| Step | Hyp | Ref
| Expression |
| 1 | | eqid 2736 |
. . 3
⊢ (𝑏 ∈ ω ↦ ∪ {𝑐
∈ 𝐴 ∣ 𝑐 ≼ 𝑏}) = (𝑏 ∈ ω ↦ ∪ {𝑐
∈ 𝐴 ∣ 𝑐 ≼ 𝑏}) |
| 2 | 1 | rnmpt 5942 |
. 2
⊢ ran
(𝑏 ∈ ω ↦
∪ {𝑐 ∈ 𝐴 ∣ 𝑐 ≼ 𝑏}) = {𝑑 ∣ ∃𝑏 ∈ ω 𝑑 = ∪ {𝑐 ∈ 𝐴 ∣ 𝑐 ≼ 𝑏}} |
| 3 | | unieq 4899 |
. . . . . . . . . . . 12
⊢ ({𝑐 ∈ 𝐴 ∣ 𝑐 ≼ 𝑏} = ∅ → ∪ {𝑐
∈ 𝐴 ∣ 𝑐 ≼ 𝑏} = ∪
∅) |
| 4 | | uni0 4916 |
. . . . . . . . . . . 12
⊢ ∪ ∅ = ∅ |
| 5 | 3, 4 | eqtrdi 2787 |
. . . . . . . . . . 11
⊢ ({𝑐 ∈ 𝐴 ∣ 𝑐 ≼ 𝑏} = ∅ → ∪ {𝑐
∈ 𝐴 ∣ 𝑐 ≼ 𝑏} = ∅) |
| 6 | 5 | adantl 481 |
. . . . . . . . . 10
⊢ ((((
[⊊] Or 𝐴
∧ 𝐴 ⊆ Fin) ∧
𝑏 ∈ ω) ∧
{𝑐 ∈ 𝐴 ∣ 𝑐 ≼ 𝑏} = ∅) → ∪ {𝑐
∈ 𝐴 ∣ 𝑐 ≼ 𝑏} = ∅) |
| 7 | | 0ex 5282 |
. . . . . . . . . . 11
⊢ ∅
∈ V |
| 8 | 7 | elsn2 4646 |
. . . . . . . . . 10
⊢ (∪ {𝑐
∈ 𝐴 ∣ 𝑐 ≼ 𝑏} ∈ {∅} ↔ ∪ {𝑐
∈ 𝐴 ∣ 𝑐 ≼ 𝑏} = ∅) |
| 9 | 6, 8 | sylibr 234 |
. . . . . . . . 9
⊢ ((((
[⊊] Or 𝐴
∧ 𝐴 ⊆ Fin) ∧
𝑏 ∈ ω) ∧
{𝑐 ∈ 𝐴 ∣ 𝑐 ≼ 𝑏} = ∅) → ∪ {𝑐
∈ 𝐴 ∣ 𝑐 ≼ 𝑏} ∈ {∅}) |
| 10 | 9 | olcd 874 |
. . . . . . . 8
⊢ ((((
[⊊] Or 𝐴
∧ 𝐴 ⊆ Fin) ∧
𝑏 ∈ ω) ∧
{𝑐 ∈ 𝐴 ∣ 𝑐 ≼ 𝑏} = ∅) → (∪ {𝑐
∈ 𝐴 ∣ 𝑐 ≼ 𝑏} ∈ 𝐴 ∨ ∪ {𝑐 ∈ 𝐴 ∣ 𝑐 ≼ 𝑏} ∈ {∅})) |
| 11 | | ssrab2 4060 |
. . . . . . . . . 10
⊢ {𝑐 ∈ 𝐴 ∣ 𝑐 ≼ 𝑏} ⊆ 𝐴 |
| 12 | | simpr 484 |
. . . . . . . . . . 11
⊢ ((((
[⊊] Or 𝐴
∧ 𝐴 ⊆ Fin) ∧
𝑏 ∈ ω) ∧
{𝑐 ∈ 𝐴 ∣ 𝑐 ≼ 𝑏} ≠ ∅) → {𝑐 ∈ 𝐴 ∣ 𝑐 ≼ 𝑏} ≠ ∅) |
| 13 | | fin1a2lem9 10427 |
. . . . . . . . . . . 12
⊢ ((
[⊊] Or 𝐴
∧ 𝐴 ⊆ Fin ∧
𝑏 ∈ ω) →
{𝑐 ∈ 𝐴 ∣ 𝑐 ≼ 𝑏} ∈ Fin) |
