MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fin1a2lem11 Structured version   Visualization version   GIF version

Theorem fin1a2lem11 10097
Description: Lemma for fin1a2 10102. (Contributed by Stefan O'Rear, 8-Nov-2014.)
Assertion
Ref Expression
fin1a2lem11 (( [] Or 𝐴𝐴 ⊆ Fin) → ran (𝑏 ∈ ω ↦ {𝑐𝐴𝑐𝑏}) = (𝐴 ∪ {∅}))
Distinct variable group:   𝑏,𝑐,𝐴

Proof of Theorem fin1a2lem11
Dummy variable 𝑑 is distinct from all other variables.
StepHypRef Expression
1 eqid 2738 . . 3 (𝑏 ∈ ω ↦ {𝑐𝐴𝑐𝑏}) = (𝑏 ∈ ω ↦ {𝑐𝐴𝑐𝑏})
21rnmpt 5853 . 2 ran (𝑏 ∈ ω ↦ {𝑐𝐴𝑐𝑏}) = {𝑑 ∣ ∃𝑏 ∈ ω 𝑑 = {𝑐𝐴𝑐𝑏}}
3 unieq 4847 . . . . . . . . . . . 12 ({𝑐𝐴𝑐𝑏} = ∅ → {𝑐𝐴𝑐𝑏} = ∅)
4 uni0 4866 . . . . . . . . . . . 12 ∅ = ∅
53, 4eqtrdi 2795 . . . . . . . . . . 11 ({𝑐𝐴𝑐𝑏} = ∅ → {𝑐𝐴𝑐𝑏} = ∅)
65adantl 481 . . . . . . . . . 10 (((( [] Or 𝐴𝐴 ⊆ Fin) ∧ 𝑏 ∈ ω) ∧ {𝑐𝐴𝑐𝑏} = ∅) → {𝑐𝐴𝑐𝑏} = ∅)
7 0ex 5226 . . . . . . . . . . 11 ∅ ∈ V
87elsn2 4597 . . . . . . . . . 10 ( {𝑐𝐴𝑐𝑏} ∈ {∅} ↔ {𝑐𝐴𝑐𝑏} = ∅)
96, 8sylibr 233 . . . . . . . . 9 (((( [] Or 𝐴𝐴 ⊆ Fin) ∧ 𝑏 ∈ ω) ∧ {𝑐𝐴𝑐𝑏} = ∅) → {𝑐𝐴𝑐𝑏} ∈ {∅})
109olcd 870 . . . . . . . 8 (((( [] Or 𝐴𝐴 ⊆ Fin) ∧ 𝑏 ∈ ω) ∧ {𝑐𝐴𝑐𝑏} = ∅) → ( {𝑐𝐴𝑐𝑏} ∈ 𝐴 {𝑐𝐴𝑐𝑏} ∈ {∅}))
11 ssrab2 4009 . . . . . . . . . 10 {𝑐𝐴𝑐𝑏} ⊆ 𝐴
12 simpr 484 . . . . . . . . . . 11 (((( [] Or 𝐴𝐴 ⊆ Fin) ∧ 𝑏 ∈ ω) ∧ {𝑐𝐴𝑐𝑏} ≠ ∅) → {𝑐𝐴𝑐𝑏} ≠ ∅)
13 fin1a2lem9 10095 . . . . . . . . . . . 12 (( [] Or 𝐴𝐴 ⊆ Fin ∧ 𝑏 ∈ ω) → {𝑐𝐴𝑐𝑏} ∈ Fin)
1413ad4ant123 1170 . . . . . . . . . . 11 (((( [] Or 𝐴𝐴 ⊆ Fin) ∧ 𝑏 ∈ ω) ∧ {𝑐𝐴𝑐𝑏} ≠ ∅) → {𝑐𝐴𝑐𝑏} ∈ Fin)
