Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  grplsmid Structured version   Visualization version   GIF version

Theorem grplsmid 33382
Description: The direct sum of an element 𝑋 of a subgroup 𝐴 is the subgroup itself. (Contributed by Thierry Arnoux, 27-Jul-2024.)
Hypothesis
Ref Expression
grplsmid.p = (LSSum‘𝐺)
Assertion
Ref Expression
grplsmid ((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑋𝐴) → ({𝑋} 𝐴) = 𝐴)

Proof of Theorem grplsmid
Dummy variables 𝑥 𝑎 𝑜 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 subgrcl 19070 . . . . 5 (𝐴 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp)
21adantr 480 . . . 4 ((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑋𝐴) → 𝐺 ∈ Grp)
3 eqid 2730 . . . . . . 7 (Base‘𝐺) = (Base‘𝐺)
43subgss 19066 . . . . . 6 (𝐴 ∈ (SubGrp‘𝐺) → 𝐴 ⊆ (Base‘𝐺))
54sselda 3949 . . . . 5 ((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑋𝐴) → 𝑋 ∈ (Base‘𝐺))
65snssd 4776 . . . 4 ((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑋𝐴) → {𝑋} ⊆ (Base‘𝐺))
74adantr 480 . . . 4 ((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑋𝐴) → 𝐴 ⊆ (Base‘𝐺))
8 eqid 2730 . . . . 5 (+g𝐺) = (+g𝐺)
9 grplsmid.p . . . . 5 = (LSSum‘𝐺)
103, 8, 9lsmelvalx 19577 . . . 4 ((𝐺 ∈ Grp ∧ {𝑋} ⊆ (Base‘𝐺) ∧ 𝐴 ⊆ (Base‘𝐺)) → (𝑥 ∈ ({𝑋} 𝐴) ↔ ∃𝑜 ∈ {𝑋}∃𝑎𝐴 𝑥 = (𝑜(+g𝐺)𝑎)))
112, 6, 7, 10syl3anc 1373 . . 3 ((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑋𝐴) → (𝑥 ∈ ({𝑋} 𝐴) ↔ ∃𝑜 ∈ {𝑋}∃𝑎𝐴 𝑥 = (𝑜(+g𝐺)𝑎)))
12 oveq1 7397 . . . . . . 7 (𝑜 = 𝑋 → (𝑜(+g𝐺)𝑎) = (𝑋(+g𝐺)𝑎))
1312eqeq2d 2741 . . . . . 6 (𝑜 = 𝑋 → (𝑥 = (𝑜(+g𝐺)𝑎) ↔ 𝑥 = (𝑋(+g𝐺)𝑎)))
1413rexbidv 3158 . . . . 5 (𝑜 = 𝑋 → (∃𝑎𝐴 𝑥 = (𝑜(+g𝐺)𝑎) ↔ ∃𝑎𝐴 𝑥 = (𝑋(+g𝐺)𝑎)))
1514rexsng 4643 . . . 4 (𝑋𝐴 → (∃𝑜 ∈ {𝑋}∃𝑎𝐴 𝑥 = (𝑜(+g𝐺)𝑎) ↔ ∃𝑎𝐴 𝑥 = (𝑋(+g𝐺)𝑎)))
1615adantl 481 . . 3 ((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑋𝐴) → (∃𝑜 ∈ {𝑋}∃𝑎𝐴 𝑥 = (𝑜(+g𝐺)𝑎) ↔ ∃𝑎𝐴 𝑥 = (𝑋(+g𝐺)𝑎)))
17 simpr 484 . . . . . 6 ((((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑋𝐴) ∧ 𝑎𝐴) ∧ 𝑥 = (𝑋(+g𝐺)𝑎)) → 𝑥 = (𝑋(+g𝐺)𝑎))
188subgcl 19075 . . . . . . 7 ((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑋𝐴𝑎𝐴) → (𝑋(+g𝐺)𝑎) ∈ 𝐴)
1918ad4ant123 1173 . . . . . 6 ((((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑋𝐴) ∧ 𝑎𝐴) ∧ 𝑥 = (𝑋(+g𝐺)𝑎)) → (𝑋(+g𝐺)𝑎) ∈ 𝐴)
2017, 19eqeltrd 2829 . . . . 5 ((((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑋𝐴) ∧ 𝑎𝐴) ∧ 𝑥 = (𝑋(+g𝐺)𝑎)) → 𝑥𝐴)
2120r19.29an 3138 . . . 4 (((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑋𝐴) ∧ ∃𝑎𝐴 𝑥 = (𝑋(+g𝐺)𝑎)) → 𝑥𝐴)
22 simpll 766 . . . . . 6 (((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑋𝐴) ∧ 𝑥𝐴) → 𝐴 ∈ (SubGrp‘𝐺))
23 eqid 2730 . . . . . . . 8 (invg𝐺) = (invg𝐺)