| 14 | 13 | ad4ant123 1173 |
. . . . . . . . . . 11
⊢ ((((
[⊊] Or 𝐴
∧ 𝐴 ⊆ Fin) ∧
𝑏 ∈ ω) ∧
{𝑐 ∈ 𝐴 ∣ 𝑐 ≼ 𝑏} ≠ ∅) → {𝑐 ∈ 𝐴 ∣ 𝑐 ≼ 𝑏} ∈ Fin) |
| 15 | | simplll 774 |
. . . . . . . . . . . 12
⊢ ((((
[⊊] Or 𝐴
∧ 𝐴 ⊆ Fin) ∧
𝑏 ∈ ω) ∧
{𝑐 ∈ 𝐴 ∣ 𝑐 ≼ 𝑏} ≠ ∅) → [⊊] Or
𝐴) |
| 16 | | soss 5586 |
. . . . . . . . . . . 12
⊢ ({𝑐 ∈ 𝐴 ∣ 𝑐 ≼ 𝑏} ⊆ 𝐴 → ( [⊊] Or 𝐴 → [⊊] Or
{𝑐 ∈ 𝐴 ∣ 𝑐 ≼ 𝑏})) |
| 17 | 11, 15, 16 | mpsyl 68 |
. . . . . . . . . . 11
⊢ ((((
[⊊] Or 𝐴
∧ 𝐴 ⊆ Fin) ∧
𝑏 ∈ ω) ∧
{𝑐 ∈ 𝐴 ∣ 𝑐 ≼ 𝑏} ≠ ∅) → [⊊] Or
{𝑐 ∈ 𝐴 ∣ 𝑐 ≼ 𝑏}) |
| 18 | | fin1a2lem10 10428 |
. . . . . . . . . . 11
⊢ (({𝑐 ∈ 𝐴 ∣ 𝑐 ≼ 𝑏} ≠ ∅ ∧ {𝑐 ∈ 𝐴 ∣ 𝑐 ≼ 𝑏} ∈ Fin ∧ [⊊] Or
{𝑐 ∈ 𝐴 ∣ 𝑐 ≼ 𝑏}) → ∪ {𝑐 ∈ 𝐴 ∣ 𝑐 ≼ 𝑏} ∈ {𝑐 ∈ 𝐴 ∣ 𝑐 ≼ 𝑏}) |
| 19 | 12, 14, 17, 18 | syl3anc 1373 |
. . . . . . . . . 10
⊢ ((((
[⊊] Or 𝐴
∧ 𝐴 ⊆ Fin) ∧
𝑏 ∈ ω) ∧
{𝑐 ∈ 𝐴 ∣ 𝑐 ≼ 𝑏} ≠ ∅) → ∪ {𝑐
∈ 𝐴 ∣ 𝑐 ≼ 𝑏} ∈ {𝑐 ∈ 𝐴 ∣ 𝑐 ≼ 𝑏}) |
| 20 | 11, 19 | sselid 3961 |
. . . . . . . . 9
⊢ ((((
[⊊] Or 𝐴
∧ 𝐴 ⊆ Fin) ∧
𝑏 ∈ ω) ∧
{𝑐 ∈ 𝐴 ∣ 𝑐 ≼ 𝑏} ≠ ∅) → ∪ {𝑐
∈ 𝐴 ∣ 𝑐 ≼ 𝑏} ∈ 𝐴) |
| 21 | 20 | orcd 873 |
. . . . . . . 8
⊢ ((((
[⊊] Or 𝐴
∧ 𝐴 ⊆ Fin) ∧
𝑏 ∈ ω) ∧
{𝑐 ∈ 𝐴 ∣ 𝑐 ≼ 𝑏} ≠ ∅) → (∪ {𝑐
∈ 𝐴 ∣ 𝑐 ≼ 𝑏} ∈ 𝐴 ∨ ∪ {𝑐 ∈ 𝐴 ∣ 𝑐 ≼ 𝑏} ∈ {∅})) |
| 22 | 10, 21 | pm2.61dane 3020 |
. . . . . . 7
⊢ (((
[⊊] Or 𝐴
∧ 𝐴 ⊆ Fin) ∧
𝑏 ∈ ω) →
(∪ {𝑐 ∈ 𝐴 ∣ 𝑐 ≼ 𝑏} ∈ 𝐴 ∨ ∪ {𝑐 ∈ 𝐴 ∣ 𝑐 ≼ 𝑏} ∈ {∅})) |
| 23 | | eleq1 2823 |
. . . . . . . 8
⊢ (𝑑 = ∪
{𝑐 ∈ 𝐴 ∣ 𝑐 ≼ 𝑏} → (𝑑 ∈ 𝐴 ↔ ∪ {𝑐 ∈ 𝐴 ∣ 𝑐 ≼ 𝑏} ∈ 𝐴)) |
