Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 3adantr3 | Structured version Visualization version GIF version |
Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 27-Apr-2005.) |
Ref | Expression |
---|---|
3adantr.1 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) |
Ref | Expression |
---|---|
3adantr3 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒 ∧ 𝜏)) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3simpa 1146 | . 2 ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜏) → (𝜓 ∧ 𝜒)) | |
2 | 3adantr.1 | . 2 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) | |
3 | 1, 2 | sylan2 592 | 1 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒 ∧ 𝜏)) → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 df-3an 1087 |
This theorem is referenced by: 3adant3r3 1182 3ad2antr1 1186 3ad2antr2 1187 sotr2 5526 dfwe2 7602 smogt 8169 infsupprpr 9193 wlogle 11438 fzadd2 13220 swrdspsleq 14306 tanadd 15804 prdsmndd 18333 mhmmnd 18612 imasring 19773 prdslmodd 20146 mpllsslem 21116 scmatlss 21582 mdetunilem3 21671 ptclsg 22674 tmdgsum2 23155 isxmet2d 23388 xmetres2 23422 prdsxmetlem 23429 comet 23575 iimulcl 24006 icoopnst 24008 iocopnst 24009 icccvx 24019 dvfsumrlim 25100 dvfsumrlim2 25101 colhp 27035 eengtrkg 27257 wwlksnredwwlkn 28161 dmdsl3 30578 eqgvscpbl 31452 resconn 33108 poimirlem28 35732 poimirlem32 35736 broucube 35738 ftc1anclem7 35783 ftc1anc 35785 isdrngo2 36043 iscringd 36083 unichnidl 36116 lplnle 37481 2llnjN 37508 2lplnj 37561 osumcllem11N 37907 cdleme1 38168 erngplus2 38745 erngplus2-rN 38753 erngdvlem3 38931 erngdvlem3-rN 38939 dvaplusgv 38951 dvalveclem 38966 dvhvaddass 39038 dvhlveclem 39049 dihmeetlem12N 39259 issmflem 44150 fmtnoprmfac1 44905 lincresunit3lem2 45709 lincresunit3 45710 |
Copyright terms: Public domain | W3C validator |