Step | Hyp | Ref
| Expression |
1 | | subgrcl 18760 |
. . . . 5
⊢ (𝐴 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp) |
2 | 1 | adantr 481 |
. . . 4
⊢ ((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ 𝐴) → 𝐺 ∈ Grp) |
3 | | eqid 2738 |
. . . . . . 7
⊢
(Base‘𝐺) =
(Base‘𝐺) |
4 | 3 | subgss 18756 |
. . . . . 6
⊢ (𝐴 ∈ (SubGrp‘𝐺) → 𝐴 ⊆ (Base‘𝐺)) |
5 | 4 | sselda 3921 |
. . . . 5
⊢ ((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ 𝐴) → 𝑋 ∈ (Base‘𝐺)) |
6 | 5 | snssd 4742 |
. . . 4
⊢ ((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ 𝐴) → {𝑋} ⊆ (Base‘𝐺)) |
7 | 4 | adantr 481 |
. . . 4
⊢ ((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ 𝐴) → 𝐴 ⊆ (Base‘𝐺)) |
8 | | eqid 2738 |
. . . . 5
⊢
(+g‘𝐺) = (+g‘𝐺) |
9 | | grplsmid.p |
. . . . 5
⊢ ⊕ =
(LSSum‘𝐺) |
10 | 3, 8, 9 | lsmelvalx 19245 |
. . . 4
⊢ ((𝐺 ∈ Grp ∧ {𝑋} ⊆ (Base‘𝐺) ∧ 𝐴 ⊆ (Base‘𝐺)) → (𝑥 ∈ ({𝑋} ⊕ 𝐴) ↔ ∃𝑜 ∈ {𝑋}∃𝑎 ∈ 𝐴 𝑥 = (𝑜(+g‘𝐺)𝑎))) |
11 | 2, 6, 7, 10 | syl3anc 1370 |
. . 3
⊢ ((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ 𝐴) → (𝑥 ∈ ({𝑋} ⊕ 𝐴) ↔ ∃𝑜 ∈ {𝑋}∃𝑎 ∈ 𝐴 𝑥 = (𝑜(+g‘𝐺)𝑎))) |
12 | | oveq1 7282 |
. . . . . . 7
⊢ (𝑜 = 𝑋 → (𝑜(+g‘𝐺)𝑎) = (𝑋(+g‘𝐺)𝑎)) |
13 | 12 | eqeq2d 2749 |
. . . . . 6
⊢ (𝑜 = 𝑋 → (𝑥 = (𝑜(+g‘𝐺)𝑎) ↔ 𝑥 = (𝑋(+g‘𝐺)𝑎))) |
14 | 13 | rexbidv 3226 |
. . . . 5
⊢ (𝑜 = 𝑋 → (∃𝑎 ∈ 𝐴 𝑥 = (𝑜(+g‘𝐺)𝑎) ↔ ∃𝑎 ∈ 𝐴 𝑥 = (𝑋(+g‘𝐺)𝑎))) |
15 | 14 | rexsng 4610 |
. . . 4
⊢ (𝑋 ∈ 𝐴 → (∃𝑜 ∈ {𝑋}∃𝑎 ∈ 𝐴 𝑥 = (𝑜(+g‘𝐺)𝑎) ↔ ∃𝑎 ∈ 𝐴 𝑥 = (𝑋(+g‘𝐺)𝑎))) |
16 | 15 | adantl 482 |
. . 3
⊢ ((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ 𝐴) → (∃𝑜 ∈ {𝑋}∃𝑎 ∈ 𝐴 𝑥 = (𝑜(+g‘𝐺)𝑎) ↔ ∃𝑎 ∈ 𝐴 𝑥 = (𝑋(+g‘𝐺)𝑎))) |
17 | | simpr 485 |
. . . . . 6
⊢ ((((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ 𝐴) ∧ 𝑎 ∈ 𝐴) ∧ 𝑥 = (𝑋(+g‘𝐺)𝑎)) → 𝑥 = (𝑋(+g‘𝐺)𝑎)) |
18 | 8 | subgcl 18765 |
. . . . . . 7
⊢ ((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ 𝐴 ∧ 𝑎 ∈ 𝐴) → (𝑋(+g‘𝐺)𝑎) ∈ 𝐴) |
19 | 18 | ad4ant123 1171 |
. . . . . 6
⊢ ((((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ 𝐴) ∧ 𝑎 ∈ 𝐴) ∧ 𝑥 = (𝑋(+g‘𝐺)𝑎)) → (𝑋(+g‘𝐺)𝑎) ∈ 𝐴) |
20 | 17, 19 | eqeltrd 2839 |
. . . . 5
⊢ ((((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ 𝐴) ∧ 𝑎 ∈ 𝐴) ∧ 𝑥 = (𝑋(+g‘𝐺)𝑎)) → 𝑥 ∈ 𝐴) |
21 | 20 | r19.29an 3217 |
. . . 4
⊢ (((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ 𝐴) ∧ ∃𝑎 ∈ 𝐴 𝑥 = (𝑋(+g‘𝐺)𝑎)) → 𝑥 ∈ 𝐴) |
22 | | simpll 764 |
. . . . . 6
⊢ (((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ 𝐴) ∧ 𝑥 ∈ 𝐴) → 𝐴 ∈ (SubGrp‘𝐺)) |
23 | | eqid 2738 |
. . . . . . . 8
⊢
(invg‘𝐺) = (invg‘𝐺) |
24 | 23 | subginvcl 18764 |
