MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ad4ant124 Structured version   Visualization version   GIF version

Theorem ad4ant124 1174
Description: Deduction adding conjuncts to antecedent. (Contributed by Alan Sare, 17-Oct-2017.) (Proof shortened by Wolf Lammen, 14-Apr-2022.)
Hypothesis
Ref Expression
ad4ant3.1 ((𝜑𝜓𝜒) → 𝜃)
Assertion
Ref Expression
ad4ant124 ((((𝜑𝜓) ∧ 𝜏) ∧ 𝜒) → 𝜃)

Proof of Theorem ad4ant124
StepHypRef Expression
1 ad4ant3.1 . . 3 ((𝜑𝜓𝜒) → 𝜃)
213expa 1118 . 2 (((𝜑𝜓) ∧ 𝜒) → 𝜃)
32adantlr 715 1 ((((𝜑𝜓) ∧ 𝜏) ∧ 𝜒) → 𝜃)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088
This theorem is referenced by:  ad5ant124  1367  naddsuc2  8626  ixxin  13284  odf1  19460  m2cpmfo  22660  cnflf  23906  cnfcf  23946  tmdmulg  23996  blin  24326  blsscls2  24409  metcn  24448  xrsxmet  24715  sqf11  27066  dimval  33586  dfgcd3  37317  lindsadd  37612  hspmbllem2  46628
  Copyright terms: Public domain W3C validator