| 24 | | eleq1 2823 |
. . . . . . . 8
⊢ (𝑑 = ∪
{𝑐 ∈ 𝐴 ∣ 𝑐 ≼ 𝑏} → (𝑑 ∈ {∅} ↔ ∪ {𝑐
∈ 𝐴 ∣ 𝑐 ≼ 𝑏} ∈ {∅})) |
| 25 | 23, 24 | orbi12d 918 |
. . . . . . 7
⊢ (𝑑 = ∪
{𝑐 ∈ 𝐴 ∣ 𝑐 ≼ 𝑏} → ((𝑑 ∈ 𝐴 ∨ 𝑑 ∈ {∅}) ↔ (∪ {𝑐
∈ 𝐴 ∣ 𝑐 ≼ 𝑏} ∈ 𝐴 ∨ ∪ {𝑐 ∈ 𝐴 ∣ 𝑐 ≼ 𝑏} ∈ {∅}))) |
| 26 | 22, 25 | syl5ibrcom 247 |
. . . . . 6
⊢ (((
[⊊] Or 𝐴
∧ 𝐴 ⊆ Fin) ∧
𝑏 ∈ ω) →
(𝑑 = ∪ {𝑐
∈ 𝐴 ∣ 𝑐 ≼ 𝑏} → (𝑑 ∈ 𝐴 ∨ 𝑑 ∈ {∅}))) |
| 27 | 26 | rexlimdva 3142 |
. . . . 5
⊢ ((
[⊊] Or 𝐴
∧ 𝐴 ⊆ Fin) →
(∃𝑏 ∈ ω
𝑑 = ∪ {𝑐
∈ 𝐴 ∣ 𝑐 ≼ 𝑏} → (𝑑 ∈ 𝐴 ∨ 𝑑 ∈ {∅}))) |
| 28 | | simpr 484 |
. . . . . . . . . 10
⊢ ((
[⊊] Or 𝐴
∧ 𝐴 ⊆ Fin) →
𝐴 ⊆
Fin) |
| 29 | 28 | sselda 3963 |
. . . . . . . . 9
⊢ (((
[⊊] Or 𝐴
∧ 𝐴 ⊆ Fin) ∧
𝑑 ∈ 𝐴) → 𝑑 ∈ Fin) |
| 30 | | ficardom 9980 |
. . . . . . . . 9
⊢ (𝑑 ∈ Fin →
(card‘𝑑) ∈
ω) |
| 31 | 29, 30 | syl 17 |
. . . . . . . 8
⊢ (((
[⊊] Or 𝐴
∧ 𝐴 ⊆ Fin) ∧
𝑑 ∈ 𝐴) → (card‘𝑑) ∈ ω) |
| 32 | | breq1 5127 |
. . . . . . . . . . 11
⊢ (𝑐 = 𝑑 → (𝑐 ≼ (card‘𝑑) ↔ 𝑑 ≼ (card‘𝑑))) |
| 33 | | simpr 484 |
. . . . . . . . . . 11
⊢ (((
[⊊] Or 𝐴
∧ 𝐴 ⊆ Fin) ∧
𝑑 ∈ 𝐴) → 𝑑 ∈ 𝐴) |
| 34 | | ficardid 9981 |
. . . . . . . . . . . . 13
⊢ (𝑑 ∈ Fin →
(card‘𝑑) ≈
𝑑) |
| 35 | 29, 34 | syl 17 |
. . . . . . . . . . . 12
⊢ (((
[⊊] Or 𝐴
∧ 𝐴 ⊆ Fin) ∧
𝑑 ∈ 𝐴) → (card‘𝑑) ≈ 𝑑) |
| 36 | | ensym 9022 |
. . . . . . . . . . . 12
⊢
((card‘𝑑)
≈ 𝑑 → 𝑑 ≈ (card‘𝑑)) |
| 37 | | endom 8998 |
. . . . . . . . . . . 12
⊢ (𝑑 ≈ (card‘𝑑) → 𝑑 ≼ (card‘𝑑)) |
