| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3adantr3 | Structured version Visualization version GIF version | ||
| Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 27-Apr-2005.) |
| Ref | Expression |
|---|---|
| 3adantr.1 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) |
| Ref | Expression |
|---|---|
| 3adantr3 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒 ∧ 𝜏)) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3simpa 1148 | . 2 ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜏) → (𝜓 ∧ 𝜒)) | |
| 2 | 3adantr.1 | . 2 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) | |
| 3 | 1, 2 | sylan2 593 | 1 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒 ∧ 𝜏)) → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: 3adant3r3 1185 3ad2antr1 1189 3ad2antr2 1190 sotr2 5595 dfwe2 7768 smogt 8381 infsupprpr 9518 wlogle 11770 fzadd2 13576 swrdspsleq 14683 tanadd 16185 prdssgrpd 18711 prdsmndd 18748 mhmmnd 19047 imasrng 20137 imasring 20290 prdslmodd 20926 sraassab 21828 mpllsslem 21960 scmatlss 22463 mdetunilem3 22552 ptclsg 23553 tmdgsum2 24034 isxmet2d 24266 xmetres2 24300 prdsxmetlem 24307 comet 24452 iimulcl 24884 icoopnst 24887 iocopnst 24888 icccvx 24899 dvfsumrlim 25990 dvfsumrlim2 25991 colhp 28749 eengtrkg 28965 wwlksnredwwlkn 29877 dmdsl3 32296 eqgvscpbl 33365 resconn 35268 poimirlem28 37672 poimirlem32 37676 broucube 37678 ftc1anclem7 37723 ftc1anc 37725 isdrngo2 37982 iscringd 38022 unichnidl 38055 lplnle 39559 2llnjN 39586 2lplnj 39639 osumcllem11N 39985 cdleme1 40246 erngplus2 40823 erngplus2-rN 40831 erngdvlem3 41009 erngdvlem3-rN 41017 dvaplusgv 41029 dvalveclem 41044 dvhvaddass 41116 dvhlveclem 41127 dihmeetlem12N 41337 issmflem 46756 fmtnoprmfac1 47579 lincresunit3lem2 48456 lincresunit3 48457 |
| Copyright terms: Public domain | W3C validator |