| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | eqid 2736 | . . 3
⊢ (𝑏 ∈ ω ↦ ∪ {𝑐
∈ 𝐴 ∣ 𝑐 ≼ 𝑏}) = (𝑏 ∈ ω ↦ ∪ {𝑐
∈ 𝐴 ∣ 𝑐 ≼ 𝑏}) | 
| 2 | 1 | rnmpt 5967 | . 2
⊢ ran
(𝑏 ∈ ω ↦
∪ {𝑐 ∈ 𝐴 ∣ 𝑐 ≼ 𝑏}) = {𝑑 ∣ ∃𝑏 ∈ ω 𝑑 = ∪ {𝑐 ∈ 𝐴 ∣ 𝑐 ≼ 𝑏}} | 
| 3 |  | unieq 4917 | . . . . . . . . . . . 12
⊢ ({𝑐 ∈ 𝐴 ∣ 𝑐 ≼ 𝑏} = ∅ → ∪ {𝑐
∈ 𝐴 ∣ 𝑐 ≼ 𝑏} = ∪
∅) | 
| 4 |  | uni0 4934 | . . . . . . . . . . . 12
⊢ ∪ ∅ = ∅ | 
| 5 | 3, 4 | eqtrdi 2792 | . . . . . . . . . . 11
⊢ ({𝑐 ∈ 𝐴 ∣ 𝑐 ≼ 𝑏} = ∅ → ∪ {𝑐
∈ 𝐴 ∣ 𝑐 ≼ 𝑏} = ∅) | 
| 6 | 5 | adantl 481 | . . . . . . . . . 10
⊢ ((((
[⊊] Or 𝐴
∧ 𝐴 ⊆ Fin) ∧
𝑏 ∈ ω) ∧
{𝑐 ∈ 𝐴 ∣ 𝑐 ≼ 𝑏} = ∅) → ∪ {𝑐
∈ 𝐴 ∣ 𝑐 ≼ 𝑏} = ∅) | 
| 7 |  | 0ex 5306 | . . . . . . . . . . 11
⊢ ∅
∈ V | 
| 8 | 7 | elsn2 4664 | . . . . . . . . . 10
⊢ (∪ {𝑐
∈ 𝐴 ∣ 𝑐 ≼ 𝑏} ∈ {∅} ↔ ∪ {𝑐
∈ 𝐴 ∣ 𝑐 ≼ 𝑏} = ∅) | 
| 9 | 6, 8 | sylibr 234 | . . . . . . . . 9
⊢ ((((
[⊊] Or 𝐴
∧ 𝐴 ⊆ Fin) ∧
𝑏 ∈ ω) ∧
{𝑐 ∈ 𝐴 ∣ 𝑐 ≼ 𝑏} = ∅) → ∪ {𝑐
∈ 𝐴 ∣ 𝑐 ≼ 𝑏} ∈ {∅}) | 
| 10 | 9 | olcd 874 | . . . . . . . 8
⊢ ((((
[⊊] Or 𝐴
∧ 𝐴 ⊆ Fin) ∧
𝑏 ∈ ω) ∧
{𝑐 ∈ 𝐴 ∣ 𝑐 ≼ 𝑏} = ∅) → (∪ {𝑐
∈ 𝐴 ∣ 𝑐 ≼ 𝑏} ∈ 𝐴 ∨ ∪ {𝑐 ∈ 𝐴 ∣ 𝑐 ≼ 𝑏} ∈ {∅})) | 
| 11 |  | ssrab2 4079 | . . . . . . . . . 10
⊢ {𝑐 ∈ 𝐴 ∣ 𝑐 ≼ 𝑏} ⊆ 𝐴 | 
| 12 |  | simpr 484 | . . . . . . . . . . 11
⊢ ((((
[⊊] Or 𝐴
∧ 𝐴 ⊆ Fin) ∧
𝑏 ∈ ω) ∧
{𝑐 ∈ 𝐴 ∣ 𝑐 ≼ 𝑏} ≠ ∅) → {𝑐 ∈ 𝐴 ∣ 𝑐 ≼ 𝑏} ≠ ∅) | 
| 13 |  | fin1a2lem9 10449 | . . . . . . . . . . . 12
⊢ ((
[⊊] Or 𝐴
∧ 𝐴 ⊆ Fin ∧
𝑏 ∈ ω) →
{𝑐 ∈ 𝐴 ∣ 𝑐 ≼ 𝑏} ∈ Fin) | 
