Step | Hyp | Ref
| Expression |
1 | | eqid 2738 |
. . 3
⊢ (𝑏 ∈ ω ↦ ∪ {𝑐
∈ 𝐴 ∣ 𝑐 ≼ 𝑏}) = (𝑏 ∈ ω ↦ ∪ {𝑐
∈ 𝐴 ∣ 𝑐 ≼ 𝑏}) |
2 | 1 | rnmpt 5853 |
. 2
⊢ ran
(𝑏 ∈ ω ↦
∪ {𝑐 ∈ 𝐴 ∣ 𝑐 ≼ 𝑏}) = {𝑑 ∣ ∃𝑏 ∈ ω 𝑑 = ∪ {𝑐 ∈ 𝐴 ∣ 𝑐 ≼ 𝑏}} |
3 | | unieq 4847 |
. . . . . . . . . . . 12
⊢ ({𝑐 ∈ 𝐴 ∣ 𝑐 ≼ 𝑏} = ∅ → ∪ {𝑐
∈ 𝐴 ∣ 𝑐 ≼ 𝑏} = ∪
∅) |
4 | | uni0 4866 |
. . . . . . . . . . . 12
⊢ ∪ ∅ = ∅ |
5 | 3, 4 | eqtrdi 2795 |
. . . . . . . . . . 11
⊢ ({𝑐 ∈ 𝐴 ∣ 𝑐 ≼ 𝑏} = ∅ → ∪ {𝑐
∈ 𝐴 ∣ 𝑐 ≼ 𝑏} = ∅) |
6 | 5 | adantl 481 |
. . . . . . . . . 10
⊢ ((((
[⊊] Or 𝐴
∧ 𝐴 ⊆ Fin) ∧
𝑏 ∈ ω) ∧
{𝑐 ∈ 𝐴 ∣ 𝑐 ≼ 𝑏} = ∅) → ∪ {𝑐
∈ 𝐴 ∣ 𝑐 ≼ 𝑏} = ∅) |
7 | | 0ex 5226 |
. . . . . . . . . . 11
⊢ ∅
∈ V |
8 | 7 | elsn2 4597 |
. . . . . . . . . 10
⊢ (∪ {𝑐
∈ 𝐴 ∣ 𝑐 ≼ 𝑏} ∈ {∅} ↔ ∪ {𝑐
∈ 𝐴 ∣ 𝑐 ≼ 𝑏} = ∅) |
9 | 6, 8 | sylibr 233 |
. . . . . . . . 9
⊢ ((((
[⊊] Or 𝐴
∧ 𝐴 ⊆ Fin) ∧
𝑏 ∈ ω) ∧
{𝑐 ∈ 𝐴 ∣ 𝑐 ≼ 𝑏} = ∅) → ∪ {𝑐
∈ 𝐴 ∣ 𝑐 ≼ 𝑏} ∈ {∅}) |
10 | 9 | olcd 870 |
. . . . . . . 8
⊢ ((((
[⊊] Or 𝐴
∧ 𝐴 ⊆ Fin) ∧
𝑏 ∈ ω) ∧
{𝑐 ∈ 𝐴 ∣ 𝑐 ≼ 𝑏} = ∅) → (∪ {𝑐
∈ 𝐴 ∣ 𝑐 ≼ 𝑏} ∈ 𝐴 ∨ ∪ {𝑐 ∈ 𝐴 ∣ 𝑐 ≼ 𝑏} ∈ {∅})) |
11 | | ssrab2 4009 |
. . . . . . . . . 10
⊢ {𝑐 ∈ 𝐴 ∣ 𝑐 ≼ 𝑏} ⊆ 𝐴 |
12 | | simpr 484 |
. . . . . . . . . . 11
⊢ ((((
[⊊] Or 𝐴
∧ 𝐴 ⊆ Fin) ∧
𝑏 ∈ ω) ∧
{𝑐 ∈ 𝐴 ∣ 𝑐 ≼ 𝑏} ≠ ∅) → {𝑐 ∈ 𝐴 ∣ 𝑐 ≼ 𝑏} ≠ ∅) |
13 | | fin1a2lem9 10095 |
. . . . . . . . . . . 12
⊢ ((
[⊊] Or 𝐴
∧ 𝐴 ⊆ Fin ∧
𝑏 ∈ ω) →
{𝑐 ∈ 𝐴 ∣ 𝑐 ≼ 𝑏} ∈ Fin) |
14 | 13 | ad4ant123 1170 |
