Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  grplsmid Structured version   Visualization version   GIF version

Theorem grplsmid 31494
Description: The direct sum of an element 𝑋 of a subgroup 𝐴 is the subgroup itself. (Contributed by Thierry Arnoux, 27-Jul-2024.)
Hypothesis
Ref Expression
grplsmid.p = (LSSum‘𝐺)
Assertion
Ref Expression
grplsmid ((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑋𝐴) → ({𝑋} 𝐴) = 𝐴)

Proof of Theorem grplsmid
Dummy variables 𝑥 𝑎 𝑜 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 subgrcl 18675 . . . . 5 (𝐴 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp)
21adantr 480 . . . 4 ((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑋𝐴) → 𝐺 ∈ Grp)
3 eqid 2738 . . . . . . 7 (Base‘𝐺) = (Base‘𝐺)
43subgss 18671 . . . . . 6 (𝐴 ∈ (SubGrp‘𝐺) → 𝐴 ⊆ (Base‘𝐺))
54sselda 3917 . . . . 5 ((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑋𝐴) → 𝑋 ∈ (Base‘𝐺))
65snssd 4739 . . . 4 ((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑋𝐴) → {𝑋} ⊆ (Base‘𝐺))
74adantr 480 . . . 4 ((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑋𝐴) → 𝐴 ⊆ (Base‘𝐺))
8 eqid 2738 . . . . 5 (+g𝐺) = (+g𝐺)
9 grplsmid.p . . . . 5 = (LSSum‘𝐺)
103, 8, 9lsmelvalx 19160 . . . 4 ((𝐺 ∈ Grp ∧ {𝑋} ⊆ (Base‘𝐺) ∧ 𝐴 ⊆ (Base‘𝐺)) → (𝑥 ∈ ({𝑋} 𝐴) ↔ ∃𝑜 ∈ {𝑋}∃𝑎𝐴 𝑥 = (𝑜(+g𝐺)𝑎)))
112, 6, 7, 10syl3anc 1369 . . 3 ((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑋𝐴) → (𝑥 ∈ ({𝑋} 𝐴) ↔ ∃𝑜 ∈ {𝑋}∃𝑎𝐴 𝑥 = (𝑜(+g𝐺)𝑎)))
12 oveq1 7262 . . . . . . 7 (𝑜 = 𝑋 → (𝑜(+g𝐺)𝑎) = (𝑋(+g𝐺)𝑎))
1312eqeq2d 2749 . . . . . 6 (𝑜 = 𝑋 → (𝑥 = (𝑜(+g𝐺)𝑎) ↔ 𝑥 = (𝑋(+g𝐺)𝑎)))
1413rexbidv 3225 . . . . 5 (𝑜 = 𝑋 → (∃𝑎𝐴 𝑥 = (𝑜(+g𝐺)𝑎) ↔ ∃𝑎𝐴 𝑥 = (𝑋(+g𝐺)𝑎)))
1514rexsng 4607 . . . 4 (𝑋𝐴 → (∃𝑜 ∈ {𝑋}∃𝑎𝐴 𝑥 = (𝑜(+g𝐺)𝑎) ↔ ∃𝑎𝐴 𝑥 = (𝑋(+g𝐺)𝑎)))
1615adantl 481 . . 3 ((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑋𝐴) → (∃𝑜 ∈ {𝑋}∃𝑎𝐴 𝑥 = (𝑜(+g𝐺)𝑎) ↔ ∃𝑎𝐴 𝑥 = (𝑋(+g𝐺)𝑎)))
17 simpr 484 . . . . . 6 ((((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑋𝐴) ∧ 𝑎𝐴) ∧ 𝑥 = (𝑋(+g𝐺)𝑎)) → 𝑥 = (𝑋(+g𝐺)𝑎))
188subgcl 18680 . . . . . . 7 ((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑋𝐴𝑎𝐴) → (𝑋(+g𝐺)𝑎) ∈ 𝐴)
1918ad4ant123 1170 . . . . . 6 ((((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑋𝐴) ∧ 𝑎𝐴) ∧ 𝑥 = (𝑋(+g𝐺)𝑎)) → (𝑋(+g𝐺)𝑎) ∈ 𝐴)
2017, 19eqeltrd 2839 . . . . 5 ((((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑋𝐴) ∧ 𝑎𝐴) ∧ 𝑥 = (𝑋(+g𝐺)𝑎)) → 𝑥𝐴)
2120r19.29an 3216 . . . 4 (((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑋𝐴) ∧ ∃𝑎𝐴 𝑥 = (𝑋(+g𝐺)𝑎)) → 𝑥𝐴)
22 simpll 763 . . . . . 6 (((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑋𝐴) ∧ 𝑥𝐴) → 𝐴 ∈ (SubGrp‘𝐺))
23 eqid 2738 . . . . . . . 8 (invg𝐺) = (invg𝐺)