15 simplll 771 . . . . . . . . . . . 12 (((( [] Or 𝐴𝐴 ⊆ Fin) ∧ 𝑏 ∈ ω) ∧ {𝑐𝐴𝑐𝑏} ≠ ∅) → [] Or 𝐴)
16 soss 5514 . . . . . . . . . . . 12 ({𝑐𝐴𝑐𝑏} ⊆ 𝐴 → ( [] Or 𝐴 → [] Or {𝑐𝐴𝑐𝑏}))
1711, 15, 16mpsyl 68 . . . . . . . . . . 11 (((( [] Or 𝐴𝐴 ⊆ Fin) ∧ 𝑏 ∈ ω) ∧ {𝑐𝐴𝑐𝑏} ≠ ∅) → [] Or {𝑐𝐴𝑐𝑏})
18 fin1a2lem10 10096 . . . . . . . . . . 11 (({𝑐𝐴𝑐𝑏} ≠ ∅ ∧ {𝑐𝐴𝑐𝑏} ∈ Fin ∧ [] Or {𝑐𝐴𝑐𝑏}) → {𝑐𝐴𝑐𝑏} ∈ {𝑐𝐴𝑐𝑏})
1912, 14, 17, 18syl3anc 1369 . . . . . . . . . 10 (((( [] Or 𝐴𝐴 ⊆ Fin) ∧ 𝑏 ∈ ω) ∧ {𝑐𝐴𝑐𝑏} ≠ ∅) → {𝑐𝐴𝑐𝑏} ∈ {𝑐𝐴𝑐𝑏})
2011, 19sselid 3915 . . . . . . . . 9 (((( [] Or 𝐴𝐴 ⊆ Fin) ∧ 𝑏 ∈ ω) ∧ {𝑐𝐴𝑐𝑏} ≠ ∅) → {𝑐𝐴𝑐𝑏} ∈ 𝐴)
2120orcd 869 . . . . . . . 8 (((( [] Or 𝐴𝐴 ⊆ Fin) ∧ 𝑏 ∈ ω) ∧ {𝑐𝐴𝑐𝑏} ≠ ∅) → ( {𝑐𝐴𝑐𝑏} ∈ 𝐴 {𝑐𝐴𝑐𝑏} ∈ {∅}))
2210, 21pm2.61dane 3031 . . . . . . 7 ((( [] Or 𝐴𝐴 ⊆ Fin) ∧ 𝑏 ∈ ω) → ( {𝑐𝐴𝑐𝑏} ∈ 𝐴 {𝑐𝐴𝑐𝑏} ∈ {∅}))
23 eleq1 2826 . . . . . . . 8 (𝑑 = {𝑐𝐴𝑐𝑏} → (𝑑𝐴 {𝑐𝐴𝑐𝑏} ∈ 𝐴))
24 eleq1 2826 . . . . . . . 8 (𝑑 = {𝑐𝐴𝑐𝑏} → (𝑑 ∈ {∅} ↔ {𝑐𝐴𝑐𝑏} ∈ {∅}))
2523, 24orbi12d 915 . . . . . . 7 (𝑑 = {𝑐𝐴𝑐𝑏} → ((𝑑𝐴𝑑 ∈ {∅}) ↔ ( {𝑐𝐴𝑐𝑏} ∈ 𝐴 {𝑐𝐴𝑐𝑏} ∈ {∅})))
2622, 25syl5ibrcom 246 . . . . . 6 ((( [] Or 𝐴𝐴 ⊆ Fin) ∧ 𝑏 ∈ ω) → (𝑑 = {𝑐𝐴𝑐𝑏} → (𝑑𝐴𝑑 ∈ {∅})))
2726rexlimdva 3212 . . . . 5 (( [] Or 𝐴𝐴 ⊆ Fin) → (∃𝑏 ∈ ω 𝑑 = {𝑐𝐴𝑐𝑏} → (𝑑𝐴𝑑 ∈ {∅})))
28 simpr 484 . . . . . . . . . 10 (( [] Or 𝐴𝐴 ⊆ Fin) → 𝐴 ⊆ Fin)
2928sselda 3917 . . . . . . . . 9 ((( [] Or 𝐴𝐴 ⊆ Fin) ∧ 𝑑𝐴) → 𝑑 ∈ Fin)
30 ficardom 9650 . . . . . . . . 9 (𝑑 ∈ Fin → (card‘𝑑) ∈ ω)
3129, 30syl 17 . . . . . . . 8 ((( [] Or 𝐴𝐴 ⊆ Fin) ∧ 𝑑𝐴) → (card‘𝑑) ∈ ω)