. . . . . . . . . . 11
⊢ ((((
[⊊] Or 𝐴
∧ 𝐴 ⊆ Fin) ∧
𝑏 ∈ ω) ∧
{𝑐 ∈ 𝐴 ∣ 𝑐 ≼ 𝑏} ≠ ∅) → {𝑐 ∈ 𝐴 ∣ 𝑐 ≼ 𝑏} ∈ Fin) |
15 | | simplll 771 |
. . . . . . . . . . . 12
⊢ ((((
[⊊] Or 𝐴
∧ 𝐴 ⊆ Fin) ∧
𝑏 ∈ ω) ∧
{𝑐 ∈ 𝐴 ∣ 𝑐 ≼ 𝑏} ≠ ∅) → [⊊] Or
𝐴) |
16 | | soss 5514 |
. . . . . . . . . . . 12
⊢ ({𝑐 ∈ 𝐴 ∣ 𝑐 ≼ 𝑏} ⊆ 𝐴 → ( [⊊] Or 𝐴 → [⊊] Or
{𝑐 ∈ 𝐴 ∣ 𝑐 ≼ 𝑏})) |
17 | 11, 15, 16 | mpsyl 68 |
. . . . . . . . . . 11
⊢ ((((
[⊊] Or 𝐴
∧ 𝐴 ⊆ Fin) ∧
𝑏 ∈ ω) ∧
{𝑐 ∈ 𝐴 ∣ 𝑐 ≼ 𝑏} ≠ ∅) → [⊊] Or
{𝑐 ∈ 𝐴 ∣ 𝑐 ≼ 𝑏}) |
18 | | fin1a2lem10 10096 |
. . . . . . . . . . 11
⊢ (({𝑐 ∈ 𝐴 ∣ 𝑐 ≼ 𝑏} ≠ ∅ ∧ {𝑐 ∈ 𝐴 ∣ 𝑐 ≼ 𝑏} ∈ Fin ∧ [⊊] Or
{𝑐 ∈ 𝐴 ∣ 𝑐 ≼ 𝑏}) → ∪ {𝑐 ∈ 𝐴 ∣ 𝑐 ≼ 𝑏} ∈ {𝑐 ∈ 𝐴 ∣ 𝑐 ≼ 𝑏}) |
19 | 12, 14, 17, 18 | syl3anc 1369 |
. . . . . . . . . 10
⊢ ((((
[⊊] Or 𝐴
∧ 𝐴 ⊆ Fin) ∧
𝑏 ∈ ω) ∧
{𝑐 ∈ 𝐴 ∣ 𝑐 ≼ 𝑏} ≠ ∅) → ∪ {𝑐
∈ 𝐴 ∣ 𝑐 ≼ 𝑏} ∈ {𝑐 ∈ 𝐴 ∣ 𝑐 ≼ 𝑏}) |
20 | 11, 19 | sselid 3915 |
. . . . . . . . 9
⊢ ((((
[⊊] Or 𝐴
∧ 𝐴 ⊆ Fin) ∧
𝑏 ∈ ω) ∧
{𝑐 ∈ 𝐴 ∣ 𝑐 ≼ 𝑏} ≠ ∅) → ∪ {𝑐
∈ 𝐴 ∣ 𝑐 ≼ 𝑏} ∈ 𝐴) |
21 | 20 | orcd 869 |
. . . . . . . 8
⊢ ((((
[⊊] Or 𝐴
∧ 𝐴 ⊆ Fin) ∧
𝑏 ∈ ω) ∧
{𝑐 ∈ 𝐴 ∣ 𝑐 ≼ 𝑏} ≠ ∅) → (∪ {𝑐
∈ 𝐴 ∣ 𝑐 ≼ 𝑏} ∈ 𝐴 ∨ ∪ {𝑐 ∈ 𝐴 ∣ 𝑐 ≼ 𝑏} ∈ {∅})) |
22 | 10, 21 | pm2.61dane 3031 |
. . . . . . 7
⊢ (((
[⊊] Or 𝐴
∧ 𝐴 ⊆ Fin) ∧
𝑏 ∈ ω) →
(∪ {𝑐 ∈ 𝐴 ∣ 𝑐 ≼ 𝑏} ∈ 𝐴 ∨ ∪ {𝑐 ∈ 𝐴 ∣ 𝑐 ≼ 𝑏} ∈ {∅})) |
23 | | eleq1 2826 |
. . . . . . . 8
⊢ (𝑑 = ∪
{𝑐 ∈ 𝐴 ∣ 𝑐 ≼ 𝑏} → (𝑑 ∈ 𝐴 ↔ ∪ {𝑐 ∈ 𝐴 ∣ 𝑐 ≼ 𝑏} ∈ 𝐴)) |
