣ ⊤}) ↔ [𝑦 / 𝑥]𝜑)
65albii 1823 . . 3 (∀𝑦(𝑦 ∈ {𝑥𝜑} ↔ 𝑦 ∈ {𝑥 ∣ ⊤}) ↔ ∀𝑦[𝑦 / 𝑥]𝜑)
71, 6bitri 274 . 2 ({𝑥𝜑} = {𝑥 ∣ ⊤} ↔ ∀𝑦[𝑦 / 𝑥]𝜑)
8 dfv2 3425 . . 3 V = {𝑥 ∣ ⊤}
98eqeq2i 2751 . 2 ({𝑥𝜑} = V ↔ {𝑥𝜑} = {𝑥 ∣ ⊤})
10 nfv 1918 . . 3 𝑦𝜑
1110sb8v 2352 . 2 (∀𝑥𝜑 ↔ ∀𝑦[𝑦 / 𝑥]𝜑)
127, 9, 113bitr4i 302 1 ({𝑥𝜑} = V ↔ ∀𝑥𝜑)
Colors of variables: wff setvar class
Syntax hints:  wb 205  wal 1537   = wceq 1539  wtru 1540  [wsb 2068  wcel 2108  {cab 2715  Vcvv 3422
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-tru 1542  df-ex 1784  df-nf 1788  df-sb 2069  df-clab 2716  df-cleq 2730  df-v 3424
This theorem is referenced by:  dfnf5  4308
  Copyright terms: Public domain W3C validator