32 breq1 5073 . . . . . . . . . . 11 (𝑐 = 𝑑 → (𝑐 ≼ (card‘𝑑) ↔ 𝑑 ≼ (card‘𝑑)))
33 simpr 484 . . . . . . . . . . 11 ((( [] Or 𝐴𝐴 ⊆ Fin) ∧ 𝑑𝐴) → 𝑑𝐴)
34 ficardid 9651 . . . . . . . . . . . . 13 (𝑑 ∈ Fin → (card‘𝑑) ≈ 𝑑)
3529, 34syl 17 . . . . . . . . . . . 12 ((( [] Or 𝐴𝐴 ⊆ Fin) ∧ 𝑑𝐴) → (card‘𝑑) ≈ 𝑑)
36 ensym 8744 . . . . . . . . . . . 12 ((card‘𝑑) ≈ 𝑑𝑑 ≈ (card‘𝑑))
37 endom 8722 . . . . . . . . . . . 12 (𝑑 ≈ (card‘𝑑) → 𝑑 ≼ (card‘𝑑))
3835, 36, 373syl 18 . . . . . . . . . . 11 ((( [] Or 𝐴𝐴 ⊆ Fin) ∧ 𝑑𝐴) → 𝑑 ≼ (card‘𝑑))
3932, 33, 38elrabd 3619 . . . . . . . . . 10 ((( [] Or 𝐴𝐴 ⊆ Fin) ∧ 𝑑𝐴) → 𝑑 ∈ {𝑐𝐴𝑐 ≼ (card‘𝑑)})
40 elssuni 4868 . . . . . . . . . 10 (𝑑 ∈ {𝑐𝐴𝑐 ≼ (card‘𝑑)} → 𝑑 {𝑐𝐴𝑐 ≼ (card‘𝑑)})
4139, 40syl 17 . . . . . . . . 9 ((( [] Or 𝐴𝐴 ⊆ Fin) ∧ 𝑑𝐴) → 𝑑 {𝑐𝐴𝑐 ≼ (card‘𝑑)})
42 breq1 5073 . . . . . . . . . . . . 13 (𝑐 = 𝑏 → (𝑐 ≼ (card‘𝑑) ↔ 𝑏 ≼ (card‘𝑑)))
4342elrab 3617 . . . . . . . . . . . 12 (𝑏 ∈ {𝑐𝐴𝑐 ≼ (card‘𝑑)} ↔ (𝑏𝐴𝑏 ≼ (card‘𝑑)))
44 simprr 769 . . . . . . . . . . . . . . 15 (((( [] Or 𝐴𝐴 ⊆ Fin) ∧ 𝑑𝐴) ∧ (𝑏𝐴𝑏 ≼ (card‘𝑑))) → 𝑏 ≼ (card‘𝑑))
4535adantr 480 . . . . . . . . . . . . . . 15 (((( [] Or 𝐴𝐴 ⊆ Fin) ∧ 𝑑𝐴) ∧ (𝑏𝐴𝑏 ≼ (card‘𝑑))) → (card‘𝑑) ≈ 𝑑)
46 domentr 8754 . . . . . . . . . . . . . . 15 ((𝑏 ≼ (card‘𝑑) ∧ (card‘𝑑) ≈ 𝑑) → 𝑏𝑑)
4744, 45, 46syl2anc 583 . . . . . . . . . . . . . 14 (((( [] Or 𝐴𝐴 ⊆ Fin) ∧ 𝑑𝐴) ∧ (𝑏𝐴𝑏 ≼ (card‘𝑑))) → 𝑏𝑑)
48 simpllr 772 . . . . . . . . . . . . . . . 16 (((( [] Or 𝐴𝐴 ⊆ Fin) ∧ 𝑑𝐴) ∧ (𝑏𝐴𝑏 ≼ (card‘𝑑))) → 𝐴 ⊆ Fin)
49 simprl 767 . . . . . . . . . . . . . . . 16 (((( [] Or 𝐴𝐴 ⊆ Fin) ∧ 𝑑𝐴) ∧ (𝑏𝐴𝑏 ≼ (card‘𝑑))) → 𝑏𝐴)