24 | | eleq1 2826 |
. . . . . . . 8
⊢ (𝑑 = ∪
{𝑐 ∈ 𝐴 ∣ 𝑐 ≼ 𝑏} → (𝑑 ∈ {∅} ↔ ∪ {𝑐
∈ 𝐴 ∣ 𝑐 ≼ 𝑏} ∈ {∅})) |
25 | 23, 24 | orbi12d 915 |
. . . . . . 7
⊢ (𝑑 = ∪
{𝑐 ∈ 𝐴 ∣ 𝑐 ≼ 𝑏} → ((𝑑 ∈ 𝐴 ∨ 𝑑 ∈ {∅}) ↔ (∪ {𝑐
∈ 𝐴 ∣ 𝑐 ≼ 𝑏} ∈ 𝐴 ∨ ∪ {𝑐 ∈ 𝐴 ∣ 𝑐 ≼ 𝑏} ∈ {∅}))) |
26 | 22, 25 | syl5ibrcom 246 |
. . . . . 6
⊢ (((
[⊊] Or 𝐴
∧ 𝐴 ⊆ Fin) ∧
𝑏 ∈ ω) →
(𝑑 = ∪ {𝑐
∈ 𝐴 ∣ 𝑐 ≼ 𝑏} → (𝑑 ∈ 𝐴 ∨ 𝑑 ∈ {∅}))) |
27 | 26 | rexlimdva 3212 |
. . . . 5
⊢ ((
[⊊] Or 𝐴
∧ 𝐴 ⊆ Fin) →
(∃𝑏 ∈ ω
𝑑 = ∪ {𝑐
∈ 𝐴 ∣ 𝑐 ≼ 𝑏} → (𝑑 ∈ 𝐴 ∨ 𝑑 ∈ {∅}))) |
28 | | simpr 484 |
. . . . . . . . . 10
⊢ ((
[⊊] Or 𝐴
∧ 𝐴 ⊆ Fin) →
𝐴 ⊆
Fin) |
29 | 28 | sselda 3917 |
. . . . . . . . 9
⊢ (((
[⊊] Or 𝐴
∧ 𝐴 ⊆ Fin) ∧
𝑑 ∈ 𝐴) → 𝑑 ∈ Fin) |
30 | | ficardom 9650 |
. . . . . . . . 9
⊢ (𝑑 ∈ Fin →
(card‘𝑑) ∈
ω) |
31 | 29, 30 | syl 17 |
. . . . . . . 8
⊢ (((
[⊊] Or 𝐴
∧ 𝐴 ⊆ Fin) ∧
𝑑 ∈ 𝐴) → (card‘𝑑) ∈ ω) |
32 | | breq1 5073 |
. . . . . . . . . . 11
⊢ (𝑐 = 𝑑 → (𝑐 ≼ (card‘𝑑) ↔ 𝑑 ≼ (card‘𝑑))) |
33 | | simpr 484 |
. . . . . . . . . . 11
⊢ (((
[⊊] Or 𝐴
∧ 𝐴 ⊆ Fin) ∧
𝑑 ∈ 𝐴) → 𝑑 ∈ 𝐴) |
34 | | ficardid 9651 |
. . . . . . . . . . . . 13
⊢ (𝑑 ∈ Fin →
(card‘𝑑) ≈
𝑑) |
35 | 29, 34 | syl 17 |
. . . . . . . . . . . 12
⊢ (((
[⊊] Or 𝐴
∧ 𝐴 ⊆ Fin) ∧
𝑑 ∈ 𝐴) → (card‘𝑑) ≈ 𝑑) |
36 | | ensym 8744 |
. . . . . . . . . . . 12
⊢
((card‘𝑑)
≈ 𝑑 → 𝑑 ≈ (card‘𝑑)) |
37 | | endom 8722 |
. . . . . . . . . . . 12
⊢ (𝑑 ≈ (card‘𝑑) → 𝑑 ≼ (card‘𝑑)) |