| 38 | 35, 36, 37 | 3syl 18 |
. . . . . . . . . . 11
⊢ (((
[⊊] Or 𝐴
∧ 𝐴 ⊆ Fin) ∧
𝑑 ∈ 𝐴) → 𝑑 ≼ (card‘𝑑)) |
| 39 | 32, 33, 38 | elrabd 3678 |
. . . . . . . . . 10
⊢ (((
[⊊] Or 𝐴
∧ 𝐴 ⊆ Fin) ∧
𝑑 ∈ 𝐴) → 𝑑 ∈ {𝑐 ∈ 𝐴 ∣ 𝑐 ≼ (card‘𝑑)}) |
| 40 | | elssuni 4918 |
. . . . . . . . . 10
⊢ (𝑑 ∈ {𝑐 ∈ 𝐴 ∣ 𝑐 ≼ (card‘𝑑)} → 𝑑 ⊆ ∪ {𝑐 ∈ 𝐴 ∣ 𝑐 ≼ (card‘𝑑)}) |
| 41 | 39, 40 | syl 17 |
. . . . . . . . 9
⊢ (((
[⊊] Or 𝐴
∧ 𝐴 ⊆ Fin) ∧
𝑑 ∈ 𝐴) → 𝑑 ⊆ ∪ {𝑐 ∈ 𝐴 ∣ 𝑐 ≼ (card‘𝑑)}) |
| 42 | | breq1 5127 |
. . . . . . . . . . . . 13
⊢ (𝑐 = 𝑏 → (𝑐 ≼ (card‘𝑑) ↔ 𝑏 ≼ (card‘𝑑))) |
| 43 | 42 | elrab 3676 |
. . . . . . . . . . . 12
⊢ (𝑏 ∈ {𝑐 ∈ 𝐴 ∣ 𝑐 ≼ (card‘𝑑)} ↔ (𝑏 ∈ 𝐴 ∧ 𝑏 ≼ (card‘𝑑))) |
| 44 | | simprr 772 |
. . . . . . . . . . . . . . 15
⊢ ((((
[⊊] Or 𝐴
∧ 𝐴 ⊆ Fin) ∧
𝑑 ∈ 𝐴) ∧ (𝑏 ∈ 𝐴 ∧ 𝑏 ≼ (card‘𝑑))) → 𝑏 ≼ (card‘𝑑)) |
| 45 | 35 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ ((((
[⊊] Or 𝐴
∧ 𝐴 ⊆ Fin) ∧
𝑑 ∈ 𝐴) ∧ (𝑏 ∈ 𝐴 ∧ 𝑏 ≼ (card‘𝑑))) → (card‘𝑑) ≈ 𝑑) |
| 46 | | domentr 9032 |
. . . . . . . . . . . . . . 15
⊢ ((𝑏 ≼ (card‘𝑑) ∧ (card‘𝑑) ≈ 𝑑) → 𝑏 ≼ 𝑑) |
| 47 | 44, 45, 46 | syl2anc 584 |
. . . . . . . . . . . . . 14
⊢ ((((
[⊊] Or 𝐴
∧ 𝐴 ⊆ Fin) ∧
𝑑 ∈ 𝐴) ∧ (𝑏 ∈ 𝐴 ∧ 𝑏 ≼ (card‘𝑑))) → 𝑏 ≼ 𝑑) |
| 48 | | simpllr 775 |
. . . . . . . . . . . . . . . 16
⊢ ((((
[⊊] Or 𝐴
∧ 𝐴 ⊆ Fin) ∧
𝑑 ∈ 𝐴) ∧ (𝑏 ∈ 𝐴 ∧ 𝑏 ≼ (card‘𝑑))) → 𝐴 ⊆ Fin) |
| 49 | | simprl 770 |
. . . . . . . . . . . . . . . 16
⊢ ((((
[⊊] Or 𝐴
∧ 𝐴 ⊆ Fin) ∧