2423subginvcl 19074 . . . . . . 7 ((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑋𝐴) → ((invg𝐺)‘𝑋) ∈ 𝐴)
2524adantr 480 . . . . . 6 (((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑋𝐴) ∧ 𝑥𝐴) → ((invg𝐺)‘𝑋) ∈ 𝐴)
26 simpr 484 . . . . . 6 (((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑋𝐴) ∧ 𝑥𝐴) → 𝑥𝐴)
278subgcl 19075 . . . . . 6 ((𝐴 ∈ (SubGrp‘𝐺) ∧ ((invg𝐺)‘𝑋) ∈ 𝐴𝑥𝐴) → (((invg𝐺)‘𝑋)(+g𝐺)𝑥) ∈ 𝐴)
2822, 25, 26, 27syl3anc 1373 . . . . 5 (((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑋𝐴) ∧ 𝑥𝐴) → (((invg𝐺)‘𝑋)(+g𝐺)𝑥) ∈ 𝐴)
29 oveq2 7398 . . . . . . 7 (𝑎 = (((invg𝐺)‘𝑋)(+g𝐺)𝑥) → (𝑋(+g𝐺)𝑎) = (𝑋(+g𝐺)(((invg𝐺)‘𝑋)(+g𝐺)𝑥)))
3029eqeq2d 2741 . . . . . 6 (𝑎 = (((invg𝐺)‘𝑋)(+g𝐺)𝑥) → (𝑥 = (𝑋(+g𝐺)𝑎) ↔ 𝑥 = (𝑋(+g𝐺)(((invg𝐺)‘𝑋)(+g𝐺)𝑥))))
3130adantl 481 . . . . 5 ((((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑋𝐴) ∧ 𝑥𝐴) ∧ 𝑎 = (((invg𝐺)‘𝑋)(+g𝐺)𝑥)) → (𝑥 = (𝑋(+g𝐺)𝑎) ↔ 𝑥 = (𝑋(+g𝐺)(((invg𝐺)‘𝑋)(+g𝐺)𝑥))))
322adantr 480 . . . . . . 7 (((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑋𝐴) ∧ 𝑥𝐴) → 𝐺 ∈ Grp)
335adantr 480 . . . . . . 7 (((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑋𝐴) ∧ 𝑥𝐴) → 𝑋 ∈ (Base‘𝐺))
347sselda 3949 . . . . . . 7 (((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑋𝐴) ∧ 𝑥𝐴) → 𝑥 ∈ (Base‘𝐺))
353, 8, 23grpasscan1 18940 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝑋 ∈ (Base‘𝐺) ∧ 𝑥 ∈ (Base‘𝐺)) → (𝑋(+g𝐺)(((invg𝐺)‘𝑋)(+g𝐺)𝑥)) = 𝑥)
3632, 33, 34, 35syl3anc 1373 . . . . . 6 (((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑋𝐴) ∧ 𝑥𝐴) → (𝑋(+g𝐺)(((invg𝐺)‘𝑋)(+g𝐺)𝑥)) = 𝑥)
3736eqcomd 2736 . . . . 5 (((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑋𝐴) ∧ 𝑥𝐴) → 𝑥 = (𝑋(+g𝐺)(((invg𝐺)‘𝑋)(+g𝐺)𝑥)))
3828, 31, 37rspcedvd 3593 . . . 4 (((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑋𝐴) ∧ 𝑥𝐴) → ∃𝑎𝐴 𝑥 = (𝑋(+g𝐺)𝑎))
3921, 38impbida 800 . . 3 ((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑋𝐴) → (∃𝑎𝐴 𝑥 = (𝑋(+g𝐺)𝑎) ↔ 𝑥𝐴))
4011, 16, 393bitrd 305 . 2 ((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑋𝐴) → (𝑥 ∈ ({𝑋} 𝐴) ↔ 𝑥𝐴))
4140eqrdv 2728 1 ((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑋𝐴) → ({𝑋} 𝐴) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wrex 3054  wss 3917  {csn 4592  cfv 6514  (class class class)co 7390  Basecbs 17186  +gcplusg 17227  Grpcgrp 18872  invgcminusg 18873  SubGrpcsubg 19059  LSSumclsm 19571
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-2 12256  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-0g 17411  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-grp 18875  df-minusg 18876  df-subg 19062  df-lsm 19573
This theorem is referenced by:  nsgmgc  33390  nsgqusf1olem2  33392  nsgqusf1olem3  33393
  Copyright terms: Public domain W3C validator