![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3adantr3 | Structured version Visualization version GIF version |
Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 27-Apr-2005.) |
Ref | Expression |
---|---|
3adantr.1 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) |
Ref | Expression |
---|---|
3adantr3 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒 ∧ 𝜏)) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3simpa 1145 | . 2 ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜏) → (𝜓 ∧ 𝜒)) | |
2 | 3adantr.1 | . 2 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) | |
3 | 1, 2 | sylan2 591 | 1 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒 ∧ 𝜏)) → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 ∧ w3a 1084 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 395 df-3an 1086 |
This theorem is referenced by: 3adant3r3 1181 3ad2antr1 1185 3ad2antr2 1186 sotr2 5626 dfwe2 7782 smogt 8394 infsupprpr 9535 wlogle 11785 fzadd2 13576 swrdspsleq 14655 tanadd 16151 prdssgrpd 18700 prdsmndd 18734 mhmmnd 19027 imasrng 20124 imasring 20273 prdslmodd 20860 sraassab 21808 mpllsslem 21949 scmatlss 22447 mdetunilem3 22536 ptclsg 23539 tmdgsum2 24020 isxmet2d 24253 xmetres2 24287 prdsxmetlem 24294 comet 24442 iimulcl 24880 icoopnst 24883 iocopnst 24884 icccvx 24895 dvfsumrlim 25986 dvfsumrlim2 25987 colhp 28594 eengtrkg 28817 wwlksnredwwlkn 29726 dmdsl3 32145 eqgvscpbl 33086 resconn 34889 poimirlem28 37154 poimirlem32 37158 broucube 37160 ftc1anclem7 37205 ftc1anc 37207 isdrngo2 37464 iscringd 37504 unichnidl 37537 lplnle 39045 2llnjN 39072 2lplnj 39125 osumcllem11N 39471 cdleme1 39732 erngplus2 40309 erngplus2-rN 40317 erngdvlem3 40495 erngdvlem3-rN 40503 dvaplusgv 40515 dvalveclem 40530 dvhvaddass 40602 dvhlveclem 40613 dihmeetlem12N 40823 issmflem 46144 fmtnoprmfac1 46934 lincresunit3lem2 47626 lincresunit3 47627 |
Copyright terms: Public domain | W3C validator |