𝑑 ∈ 𝐴) ∧ (𝑏 ∈ 𝐴 ∧ 𝑏 ≼ (card‘𝑑))) → 𝑏 ∈ 𝐴) |
| 50 | 48, 49 | sseldd 3964 |
. . . . . . . . . . . . . . 15
⊢ ((((
[⊊] Or 𝐴
∧ 𝐴 ⊆ Fin) ∧
𝑑 ∈ 𝐴) ∧ (𝑏 ∈ 𝐴 ∧ 𝑏 ≼ (card‘𝑑))) → 𝑏 ∈ Fin) |
| 51 | 29 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ ((((
[⊊] Or 𝐴
∧ 𝐴 ⊆ Fin) ∧
𝑑 ∈ 𝐴) ∧ (𝑏 ∈ 𝐴 ∧ 𝑏 ≼ (card‘𝑑))) → 𝑑 ∈ Fin) |
| 52 | | simplll 774 |
. . . . . . . . . . . . . . . 16
⊢ ((((
[⊊] Or 𝐴
∧ 𝐴 ⊆ Fin) ∧
𝑑 ∈ 𝐴) ∧ (𝑏 ∈ 𝐴 ∧ 𝑏 ≼ (card‘𝑑))) → [⊊] Or 𝐴) |
| 53 | | simplr 768 |
. . . . . . . . . . . . . . . 16
⊢ ((((
[⊊] Or 𝐴
∧ 𝐴 ⊆ Fin) ∧
𝑑 ∈ 𝐴) ∧ (𝑏 ∈ 𝐴 ∧ 𝑏 ≼ (card‘𝑑))) → 𝑑 ∈ 𝐴) |
| 54 | | sorpssi 7728 |
. . . . . . . . . . . . . . . 16
⊢ ((
[⊊] Or 𝐴
∧ (𝑏 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴)) → (𝑏 ⊆ 𝑑 ∨ 𝑑 ⊆ 𝑏)) |
| 55 | 52, 49, 53, 54 | syl12anc 836 |
. . . . . . . . . . . . . . 15
⊢ ((((
[⊊] Or 𝐴
∧ 𝐴 ⊆ Fin) ∧
𝑑 ∈ 𝐴) ∧ (𝑏 ∈ 𝐴 ∧ 𝑏 ≼ (card‘𝑑))) → (𝑏 ⊆ 𝑑 ∨ 𝑑 ⊆ 𝑏)) |
| 56 | | fincssdom 10342 |
. . . . . . . . . . . . . . 15
⊢ ((𝑏 ∈ Fin ∧ 𝑑 ∈ Fin ∧ (𝑏 ⊆ 𝑑 ∨ 𝑑 ⊆ 𝑏)) → (𝑏 ≼ 𝑑 ↔ 𝑏 ⊆ 𝑑)) |
| 57 | 50, 51, 55, 56 | syl3anc 1373 |
. . . . . . . . . . . . . 14
⊢ ((((
[⊊] Or 𝐴
∧ 𝐴 ⊆ Fin) ∧
𝑑 ∈ 𝐴) ∧ (𝑏 ∈ 𝐴 ∧ 𝑏 ≼ (card‘𝑑))) → (𝑏 ≼ 𝑑 ↔ 𝑏 ⊆ 𝑑)) |
| 58 | 47, 57 | mpbid 232 |
. . . . . . . . . . . . 13
⊢ ((((
[⊊] Or 𝐴
∧ 𝐴 ⊆ Fin) ∧
𝑑 ∈ 𝐴) ∧ (𝑏 ∈ 𝐴 ∧ 𝑏 ≼ (card‘𝑑))) → 𝑏 ⊆ 𝑑) |
| 59 | 58 | ex 412 |
. . . . . . . . . . . 12
⊢ (((
[⊊] Or 𝐴
∧ 𝐴 ⊆ Fin) ∧