38 | 35, 36, 37 | 3syl 18 |
. . . . . . . . . . 11
⊢ (((
[⊊] Or 𝐴
∧ 𝐴 ⊆ Fin) ∧
𝑑 ∈ 𝐴) → 𝑑 ≼ (card‘𝑑)) |
39 | 32, 33, 38 | elrabd 3619 |
. . . . . . . . . 10
⊢ (((
[⊊] Or 𝐴
∧ 𝐴 ⊆ Fin) ∧
𝑑 ∈ 𝐴) → 𝑑 ∈ {𝑐 ∈ 𝐴 ∣ 𝑐 ≼ (card‘𝑑)}) |
40 | | elssuni 4868 |
. . . . . . . . . 10
⊢ (𝑑 ∈ {𝑐 ∈ 𝐴 ∣ 𝑐 ≼ (card‘𝑑)} → 𝑑 ⊆ ∪ {𝑐 ∈ 𝐴 ∣ 𝑐 ≼ (card‘𝑑)}) |
41 | 39, 40 | syl 17 |
. . . . . . . . 9
⊢ (((
[⊊] Or 𝐴
∧ 𝐴 ⊆ Fin) ∧
𝑑 ∈ 𝐴) → 𝑑 ⊆ ∪ {𝑐 ∈ 𝐴 ∣ 𝑐 ≼ (card‘𝑑)}) |
42 | | breq1 5073 |
. . . . . . . . . . . . 13
⊢ (𝑐 = 𝑏 → (𝑐 ≼ (card‘𝑑) ↔ 𝑏 ≼ (card‘𝑑))) |
43 | 42 | elrab 3617 |
. . . . . . . . . . . 12
⊢ (𝑏 ∈ {𝑐 ∈ 𝐴 ∣ 𝑐 ≼ (card‘𝑑)} ↔ (𝑏 ∈ 𝐴 ∧ 𝑏 ≼ (card‘𝑑))) |
44 | | simprr 769 |
. . . . . . . . . . . . . . 15
⊢ ((((
[⊊] Or 𝐴
∧ 𝐴 ⊆ Fin) ∧
𝑑 ∈ 𝐴) ∧ (𝑏 ∈ 𝐴 ∧ 𝑏 ≼ (card‘𝑑))) → 𝑏 ≼ (card‘𝑑)) |
45 | 35 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ ((((
[⊊] Or 𝐴
∧ 𝐴 ⊆ Fin) ∧
𝑑 ∈ 𝐴) ∧ (𝑏 ∈ 𝐴 ∧ 𝑏 ≼ (card‘𝑑))) → (card‘𝑑) ≈ 𝑑) |
46 | | domentr 8754 |
. . . . . . . . . . . . . . 15
⊢ ((𝑏 ≼ (card‘𝑑) ∧ (card‘𝑑) ≈ 𝑑) → 𝑏 ≼ 𝑑) |
47 | 44, 45, 46 | syl2anc 583 |
. . . . . . . . . . . . . 14
⊢ ((((
[⊊] Or 𝐴
∧ 𝐴 ⊆ Fin) ∧
𝑑 ∈ 𝐴) ∧ (𝑏 ∈ 𝐴 ∧ 𝑏 ≼ (card‘𝑑))) → 𝑏 ≼ 𝑑) |
48 | | simpllr 772 |
. . . . . . . . . . . . . . . 16
⊢ ((((
[⊊] Or 𝐴
∧ 𝐴 ⊆ Fin) ∧
𝑑 ∈ 𝐴) ∧ (𝑏 ∈ 𝐴 ∧ 𝑏 ≼ (card‘𝑑))) → 𝐴 ⊆ Fin) |
49 | | simprl 767 |
. . . . . . . . . . . . . . . 16
⊢ ((((
[⊊] Or 𝐴
∧ 𝐴 ⊆ Fin) ∧
