| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3adantr3 | Structured version Visualization version GIF version | ||
| Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 27-Apr-2005.) |
| Ref | Expression |
|---|---|
| 3adantr.1 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) |
| Ref | Expression |
|---|---|
| 3adantr3 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒 ∧ 𝜏)) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3simpa 1148 | . 2 ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜏) → (𝜓 ∧ 𝜒)) | |
| 2 | 3adantr.1 | . 2 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) | |
| 3 | 1, 2 | sylan2 593 | 1 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒 ∧ 𝜏)) → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: 3adant3r3 1185 3ad2antr1 1189 3ad2antr2 1190 sotr2 5580 dfwe2 7750 smogt 8336 infsupprpr 9457 wlogle 11711 fzadd2 13520 swrdspsleq 14630 tanadd 16135 prdssgrpd 18660 prdsmndd 18697 mhmmnd 18996 imasrng 20086 imasring 20239 prdslmodd 20875 sraassab 21777 mpllsslem 21909 scmatlss 22412 mdetunilem3 22501 ptclsg 23502 tmdgsum2 23983 isxmet2d 24215 xmetres2 24249 prdsxmetlem 24256 comet 24401 iimulcl 24833 icoopnst 24836 iocopnst 24837 icccvx 24848 dvfsumrlim 25938 dvfsumrlim2 25939 colhp 28697 eengtrkg 28913 wwlksnredwwlkn 29825 dmdsl3 32244 eqgvscpbl 33321 resconn 35233 poimirlem28 37642 poimirlem32 37646 broucube 37648 ftc1anclem7 37693 ftc1anc 37695 isdrngo2 37952 iscringd 37992 unichnidl 38025 lplnle 39534 2llnjN 39561 2lplnj 39614 osumcllem11N 39960 cdleme1 40221 erngplus2 40798 erngplus2-rN 40806 erngdvlem3 40984 erngdvlem3-rN 40992 dvaplusgv 41004 dvalveclem 41019 dvhvaddass 41091 dvhlveclem 41102 dihmeetlem12N 41312 issmflem 46725 fmtnoprmfac1 47566 lincresunit3lem2 48469 lincresunit3 48470 |
| Copyright terms: Public domain | W3C validator |