𝑑 ∈ 𝐴) → ((𝑏 ∈ 𝐴 ∧ 𝑏 ≼ (card‘𝑑)) → 𝑏 ⊆ 𝑑)) |
| 60 | 43, 59 | biimtrid 242 |
. . . . . . . . . . 11
⊢ (((
[⊊] Or 𝐴
∧ 𝐴 ⊆ Fin) ∧
𝑑 ∈ 𝐴) → (𝑏 ∈ {𝑐 ∈ 𝐴 ∣ 𝑐 ≼ (card‘𝑑)} → 𝑏 ⊆ 𝑑)) |
| 61 | 60 | ralrimiv 3132 |
. . . . . . . . . 10
⊢ (((
[⊊] Or 𝐴
∧ 𝐴 ⊆ Fin) ∧
𝑑 ∈ 𝐴) → ∀𝑏 ∈ {𝑐 ∈ 𝐴 ∣ 𝑐 ≼ (card‘𝑑)}𝑏 ⊆ 𝑑) |
| 62 | | unissb 4920 |
. . . . . . . . . 10
⊢ (∪ {𝑐
∈ 𝐴 ∣ 𝑐 ≼ (card‘𝑑)} ⊆ 𝑑 ↔ ∀𝑏 ∈ {𝑐 ∈ 𝐴 ∣ 𝑐 ≼ (card‘𝑑)}𝑏 ⊆ 𝑑) |
| 63 | 61, 62 | sylibr 234 |
. . . . . . . . 9
⊢ (((
[⊊] Or 𝐴
∧ 𝐴 ⊆ Fin) ∧
𝑑 ∈ 𝐴) → ∪ {𝑐 ∈ 𝐴 ∣ 𝑐 ≼ (card‘𝑑)} ⊆ 𝑑) |
| 64 | 41, 63 | eqssd 3981 |
. . . . . . . 8
⊢ (((
[⊊] Or 𝐴
∧ 𝐴 ⊆ Fin) ∧
𝑑 ∈ 𝐴) → 𝑑 = ∪ {𝑐 ∈ 𝐴 ∣ 𝑐 ≼ (card‘𝑑)}) |
| 65 | | breq2 5128 |
. . . . . . . . . . 11
⊢ (𝑏 = (card‘𝑑) → (𝑐 ≼ 𝑏 ↔ 𝑐 ≼ (card‘𝑑))) |
| 66 | 65 | rabbidv 3428 |
. . . . . . . . . 10
⊢ (𝑏 = (card‘𝑑) → {𝑐 ∈ 𝐴 ∣ 𝑐 ≼ 𝑏} = {𝑐 ∈ 𝐴 ∣ 𝑐 ≼ (card‘𝑑)}) |
| 67 | 66 | unieqd 4901 |
. . . . . . . . 9
⊢ (𝑏 = (card‘𝑑) → ∪ {𝑐
∈ 𝐴 ∣ 𝑐 ≼ 𝑏} = ∪ {𝑐 ∈ 𝐴 ∣ 𝑐 ≼ (card‘𝑑)}) |
| 68 | 67 | rspceeqv 3629 |
. . . . . . . 8
⊢
(((card‘𝑑)
∈ ω ∧ 𝑑 =
∪ {𝑐 ∈ 𝐴 ∣ 𝑐 ≼ (card‘𝑑)}) → ∃𝑏 ∈ ω 𝑑 = ∪ {𝑐 ∈ 𝐴 ∣ 𝑐 ≼ 𝑏}) |
| 69 | 31, 64, 68 | syl2anc 584 |
. . . . . . 7
⊢ (((
[⊊] Or 𝐴
∧ 𝐴 ⊆ Fin) ∧
𝑑 ∈ 𝐴) → ∃𝑏 ∈ ω 𝑑 = ∪ {𝑐 ∈ 𝐴 ∣ 𝑐 ≼ 𝑏}) |
| 70 | 69 | ex 412 |
. . . . . 6
⊢ ((
[⊊] Or 𝐴
∧ 𝐴 ⊆ Fin) →
(𝑑 ∈ 𝐴 → ∃𝑏 ∈ ω 𝑑 = ∪ {𝑐 ∈ 𝐴 ∣ 𝑐 ≼ 𝑏})) |
| 71 | | velsn 4622 |
. . . . . . 7
⊢ (𝑑 ∈ {∅} ↔ 𝑑 = ∅) |
