MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fin1a2lem11 Structured version   Visualization version   GIF version

Theorem fin1a2lem11 9832
Description: Lemma for fin1a2 9837. (Contributed by Stefan O'Rear, 8-Nov-2014.)
Assertion
Ref Expression
fin1a2lem11 (( [] Or 𝐴𝐴 ⊆ Fin) → ran (𝑏 ∈ ω ↦ {𝑐𝐴𝑐𝑏}) = (𝐴 ∪ {∅}))
Distinct variable group:   𝑏,𝑐,𝐴

Proof of Theorem fin1a2lem11
Dummy variable 𝑑 is distinct from all other variables.
StepHypRef Expression
1 eqid 2821 . . 3 (𝑏 ∈ ω ↦ {𝑐𝐴𝑐𝑏}) = (𝑏 ∈ ω ↦ {𝑐𝐴𝑐𝑏})
21rnmpt 5827 . 2 ran (𝑏 ∈ ω ↦ {𝑐𝐴𝑐𝑏}) = {𝑑 ∣ ∃𝑏 ∈ ω 𝑑 = {𝑐𝐴𝑐𝑏}}
3 unieq 4849 . . . . . . . . . . . 12 ({𝑐𝐴𝑐𝑏} = ∅ → {𝑐𝐴𝑐𝑏} = ∅)
4 uni0 4866 . . . . . . . . . . . 12 ∅ = ∅
53, 4syl6eq 2872 . . . . . . . . . . 11 ({𝑐𝐴𝑐𝑏} = ∅ → {𝑐𝐴𝑐𝑏} = ∅)
65adantl 484 . . . . . . . . . 10 (((( [] Or 𝐴𝐴 ⊆ Fin) ∧ 𝑏 ∈ ω) ∧ {𝑐𝐴𝑐𝑏} = ∅) → {𝑐𝐴𝑐𝑏} = ∅)
7 0ex 5211 . . . . . . . . . . 11 ∅ ∈ V
87elsn2 4604 . . . . . . . . . 10 ( {𝑐𝐴𝑐𝑏} ∈ {∅} ↔ {𝑐𝐴𝑐𝑏} = ∅)
96, 8sylibr 236 . . . . . . . . 9 (((( [] Or 𝐴𝐴 ⊆ Fin) ∧ 𝑏 ∈ ω) ∧ {𝑐𝐴𝑐𝑏} = ∅) → {𝑐𝐴𝑐𝑏} ∈ {∅})
109olcd 870 . . . . . . . 8 (((( [] Or 𝐴𝐴 ⊆ Fin) ∧ 𝑏 ∈ ω) ∧ {𝑐𝐴𝑐𝑏} = ∅) → ( {𝑐𝐴𝑐𝑏} ∈ 𝐴 {𝑐𝐴𝑐𝑏} ∈ {∅}))
11 ssrab2 4056 . . . . . . . . . 10 {𝑐𝐴𝑐𝑏} ⊆ 𝐴
12 simpr 487 . . . . . . . . . . 11 (((( [] Or 𝐴𝐴 ⊆ Fin) ∧ 𝑏 ∈ ω) ∧ {𝑐𝐴𝑐𝑏} ≠ ∅) → {𝑐𝐴𝑐𝑏} ≠ ∅)
13 fin1a2lem9 9830 . . . . . . . . . . . 12 (( [] Or 𝐴𝐴 ⊆ Fin ∧ 𝑏 ∈ ω) → {𝑐𝐴𝑐𝑏} ∈ Fin)
1413ad4ant123 1168 . . . . . . . . . . 11 (((( [] Or 𝐴𝐴 ⊆ Fin) ∧ 𝑏 ∈ ω) ∧ {𝑐𝐴𝑐𝑏} ≠ ∅) → {𝑐𝐴𝑐𝑏} ∈ Fin)
