| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3adantr3 | Structured version Visualization version GIF version | ||
| Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 27-Apr-2005.) |
| Ref | Expression |
|---|---|
| 3adantr.1 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) |
| Ref | Expression |
|---|---|
| 3adantr3 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒 ∧ 𝜏)) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3simpa 1148 | . 2 ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜏) → (𝜓 ∧ 𝜒)) | |
| 2 | 3adantr.1 | . 2 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) | |
| 3 | 1, 2 | sylan2 593 | 1 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒 ∧ 𝜏)) → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: 3adant3r3 1185 3ad2antr1 1189 3ad2antr2 1190 sotr2 5565 dfwe2 7714 smogt 8297 infsupprpr 9415 wlogle 11671 fzadd2 13480 swrdspsleq 14590 tanadd 16094 prdssgrpd 18625 prdsmndd 18662 mhmmnd 18961 imasrng 20080 imasring 20233 prdslmodd 20890 sraassab 21793 mpllsslem 21925 scmatlss 22428 mdetunilem3 22517 ptclsg 23518 tmdgsum2 23999 isxmet2d 24231 xmetres2 24265 prdsxmetlem 24272 comet 24417 iimulcl 24849 icoopnst 24852 iocopnst 24853 icccvx 24864 dvfsumrlim 25954 dvfsumrlim2 25955 colhp 28733 eengtrkg 28949 wwlksnredwwlkn 29858 dmdsl3 32277 eqgvscpbl 33297 resconn 35218 poimirlem28 37627 poimirlem32 37631 broucube 37633 ftc1anclem7 37678 ftc1anc 37680 isdrngo2 37937 iscringd 37977 unichnidl 38010 lplnle 39519 2llnjN 39546 2lplnj 39599 osumcllem11N 39945 cdleme1 40206 erngplus2 40783 erngplus2-rN 40791 erngdvlem3 40969 erngdvlem3-rN 40977 dvaplusgv 40989 dvalveclem 41004 dvhvaddass 41076 dvhlveclem 41087 dihmeetlem12N 41297 issmflem 46709 fmtnoprmfac1 47550 lincresunit3lem2 48466 lincresunit3 48467 |
| Copyright terms: Public domain | W3C validator |