| 14 | 13 | ad4ant123 1172 | . . . . . . . . . . 11
⊢ ((((
[⊊] Or 𝐴
∧ 𝐴 ⊆ Fin) ∧
𝑏 ∈ ω) ∧
{𝑐 ∈ 𝐴 ∣ 𝑐 ≼ 𝑏} ≠ ∅) → {𝑐 ∈ 𝐴 ∣ 𝑐 ≼ 𝑏} ∈ Fin) | 
| 15 |  | simplll 774 | . . . . . . . . . . . 12
⊢ ((((
[⊊] Or 𝐴
∧ 𝐴 ⊆ Fin) ∧
𝑏 ∈ ω) ∧
{𝑐 ∈ 𝐴 ∣ 𝑐 ≼ 𝑏} ≠ ∅) → [⊊] Or
𝐴) | 
| 16 |  | soss 5611 | . . . . . . . . . . . 12
⊢ ({𝑐 ∈ 𝐴 ∣ 𝑐 ≼ 𝑏} ⊆ 𝐴 → ( [⊊] Or 𝐴 → [⊊] Or
{𝑐 ∈ 𝐴 ∣ 𝑐 ≼ 𝑏})) | 
| 17 | 11, 15, 16 | mpsyl 68 | . . . . . . . . . . 11
⊢ ((((
[⊊] Or 𝐴
∧ 𝐴 ⊆ Fin) ∧
𝑏 ∈ ω) ∧
{𝑐 ∈ 𝐴 ∣ 𝑐 ≼ 𝑏} ≠ ∅) → [⊊] Or
{𝑐 ∈ 𝐴 ∣ 𝑐 ≼ 𝑏}) | 
| 18 |  | fin1a2lem10 10450 | . . . . . . . . . . 11
⊢ (({𝑐 ∈ 𝐴 ∣ 𝑐 ≼ 𝑏} ≠ ∅ ∧ {𝑐 ∈ 𝐴 ∣ 𝑐 ≼ 𝑏} ∈ Fin ∧ [⊊] Or
{𝑐 ∈ 𝐴 ∣ 𝑐 ≼ 𝑏}) → ∪ {𝑐 ∈ 𝐴 ∣ 𝑐 ≼ 𝑏} ∈ {𝑐 ∈ 𝐴 ∣ 𝑐 ≼ 𝑏}) | 
| 19 | 12, 14, 17, 18 | syl3anc 1372 | . . . . . . . . . 10
⊢ ((((
[⊊] Or 𝐴
∧ 𝐴 ⊆ Fin) ∧
𝑏 ∈ ω) ∧
{𝑐 ∈ 𝐴 ∣ 𝑐 ≼ 𝑏} ≠ ∅) → ∪ {𝑐
∈ 𝐴 ∣ 𝑐 ≼ 𝑏} ∈ {𝑐 ∈ 𝐴 ∣ 𝑐 ≼ 𝑏}) | 
| 20 | 11, 19 | sselid 3980 | . . . . . . . . 9
⊢ ((((
[⊊] Or 𝐴
∧ 𝐴 ⊆ Fin) ∧
𝑏 ∈ ω) ∧
{𝑐 ∈ 𝐴 ∣ 𝑐 ≼ 𝑏} ≠ ∅) → ∪ {𝑐
∈ 𝐴 ∣ 𝑐 ≼ 𝑏} ∈ 𝐴) | 
| 21 | 20 | orcd 873 | . . . . . . . 8
⊢ ((((
[⊊] Or 𝐴
∧ 𝐴 ⊆ Fin) ∧
𝑏 ∈ ω) ∧
{𝑐 ∈ 𝐴 ∣ 𝑐 ≼ 𝑏} ≠ ∅) → (∪ {𝑐
∈ 𝐴 ∣ 𝑐 ≼ 𝑏} ∈ 𝐴 ∨ ∪ {𝑐 ∈ 𝐴 ∣ 𝑐 ≼ 𝑏} ∈ {∅})) | 
| 22 | 10, 21 | pm2.61dane 3028 | . . . . . . 7
⊢ (((
[⊊] Or 𝐴
∧ 𝐴 ⊆ Fin) ∧
𝑏 ∈ ω) →
(∪ {𝑐 ∈ 𝐴 ∣ 𝑐 ≼ 𝑏} ∈ 𝐴 ∨ ∪ {𝑐 ∈ 𝐴 ∣ 𝑐 ≼ 𝑏} ∈ {∅})) | 
| 23 |  | eleq1 2828 | . . . . . . . 8
⊢ (𝑑 = ∪
{𝑐 ∈ 𝐴 ∣ 𝑐 ≼ 𝑏} → (𝑑 ∈ 𝐴 ↔ ∪ {𝑐 ∈ 𝐴 ∣ 𝑐 ≼ 𝑏} ∈ 𝐴)) | 
