| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3adantr3 | Structured version Visualization version GIF version | ||
| Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 27-Apr-2005.) |
| Ref | Expression |
|---|---|
| 3adantr.1 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) |
| Ref | Expression |
|---|---|
| 3adantr3 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒 ∧ 𝜏)) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3simpa 1148 | . 2 ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜏) → (𝜓 ∧ 𝜒)) | |
| 2 | 3adantr.1 | . 2 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) | |
| 3 | 1, 2 | sylan2 593 | 1 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒 ∧ 𝜏)) → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: 3adant3r3 1185 3ad2antr1 1189 3ad2antr2 1190 sotr2 5558 dfwe2 7707 smogt 8287 infsupprpr 9390 wlogle 11650 fzadd2 13459 swrdspsleq 14573 tanadd 16076 prdssgrpd 18641 prdsmndd 18678 mhmmnd 18977 imasrng 20096 imasring 20249 prdslmodd 20903 sraassab 21806 mpllsslem 21938 scmatlss 22441 mdetunilem3 22530 ptclsg 23531 tmdgsum2 24012 isxmet2d 24243 xmetres2 24277 prdsxmetlem 24284 comet 24429 iimulcl 24861 icoopnst 24864 iocopnst 24865 icccvx 24876 dvfsumrlim 25966 dvfsumrlim2 25967 colhp 28749 eengtrkg 28965 wwlksnredwwlkn 29874 dmdsl3 32293 eqgvscpbl 33313 resconn 35288 poimirlem28 37694 poimirlem32 37698 broucube 37700 ftc1anclem7 37745 ftc1anc 37747 isdrngo2 38004 iscringd 38044 unichnidl 38077 lplnle 39585 2llnjN 39612 2lplnj 39665 osumcllem11N 40011 cdleme1 40272 erngplus2 40849 erngplus2-rN 40857 erngdvlem3 41035 erngdvlem3-rN 41043 dvaplusgv 41055 dvalveclem 41070 dvhvaddass 41142 dvhlveclem 41153 dihmeetlem12N 41363 issmflem 46771 fmtnoprmfac1 47602 lincresunit3lem2 48518 lincresunit3 48519 |
| Copyright terms: Public domain | W3C validator |