𝑑 ∈ 𝐴) ∧ (𝑏 ∈ 𝐴 ∧ 𝑏 ≼ (card‘𝑑))) → 𝑏 ∈ 𝐴) |
50 | 48, 49 | sseldd 3918 |
. . . . . . . . . . . . . . 15
⊢ ((((
[⊊] Or 𝐴
∧ 𝐴 ⊆ Fin) ∧
𝑑 ∈ 𝐴) ∧ (𝑏 ∈ 𝐴 ∧ 𝑏 ≼ (card‘𝑑))) → 𝑏 ∈ Fin) |
51 | 29 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ ((((
[⊊] Or 𝐴
∧ 𝐴 ⊆ Fin) ∧
𝑑 ∈ 𝐴) ∧ (𝑏 ∈ 𝐴 ∧ 𝑏 ≼ (card‘𝑑))) → 𝑑 ∈ Fin) |
52 | | simplll 771 |
. . . . . . . . . . . . . . . 16
⊢ ((((
[⊊] Or 𝐴
∧ 𝐴 ⊆ Fin) ∧
𝑑 ∈ 𝐴) ∧ (𝑏 ∈ 𝐴 ∧ 𝑏 ≼ (card‘𝑑))) → [⊊] Or 𝐴) |
53 | | simplr 765 |
. . . . . . . . . . . . . . . 16
⊢ ((((
[⊊] Or 𝐴
∧ 𝐴 ⊆ Fin) ∧
𝑑 ∈ 𝐴) ∧ (𝑏 ∈ 𝐴 ∧ 𝑏 ≼ (card‘𝑑))) → 𝑑 ∈ 𝐴) |
54 | | sorpssi 7560 |
. . . . . . . . . . . . . . . 16
⊢ ((
[⊊] Or 𝐴
∧ (𝑏 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴)) → (𝑏 ⊆ 𝑑 ∨ 𝑑 ⊆ 𝑏)) |
55 | 52, 49, 53, 54 | syl12anc 833 |
. . . . . . . . . . . . . . 15
⊢ ((((
[⊊] Or 𝐴
∧ 𝐴 ⊆ Fin) ∧
𝑑 ∈ 𝐴) ∧ (𝑏 ∈ 𝐴 ∧ 𝑏 ≼ (card‘𝑑))) → (𝑏 ⊆ 𝑑 ∨ 𝑑 ⊆ 𝑏)) |
56 | | fincssdom 10010 |
. . . . . . . . . . . . . . 15
⊢ ((𝑏 ∈ Fin ∧ 𝑑 ∈ Fin ∧ (𝑏 ⊆ 𝑑 ∨ 𝑑 ⊆ 𝑏)) → (𝑏 ≼ 𝑑 ↔ 𝑏 ⊆ 𝑑)) |
57 | 50, 51, 55, 56 | syl3anc 1369 |
. . . . . . . . . . . . . 14
⊢ ((((
[⊊] Or 𝐴
∧ 𝐴 ⊆ Fin) ∧
𝑑 ∈ 𝐴) ∧ (𝑏 ∈ 𝐴 ∧ 𝑏 ≼ (card‘𝑑))) → (𝑏 ≼ 𝑑 ↔ 𝑏 ⊆ 𝑑)) |
58 | 47, 57 | mpbid 231 |
. . . . . . . . . . . . 13
⊢ ((((
[⊊] Or 𝐴
∧ 𝐴 ⊆ Fin) ∧
𝑑 ∈ 𝐴) ∧ (𝑏 ∈ 𝐴 ∧ 𝑏 ≼ (card‘𝑑))) → 𝑏 ⊆ 𝑑) |
59 | 58 | ex 412 |
. . . . . . . . . . . 12
⊢ (((
[⊊] Or 𝐴
∧ 𝐴 ⊆ Fin) ∧