| 24 |  | eleq1 2828 | . . . . . . . 8
⊢ (𝑑 = ∪
{𝑐 ∈ 𝐴 ∣ 𝑐 ≼ 𝑏} → (𝑑 ∈ {∅} ↔ ∪ {𝑐
∈ 𝐴 ∣ 𝑐 ≼ 𝑏} ∈ {∅})) | 
| 25 | 23, 24 | orbi12d 918 | . . . . . . 7
⊢ (𝑑 = ∪
{𝑐 ∈ 𝐴 ∣ 𝑐 ≼ 𝑏} → ((𝑑 ∈ 𝐴 ∨ 𝑑 ∈ {∅}) ↔ (∪ {𝑐
∈ 𝐴 ∣ 𝑐 ≼ 𝑏} ∈ 𝐴 ∨ ∪ {𝑐 ∈ 𝐴 ∣ 𝑐 ≼ 𝑏} ∈ {∅}))) | 
| 26 | 22, 25 | syl5ibrcom 247 | . . . . . 6
⊢ (((
[⊊] Or 𝐴
∧ 𝐴 ⊆ Fin) ∧
𝑏 ∈ ω) →
(𝑑 = ∪ {𝑐
∈ 𝐴 ∣ 𝑐 ≼ 𝑏} → (𝑑 ∈ 𝐴 ∨ 𝑑 ∈ {∅}))) | 
| 27 | 26 | rexlimdva 3154 | . . . . 5
⊢ ((
[⊊] Or 𝐴
∧ 𝐴 ⊆ Fin) →
(∃𝑏 ∈ ω
𝑑 = ∪ {𝑐
∈ 𝐴 ∣ 𝑐 ≼ 𝑏} → (𝑑 ∈ 𝐴 ∨ 𝑑 ∈ {∅}))) | 
| 28 |  | simpr 484 | . . . . . . . . . 10
⊢ ((
[⊊] Or 𝐴
∧ 𝐴 ⊆ Fin) →
𝐴 ⊆
Fin) | 
| 29 | 28 | sselda 3982 | . . . . . . . . 9
⊢ (((
[⊊] Or 𝐴
∧ 𝐴 ⊆ Fin) ∧
𝑑 ∈ 𝐴) → 𝑑 ∈ Fin) | 
| 30 |  | ficardom 10002 | . . . . . . . . 9
⊢ (𝑑 ∈ Fin →
(card‘𝑑) ∈
ω) | 
| 31 | 29, 30 | syl 17 | . . . . . . . 8
⊢ (((
[⊊] Or 𝐴
∧ 𝐴 ⊆ Fin) ∧
𝑑 ∈ 𝐴) → (card‘𝑑) ∈ ω) | 
| 32 |  | breq1 5145 | . . . . . . . . . . 11
⊢ (𝑐 = 𝑑 → (𝑐 ≼ (card‘𝑑) ↔ 𝑑 ≼ (card‘𝑑))) | 
| 33 |  | simpr 484 | . . . . . . . . . . 11
⊢ (((
[⊊] Or 𝐴
∧ 𝐴 ⊆ Fin) ∧
𝑑 ∈ 𝐴) → 𝑑 ∈ 𝐴) | 
| 34 |  | ficardid 10003 | . . . . . . . . . . . . 13
⊢ (𝑑 ∈ Fin →
(card‘𝑑) ≈
𝑑) | 
| 35 | 29, 34 | syl 17 | . . . . . . . . . . . 12
⊢ (((
[⊊] Or 𝐴
∧ 𝐴 ⊆ Fin) ∧
𝑑 ∈ 𝐴) → (card‘𝑑) ≈ 𝑑) | 
| 36 |  | ensym 9044 | . . . . . . . . . . . 12
⊢
((card‘𝑑)
≈ 𝑑 → 𝑑 ≈ (card‘𝑑)) | 
| 37 |  | endom 9020 | . . . . . . . . . . . 12
⊢ (𝑑 ≈ (card‘𝑑) → 𝑑 ≼ (card‘𝑑)) | 