| 72 | | peano1 7889 |
. . . . . . . . 9
⊢ ∅
∈ ω |
| 73 | | dom0 9121 |
. . . . . . . . . . . . . . . 16
⊢ (𝑏 ≼ ∅ ↔ 𝑏 = ∅) |
| 74 | 73 | biimpi 216 |
. . . . . . . . . . . . . . 15
⊢ (𝑏 ≼ ∅ → 𝑏 = ∅) |
| 75 | 74 | adantl 481 |
. . . . . . . . . . . . . 14
⊢ ((𝑏 ∈ 𝐴 ∧ 𝑏 ≼ ∅) → 𝑏 = ∅) |
| 76 | 75 | a1i 11 |
. . . . . . . . . . . . 13
⊢ ((
[⊊] Or 𝐴
∧ 𝐴 ⊆ Fin) →
((𝑏 ∈ 𝐴 ∧ 𝑏 ≼ ∅) → 𝑏 = ∅)) |
| 77 | | breq1 5127 |
. . . . . . . . . . . . . 14
⊢ (𝑐 = 𝑏 → (𝑐 ≼ ∅ ↔ 𝑏 ≼ ∅)) |
| 78 | 77 | elrab 3676 |
. . . . . . . . . . . . 13
⊢ (𝑏 ∈ {𝑐 ∈ 𝐴 ∣ 𝑐 ≼ ∅} ↔ (𝑏 ∈ 𝐴 ∧ 𝑏 ≼ ∅)) |
| 79 | | velsn 4622 |
. . . . . . . . . . . . 13
⊢ (𝑏 ∈ {∅} ↔ 𝑏 = ∅) |
| 80 | 76, 78, 79 | 3imtr4g 296 |
. . . . . . . . . . . 12
⊢ ((
[⊊] Or 𝐴
∧ 𝐴 ⊆ Fin) →
(𝑏 ∈ {𝑐 ∈ 𝐴 ∣ 𝑐 ≼ ∅} → 𝑏 ∈ {∅})) |
| 81 | 80 | ssrdv 3969 |
. . . . . . . . . . 11
⊢ ((
[⊊] Or 𝐴
∧ 𝐴 ⊆ Fin) →
{𝑐 ∈ 𝐴 ∣ 𝑐 ≼ ∅} ⊆
{∅}) |
| 82 | | uni0b 4914 |
. . . . . . . . . . 11
⊢ (∪ {𝑐
∈ 𝐴 ∣ 𝑐 ≼ ∅} = ∅
↔ {𝑐 ∈ 𝐴 ∣ 𝑐 ≼ ∅} ⊆
{∅}) |
| 83 | 81, 82 | sylibr 234 |
. . . . . . . . . 10
⊢ ((
[⊊] Or 𝐴
∧ 𝐴 ⊆ Fin) →
∪ {𝑐 ∈ 𝐴 ∣ 𝑐 ≼ ∅} = ∅) |
| 84 | 83 | eqcomd 2742 |
. . . . . . . . 9
⊢ ((
[⊊] Or 𝐴
∧ 𝐴 ⊆ Fin) →
∅ = ∪ {𝑐 ∈ 𝐴 ∣ 𝑐 ≼ ∅}) |
| 85 | | breq2 5128 |
. . . . . . . . . . . 12
⊢ (𝑏 = ∅ → (𝑐 ≼ 𝑏 ↔ 𝑐 ≼ ∅)) |
| 86 | 85 | rabbidv 3428 |
. . . . . . . . . . 11
⊢ (𝑏 = ∅ → {𝑐 ∈ 𝐴 ∣ 𝑐 ≼ 𝑏} = {𝑐 ∈ 𝐴 ∣ 𝑐 ≼ ∅}) |
| 87 | 86 | unieqd 4901 |
. . . . . . . . . 10