15 simplll 773 . . . . . . . . . . . 12 (((( [] Or 𝐴𝐴 ⊆ Fin) ∧ 𝑏 ∈ ω) ∧ {𝑐𝐴𝑐𝑏} ≠ ∅) → [] Or 𝐴)
16 soss 5493 . . . . . . . . . . . 12 ({𝑐𝐴𝑐𝑏} ⊆ 𝐴 → ( [] Or 𝐴 → [] Or {𝑐𝐴𝑐𝑏}))
1711, 15, 16mpsyl 68 . . . . . . . . . . 11 (((( [] Or 𝐴𝐴 ⊆ Fin) ∧ 𝑏 ∈ ω) ∧ {𝑐𝐴𝑐𝑏} ≠ ∅) → [] Or {𝑐𝐴𝑐𝑏})
18 fin1a2lem10 9831 . . . . . . . . . . 11 (({𝑐𝐴𝑐𝑏} ≠ ∅ ∧ {𝑐𝐴𝑐𝑏} ∈ Fin ∧ [] Or {𝑐𝐴𝑐𝑏}) → {𝑐𝐴𝑐𝑏} ∈ {𝑐𝐴𝑐𝑏})
1912, 14, 17, 18syl3anc 1367 . . . . . . . . . 10 (((( [] Or 𝐴𝐴 ⊆ Fin) ∧ 𝑏 ∈ ω) ∧ {𝑐𝐴𝑐𝑏} ≠ ∅) → {𝑐𝐴𝑐𝑏} ∈ {𝑐𝐴𝑐𝑏})
2011, 19sseldi 3965 . . . . . . . . 9 (((( [] Or 𝐴𝐴 ⊆ Fin) ∧ 𝑏 ∈ ω) ∧ {𝑐𝐴𝑐𝑏} ≠ ∅) → {𝑐𝐴𝑐𝑏} ∈ 𝐴)
2120orcd 869 . . . . . . . 8 (((( [] Or 𝐴𝐴 ⊆ Fin) ∧ 𝑏 ∈ ω) ∧ {𝑐𝐴𝑐𝑏} ≠ ∅) → ( {𝑐𝐴𝑐𝑏} ∈ 𝐴 {𝑐𝐴𝑐𝑏} ∈ {∅}))
2210, 21pm2.61dane 3104 . . . . . . 7 ((( [] Or 𝐴𝐴 ⊆ Fin) ∧ 𝑏 ∈ ω) → ( {𝑐𝐴𝑐𝑏} ∈ 𝐴 {𝑐𝐴𝑐𝑏} ∈ {∅}))
23 eleq1 2900 . . . . . . . 8 (𝑑 = {𝑐𝐴𝑐𝑏} → (𝑑𝐴 {𝑐𝐴𝑐𝑏} ∈ 𝐴))
24 eleq1 2900 . . . . . . . 8 (𝑑 = {𝑐𝐴𝑐𝑏} → (𝑑 ∈ {∅} ↔ {𝑐𝐴𝑐𝑏} ∈ {∅}))
2523, 24orbi12d 915 . . . . . . 7 (𝑑 = {𝑐𝐴𝑐𝑏} → ((𝑑𝐴𝑑 ∈ {∅}) ↔ ( {𝑐𝐴𝑐𝑏} ∈ 𝐴 {𝑐𝐴𝑐𝑏} ∈ {∅})))
2622, 25syl5ibrcom 249 . . . . . 6 ((( [] Or 𝐴𝐴 ⊆ Fin) ∧ 𝑏 ∈ ω) → (𝑑 = {𝑐𝐴𝑐𝑏} → (𝑑𝐴𝑑 ∈ {∅})))
2726rexlimdva 3284 . . . . 5 (( [] Or 𝐴𝐴 ⊆ Fin) → (∃𝑏 ∈ ω 𝑑 = {𝑐𝐴𝑐𝑏} → (𝑑𝐴𝑑 ∈ {∅})))
28 simpr 487 . . . . . . . . . 10 (( [] Or 𝐴𝐴 ⊆ Fin) → 𝐴 ⊆ Fin)
2928sselda 3967 . . . . . . . . 9 ((( [] Or 𝐴𝐴 ⊆ Fin) ∧ 𝑑𝐴) → 𝑑 ∈ Fin)
30 ficardom 9390 . . . . . . . . 9 (𝑑 ∈ Fin → (card‘𝑑) ∈ ω)
3129, 30syl 17 . . . . . . . 8 ((( [] Or 𝐴𝐴 ⊆ Fin) ∧ 𝑑𝐴) → (card‘𝑑) ∈ ω)
32 breq1 5069 . . . . . . . . . . 11 (𝑐 = 𝑑 → (𝑐 ≼ (card‘𝑑) ↔ 𝑑 ≼ (card‘𝑑)))
