MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ad4ant124 Structured version   Visualization version   GIF version

Theorem ad4ant124 1173
Description: Deduction adding conjuncts to antecedent. (Contributed by Alan Sare, 17-Oct-2017.) (Proof shortened by Wolf Lammen, 14-Apr-2022.)
Hypothesis
Ref Expression
ad4ant3.1 ((𝜑𝜓𝜒) → 𝜃)
Assertion
Ref Expression
ad4ant124 ((((𝜑𝜓) ∧ 𝜏) ∧ 𝜒) → 𝜃)

Proof of Theorem ad4ant124
StepHypRef Expression
1 ad4ant3.1 . . 3 ((𝜑𝜓𝜒) → 𝜃)
213expa 1118 . 2 (((𝜑𝜓) ∧ 𝜒) → 𝜃)
32adantlr 714 1 ((((𝜑𝜓) ∧ 𝜏) ∧ 𝜒) → 𝜃)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1089
This theorem is referenced by:  ad5ant124  1365  naddsuc2  8757  ixxin  13424  odf1  19604  m2cpmfo  22783  cnflf  24031  cnfcf  24071  tmdmulg  24121  blin  24452  blsscls2  24538  metcn  24577  xrsxmet  24850  sqf11  27200  dimval  33613  dfgcd3  37290  lindsadd  37573  hspmbllem2  46548
  Copyright terms: Public domain W3C validator