𝑑 ∈ 𝐴) → ((𝑏 ∈ 𝐴 ∧ 𝑏 ≼ (card‘𝑑)) → 𝑏 ⊆ 𝑑)) |
60 | 43, 59 | syl5bi 241 |
. . . . . . . . . . 11
⊢ (((
[⊊] Or 𝐴
∧ 𝐴 ⊆ Fin) ∧
𝑑 ∈ 𝐴) → (𝑏 ∈ {𝑐 ∈ 𝐴 ∣ 𝑐 ≼ (card‘𝑑)} → 𝑏 ⊆ 𝑑)) |
61 | 60 | ralrimiv 3106 |
. . . . . . . . . 10
⊢ (((
[⊊] Or 𝐴
∧ 𝐴 ⊆ Fin) ∧
𝑑 ∈ 𝐴) → ∀𝑏 ∈ {𝑐 ∈ 𝐴 ∣ 𝑐 ≼ (card‘𝑑)}𝑏 ⊆ 𝑑) |
62 | | unissb 4870 |
. . . . . . . . . 10
⊢ (∪ {𝑐
∈ 𝐴 ∣ 𝑐 ≼ (card‘𝑑)} ⊆ 𝑑 ↔ ∀𝑏 ∈ {𝑐 ∈ 𝐴 ∣ 𝑐 ≼ (card‘𝑑)}𝑏 ⊆ 𝑑) |
63 | 61, 62 | sylibr 233 |
. . . . . . . . 9
⊢ (((
[⊊] Or 𝐴
∧ 𝐴 ⊆ Fin) ∧
𝑑 ∈ 𝐴) → ∪ {𝑐 ∈ 𝐴 ∣ 𝑐 ≼ (card‘𝑑)} ⊆ 𝑑) |
64 | 41, 63 | eqssd 3934 |
. . . . . . . 8
⊢ (((
[⊊] Or 𝐴
∧ 𝐴 ⊆ Fin) ∧
𝑑 ∈ 𝐴) → 𝑑 = ∪ {𝑐 ∈ 𝐴 ∣ 𝑐 ≼ (card‘𝑑)}) |
65 | | breq2 5074 |
. . . . . . . . . . 11
⊢ (𝑏 = (card‘𝑑) → (𝑐 ≼ 𝑏 ↔ 𝑐 ≼ (card‘𝑑))) |
66 | 65 | rabbidv 3404 |
. . . . . . . . . 10
⊢ (𝑏 = (card‘𝑑) → {𝑐 ∈ 𝐴 ∣ 𝑐 ≼ 𝑏} = {𝑐 ∈ 𝐴 ∣ 𝑐 ≼ (card‘𝑑)}) |
67 | 66 | unieqd 4850 |
. . . . . . . . 9
⊢ (𝑏 = (card‘𝑑) → ∪ {𝑐
∈ 𝐴 ∣ 𝑐 ≼ 𝑏} = ∪ {𝑐 ∈ 𝐴 ∣ 𝑐 ≼ (card‘𝑑)}) |
68 | 67 | rspceeqv 3567 |
. . . . . . . 8
⊢
(((card‘𝑑)
∈ ω ∧ 𝑑 =
∪ {𝑐 ∈ 𝐴 ∣ 𝑐 ≼ (card‘𝑑)}) → ∃𝑏 ∈ ω 𝑑 = ∪ {𝑐 ∈ 𝐴 ∣ 𝑐 ≼ 𝑏}) |
69 | 31, 64, 68 | syl2anc 583 |
. . . . . . 7
⊢ (((
[⊊] Or 𝐴
∧ 𝐴 ⊆ Fin) ∧
𝑑 ∈ 𝐴) → ∃𝑏 ∈ ω 𝑑 = ∪ {𝑐 ∈ 𝐴 ∣ 𝑐 ≼ 𝑏}) |
70 | 69 | ex 412 |
. . . . . 6
⊢ ((
[⊊] Or 𝐴
∧ 𝐴 ⊆ Fin) →
(𝑑 ∈ 𝐴 → ∃𝑏 ∈ ω 𝑑 = ∪ {𝑐 ∈ 𝐴 ∣ 𝑐 ≼ 𝑏})) |
71 | | velsn 4574 |
. . . . . . 7
⊢ (𝑑 ∈ {∅} ↔ 𝑑 = ∅) |
