Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  grplsmid Structured version   Visualization version   GIF version

Theorem grplsmid 31125
Description: The direct sum of an element 𝑋 of a subgroup 𝐴 is the subgroup itself. (Contributed by Thierry Arnoux, 27-Jul-2024.)
Hypothesis
Ref Expression
grplsmid.p = (LSSum‘𝐺)
Assertion
Ref Expression
grplsmid ((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑋𝐴) → ({𝑋} 𝐴) = 𝐴)

Proof of Theorem grplsmid
Dummy variables 𝑥 𝑎 𝑜 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 subgrcl 18364 . . . . 5 (𝐴 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp)
21adantr 484 . . . 4 ((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑋𝐴) → 𝐺 ∈ Grp)
3 eqid 2758 . . . . . . 7 (Base‘𝐺) = (Base‘𝐺)
43subgss 18360 . . . . . 6 (𝐴 ∈ (SubGrp‘𝐺) → 𝐴 ⊆ (Base‘𝐺))
54sselda 3894 . . . . 5 ((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑋𝐴) → 𝑋 ∈ (Base‘𝐺))
65snssd 4702 . . . 4 ((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑋𝐴) → {𝑋} ⊆ (Base‘𝐺))
74adantr 484 . . . 4 ((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑋𝐴) → 𝐴 ⊆ (Base‘𝐺))
8 eqid 2758 . . . . 5 (+g𝐺) = (+g𝐺)
9 grplsmid.p . . . . 5 = (LSSum‘𝐺)
103, 8, 9lsmelvalx 18845 . . . 4 ((𝐺 ∈ Grp ∧ {𝑋} ⊆ (Base‘𝐺) ∧ 𝐴 ⊆ (Base‘𝐺)) → (𝑥 ∈ ({𝑋} 𝐴) ↔ ∃𝑜 ∈ {𝑋}∃𝑎𝐴 𝑥 = (𝑜(+g𝐺)𝑎)))
112, 6, 7, 10syl3anc 1368 . . 3 ((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑋𝐴) → (𝑥 ∈ ({𝑋} 𝐴) ↔ ∃𝑜 ∈ {𝑋}∃𝑎𝐴 𝑥 = (𝑜(+g𝐺)𝑎)))
12 oveq1 7163 . . . . . . 7 (𝑜 = 𝑋 → (𝑜(+g𝐺)𝑎) = (𝑋(+g𝐺)𝑎))
1312eqeq2d 2769 . . . . . 6 (𝑜 = 𝑋 → (𝑥 = (𝑜(+g𝐺)𝑎) ↔ 𝑥 = (𝑋(+g𝐺)𝑎)))
1413rexbidv 3221 . . . . 5 (𝑜 = 𝑋 → (∃𝑎𝐴 𝑥 = (𝑜(+g𝐺)𝑎) ↔ ∃𝑎𝐴 𝑥 = (𝑋(+g𝐺)𝑎)))
1514rexsng 4574 . . . 4 (𝑋𝐴 → (∃𝑜 ∈ {𝑋}∃𝑎𝐴 𝑥 = (𝑜(+g𝐺)𝑎) ↔ ∃𝑎𝐴 𝑥 = (𝑋(+g𝐺)𝑎)))
1615adantl 485 . . 3 ((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑋𝐴) → (∃𝑜 ∈ {𝑋}∃𝑎𝐴 𝑥 = (𝑜(+g𝐺)𝑎) ↔ ∃𝑎𝐴 𝑥 = (𝑋(+g𝐺)𝑎)))
17 simpr 488 . . . . . 6 ((((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑋𝐴) ∧ 𝑎𝐴) ∧ 𝑥 = (𝑋(+g𝐺)𝑎)) → 𝑥 = (𝑋(+g𝐺)𝑎))
188subgcl 18369 . . . . . . 7 ((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑋𝐴𝑎𝐴) → (𝑋(+g𝐺)𝑎) ∈ 𝐴)
1918ad4ant123 1169 . . . . . 6 ((((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑋𝐴) ∧ 𝑎𝐴) ∧ 𝑥 = (𝑋(+g𝐺)𝑎)) → (𝑋(+g𝐺)𝑎) ∈ 𝐴)
