![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3adantr3 | Structured version Visualization version GIF version |
Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 27-Apr-2005.) |
Ref | Expression |
---|---|
3adantr.1 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) |
Ref | Expression |
---|---|
3adantr3 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒 ∧ 𝜏)) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3simpa 1147 | . 2 ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜏) → (𝜓 ∧ 𝜒)) | |
2 | 3adantr.1 | . 2 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) | |
3 | 1, 2 | sylan2 593 | 1 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒 ∧ 𝜏)) → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
This theorem is referenced by: 3adant3r3 1183 3ad2antr1 1187 3ad2antr2 1188 sotr2 5629 dfwe2 7792 smogt 8405 infsupprpr 9541 wlogle 11793 fzadd2 13595 swrdspsleq 14699 tanadd 16199 prdssgrpd 18758 prdsmndd 18795 mhmmnd 19094 imasrng 20194 imasring 20343 prdslmodd 20984 sraassab 21905 mpllsslem 22037 scmatlss 22546 mdetunilem3 22635 ptclsg 23638 tmdgsum2 24119 isxmet2d 24352 xmetres2 24386 prdsxmetlem 24393 comet 24541 iimulcl 24979 icoopnst 24982 iocopnst 24983 icccvx 24994 dvfsumrlim 26086 dvfsumrlim2 26087 colhp 28792 eengtrkg 29015 wwlksnredwwlkn 29924 dmdsl3 32343 eqgvscpbl 33357 resconn 35230 poimirlem28 37634 poimirlem32 37638 broucube 37640 ftc1anclem7 37685 ftc1anc 37687 isdrngo2 37944 iscringd 37984 unichnidl 38017 lplnle 39522 2llnjN 39549 2lplnj 39602 osumcllem11N 39948 cdleme1 40209 erngplus2 40786 erngplus2-rN 40794 erngdvlem3 40972 erngdvlem3-rN 40980 dvaplusgv 40992 dvalveclem 41007 dvhvaddass 41079 dvhlveclem 41090 dihmeetlem12N 41300 issmflem 46682 fmtnoprmfac1 47489 lincresunit3lem2 48325 lincresunit3 48326 |
Copyright terms: Public domain | W3C validator |