| Step | Hyp | Ref
| Expression |
| 1 | | subgrcl 19149 |
. . . . 5
⊢ (𝐴 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp) |
| 2 | 1 | adantr 480 |
. . . 4
⊢ ((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ 𝐴) → 𝐺 ∈ Grp) |
| 3 | | eqid 2737 |
. . . . . . 7
⊢
(Base‘𝐺) =
(Base‘𝐺) |
| 4 | 3 | subgss 19145 |
. . . . . 6
⊢ (𝐴 ∈ (SubGrp‘𝐺) → 𝐴 ⊆ (Base‘𝐺)) |
| 5 | 4 | sselda 3983 |
. . . . 5
⊢ ((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ 𝐴) → 𝑋 ∈ (Base‘𝐺)) |
| 6 | 5 | snssd 4809 |
. . . 4
⊢ ((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ 𝐴) → {𝑋} ⊆ (Base‘𝐺)) |
| 7 | 4 | adantr 480 |
. . . 4
⊢ ((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ 𝐴) → 𝐴 ⊆ (Base‘𝐺)) |
| 8 | | eqid 2737 |
. . . . 5
⊢
(+g‘𝐺) = (+g‘𝐺) |
| 9 | | grplsmid.p |
. . . . 5
⊢ ⊕ =
(LSSum‘𝐺) |
| 10 | 3, 8, 9 | lsmelvalx 19658 |
. . . 4
⊢ ((𝐺 ∈ Grp ∧ {𝑋} ⊆ (Base‘𝐺) ∧ 𝐴 ⊆ (Base‘𝐺)) → (𝑥 ∈ ({𝑋} ⊕ 𝐴) ↔ ∃𝑜 ∈ {𝑋}∃𝑎 ∈ 𝐴 𝑥 = (𝑜(+g‘𝐺)𝑎))) |
| 11 | 2, 6, 7, 10 | syl3anc 1373 |
. . 3
⊢ ((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ 𝐴) → (𝑥 ∈ ({𝑋} ⊕ 𝐴) ↔ ∃𝑜 ∈ {𝑋}∃𝑎 ∈ 𝐴 𝑥 = (𝑜(+g‘𝐺)𝑎))) |
| 12 | | oveq1 7438 |
. . . . . . 7
⊢ (𝑜 = 𝑋 → (𝑜(+g‘𝐺)𝑎) = (𝑋(+g‘𝐺)𝑎)) |
| 13 | 12 | eqeq2d 2748 |
. . . . . 6
⊢ (𝑜 = 𝑋 → (𝑥 = (𝑜(+g‘𝐺)𝑎) ↔ 𝑥 = (𝑋(+g‘𝐺)𝑎))) |
| 14 | 13 | rexbidv 3179 |
. . . . 5
⊢ (𝑜 = 𝑋 → (∃𝑎 ∈ 𝐴 𝑥 = (𝑜(+g‘𝐺)𝑎) ↔ ∃𝑎 ∈ 𝐴 𝑥 = (𝑋(+g‘𝐺)𝑎))) |
| 15 | 14 | rexsng 4676 |
. . . 4
⊢ (𝑋 ∈ 𝐴 → (∃𝑜 ∈ {𝑋}∃𝑎 ∈ 𝐴 𝑥 = (𝑜(+g‘𝐺)𝑎) ↔ ∃𝑎 ∈ 𝐴 𝑥 = (𝑋(+g‘𝐺)𝑎))) |
| 16 | 15 | adantl 481 |
. . 3
⊢ ((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ 𝐴) → (∃𝑜 ∈ {𝑋}∃𝑎 ∈ 𝐴 𝑥 = (𝑜(+g‘𝐺)𝑎) ↔ ∃𝑎 ∈ 𝐴 𝑥 = (𝑋(+g‘𝐺)𝑎))) |
| 17 | | simpr 484 |
. . . . . 6
⊢ ((((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ 𝐴) ∧ 𝑎 ∈ 𝐴) ∧ 𝑥 = (𝑋(+g‘𝐺)𝑎)) → 𝑥 = (𝑋(+g‘𝐺)𝑎)) |
| 18 | 8 | subgcl 19154 |
. . . . . . 7
⊢ ((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ 𝐴 ∧ 𝑎 ∈ 𝐴) → (𝑋(+g‘𝐺)𝑎) ∈ 𝐴) |
| 19 | 18 | ad4ant123 1173 |
. . . . . 6
⊢ ((((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ 𝐴) ∧ 𝑎 ∈ 𝐴) ∧ 𝑥 = (𝑋(+g‘𝐺)𝑎)) → (𝑋(+g‘𝐺)𝑎) ∈ 𝐴) |
| 20 | 17, 19 | eqeltrd 2841 |
. . . . 5
⊢ ((((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ 𝐴) ∧ 𝑎 ∈ 𝐴) ∧ 𝑥 = (𝑋(+g‘𝐺)𝑎)) → 𝑥 ∈ 𝐴) |
| 21 | 20 | r19.29an 3158 |
. . . 4
⊢ (((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ 𝐴) ∧ ∃𝑎 ∈ 𝐴 𝑥 = (𝑋(+g‘𝐺)𝑎)) → 𝑥 ∈ 𝐴) |
| 22 | | simpll 767 |
. . . . . 6
⊢ (((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ 𝐴) ∧ 𝑥 ∈ 𝐴) → 𝐴 ∈ (SubGrp‘𝐺)) |
| 23 | | eqid 2737 |
. . . . . . . 8
⊢
(invg‘𝐺) = (invg‘𝐺) |