2017, 19eqeltrd 2852 . . . . 5 ((((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑋𝐴) ∧ 𝑎𝐴) ∧ 𝑥 = (𝑋(+g𝐺)𝑎)) → 𝑥𝐴)
2120r19.29an 3212 . . . 4 (((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑋𝐴) ∧ ∃𝑎𝐴 𝑥 = (𝑋(+g𝐺)𝑎)) → 𝑥𝐴)
22 simpll 766 . . . . . 6 (((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑋𝐴) ∧ 𝑥𝐴) → 𝐴 ∈ (SubGrp‘𝐺))
23 eqid 2758 . . . . . . . 8 (invg𝐺) = (invg𝐺)
2423subginvcl 18368 . . . . . . 7 ((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑋𝐴) → ((invg𝐺)‘𝑋) ∈ 𝐴)
2524adantr 484 . . . . . 6 (((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑋𝐴) ∧ 𝑥𝐴) → ((invg𝐺)‘𝑋) ∈ 𝐴)
26 simpr 488 . . . . . 6 (((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑋𝐴) ∧ 𝑥𝐴) → 𝑥𝐴)
278subgcl 18369 . . . . . 6 ((𝐴 ∈ (SubGrp‘𝐺) ∧ ((invg𝐺)‘𝑋) ∈ 𝐴𝑥𝐴) → (((invg𝐺)‘𝑋)(+g𝐺)𝑥) ∈ 𝐴)
2822, 25, 26, 27syl3anc 1368 . . . . 5 (((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑋𝐴) ∧ 𝑥𝐴) → (((invg𝐺)‘𝑋)(+g𝐺)𝑥) ∈ 𝐴)
29 oveq2 7164 . . . . . . 7 (𝑎 = (((invg𝐺)‘𝑋)(+g𝐺)𝑥) → (𝑋(+g𝐺)𝑎) = (𝑋(+g𝐺)(((invg𝐺)‘𝑋)(+g𝐺)𝑥)))
3029eqeq2d 2769 . . . . . 6 (𝑎 = (((invg𝐺)‘𝑋)(+g𝐺)𝑥) → (𝑥 = (𝑋(+g𝐺)𝑎) ↔ 𝑥 = (𝑋(+g𝐺)(((invg𝐺)‘𝑋)(+g𝐺)𝑥))))
3130adantl 485 . . . . 5 ((((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑋𝐴) ∧ 𝑥𝐴) ∧ 𝑎 = (((invg𝐺)‘𝑋)(+g𝐺)𝑥)) → (𝑥 = (𝑋(+g𝐺)𝑎) ↔ 𝑥 = (𝑋(+g𝐺)(((invg𝐺)‘𝑋)(+g𝐺)𝑥))))
322adantr 484 . . . . . . 7 (((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑋𝐴) ∧ 𝑥𝐴) → 𝐺 ∈ Grp)
335adantr 484 . . . . . . 7 (((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑋𝐴) ∧ 𝑥𝐴) → 𝑋 ∈ (Base‘𝐺))
347sselda 3894 . . . . . . 7 (((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑋𝐴) ∧ 𝑥𝐴) → 𝑥 ∈ (Base‘𝐺))
353, 8, 23grpasscan1 18242 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝑋 ∈ (Base‘𝐺) ∧ 𝑥 ∈ (Base‘𝐺)) → (𝑋(+g𝐺)(((invg𝐺)‘𝑋)(+g𝐺)𝑥)) = 𝑥)
3632, 33, 34, 35syl3anc 1368 . . . . . 6 (((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑋𝐴) ∧ 𝑥𝐴) → (𝑋(+g𝐺)(((invg𝐺)‘𝑋)(+g𝐺)𝑥)) = 𝑥)
3736eqcomd 2764 . . . . 5 (((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑋𝐴) ∧ 𝑥𝐴) → 𝑥 = (𝑋(+g𝐺)(((invg𝐺)‘𝑋)(+g𝐺)𝑥)))
3828, 31, 37rspcedvd 3546 . . . 4 (((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑋𝐴) ∧ 𝑥𝐴) → ∃𝑎𝐴 𝑥 = (𝑋(+g𝐺)𝑎))
3921, 38impbida 800 . . 3 ((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑋𝐴) → (∃𝑎𝐴 𝑥 = (𝑋(+g𝐺)𝑎) ↔ 𝑥𝐴))
