Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 3adantr3 | Structured version Visualization version GIF version |
Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 27-Apr-2005.) |
Ref | Expression |
---|---|
3adantr.1 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) |
Ref | Expression |
---|---|
3adantr3 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒 ∧ 𝜏)) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3simpa 1147 | . 2 ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜏) → (𝜓 ∧ 𝜒)) | |
2 | 3adantr.1 | . 2 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) | |
3 | 1, 2 | sylan2 593 | 1 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒 ∧ 𝜏)) → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1086 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 df-3an 1088 |
This theorem is referenced by: 3adant3r3 1183 3ad2antr1 1187 3ad2antr2 1188 sotr2 5535 dfwe2 7624 smogt 8198 infsupprpr 9263 wlogle 11508 fzadd2 13291 swrdspsleq 14378 tanadd 15876 prdsmndd 18418 mhmmnd 18697 imasring 19858 prdslmodd 20231 mpllsslem 21206 scmatlss 21674 mdetunilem3 21763 ptclsg 22766 tmdgsum2 23247 isxmet2d 23480 xmetres2 23514 prdsxmetlem 23521 comet 23669 iimulcl 24100 icoopnst 24102 iocopnst 24103 icccvx 24113 dvfsumrlim 25195 dvfsumrlim2 25196 colhp 27131 eengtrkg 27354 wwlksnredwwlkn 28260 dmdsl3 30677 eqgvscpbl 31550 resconn 33208 poimirlem28 35805 poimirlem32 35809 broucube 35811 ftc1anclem7 35856 ftc1anc 35858 isdrngo2 36116 iscringd 36156 unichnidl 36189 lplnle 37554 2llnjN 37581 2lplnj 37634 osumcllem11N 37980 cdleme1 38241 erngplus2 38818 erngplus2-rN 38826 erngdvlem3 39004 erngdvlem3-rN 39012 dvaplusgv 39024 dvalveclem 39039 dvhvaddass 39111 dvhlveclem 39122 dihmeetlem12N 39332 issmflem 44263 fmtnoprmfac1 45017 lincresunit3lem2 45821 lincresunit3 45822 |
Copyright terms: Public domain | W3C validator |