33 simpr 487 . . . . . . . . . . 11 ((( [] Or 𝐴𝐴 ⊆ Fin) ∧ 𝑑𝐴) → 𝑑𝐴)
34 ficardid 9391 . . . . . . . . . . . . 13 (𝑑 ∈ Fin → (card‘𝑑) ≈ 𝑑)
3529, 34syl 17 . . . . . . . . . . . 12 ((( [] Or 𝐴𝐴 ⊆ Fin) ∧ 𝑑𝐴) → (card‘𝑑) ≈ 𝑑)
36 ensym 8558 . . . . . . . . . . . 12 ((card‘𝑑) ≈ 𝑑𝑑 ≈ (card‘𝑑))
37 endom 8536 . . . . . . . . . . . 12 (𝑑 ≈ (card‘𝑑) → 𝑑 ≼ (card‘𝑑))
3835, 36, 373syl 18 . . . . . . . . . . 11 ((( [] Or 𝐴𝐴 ⊆ Fin) ∧ 𝑑𝐴) → 𝑑 ≼ (card‘𝑑))
3932, 33, 38elrabd 3682 . . . . . . . . . 10 ((( [] Or 𝐴𝐴 ⊆ Fin) ∧ 𝑑𝐴) → 𝑑 ∈ {𝑐𝐴𝑐 ≼ (card‘𝑑)})
40 elssuni 4868 . . . . . . . . . 10 (𝑑 ∈ {𝑐𝐴𝑐 ≼ (card‘𝑑)} → 𝑑 {𝑐𝐴𝑐 ≼ (card‘𝑑)})
4139, 40syl 17 . . . . . . . . 9 ((( [] Or 𝐴𝐴 ⊆ Fin) ∧ 𝑑𝐴) → 𝑑 {𝑐𝐴𝑐 ≼ (card‘𝑑)})
42 breq1 5069 . . . . . . . . . . . . 13 (𝑐 = 𝑏 → (𝑐 ≼ (card‘𝑑) ↔ 𝑏 ≼ (card‘𝑑)))
4342elrab 3680 . . . . . . . . . . . 12 (𝑏 ∈ {𝑐𝐴𝑐 ≼ (card‘𝑑)} ↔ (𝑏𝐴𝑏 ≼ (card‘𝑑)))
44 simprr 771 . . . . . . . . . . . . . . 15 (((( [] Or 𝐴𝐴 ⊆ Fin) ∧ 𝑑𝐴) ∧ (𝑏𝐴𝑏 ≼ (card‘𝑑))) → 𝑏 ≼ (card‘𝑑))
4535adantr 483 . . . . . . . . . . . . . . 15 (((( [] Or 𝐴𝐴 ⊆ Fin) ∧ 𝑑𝐴) ∧ (𝑏𝐴𝑏 ≼ (card‘𝑑))) → (card‘𝑑) ≈ 𝑑)
46 domentr 8568 . . . . . . . . . . . . . . 15 ((𝑏 ≼ (card‘𝑑) ∧ (card‘𝑑) ≈ 𝑑) → 𝑏𝑑)
4744, 45, 46syl2anc 586 . . . . . . . . . . . . . 14 (((( [] Or 𝐴𝐴 ⊆ Fin) ∧ 𝑑𝐴) ∧ (𝑏𝐴𝑏 ≼ (card‘𝑑))) → 𝑏𝑑)
48 simpllr 774 . . . . . . . . . . . . . . . 16 (((( [] Or 𝐴𝐴 ⊆ Fin) ∧ 𝑑𝐴) ∧ (𝑏𝐴𝑏 ≼ (card‘𝑑))) → 𝐴 ⊆ Fin)
49 simprl 769 . . . . . . . . . . . . . . . 16 (((( [] Or 𝐴𝐴 ⊆ Fin) ∧ 𝑑𝐴) ∧ (𝑏𝐴𝑏 ≼ (card‘𝑑))) → 𝑏𝐴)
5048, 49sseldd 3968 . . . . . . . . . . . . . . 15 (((( [] Or 𝐴𝐴 ⊆ Fin) ∧ 𝑑𝐴) ∧ (𝑏𝐴𝑏 ≼ (card‘𝑑))) → 𝑏 ∈ Fin)