. . . . . . 7
⊢ ((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ 𝐴) → ((invg‘𝐺)‘𝑋) ∈ 𝐴) |
25 | 24 | adantr 481 |
. . . . . 6
⊢ (((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ 𝐴) ∧ 𝑥 ∈ 𝐴) → ((invg‘𝐺)‘𝑋) ∈ 𝐴) |
26 | | simpr 485 |
. . . . . 6
⊢ (((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ 𝐴) ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ 𝐴) |
27 | 8 | subgcl 18765 |
. . . . . 6
⊢ ((𝐴 ∈ (SubGrp‘𝐺) ∧
((invg‘𝐺)‘𝑋) ∈ 𝐴 ∧ 𝑥 ∈ 𝐴) → (((invg‘𝐺)‘𝑋)(+g‘𝐺)𝑥) ∈ 𝐴) |
28 | 22, 25, 26, 27 | syl3anc 1370 |
. . . . 5
⊢ (((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ 𝐴) ∧ 𝑥 ∈ 𝐴) → (((invg‘𝐺)‘𝑋)(+g‘𝐺)𝑥) ∈ 𝐴) |
29 | | oveq2 7283 |
. . . . . . 7
⊢ (𝑎 =
(((invg‘𝐺)‘𝑋)(+g‘𝐺)𝑥) → (𝑋(+g‘𝐺)𝑎) = (𝑋(+g‘𝐺)(((invg‘𝐺)‘𝑋)(+g‘𝐺)𝑥))) |
30 | 29 | eqeq2d 2749 |
. . . . . 6
⊢ (𝑎 =
(((invg‘𝐺)‘𝑋)(+g‘𝐺)𝑥) → (𝑥 = (𝑋(+g‘𝐺)𝑎) ↔ 𝑥 = (𝑋(+g‘𝐺)(((invg‘𝐺)‘𝑋)(+g‘𝐺)𝑥)))) |
31 | 30 | adantl 482 |
. . . . 5
⊢ ((((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ 𝐴) ∧ 𝑥 ∈ 𝐴) ∧ 𝑎 = (((invg‘𝐺)‘𝑋)(+g‘𝐺)𝑥)) → (𝑥 = (𝑋(+g‘𝐺)𝑎) ↔ 𝑥 = (𝑋(+g‘𝐺)(((invg‘𝐺)‘𝑋)(+g‘𝐺)𝑥)))) |
32 | 2 | adantr 481 |
. . . . . . 7
⊢ (((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ 𝐴) ∧ 𝑥 ∈ 𝐴) → 𝐺 ∈ Grp) |
33 | 5 | adantr 481 |
. . . . . . 7
⊢ (((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ 𝐴) ∧ 𝑥 ∈ 𝐴) → 𝑋 ∈ (Base‘𝐺)) |
34 | 7 | sselda 3921 |
. . . . . . 7
⊢ (((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ 𝐴) ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ (Base‘𝐺)) |
35 | 3, 8, 23 | grpasscan1 18638 |
. . . . . . 7
⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ (Base‘𝐺) ∧ 𝑥 ∈ (Base‘𝐺)) → (𝑋(+g‘𝐺)(((invg‘𝐺)‘𝑋)(+g‘𝐺)𝑥)) = 𝑥) |
36 | 32, 33, 34, 35 | syl3anc 1370 |
. . . . . 6
⊢ (((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ 𝐴) ∧ 𝑥 ∈ 𝐴) → (𝑋(+g‘𝐺)(((invg‘𝐺)‘𝑋)(+g‘𝐺)𝑥)) = 𝑥) |
37 | 36 | eqcomd 2744 |
. . . . 5
⊢ (((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ 𝐴) ∧ 𝑥 ∈ 𝐴) → 𝑥 = (𝑋(+g‘𝐺)(((invg‘𝐺)‘𝑋)(+g‘𝐺)𝑥))) |
38 | 28, 31, 37 | rspcedvd 3563 |
. . . 4
⊢ (((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ 𝐴) ∧ 𝑥 ∈ 𝐴) → ∃𝑎 ∈ 𝐴 𝑥 = (𝑋(+g‘𝐺)𝑎)) |
39 | 21, 38 | impbida 798 |
. . 3
⊢ ((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ 𝐴) → (∃𝑎 ∈ 𝐴 𝑥 = (𝑋(+g‘𝐺)𝑎) ↔ 𝑥 ∈ 𝐴)) |
40 | 11, 16, 39 | 3bitrd 305 |
. 2
⊢ ((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ 𝐴) → (𝑥 ∈ ({𝑋} ⊕ 𝐴) ↔ 𝑥 ∈ 𝐴)) |
41 | 40 | eqrdv 2736 |
1
⊢ ((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ 𝐴) → ({𝑋} ⊕ 𝐴) = 𝐴) |