72 | | peano1 7710 |
. . . . . . . . 9
⊢ ∅
∈ ω |
73 | | dom0 8841 |
. . . . . . . . . . . . . . . 16
⊢ (𝑏 ≼ ∅ ↔ 𝑏 = ∅) |
74 | 73 | biimpi 215 |
. . . . . . . . . . . . . . 15
⊢ (𝑏 ≼ ∅ → 𝑏 = ∅) |
75 | 74 | adantl 481 |
. . . . . . . . . . . . . 14
⊢ ((𝑏 ∈ 𝐴 ∧ 𝑏 ≼ ∅) → 𝑏 = ∅) |
76 | 75 | a1i 11 |
. . . . . . . . . . . . 13
⊢ ((
[⊊] Or 𝐴
∧ 𝐴 ⊆ Fin) →
((𝑏 ∈ 𝐴 ∧ 𝑏 ≼ ∅) → 𝑏 = ∅)) |
77 | | breq1 5073 |
. . . . . . . . . . . . . 14
⊢ (𝑐 = 𝑏 → (𝑐 ≼ ∅ ↔ 𝑏 ≼ ∅)) |
78 | 77 | elrab 3617 |
. . . . . . . . . . . . 13
⊢ (𝑏 ∈ {𝑐 ∈ 𝐴 ∣ 𝑐 ≼ ∅} ↔ (𝑏 ∈ 𝐴 ∧ 𝑏 ≼ ∅)) |
79 | | velsn 4574 |
. . . . . . . . . . . . 13
⊢ (𝑏 ∈ {∅} ↔ 𝑏 = ∅) |
80 | 76, 78, 79 | 3imtr4g 295 |
. . . . . . . . . . . 12
⊢ ((
[⊊] Or 𝐴
∧ 𝐴 ⊆ Fin) →
(𝑏 ∈ {𝑐 ∈ 𝐴 ∣ 𝑐 ≼ ∅} → 𝑏 ∈ {∅})) |
81 | 80 | ssrdv 3923 |
. . . . . . . . . . 11
⊢ ((
[⊊] Or 𝐴
∧ 𝐴 ⊆ Fin) →
{𝑐 ∈ 𝐴 ∣ 𝑐 ≼ ∅} ⊆
{∅}) |
82 | | uni0b 4864 |
. . . . . . . . . . 11
⊢ (∪ {𝑐
∈ 𝐴 ∣ 𝑐 ≼ ∅} = ∅
↔ {𝑐 ∈ 𝐴 ∣ 𝑐 ≼ ∅} ⊆
{∅}) |
83 | 81, 82 | sylibr 233 |
. . . . . . . . . 10
⊢ ((
[⊊] Or 𝐴
∧ 𝐴 ⊆ Fin) →
∪ {𝑐 ∈ 𝐴 ∣ 𝑐 ≼ ∅} = ∅) |
84 | 83 | eqcomd 2744 |
. . . . . . . . 9
⊢ ((
[⊊] Or 𝐴
∧ 𝐴 ⊆ Fin) →
∅ = ∪ {𝑐 ∈ 𝐴 ∣ 𝑐 ≼ ∅}) |
85 | | breq2 5074 |
. . . . . . . . . . . 12
⊢ (𝑏 = ∅ → (𝑐 ≼ 𝑏 ↔ 𝑐 ≼ ∅)) |
86 | 85 | rabbidv 3404 |
. . . . . . . . . . 11
⊢ (𝑏 = ∅ → {𝑐 ∈ 𝐴 ∣ 𝑐 ≼ 𝑏} = {𝑐 ∈ 𝐴 ∣ 𝑐 ≼ ∅}) |
87 | 86 | unieqd 4850 |
. . . . . . . . . 10
