![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3adantr3 | Structured version Visualization version GIF version |
Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 27-Apr-2005.) |
Ref | Expression |
---|---|
3adantr.1 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) |
Ref | Expression |
---|---|
3adantr3 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒 ∧ 𝜏)) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3simpa 1148 | . 2 ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜏) → (𝜓 ∧ 𝜒)) | |
2 | 3adantr.1 | . 2 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) | |
3 | 1, 2 | sylan2 592 | 1 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒 ∧ 𝜏)) → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1089 |
This theorem is referenced by: 3adant3r3 1184 3ad2antr1 1188 3ad2antr2 1189 sotr2 5641 dfwe2 7809 smogt 8423 infsupprpr 9573 wlogle 11823 fzadd2 13619 swrdspsleq 14713 tanadd 16215 prdssgrpd 18771 prdsmndd 18805 mhmmnd 19104 imasrng 20204 imasring 20353 prdslmodd 20990 sraassab 21911 mpllsslem 22043 scmatlss 22552 mdetunilem3 22641 ptclsg 23644 tmdgsum2 24125 isxmet2d 24358 xmetres2 24392 prdsxmetlem 24399 comet 24547 iimulcl 24985 icoopnst 24988 iocopnst 24989 icccvx 25000 dvfsumrlim 26092 dvfsumrlim2 26093 colhp 28796 eengtrkg 29019 wwlksnredwwlkn 29928 dmdsl3 32347 eqgvscpbl 33343 resconn 35214 poimirlem28 37608 poimirlem32 37612 broucube 37614 ftc1anclem7 37659 ftc1anc 37661 isdrngo2 37918 iscringd 37958 unichnidl 37991 lplnle 39497 2llnjN 39524 2lplnj 39577 osumcllem11N 39923 cdleme1 40184 erngplus2 40761 erngplus2-rN 40769 erngdvlem3 40947 erngdvlem3-rN 40955 dvaplusgv 40967 dvalveclem 40982 dvhvaddass 41054 dvhlveclem 41065 dihmeetlem12N 41275 issmflem 46648 fmtnoprmfac1 47439 lincresunit3lem2 48209 lincresunit3 48210 |
Copyright terms: Public domain | W3C validator |