5048, 49sseldd 3918 . . . . . . . . . . . . . . 15 (((( [] Or 𝐴𝐴 ⊆ Fin) ∧ 𝑑𝐴) ∧ (𝑏𝐴𝑏 ≼ (card‘𝑑))) → 𝑏 ∈ Fin)
5129adantr 480 . . . . . . . . . . . . . . 15 (((( [] Or 𝐴𝐴 ⊆ Fin) ∧ 𝑑𝐴) ∧ (𝑏𝐴𝑏 ≼ (card‘𝑑))) → 𝑑 ∈ Fin)
52 simplll 771 . . . . . . . . . . . . . . . 16 (((( [] Or 𝐴𝐴 ⊆ Fin) ∧ 𝑑𝐴) ∧ (𝑏𝐴𝑏 ≼ (card‘𝑑))) → [] Or 𝐴)
53 simplr 765 . . . . . . . . . . . . . . . 16 (((( [] Or 𝐴𝐴 ⊆ Fin) ∧ 𝑑𝐴) ∧ (𝑏𝐴𝑏 ≼ (card‘𝑑))) → 𝑑𝐴)
54 sorpssi 7560 . . . . . . . . . . . . . . . 16 (( [] Or 𝐴 ∧ (𝑏𝐴𝑑𝐴)) → (𝑏𝑑𝑑𝑏))
5552, 49, 53, 54syl12anc 833 . . . . . . . . . . . . . . 15 (((( [] Or 𝐴𝐴 ⊆ Fin) ∧ 𝑑𝐴) ∧ (𝑏𝐴𝑏 ≼ (card‘𝑑))) → (𝑏𝑑𝑑𝑏))
56 fincssdom 10010 . . . . . . . . . . . . . . 15 ((𝑏 ∈ Fin ∧ 𝑑 ∈ Fin ∧ (𝑏𝑑𝑑𝑏)) → (𝑏𝑑𝑏𝑑))
5750, 51, 55, 56syl3anc 1369 . . . . . . . . . . . . . 14 (((( [] Or 𝐴𝐴 ⊆ Fin) ∧ 𝑑𝐴) ∧ (𝑏𝐴𝑏 ≼ (card‘𝑑))) → (𝑏𝑑𝑏𝑑))
5847, 57mpbid 231 . . . . . . . . . . . . 13 (((( [] Or 𝐴𝐴 ⊆ Fin) ∧ 𝑑𝐴) ∧ (𝑏𝐴𝑏 ≼ (card‘𝑑))) → 𝑏𝑑)
5958ex 412 . . . . . . . . . . . 12 ((( [] Or 𝐴𝐴 ⊆ Fin) ∧ 𝑑𝐴) → ((𝑏𝐴𝑏 ≼ (card‘𝑑)) → 𝑏𝑑))
6043, 59syl5bi 241 . . . . . . . . . . 11 ((( [] Or 𝐴𝐴 ⊆ Fin) ∧ 𝑑𝐴) → (𝑏 ∈ {𝑐𝐴𝑐 ≼ (card‘𝑑)} → 𝑏𝑑))
6160ralrimiv 3106 . . . . . . . . . 10 ((( [] Or 𝐴𝐴 ⊆ Fin) ∧ 𝑑𝐴) → ∀𝑏 ∈ {𝑐𝐴𝑐 ≼ (card‘𝑑)}𝑏𝑑)
62 unissb 4870 . . . . . . . . . 10 ( {𝑐𝐴𝑐 ≼ (card‘𝑑)} ⊆ 𝑑 ↔ ∀𝑏 ∈ {𝑐𝐴𝑐 ≼ (card‘𝑑)}𝑏𝑑)
6361, 62sylibr 233 . . . . . . . . 9 ((( [] Or 𝐴𝐴 ⊆ Fin) ∧ 𝑑𝐴) → {𝑐𝐴𝑐 ≼ (card‘𝑑)} ⊆ 𝑑)
6441, 63eqssd 3934 . . . . . . . 8 ((( [] Or 𝐴𝐴 ⊆ Fin) ∧ 𝑑𝐴) → 𝑑 = {𝑐𝐴𝑐 ≼ (card‘𝑑)})