| 38 | 35, 36, 37 | 3syl 18 | . . . . . . . . . . 11
⊢ (((
[⊊] Or 𝐴
∧ 𝐴 ⊆ Fin) ∧
𝑑 ∈ 𝐴) → 𝑑 ≼ (card‘𝑑)) | 
| 39 | 32, 33, 38 | elrabd 3693 | . . . . . . . . . 10
⊢ (((
[⊊] Or 𝐴
∧ 𝐴 ⊆ Fin) ∧
𝑑 ∈ 𝐴) → 𝑑 ∈ {𝑐 ∈ 𝐴 ∣ 𝑐 ≼ (card‘𝑑)}) | 
| 40 |  | elssuni 4936 | . . . . . . . . . 10
⊢ (𝑑 ∈ {𝑐 ∈ 𝐴 ∣ 𝑐 ≼ (card‘𝑑)} → 𝑑 ⊆ ∪ {𝑐 ∈ 𝐴 ∣ 𝑐 ≼ (card‘𝑑)}) | 
| 41 | 39, 40 | syl 17 | . . . . . . . . 9
⊢ (((
[⊊] Or 𝐴
∧ 𝐴 ⊆ Fin) ∧
𝑑 ∈ 𝐴) → 𝑑 ⊆ ∪ {𝑐 ∈ 𝐴 ∣ 𝑐 ≼ (card‘𝑑)}) | 
| 42 |  | breq1 5145 | . . . . . . . . . . . . 13
⊢ (𝑐 = 𝑏 → (𝑐 ≼ (card‘𝑑) ↔ 𝑏 ≼ (card‘𝑑))) | 
| 43 | 42 | elrab 3691 | . . . . . . . . . . . 12
⊢ (𝑏 ∈ {𝑐 ∈ 𝐴 ∣ 𝑐 ≼ (card‘𝑑)} ↔ (𝑏 ∈ 𝐴 ∧ 𝑏 ≼ (card‘𝑑))) | 
| 44 |  | simprr 772 | . . . . . . . . . . . . . . 15
⊢ ((((
[⊊] Or 𝐴
∧ 𝐴 ⊆ Fin) ∧
𝑑 ∈ 𝐴) ∧ (𝑏 ∈ 𝐴 ∧ 𝑏 ≼ (card‘𝑑))) → 𝑏 ≼ (card‘𝑑)) | 
| 45 | 35 | adantr 480 | . . . . . . . . . . . . . . 15
⊢ ((((
[⊊] Or 𝐴
∧ 𝐴 ⊆ Fin) ∧
𝑑 ∈ 𝐴) ∧ (𝑏 ∈ 𝐴 ∧ 𝑏 ≼ (card‘𝑑))) → (card‘𝑑) ≈ 𝑑) | 
| 46 |  | domentr 9054 | . . . . . . . . . . . . . . 15
⊢ ((𝑏 ≼ (card‘𝑑) ∧ (card‘𝑑) ≈ 𝑑) → 𝑏 ≼ 𝑑) | 
| 47 | 44, 45, 46 | syl2anc 584 | . . . . . . . . . . . . . 14
⊢ ((((
[⊊] Or 𝐴
∧ 𝐴 ⊆ Fin) ∧
𝑑 ∈ 𝐴) ∧ (𝑏 ∈ 𝐴 ∧ 𝑏 ≼ (card‘𝑑))) → 𝑏 ≼ 𝑑) | 
| 48 |  | simpllr 775 | . . . . . . . . . . . . . . . 16
⊢ ((((
[⊊] Or 𝐴
∧ 𝐴 ⊆ Fin) ∧
𝑑 ∈ 𝐴) ∧ (𝑏 ∈ 𝐴 ∧ 𝑏 ≼ (card‘𝑑))) → 𝐴 ⊆ Fin) | 
| 49 |  | simprl 770 | . . . . . . . . . . . . . . . 16
⊢ ((((
[⊊] Or 𝐴