5129adantr 483 . . . . . . . . . . . . . . 15 (((( [] Or 𝐴𝐴 ⊆ Fin) ∧ 𝑑𝐴) ∧ (𝑏𝐴𝑏 ≼ (card‘𝑑))) → 𝑑 ∈ Fin)
52 simplll 773 . . . . . . . . . . . . . . . 16 (((( [] Or 𝐴𝐴 ⊆ Fin) ∧ 𝑑𝐴) ∧ (𝑏𝐴𝑏 ≼ (card‘𝑑))) → [] Or 𝐴)
53 simplr 767 . . . . . . . . . . . . . . . 16 (((( [] Or 𝐴𝐴 ⊆ Fin) ∧ 𝑑𝐴) ∧ (𝑏𝐴𝑏 ≼ (card‘𝑑))) → 𝑑𝐴)
54 sorpssi 7455 . . . . . . . . . . . . . . . 16 (( [] Or 𝐴 ∧ (𝑏𝐴𝑑𝐴)) → (𝑏𝑑𝑑𝑏))
5552, 49, 53, 54syl12anc 834 . . . . . . . . . . . . . . 15 (((( [] Or 𝐴𝐴 ⊆ Fin) ∧ 𝑑𝐴) ∧ (𝑏𝐴𝑏 ≼ (card‘𝑑))) → (𝑏𝑑𝑑𝑏))
56 fincssdom 9745 . . . . . . . . . . . . . . 15 ((𝑏 ∈ Fin ∧ 𝑑 ∈ Fin ∧ (𝑏𝑑𝑑𝑏)) → (𝑏𝑑𝑏𝑑))
5750, 51, 55, 56syl3anc 1367 . . . . . . . . . . . . . 14 (((( [] Or 𝐴𝐴 ⊆ Fin) ∧ 𝑑𝐴) ∧ (𝑏𝐴𝑏 ≼ (card‘𝑑))) → (𝑏𝑑𝑏𝑑))
5847, 57mpbid 234 . . . . . . . . . . . . 13 (((( [] Or 𝐴𝐴 ⊆ Fin) ∧ 𝑑𝐴) ∧ (𝑏𝐴𝑏 ≼ (card‘𝑑))) → 𝑏𝑑)
5958ex 415 . . . . . . . . . . . 12 ((( [] Or 𝐴𝐴 ⊆ Fin) ∧ 𝑑𝐴) → ((𝑏𝐴𝑏 ≼ (card‘𝑑)) → 𝑏𝑑))
6043, 59syl5bi 244 . . . . . . . . . . 11 ((( [] Or 𝐴𝐴 ⊆ Fin) ∧ 𝑑𝐴) → (𝑏 ∈ {𝑐𝐴𝑐 ≼ (card‘𝑑)} → 𝑏𝑑))
6160ralrimiv 3181 . . . . . . . . . 10 ((( [] Or 𝐴𝐴 ⊆ Fin) ∧ 𝑑𝐴) → ∀𝑏 ∈ {𝑐𝐴𝑐 ≼ (card‘𝑑)}𝑏𝑑)
62 unissb 4870 . . . . . . . . . 10 ( {𝑐𝐴𝑐 ≼ (card‘𝑑)} ⊆ 𝑑 ↔ ∀𝑏 ∈ {𝑐𝐴𝑐 ≼ (card‘𝑑)}𝑏𝑑)
6361, 62sylibr 236 . . . . . . . . 9 ((( [] Or 𝐴𝐴 ⊆ Fin) ∧ 𝑑𝐴) → {𝑐𝐴𝑐 ≼ (card‘𝑑)} ⊆ 𝑑)
6441, 63eqssd 3984 . . . . . . . 8 ((( [] Or 𝐴𝐴 ⊆ Fin) ∧ 𝑑𝐴) → 𝑑 = {𝑐𝐴𝑐 ≼ (card‘𝑑)})
65 breq2 5070 . . . . . . . . . . 11 (𝑏 = (card‘𝑑) → (𝑐𝑏𝑐 ≼ (card‘𝑑)))
6665rabbidv 3480 . . . . . . . . . 10 (𝑏 = (card‘𝑑) → {𝑐𝐴𝑐𝑏} = {𝑐𝐴𝑐 ≼ (card‘𝑑)})