2423subginvcl 18679 . . . . . . 7 ((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑋𝐴) → ((invg𝐺)‘𝑋) ∈ 𝐴)
2524adantr 480 . . . . . 6 (((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑋𝐴) ∧ 𝑥𝐴) → ((invg𝐺)‘𝑋) ∈ 𝐴)
26 simpr 484 . . . . . 6 (((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑋𝐴) ∧ 𝑥𝐴) → 𝑥𝐴)
278subgcl 18680 . . . . . 6 ((𝐴 ∈ (SubGrp‘𝐺) ∧ ((invg𝐺)‘𝑋) ∈ 𝐴𝑥𝐴) → (((invg𝐺)‘𝑋)(+g𝐺)𝑥) ∈ 𝐴)
2822, 25, 26, 27syl3anc 1369 . . . . 5 (((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑋𝐴) ∧ 𝑥𝐴) → (((invg𝐺)‘𝑋)(+g𝐺)𝑥) ∈ 𝐴)
29 oveq2 7263 . . . . . . 7 (𝑎 = (((invg𝐺)‘𝑋)(+g𝐺)𝑥) → (𝑋(+g𝐺)𝑎) = (𝑋(+g𝐺)(((invg𝐺)‘𝑋)(+g𝐺)𝑥)))
3029eqeq2d 2749 . . . . . 6 (𝑎 = (((invg𝐺)‘𝑋)(+g𝐺)𝑥) → (𝑥 = (𝑋(+g𝐺)𝑎) ↔ 𝑥 = (𝑋(+g𝐺)(((invg𝐺)‘𝑋)(+g𝐺)𝑥))))
3130adantl 481 . . . . 5 ((((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑋𝐴) ∧ 𝑥𝐴) ∧ 𝑎 = (((invg𝐺)‘𝑋)(+g𝐺)𝑥)) → (𝑥 = (𝑋(+g𝐺)𝑎) ↔ 𝑥 = (𝑋(+g𝐺)(((invg𝐺)‘𝑋)(+g𝐺)𝑥))))
322adantr 480 . . . . . . 7 (((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑋𝐴) ∧ 𝑥𝐴) → 𝐺 ∈ Grp)
335adantr 480 . . . . . . 7 (((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑋𝐴) ∧ 𝑥𝐴) → 𝑋 ∈ (Base‘𝐺))
347sselda 3917 . . . . . . 7 (((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑋𝐴) ∧ 𝑥𝐴) → 𝑥 ∈ (Base‘𝐺))
353, 8, 23grpasscan1 18553 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝑋 ∈ (Base‘𝐺) ∧ 𝑥 ∈ (Base‘𝐺)) → (𝑋(+g𝐺)(((invg𝐺)‘𝑋)(+g𝐺)𝑥)) = 𝑥)
3632, 33, 34, 35syl3anc 1369 . . . . . 6 (((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑋𝐴) ∧ 𝑥𝐴) → (𝑋(+g𝐺)(((invg𝐺)‘𝑋)(+g𝐺)𝑥)) = 𝑥)
3736eqcomd 2744 . . . . 5 (((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑋𝐴) ∧ 𝑥𝐴) → 𝑥 = (𝑋(+g𝐺)(((invg𝐺)‘𝑋)(+g𝐺)𝑥)))
3828, 31, 37rspcedvd 3555 . . . 4 (((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑋𝐴) ∧ 𝑥𝐴) → ∃𝑎𝐴 𝑥 = (𝑋(+g𝐺)𝑎))
3921, 38impbida 797 . . 3 ((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑋𝐴) → (∃𝑎𝐴 𝑥 = (𝑋(+g𝐺)𝑎) ↔ 𝑥𝐴))
4011, 16, 393bitrd 304 . 2 ((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑋𝐴) → (𝑥 ∈ ({𝑋} 𝐴) ↔ 𝑥𝐴))
4140eqrdv 2736 1 ((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑋𝐴) → ({𝑋} 𝐴) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  wrex 3064  wss 3883  {csn 4558  cfv 6418  (class class class)co 7255  Basecbs 16840  +gcplusg 16888  Grpcgrp 18492  invgcminusg 18493  SubGrpcsubg 18664  LSSumclsm 19154
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-0g 17069  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-grp 18495  df-minusg 18496  df-subg 18667  df-lsm 19156
This theorem is referenced by:  nsgmgc  31499  nsgqusf1olem2  31501  nsgqusf1olem3  31502
  Copyright terms: Public domain W3C validator