| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3adantr3 | Structured version Visualization version GIF version | ||
| Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 27-Apr-2005.) |
| Ref | Expression |
|---|---|
| 3adantr.1 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) |
| Ref | Expression |
|---|---|
| 3adantr3 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒 ∧ 𝜏)) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3simpa 1148 | . 2 ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜏) → (𝜓 ∧ 𝜒)) | |
| 2 | 3adantr.1 | . 2 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) | |
| 3 | 1, 2 | sylan2 593 | 1 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒 ∧ 𝜏)) → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: 3adant3r3 1185 3ad2antr1 1189 3ad2antr2 1190 sotr2 5583 dfwe2 7753 smogt 8339 infsupprpr 9464 wlogle 11718 fzadd2 13527 swrdspsleq 14637 tanadd 16142 prdssgrpd 18667 prdsmndd 18704 mhmmnd 19003 imasrng 20093 imasring 20246 prdslmodd 20882 sraassab 21784 mpllsslem 21916 scmatlss 22419 mdetunilem3 22508 ptclsg 23509 tmdgsum2 23990 isxmet2d 24222 xmetres2 24256 prdsxmetlem 24263 comet 24408 iimulcl 24840 icoopnst 24843 iocopnst 24844 icccvx 24855 dvfsumrlim 25945 dvfsumrlim2 25946 colhp 28704 eengtrkg 28920 wwlksnredwwlkn 29832 dmdsl3 32251 eqgvscpbl 33328 resconn 35240 poimirlem28 37649 poimirlem32 37653 broucube 37655 ftc1anclem7 37700 ftc1anc 37702 isdrngo2 37959 iscringd 37999 unichnidl 38032 lplnle 39541 2llnjN 39568 2lplnj 39621 osumcllem11N 39967 cdleme1 40228 erngplus2 40805 erngplus2-rN 40813 erngdvlem3 40991 erngdvlem3-rN 40999 dvaplusgv 41011 dvalveclem 41026 dvhvaddass 41098 dvhlveclem 41109 dihmeetlem12N 41319 issmflem 46732 fmtnoprmfac1 47570 lincresunit3lem2 48473 lincresunit3 48474 |
| Copyright terms: Public domain | W3C validator |