⊢ (𝑏 = ∅ → ∪ {𝑐
∈ 𝐴 ∣ 𝑐 ≼ 𝑏} = ∪ {𝑐 ∈ 𝐴 ∣ 𝑐 ≼ ∅}) |
| 88 | 87 | rspceeqv 3629 |
. . . . . . . . 9
⊢ ((∅
∈ ω ∧ ∅ = ∪ {𝑐 ∈ 𝐴 ∣ 𝑐 ≼ ∅}) → ∃𝑏 ∈ ω ∅ = ∪ {𝑐
∈ 𝐴 ∣ 𝑐 ≼ 𝑏}) |
| 89 | 72, 84, 88 | sylancr 587 |
. . . . . . . 8
⊢ ((
[⊊] Or 𝐴
∧ 𝐴 ⊆ Fin) →
∃𝑏 ∈ ω
∅ = ∪ {𝑐 ∈ 𝐴 ∣ 𝑐 ≼ 𝑏}) |
| 90 | | eqeq1 2740 |
. . . . . . . . 9
⊢ (𝑑 = ∅ → (𝑑 = ∪
{𝑐 ∈ 𝐴 ∣ 𝑐 ≼ 𝑏} ↔ ∅ = ∪ {𝑐
∈ 𝐴 ∣ 𝑐 ≼ 𝑏})) |
| 91 | 90 | rexbidv 3165 |
. . . . . . . 8
⊢ (𝑑 = ∅ → (∃𝑏 ∈ ω 𝑑 = ∪
{𝑐 ∈ 𝐴 ∣ 𝑐 ≼ 𝑏} ↔ ∃𝑏 ∈ ω ∅ = ∪ {𝑐
∈ 𝐴 ∣ 𝑐 ≼ 𝑏})) |
| 92 | 89, 91 | syl5ibrcom 247 |
. . . . . . 7
⊢ ((
[⊊] Or 𝐴
∧ 𝐴 ⊆ Fin) →
(𝑑 = ∅ →
∃𝑏 ∈ ω
𝑑 = ∪ {𝑐
∈ 𝐴 ∣ 𝑐 ≼ 𝑏})) |
| 93 | 71, 92 | biimtrid 242 |
. . . . . 6
⊢ ((
[⊊] Or 𝐴
∧ 𝐴 ⊆ Fin) →
(𝑑 ∈ {∅} →
∃𝑏 ∈ ω
𝑑 = ∪ {𝑐
∈ 𝐴 ∣ 𝑐 ≼ 𝑏})) |
| 94 | 70, 93 | jaod 859 |
. . . . 5
⊢ ((
[⊊] Or 𝐴
∧ 𝐴 ⊆ Fin) →
((𝑑 ∈ 𝐴 ∨ 𝑑 ∈ {∅}) → ∃𝑏 ∈ ω 𝑑 = ∪
{𝑐 ∈ 𝐴 ∣ 𝑐 ≼ 𝑏})) |
| 95 | 27, 94 | impbid 212 |
. . . 4
⊢ ((
[⊊] Or 𝐴
∧ 𝐴 ⊆ Fin) →
(∃𝑏 ∈ ω
𝑑 = ∪ {𝑐
∈ 𝐴 ∣ 𝑐 ≼ 𝑏} ↔ (𝑑 ∈ 𝐴 ∨ 𝑑 ∈ {∅}))) |
| 96 | | elun 4133 |
. . . 4
⊢ (𝑑 ∈ (𝐴 ∪ {∅}) ↔ (𝑑 ∈ 𝐴 ∨ 𝑑 ∈ {∅})) |
| 97 | 95, 96 | bitr4di 289 |
. . 3
⊢ ((
[⊊] Or 𝐴
∧ 𝐴 ⊆ Fin) →
(∃𝑏 ∈ ω
𝑑 = ∪ {𝑐
∈ 𝐴 ∣ 𝑐 ≼ 𝑏} ↔ 𝑑 ∈ (𝐴 ∪ {∅}))) |
| 98 | 97 | eqabcdv 2870 |
. 2
⊢ ((
[⊊] Or 𝐴
∧ 𝐴 ⊆ Fin) →
{𝑑 ∣ ∃𝑏 ∈ ω 𝑑 = ∪
{𝑐 ∈ 𝐴 ∣ 𝑐 ≼ 𝑏}} = (𝐴 ∪ {∅})) |
| 99 | 2, 98 | eqtrid 2783 |
1
⊢ ((
[⊊] Or 𝐴
∧ 𝐴 ⊆ Fin) →
ran (𝑏 ∈ ω
↦ ∪ {𝑐 ∈ 𝐴 ∣ 𝑐 ≼ 𝑏}) = (𝐴 ∪ {∅})) |