MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ad4ant124 Structured version   Visualization version   GIF version

Theorem ad4ant124 1172
Description: Deduction adding conjuncts to antecedent. (Contributed by Alan Sare, 17-Oct-2017.) (Proof shortened by Wolf Lammen, 14-Apr-2022.)
Hypothesis
Ref Expression
ad4ant3.1 ((𝜑𝜓𝜒) → 𝜃)
Assertion
Ref Expression
ad4ant124 ((((𝜑𝜓) ∧ 𝜏) ∧ 𝜒) → 𝜃)

Proof of Theorem ad4ant124
StepHypRef Expression
1 ad4ant3.1 . . 3 ((𝜑𝜓𝜒) → 𝜃)
213expa 1117 . 2 (((𝜑𝜓) ∧ 𝜒) → 𝜃)
32adantlr 712 1 ((((𝜑𝜓) ∧ 𝜏) ∧ 𝜒) → 𝜃)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 397  df-3an 1088
This theorem is referenced by:  ad5ant124  1364  ixxin  13096  odf1  19169  m2cpmfo  21905  cnflf  23153  cnfcf  23193  tmdmulg  23243  blin  23574  blsscls2  23660  metcn  23699  xrsxmet  23972  sqf11  26288  dimval  31686  dfgcd3  35495  lindsadd  35770  hspmbllem2  44165
  Copyright terms: Public domain W3C validator