∧ 𝐴 ⊆ Fin) ∧
𝑑 ∈ 𝐴) ∧ (𝑏 ∈ 𝐴 ∧ 𝑏 ≼ (card‘𝑑))) → 𝑏 ∈ 𝐴) | 
| 50 | 48, 49 | sseldd 3983 | . . . . . . . . . . . . . . 15
⊢ ((((
[⊊] Or 𝐴
∧ 𝐴 ⊆ Fin) ∧
𝑑 ∈ 𝐴) ∧ (𝑏 ∈ 𝐴 ∧ 𝑏 ≼ (card‘𝑑))) → 𝑏 ∈ Fin) | 
| 51 | 29 | adantr 480 | . . . . . . . . . . . . . . 15
⊢ ((((
[⊊] Or 𝐴
∧ 𝐴 ⊆ Fin) ∧
𝑑 ∈ 𝐴) ∧ (𝑏 ∈ 𝐴 ∧ 𝑏 ≼ (card‘𝑑))) → 𝑑 ∈ Fin) | 
| 52 |  | simplll 774 | . . . . . . . . . . . . . . . 16
⊢ ((((
[⊊] Or 𝐴
∧ 𝐴 ⊆ Fin) ∧
𝑑 ∈ 𝐴) ∧ (𝑏 ∈ 𝐴 ∧ 𝑏 ≼ (card‘𝑑))) → [⊊] Or 𝐴) | 
| 53 |  | simplr 768 | . . . . . . . . . . . . . . . 16
⊢ ((((
[⊊] Or 𝐴
∧ 𝐴 ⊆ Fin) ∧
𝑑 ∈ 𝐴) ∧ (𝑏 ∈ 𝐴 ∧ 𝑏 ≼ (card‘𝑑))) → 𝑑 ∈ 𝐴) | 
| 54 |  | sorpssi 7750 | . . . . . . . . . . . . . . . 16
⊢ ((
[⊊] Or 𝐴
∧ (𝑏 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴)) → (𝑏 ⊆ 𝑑 ∨ 𝑑 ⊆ 𝑏)) | 
| 55 | 52, 49, 53, 54 | syl12anc 836 | . . . . . . . . . . . . . . 15
⊢ ((((
[⊊] Or 𝐴
∧ 𝐴 ⊆ Fin) ∧
𝑑 ∈ 𝐴) ∧ (𝑏 ∈ 𝐴 ∧ 𝑏 ≼ (card‘𝑑))) → (𝑏 ⊆ 𝑑 ∨ 𝑑 ⊆ 𝑏)) | 
| 56 |  | fincssdom 10364 | . . . . . . . . . . . . . . 15
⊢ ((𝑏 ∈ Fin ∧ 𝑑 ∈ Fin ∧ (𝑏 ⊆ 𝑑 ∨ 𝑑 ⊆ 𝑏)) → (𝑏 ≼ 𝑑 ↔ 𝑏 ⊆ 𝑑)) | 
| 57 | 50, 51, 55, 56 | syl3anc 1372 | . . . . . . . . . . . . . 14
⊢ ((((
[⊊] Or 𝐴
∧ 𝐴 ⊆ Fin) ∧
𝑑 ∈ 𝐴) ∧ (𝑏 ∈ 𝐴 ∧ 𝑏 ≼ (card‘𝑑))) → (𝑏 ≼ 𝑑 ↔ 𝑏 ⊆ 𝑑)) | 
| 58 | 47, 57 | mpbid 232 | . . . . . . . . . . . . 13
⊢ ((((
[⊊] Or 𝐴
∧ 𝐴 ⊆ Fin) ∧
𝑑 ∈ 𝐴) ∧ (𝑏 ∈ 𝐴 ∧ 𝑏 ≼ (card‘𝑑))) → 𝑏 ⊆ 𝑑) | 
| 59 | 58 | ex 412 | . . . . . . . . . . . 12
⊢ (((
[⊊] Or 𝐴
∧ 𝐴 ⊆ Fin) ∧