4011, 16, 393bitrd 308 . 2 ((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑋𝐴) → (𝑥 ∈ ({𝑋} 𝐴) ↔ 𝑥𝐴))
4140eqrdv 2756 1 ((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑋𝐴) → ({𝑋} 𝐴) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wcel 2111  wrex 3071  wss 3860  {csn 4525  cfv 6340  (class class class)co 7156  Basecbs 16554  +gcplusg 16636  Grpcgrp 18182  invgcminusg 18183  SubGrpcsubg 18353  LSSumclsm 18839
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-rep 5160  ax-sep 5173  ax-nul 5180  ax-pow 5238  ax-pr 5302  ax-un 7465  ax-cnex 10644  ax-resscn 10645  ax-1cn 10646  ax-icn 10647  ax-addcl 10648  ax-addrcl 10649  ax-mulcl 10650  ax-mulrcl 10651  ax-mulcom 10652  ax-addass 10653  ax-mulass 10654  ax-distr 10655  ax-i2m1 10656  ax-1ne0 10657  ax-1rid 10658  ax-rnegex 10659  ax-rrecex 10660  ax-cnre 10661  ax-pre-lttri 10662  ax-pre-lttrn 10663  ax-pre-ltadd 10664  ax-pre-mulgt0 10665
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-nel 3056  df-ral 3075  df-rex 3076  df-reu 3077  df-rmo 3078  df-rab 3079  df-v 3411  df-sbc 3699  df-csb 3808  df-dif 3863  df-un 3865  df-in 3867  df-ss 3877  df-pss 3879  df-nul 4228  df-if 4424  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4802  df-iun 4888  df-br 5037  df-opab 5099  df-mpt 5117  df-tr 5143  df-id 5434  df-eprel 5439  df-po 5447  df-so 5448  df-fr 5487  df-we 5489  df-xp 5534  df-rel 5535  df-cnv 5536  df-co 5537  df-dm 5538  df-rn 5539  df-res 5540  df-ima 5541  df-pred 6131  df-ord 6177  df-on 6178  df-lim 6179  df-suc 6180  df-iota 6299  df-fun 6342  df-fn 6343  df-f 6344  df-f1 6345  df-fo 6346  df-f1o 6347  df-fv 6348  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7586  df-1st 7699  df-2nd 7700  df-wrecs 7963  df-recs 8024  df-rdg 8062  df-er 8305  df-en 8541  df-dom 8542  df-sdom 8543  df-pnf 10728  df-mnf 10729  df-xr 10730  df-ltxr 10731  df-le 10732  df-sub 10923  df-neg 10924  df-nn 11688  df-2 11750  df-ndx 16557  df-slot 16558  df-base 16560  df-sets 16561  df-ress 16562  df-plusg 16649  df-0g 16786  df-mgm 17931  df-sgrp 17980  df-mnd 17991  df-grp 18185  df-minusg 18186  df-subg 18356  df-lsm 18841
This theorem is referenced by:  nsgmgc  31130  nsgqusf1olem2  31132  nsgqusf1olem3  31133
  Copyright terms: Public domain W3C validator