MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ad4ant124 Structured version   Visualization version   GIF version

Theorem ad4ant124 1171
Description: Deduction adding conjuncts to antecedent. (Contributed by Alan Sare, 17-Oct-2017.) (Proof shortened by Wolf Lammen, 14-Apr-2022.)
Hypothesis
Ref Expression
ad4ant3.1 ((𝜑𝜓𝜒) → 𝜃)
Assertion
Ref Expression
ad4ant124 ((((𝜑𝜓) ∧ 𝜏) ∧ 𝜒) → 𝜃)

Proof of Theorem ad4ant124
StepHypRef Expression
1 ad4ant3.1 . . 3 ((𝜑𝜓𝜒) → 𝜃)
213expa 1116 . 2 (((𝜑𝜓) ∧ 𝜒) → 𝜃)
32adantlr 711 1 ((((𝜑𝜓) ∧ 𝜏) ∧ 𝜒) → 𝜃)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 396  df-3an 1087
This theorem is referenced by:  ad5ant124  1363  ixxin  13025  odf1  19084  m2cpmfo  21813  cnflf  23061  cnfcf  23101  tmdmulg  23151  blin  23482  blsscls2  23566  metcn  23605  xrsxmet  23878  sqf11  26193  dimval  31588  dfgcd3  35422  lindsadd  35697  hspmbllem2  44055
  Copyright terms: Public domain W3C validator