𝑑 ∈ 𝐴) → ((𝑏 ∈ 𝐴 ∧ 𝑏 ≼ (card‘𝑑)) → 𝑏 ⊆ 𝑑)) | 
| 60 | 43, 59 | biimtrid 242 | . . . . . . . . . . 11
⊢ (((
[⊊] Or 𝐴
∧ 𝐴 ⊆ Fin) ∧
𝑑 ∈ 𝐴) → (𝑏 ∈ {𝑐 ∈ 𝐴 ∣ 𝑐 ≼ (card‘𝑑)} → 𝑏 ⊆ 𝑑)) | 
| 61 | 60 | ralrimiv 3144 | . . . . . . . . . 10
⊢ (((
[⊊] Or 𝐴
∧ 𝐴 ⊆ Fin) ∧
𝑑 ∈ 𝐴) → ∀𝑏 ∈ {𝑐 ∈ 𝐴 ∣ 𝑐 ≼ (card‘𝑑)}𝑏 ⊆ 𝑑) | 
| 62 |  | unissb 4938 | . . . . . . . . . 10
⊢ (∪ {𝑐
∈ 𝐴 ∣ 𝑐 ≼ (card‘𝑑)} ⊆ 𝑑 ↔ ∀𝑏 ∈ {𝑐 ∈ 𝐴 ∣ 𝑐 ≼ (card‘𝑑)}𝑏 ⊆ 𝑑) | 
| 63 | 61, 62 | sylibr 234 | . . . . . . . . 9
⊢ (((
[⊊] Or 𝐴
∧ 𝐴 ⊆ Fin) ∧
𝑑 ∈ 𝐴) → ∪ {𝑐 ∈ 𝐴 ∣ 𝑐 ≼ (card‘𝑑)} ⊆ 𝑑) | 
| 64 | 41, 63 | eqssd 4000 | . . . . . . . 8
⊢ (((
[⊊] Or 𝐴
∧ 𝐴 ⊆ Fin) ∧
𝑑 ∈ 𝐴) → 𝑑 = ∪ {𝑐 ∈ 𝐴 ∣ 𝑐 ≼ (card‘𝑑)}) | 
| 65 |  | breq2 5146 | . . . . . . . . . . 11
⊢ (𝑏 = (card‘𝑑) → (𝑐 ≼ 𝑏 ↔ 𝑐 ≼ (card‘𝑑))) | 
| 66 | 65 | rabbidv 3443 | . . . . . . . . . 10
⊢ (𝑏 = (card‘𝑑) → {𝑐 ∈ 𝐴 ∣ 𝑐 ≼ 𝑏} = {𝑐 ∈ 𝐴 ∣ 𝑐 ≼ (card‘𝑑)}) | 
| 67 | 66 | unieqd 4919 | . . . . . . . . 9
⊢ (𝑏 = (card‘𝑑) → ∪ {𝑐
∈ 𝐴 ∣ 𝑐 ≼ 𝑏} = ∪ {𝑐 ∈ 𝐴 ∣ 𝑐 ≼ (card‘𝑑)}) | 
| 68 | 67 | rspceeqv 3644 | . . . . . . . 8
⊢
(((card‘𝑑)
∈ ω ∧ 𝑑 =
∪ {𝑐 ∈ 𝐴 ∣ 𝑐 ≼ (card‘𝑑)}) → ∃𝑏 ∈ ω 𝑑 = ∪ {𝑐 ∈ 𝐴 ∣ 𝑐 ≼ 𝑏}) | 
| 69 | 31, 64, 68 | syl2anc 584 | . . . . . . 7
⊢ (((
[⊊] Or 𝐴
∧ 𝐴 ⊆ Fin) ∧
𝑑 ∈ 𝐴) → ∃𝑏 ∈ ω 𝑑 = ∪ {𝑐 ∈ 𝐴 ∣ 𝑐 ≼ 𝑏}) | 
| 70 | 69 | ex 412 | . . . . . 6
⊢ ((
[⊊] Or 𝐴
∧ 𝐴 ⊆ Fin) →
(𝑑 ∈ 𝐴 → ∃𝑏 ∈ ω 𝑑 = ∪ {𝑐 ∈ 𝐴 ∣ 𝑐 ≼ 𝑏})) | 
| 71 |  | velsn 4641 | . . . . . . 7
⊢ (𝑑 ∈ {∅} ↔ 𝑑 = ∅) | 