6766unieqd 4852 . . . . . . . . 9 (𝑏 = (card‘𝑑) → {𝑐𝐴𝑐𝑏} = {𝑐𝐴𝑐 ≼ (card‘𝑑)})
6867rspceeqv 3638 . . . . . . . 8 (((card‘𝑑) ∈ ω ∧ 𝑑 = {𝑐𝐴𝑐 ≼ (card‘𝑑)}) → ∃𝑏 ∈ ω 𝑑 = {𝑐𝐴𝑐𝑏})
6931, 64, 68syl2anc 586 . . . . . . 7 ((( [] Or 𝐴𝐴 ⊆ Fin) ∧ 𝑑𝐴) → ∃𝑏 ∈ ω 𝑑 = {𝑐𝐴𝑐𝑏})
7069ex 415 . . . . . 6 (( [] Or 𝐴𝐴 ⊆ Fin) → (𝑑𝐴 → ∃𝑏 ∈ ω 𝑑 = {𝑐𝐴𝑐𝑏}))
71 velsn 4583 . . . . . . 7 (𝑑 ∈ {∅} ↔ 𝑑 = ∅)
72 peano1 7601 . . . . . . . . 9 ∅ ∈ ω
73 dom0 8645 . . . . . . . . . . . . . . . 16 (𝑏 ≼ ∅ ↔ 𝑏 = ∅)
7473biimpi 218 . . . . . . . . . . . . . . 15 (𝑏 ≼ ∅ → 𝑏 = ∅)
7574adantl 484 . . . . . . . . . . . . . 14 ((𝑏𝐴𝑏 ≼ ∅) → 𝑏 = ∅)
7675a1i 11 . . . . . . . . . . . . 13 (( [] Or 𝐴𝐴 ⊆ Fin) → ((𝑏𝐴𝑏 ≼ ∅) → 𝑏 = ∅))
77 breq1 5069 . . . . . . . . . . . . . 14 (𝑐 = 𝑏 → (𝑐 ≼ ∅ ↔ 𝑏 ≼ ∅))
7877elrab 3680 . . . . . . . . . . . . 13 (𝑏 ∈ {𝑐𝐴𝑐 ≼ ∅} ↔ (𝑏𝐴𝑏 ≼ ∅))
79 velsn 4583 . . . . . . . . . . . . 13 (𝑏 ∈ {∅} ↔ 𝑏 = ∅)
8076, 78, 793imtr4g 298 . . . . . . . . . . . 12 (( [] Or 𝐴𝐴 ⊆ Fin) → (𝑏 ∈ {𝑐𝐴𝑐 ≼ ∅} → 𝑏 ∈ {∅}))
8180ssrdv 3973 . . . . . . . . . . 11 (( [] Or 𝐴𝐴 ⊆ Fin) → {𝑐𝐴𝑐 ≼ ∅} ⊆ {∅})
82 uni0b 4864 . . . . . . . . . . 11 ( {𝑐𝐴𝑐 ≼ ∅} = ∅ ↔ {𝑐𝐴𝑐 ≼ ∅} ⊆ {∅})
8381, 82sylibr 236 . . . . . . . . . 10 (( [] Or 𝐴𝐴 ⊆ Fin) → {𝑐𝐴𝑐 ≼ ∅} = ∅)
8483eqcomd 2827 . . . . . . . . 9 (( [] Or 𝐴𝐴 ⊆ Fin) → ∅ = {𝑐𝐴𝑐 ≼ ∅})
85 breq2 5070 . . . . . . . . . . . 12 (𝑏 = ∅ → (𝑐𝑏𝑐 ≼ ∅))
8685rabbidv 3480 . . . . . . . . . . 11 (𝑏 = ∅ → {𝑐𝐴𝑐𝑏} = {𝑐𝐴𝑐 ≼ ∅})
8786unieqd 4852 . . . . . . . . . 10 (𝑏 = ∅ → {𝑐𝐴𝑐𝑏} = {𝑐𝐴𝑐 ≼ ∅})