⊢ (𝑏 = ∅ → ∪ {𝑐
∈ 𝐴 ∣ 𝑐 ≼ 𝑏} = ∪ {𝑐 ∈ 𝐴 ∣ 𝑐 ≼ ∅}) |
88 | 87 | rspceeqv 3567 |
. . . . . . . . 9
⊢ ((∅
∈ ω ∧ ∅ = ∪ {𝑐 ∈ 𝐴 ∣ 𝑐 ≼ ∅}) → ∃𝑏 ∈ ω ∅ = ∪ {𝑐
∈ 𝐴 ∣ 𝑐 ≼ 𝑏}) |
89 | 72, 84, 88 | sylancr 586 |
. . . . . . . 8
⊢ ((
[⊊] Or 𝐴
∧ 𝐴 ⊆ Fin) →
∃𝑏 ∈ ω
∅ = ∪ {𝑐 ∈ 𝐴 ∣ 𝑐 ≼ 𝑏}) |
90 | | eqeq1 2742 |
. . . . . . . . 9
⊢ (𝑑 = ∅ → (𝑑 = ∪
{𝑐 ∈ 𝐴 ∣ 𝑐 ≼ 𝑏} ↔ ∅ = ∪ {𝑐
∈ 𝐴 ∣ 𝑐 ≼ 𝑏})) |
91 | 90 | rexbidv 3225 |
. . . . . . . 8
⊢ (𝑑 = ∅ → (∃𝑏 ∈ ω 𝑑 = ∪
{𝑐 ∈ 𝐴 ∣ 𝑐 ≼ 𝑏} ↔ ∃𝑏 ∈ ω ∅ = ∪ {𝑐
∈ 𝐴 ∣ 𝑐 ≼ 𝑏})) |
92 | 89, 91 | syl5ibrcom 246 |
. . . . . . 7
⊢ ((
[⊊] Or 𝐴
∧ 𝐴 ⊆ Fin) →
(𝑑 = ∅ →
∃𝑏 ∈ ω
𝑑 = ∪ {𝑐
∈ 𝐴 ∣ 𝑐 ≼ 𝑏})) |
93 | 71, 92 | syl5bi 241 |
. . . . . 6
⊢ ((
[⊊] Or 𝐴
∧ 𝐴 ⊆ Fin) →
(𝑑 ∈ {∅} →
∃𝑏 ∈ ω
𝑑 = ∪ {𝑐
∈ 𝐴 ∣ 𝑐 ≼ 𝑏})) |
94 | 70, 93 | jaod 855 |
. . . . 5
⊢ ((
[⊊] Or 𝐴
∧ 𝐴 ⊆ Fin) →
((𝑑 ∈ 𝐴 ∨ 𝑑 ∈ {∅}) → ∃𝑏 ∈ ω 𝑑 = ∪
{𝑐 ∈ 𝐴 ∣ 𝑐 ≼ 𝑏})) |
95 | 27, 94 | impbid 211 |
. . . 4
⊢ ((
[⊊] Or 𝐴
∧ 𝐴 ⊆ Fin) →
(∃𝑏 ∈ ω
𝑑 = ∪ {𝑐
∈ 𝐴 ∣ 𝑐 ≼ 𝑏} ↔ (𝑑 ∈ 𝐴 ∨ 𝑑 ∈ {∅}))) |
96 | | elun 4079 |
. . . 4
⊢ (𝑑 ∈ (𝐴 ∪ {∅}) ↔ (𝑑 ∈ 𝐴 ∨ 𝑑 ∈ {∅})) |
97 | 95, 96 | bitr4di 288 |
. . 3
⊢ ((
[⊊] Or 𝐴
∧ 𝐴 ⊆ Fin) →
(∃𝑏 ∈ ω
𝑑 = ∪ {𝑐
∈ 𝐴 ∣ 𝑐 ≼ 𝑏} ↔ 𝑑 ∈ (𝐴 ∪ {∅}))) |
98 | 97 | abbi1dv 2877 |
. 2
⊢ ((
[⊊] Or 𝐴
∧ 𝐴 ⊆ Fin) →
{𝑑 ∣ ∃𝑏 ∈ ω 𝑑 = ∪
{𝑐 ∈ 𝐴 ∣ 𝑐 ≼ 𝑏}} = (𝐴 ∪ {∅})) |
99 | 2, 98 | eqtrid 2790 |
1
⊢ ((
[⊊] Or 𝐴
∧ 𝐴 ⊆ Fin) →
ran (𝑏 ∈ ω
↦ ∪ {𝑐 ∈ 𝐴 ∣ 𝑐 ≼ 𝑏}) = (𝐴 ∪ {∅})) |