| 72 |  | peano1 7911 | . . . . . . . . 9
⊢ ∅
∈ ω | 
| 73 |  | dom0 9143 | . . . . . . . . . . . . . . . 16
⊢ (𝑏 ≼ ∅ ↔ 𝑏 = ∅) | 
| 74 | 73 | biimpi 216 | . . . . . . . . . . . . . . 15
⊢ (𝑏 ≼ ∅ → 𝑏 = ∅) | 
| 75 | 74 | adantl 481 | . . . . . . . . . . . . . 14
⊢ ((𝑏 ∈ 𝐴 ∧ 𝑏 ≼ ∅) → 𝑏 = ∅) | 
| 76 | 75 | a1i 11 | . . . . . . . . . . . . 13
⊢ ((
[⊊] Or 𝐴
∧ 𝐴 ⊆ Fin) →
((𝑏 ∈ 𝐴 ∧ 𝑏 ≼ ∅) → 𝑏 = ∅)) | 
| 77 |  | breq1 5145 | . . . . . . . . . . . . . 14
⊢ (𝑐 = 𝑏 → (𝑐 ≼ ∅ ↔ 𝑏 ≼ ∅)) | 
| 78 | 77 | elrab 3691 | . . . . . . . . . . . . 13
⊢ (𝑏 ∈ {𝑐 ∈ 𝐴 ∣ 𝑐 ≼ ∅} ↔ (𝑏 ∈ 𝐴 ∧ 𝑏 ≼ ∅)) | 
| 79 |  | velsn 4641 | . . . . . . . . . . . . 13
⊢ (𝑏 ∈ {∅} ↔ 𝑏 = ∅) | 
| 80 | 76, 78, 79 | 3imtr4g 296 | . . . . . . . . . . . 12
⊢ ((
[⊊] Or 𝐴
∧ 𝐴 ⊆ Fin) →
(𝑏 ∈ {𝑐 ∈ 𝐴 ∣ 𝑐 ≼ ∅} → 𝑏 ∈ {∅})) | 
| 81 | 80 | ssrdv 3988 | . . . . . . . . . . 11
⊢ ((
[⊊] Or 𝐴
∧ 𝐴 ⊆ Fin) →
{𝑐 ∈ 𝐴 ∣ 𝑐 ≼ ∅} ⊆
{∅}) | 
| 82 |  | uni0b 4932 | . . . . . . . . . . 11
⊢ (∪ {𝑐
∈ 𝐴 ∣ 𝑐 ≼ ∅} = ∅
↔ {𝑐 ∈ 𝐴 ∣ 𝑐 ≼ ∅} ⊆
{∅}) | 
| 83 | 81, 82 | sylibr 234 | . . . . . . . . . 10
⊢ ((
[⊊] Or 𝐴
∧ 𝐴 ⊆ Fin) →
∪ {𝑐 ∈ 𝐴 ∣ 𝑐 ≼ ∅} = ∅) | 
| 84 | 83 | eqcomd 2742 | . . . . . . . . 9
⊢ ((
[⊊] Or 𝐴
∧ 𝐴 ⊆ Fin) →
∅ = ∪ {𝑐 ∈ 𝐴 ∣ 𝑐 ≼ ∅}) | 
| 85 |  | breq2 5146 | . . . . . . . . . . . 12
⊢ (𝑏 = ∅ → (𝑐 ≼ 𝑏 ↔ 𝑐 ≼ ∅)) | 
| 86 | 85 | rabbidv 3443 | . . . . . . . . . . 11
⊢ (𝑏 = ∅ → {𝑐 ∈ 𝐴 ∣ 𝑐 ≼ 𝑏} = {𝑐 ∈ 𝐴 ∣ 𝑐 ≼ ∅}) | 
| 87 | 86 | unieqd 4919 | . . . . . . . . . 10