| 24 | 23 | subginvcl 19153 |
. . . . . . 7
⊢ ((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ 𝐴) → ((invg‘𝐺)‘𝑋) ∈ 𝐴) |
| 25 | 24 | adantr 480 |
. . . . . 6
⊢ (((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ 𝐴) ∧ 𝑥 ∈ 𝐴) → ((invg‘𝐺)‘𝑋) ∈ 𝐴) |
| 26 | | simpr 484 |
. . . . . 6
⊢ (((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ 𝐴) ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ 𝐴) |
| 27 | 8 | subgcl 19154 |
. . . . . 6
⊢ ((𝐴 ∈ (SubGrp‘𝐺) ∧
((invg‘𝐺)‘𝑋) ∈ 𝐴 ∧ 𝑥 ∈ 𝐴) → (((invg‘𝐺)‘𝑋)(+g‘𝐺)𝑥) ∈ 𝐴) |
| 28 | 22, 25, 26, 27 | syl3anc 1373 |
. . . . 5
⊢ (((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ 𝐴) ∧ 𝑥 ∈ 𝐴) → (((invg‘𝐺)‘𝑋)(+g‘𝐺)𝑥) ∈ 𝐴) |
| 29 | | oveq2 7439 |
. . . . . . 7
⊢ (𝑎 =
(((invg‘𝐺)‘𝑋)(+g‘𝐺)𝑥) → (𝑋(+g‘𝐺)𝑎) = (𝑋(+g‘𝐺)(((invg‘𝐺)‘𝑋)(+g‘𝐺)𝑥))) |
| 30 | 29 | eqeq2d 2748 |
. . . . . 6
⊢ (𝑎 =
(((invg‘𝐺)‘𝑋)(+g‘𝐺)𝑥) → (𝑥 = (𝑋(+g‘𝐺)𝑎) ↔ 𝑥 = (𝑋(+g‘𝐺)(((invg‘𝐺)‘𝑋)(+g‘𝐺)𝑥)))) |
| 31 | 30 | adantl 481 |
. . . . 5
⊢ ((((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ 𝐴) ∧ 𝑥 ∈ 𝐴) ∧ 𝑎 = (((invg‘𝐺)‘𝑋)(+g‘𝐺)𝑥)) → (𝑥 = (𝑋(+g‘𝐺)𝑎) ↔ 𝑥 = (𝑋(+g‘𝐺)(((invg‘𝐺)‘𝑋)(+g‘𝐺)𝑥)))) |
| 32 | 2 | adantr 480 |
. . . . . . 7
⊢ (((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ 𝐴) ∧ 𝑥 ∈ 𝐴) → 𝐺 ∈ Grp) |
| 33 | 5 | adantr 480 |
. . . . . . 7
⊢ (((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ 𝐴) ∧ 𝑥 ∈ 𝐴) → 𝑋 ∈ (Base‘𝐺)) |
| 34 | 7 | sselda 3983 |
. . . . . . 7
⊢ (((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ 𝐴) ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ (Base‘𝐺)) |
| 35 | 3, 8, 23 | grpasscan1 19019 |
. . . . . . 7
⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ (Base‘𝐺) ∧ 𝑥 ∈ (Base‘𝐺)) → (𝑋(+g‘𝐺)(((invg‘𝐺)‘𝑋)(+g‘𝐺)𝑥)) = 𝑥) |
| 36 | 32, 33, 34, 35 | syl3anc 1373 |
. . . . . 6
⊢ (((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ 𝐴) ∧ 𝑥 ∈ 𝐴) → (𝑋(+g‘𝐺)(((invg‘𝐺)‘𝑋)(+g‘𝐺)𝑥)) = 𝑥) |
| 37 | 36 | eqcomd 2743 |
. . . . 5
⊢ (((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ 𝐴) ∧ 𝑥 ∈ 𝐴) → 𝑥 = (𝑋(+g‘𝐺)(((invg‘𝐺)‘𝑋)(+g‘𝐺)𝑥))) |
| 38 | 28, 31, 37 | rspcedvd 3624 |
. . . 4
⊢ (((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ 𝐴) ∧ 𝑥 ∈ 𝐴) → ∃𝑎 ∈ 𝐴 𝑥 = (𝑋(+g‘𝐺)𝑎)) |
| 39 | 21, 38 | impbida 801 |
. . 3
⊢ ((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ 𝐴) → (∃𝑎 ∈ 𝐴 𝑥 = (𝑋(+g‘𝐺)𝑎) ↔ 𝑥 ∈ 𝐴)) |
| 40 | 11, 16, 39 | 3bitrd 305 |
. 2
⊢ ((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ 𝐴) → (𝑥 ∈ ({𝑋} ⊕ 𝐴) ↔ 𝑥 ∈ 𝐴)) |
| 41 | 40 | eqrdv 2735 |
1
⊢ ((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ 𝐴) → ({𝑋} ⊕ 𝐴) = 𝐴) |