| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3adantr3 | Structured version Visualization version GIF version | ||
| Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 27-Apr-2005.) |
| Ref | Expression |
|---|---|
| 3adantr.1 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) |
| Ref | Expression |
|---|---|
| 3adantr3 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒 ∧ 𝜏)) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3simpa 1148 | . 2 ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜏) → (𝜓 ∧ 𝜒)) | |
| 2 | 3adantr.1 | . 2 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) | |
| 3 | 1, 2 | sylan2 593 | 1 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒 ∧ 𝜏)) → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: 3adant3r3 1185 3ad2antr1 1189 3ad2antr2 1190 sotr2 5561 dfwe2 7713 smogt 8293 infsupprpr 9397 wlogle 11657 fzadd2 13461 swrdspsleq 14575 tanadd 16078 prdssgrpd 18643 prdsmndd 18680 mhmmnd 18979 imasrng 20097 imasring 20250 prdslmodd 20904 sraassab 21807 mpllsslem 21938 scmatlss 22441 mdetunilem3 22530 ptclsg 23531 tmdgsum2 24012 isxmet2d 24243 xmetres2 24277 prdsxmetlem 24284 comet 24429 iimulcl 24861 icoopnst 24864 iocopnst 24865 icccvx 24876 dvfsumrlim 25966 dvfsumrlim2 25967 colhp 28749 eengtrkg 28966 wwlksnredwwlkn 29875 dmdsl3 32297 eqgvscpbl 33322 resconn 35311 poimirlem28 37709 poimirlem32 37713 broucube 37715 ftc1anclem7 37760 ftc1anc 37762 isdrngo2 38019 iscringd 38059 unichnidl 38092 lplnle 39660 2llnjN 39687 2lplnj 39740 osumcllem11N 40086 cdleme1 40347 erngplus2 40924 erngplus2-rN 40932 erngdvlem3 41110 erngdvlem3-rN 41118 dvaplusgv 41130 dvalveclem 41145 dvhvaddass 41217 dvhlveclem 41228 dihmeetlem12N 41438 issmflem 46850 fmtnoprmfac1 47690 lincresunit3lem2 48606 lincresunit3 48607 |
| Copyright terms: Public domain | W3C validator |