8887rspceeqv 3638 . . . . . . . . 9 ((∅ ∈ ω ∧ ∅ = {𝑐𝐴𝑐 ≼ ∅}) → ∃𝑏 ∈ ω ∅ = {𝑐𝐴𝑐𝑏})
8972, 84, 88sylancr 589 . . . . . . . 8 (( [] Or 𝐴𝐴 ⊆ Fin) → ∃𝑏 ∈ ω ∅ = {𝑐𝐴𝑐𝑏})
90 eqeq1 2825 . . . . . . . . 9 (𝑑 = ∅ → (𝑑 = {𝑐𝐴𝑐𝑏} ↔ ∅ = {𝑐𝐴𝑐𝑏}))
9190rexbidv 3297 . . . . . . . 8 (𝑑 = ∅ → (∃𝑏 ∈ ω 𝑑 = {𝑐𝐴𝑐𝑏} ↔ ∃𝑏 ∈ ω ∅ = {𝑐𝐴𝑐𝑏}))
9289, 91syl5ibrcom 249 . . . . . . 7 (( [] Or 𝐴𝐴 ⊆ Fin) → (𝑑 = ∅ → ∃𝑏 ∈ ω 𝑑 = {𝑐𝐴𝑐𝑏}))
9371, 92syl5bi 244 . . . . . 6 (( [] Or 𝐴𝐴 ⊆ Fin) → (𝑑 ∈ {∅} → ∃𝑏 ∈ ω 𝑑 = {𝑐𝐴𝑐𝑏}))
9470, 93jaod 855 . . . . 5 (( [] Or 𝐴𝐴 ⊆ Fin) → ((𝑑𝐴𝑑 ∈ {∅}) → ∃𝑏 ∈ ω 𝑑 = {𝑐𝐴𝑐𝑏}))
9527, 94impbid 214 . . . 4 (( [] Or 𝐴𝐴 ⊆ Fin) → (∃𝑏 ∈ ω 𝑑 = {𝑐𝐴𝑐𝑏} ↔ (𝑑𝐴𝑑 ∈ {∅})))
96 elun 4125 . . . 4 (𝑑 ∈ (𝐴 ∪ {∅}) ↔ (𝑑𝐴𝑑 ∈ {∅}))
9795, 96syl6bbr 291 . . 3 (( [] Or 𝐴𝐴 ⊆ Fin) → (∃𝑏 ∈ ω 𝑑 = {𝑐𝐴𝑐𝑏} ↔ 𝑑 ∈ (𝐴 ∪ {∅})))
9897abbi1dv 2952 . 2 (( [] Or 𝐴𝐴 ⊆ Fin) → {𝑑 ∣ ∃𝑏 ∈ ω 𝑑 = {𝑐𝐴𝑐𝑏}} = (𝐴 ∪ {∅}))
992, 98syl5eq 2868 1 (( [] Or 𝐴𝐴 ⊆ Fin) → ran (𝑏 ∈ ω ↦ {𝑐𝐴𝑐𝑏}) = (𝐴 ∪ {∅}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  wo 843   = wceq 1537  wcel 2114  {cab 2799  wne 3016  wral 3138  wrex 3139  {crab 3142  cun 3934  wss 3936  c0 4291  {csn 4567   cuni 4838   class class class wbr 5066  cmpt 5146   Or wor 5473  ran crn 5556  cfv 6355   [] crpss 7448  ωcom 7580  cen 8506  cdom 8507  Fincfn 8509  cardccrd 9364
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-rpss 7449  df-om 7581  df-1o 8102  df-er 8289  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-card 9368
This theorem is referenced by:  fin1a2lem12  9833
  Copyright terms: Public domain W3C validator