⊢ (𝑏 = ∅ → ∪ {𝑐
∈ 𝐴 ∣ 𝑐 ≼ 𝑏} = ∪ {𝑐 ∈ 𝐴 ∣ 𝑐 ≼ ∅}) | 
| 88 | 87 | rspceeqv 3644 | . . . . . . . . 9
⊢ ((∅
∈ ω ∧ ∅ = ∪ {𝑐 ∈ 𝐴 ∣ 𝑐 ≼ ∅}) → ∃𝑏 ∈ ω ∅ = ∪ {𝑐
∈ 𝐴 ∣ 𝑐 ≼ 𝑏}) | 
| 89 | 72, 84, 88 | sylancr 587 | . . . . . . . 8
⊢ ((
[⊊] Or 𝐴
∧ 𝐴 ⊆ Fin) →
∃𝑏 ∈ ω
∅ = ∪ {𝑐 ∈ 𝐴 ∣ 𝑐 ≼ 𝑏}) | 
| 90 |  | eqeq1 2740 | . . . . . . . . 9
⊢ (𝑑 = ∅ → (𝑑 = ∪
{𝑐 ∈ 𝐴 ∣ 𝑐 ≼ 𝑏} ↔ ∅ = ∪ {𝑐
∈ 𝐴 ∣ 𝑐 ≼ 𝑏})) | 
| 91 | 90 | rexbidv 3178 | . . . . . . . 8
⊢ (𝑑 = ∅ → (∃𝑏 ∈ ω 𝑑 = ∪
{𝑐 ∈ 𝐴 ∣ 𝑐 ≼ 𝑏} ↔ ∃𝑏 ∈ ω ∅ = ∪ {𝑐
∈ 𝐴 ∣ 𝑐 ≼ 𝑏})) | 
| 92 | 89, 91 | syl5ibrcom 247 | . . . . . . 7
⊢ ((
[⊊] Or 𝐴
∧ 𝐴 ⊆ Fin) →
(𝑑 = ∅ →
∃𝑏 ∈ ω
𝑑 = ∪ {𝑐
∈ 𝐴 ∣ 𝑐 ≼ 𝑏})) | 
| 93 | 71, 92 | biimtrid 242 | . . . . . 6
⊢ ((
[⊊] Or 𝐴
∧ 𝐴 ⊆ Fin) →
(𝑑 ∈ {∅} →
∃𝑏 ∈ ω
𝑑 = ∪ {𝑐
∈ 𝐴 ∣ 𝑐 ≼ 𝑏})) | 
| 94 | 70, 93 | jaod 859 | . . . . 5
⊢ ((
[⊊] Or 𝐴
∧ 𝐴 ⊆ Fin) →
((𝑑 ∈ 𝐴 ∨ 𝑑 ∈ {∅}) → ∃𝑏 ∈ ω 𝑑 = ∪
{𝑐 ∈ 𝐴 ∣ 𝑐 ≼ 𝑏})) | 
| 95 | 27, 94 | impbid 212 | . . . 4
⊢ ((
[⊊] Or 𝐴
∧ 𝐴 ⊆ Fin) →
(∃𝑏 ∈ ω
𝑑 = ∪ {𝑐
∈ 𝐴 ∣ 𝑐 ≼ 𝑏} ↔ (𝑑 ∈ 𝐴 ∨ 𝑑 ∈ {∅}))) | 
| 96 |  | elun 4152 | . . . 4
⊢ (𝑑 ∈ (𝐴 ∪ {∅}) ↔ (𝑑 ∈ 𝐴 ∨ 𝑑 ∈ {∅})) | 
| 97 | 95, 96 | bitr4di 289 | . . 3
⊢ ((
[⊊] Or 𝐴
∧ 𝐴 ⊆ Fin) →
(∃𝑏 ∈ ω
𝑑 = ∪ {𝑐
∈ 𝐴 ∣ 𝑐 ≼ 𝑏} ↔ 𝑑 ∈ (𝐴 ∪ {∅}))) | 
| 98 | 97 | eqabcdv 2875 | . 2
⊢ ((
[⊊] Or 𝐴
∧ 𝐴 ⊆ Fin) →
{𝑑 ∣ ∃𝑏 ∈ ω 𝑑 = ∪
{𝑐 ∈ 𝐴 ∣ 𝑐 ≼ 𝑏}} = (𝐴 ∪ {∅})) | 
| 99 | 2, 98 | eqtrid 2788 | 1
⊢ ((
[⊊] Or 𝐴
∧ 𝐴 ⊆ Fin) →
ran (𝑏 ∈ ω
↦ ∪ {𝑐 ∈ 𝐴 ∣ 𝑐 ≼ 𝑏}) = (𝐴 ∪ {∅})) |