| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3adantr3 | Structured version Visualization version GIF version | ||
| Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 27-Apr-2005.) |
| Ref | Expression |
|---|---|
| 3adantr.1 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) |
| Ref | Expression |
|---|---|
| 3adantr3 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒 ∧ 𝜏)) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3simpa 1148 | . 2 ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜏) → (𝜓 ∧ 𝜒)) | |
| 2 | 3adantr.1 | . 2 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) | |
| 3 | 1, 2 | sylan2 593 | 1 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒 ∧ 𝜏)) → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: 3adant3r3 1185 3ad2antr1 1189 3ad2antr2 1190 sotr2 5595 dfwe2 7766 smogt 8379 infsupprpr 9516 wlogle 11768 fzadd2 13574 swrdspsleq 14681 tanadd 16183 prdssgrpd 18709 prdsmndd 18746 mhmmnd 19045 imasrng 20135 imasring 20288 prdslmodd 20924 sraassab 21826 mpllsslem 21958 scmatlss 22461 mdetunilem3 22550 ptclsg 23551 tmdgsum2 24032 isxmet2d 24264 xmetres2 24298 prdsxmetlem 24305 comet 24450 iimulcl 24882 icoopnst 24885 iocopnst 24886 icccvx 24897 dvfsumrlim 25988 dvfsumrlim2 25989 colhp 28695 eengtrkg 28911 wwlksnredwwlkn 29823 dmdsl3 32242 eqgvscpbl 33311 resconn 35214 poimirlem28 37618 poimirlem32 37622 broucube 37624 ftc1anclem7 37669 ftc1anc 37671 isdrngo2 37928 iscringd 37968 unichnidl 38001 lplnle 39505 2llnjN 39532 2lplnj 39585 osumcllem11N 39931 cdleme1 40192 erngplus2 40769 erngplus2-rN 40777 erngdvlem3 40955 erngdvlem3-rN 40963 dvaplusgv 40975 dvalveclem 40990 dvhvaddass 41062 dvhlveclem 41073 dihmeetlem12N 41283 issmflem 46704 fmtnoprmfac1 47527 lincresunit3lem2 48404 lincresunit3 48405 |
| Copyright terms: Public domain | W3C validator |