65 breq2 5074 . . . . . . . . . . 11 (𝑏 = (card‘𝑑) → (𝑐𝑏𝑐 ≼ (card‘𝑑)))
6665rabbidv 3404 . . . . . . . . . 10 (𝑏 = (card‘𝑑) → {𝑐𝐴𝑐𝑏} = {𝑐𝐴𝑐 ≼ (card‘𝑑)})
6766unieqd 4850 . . . . . . . . 9 (𝑏 = (card‘𝑑) → {𝑐𝐴𝑐𝑏} = {𝑐𝐴𝑐 ≼ (card‘𝑑)})
6867rspceeqv 3567 . . . . . . . 8 (((card‘𝑑) ∈ ω ∧ 𝑑 = {𝑐𝐴𝑐 ≼ (card‘𝑑)}) → ∃𝑏 ∈ ω 𝑑 = {𝑐𝐴𝑐𝑏})
6931, 64, 68syl2anc 583 . . . . . . 7 ((( [] Or 𝐴𝐴 ⊆ Fin) ∧ 𝑑𝐴) → ∃𝑏 ∈ ω 𝑑 = {𝑐𝐴𝑐𝑏})
7069ex 412 . . . . . 6 (( [] Or 𝐴𝐴 ⊆ Fin) → (𝑑𝐴 → ∃𝑏 ∈ ω 𝑑 = {𝑐𝐴𝑐𝑏}))
71 velsn 4574 . . . . . . 7 (𝑑 ∈ {∅} ↔ 𝑑 = ∅)
72 peano1 7710 . . . . . . . . 9 ∅ ∈ ω
73 dom0 8841 . . . . . . . . . . . . . . . 16 (𝑏 ≼ ∅ ↔ 𝑏 = ∅)
7473biimpi 215 . . . . . . . . . . . . . . 15 (𝑏 ≼ ∅ → 𝑏 = ∅)
7574adantl 481 . . . . . . . . . . . . . 14 ((𝑏𝐴𝑏 ≼ ∅) → 𝑏 = ∅)
7675a1i 11 . . . . . . . . . . . . 13 (( [] Or 𝐴𝐴 ⊆ Fin) → ((𝑏𝐴𝑏 ≼ ∅) → 𝑏 = ∅))
77 breq1 5073 . . . . . . . . . . . . . 14 (𝑐 = 𝑏 → (𝑐 ≼ ∅ ↔ 𝑏 ≼ ∅))
7877elrab 3617 . . . . . . . . . . . . 13 (𝑏 ∈ {𝑐𝐴𝑐 ≼ ∅} ↔ (𝑏𝐴𝑏 ≼ ∅))
79 velsn 4574 . . . . . . . . . . . . 13 (𝑏 ∈ {∅} ↔ 𝑏 = ∅)
8076, 78, 793imtr4g 295 . . . . . . . . . . . 12 (( [] Or 𝐴𝐴 ⊆ Fin) → (𝑏 ∈ {𝑐𝐴𝑐 ≼ ∅} → 𝑏 ∈ {∅}))
8180ssrdv 3923 . . . . . . . . . . 11 (( [] Or 𝐴𝐴 ⊆ Fin) → {𝑐𝐴𝑐 ≼ ∅} ⊆ {∅})
82 uni0b 4864 . . . . . . . . . . 11 ( {𝑐𝐴𝑐 ≼ ∅} = ∅ ↔ {𝑐𝐴𝑐 ≼ ∅} ⊆ {∅})
8381, 82sylibr 233 . . . . . . . . . 10 (( [] Or 𝐴𝐴 ⊆ Fin) → {𝑐𝐴𝑐 ≼ ∅} = ∅)
8483eqcomd 2744 . . . . . . . . 9 (( [] Or 𝐴𝐴 ⊆ Fin) → ∅ = {𝑐𝐴𝑐 ≼ ∅})
85 breq2 5074 . . . . . . . . . . . 12 (𝑏 = ∅ → (𝑐𝑏𝑐 ≼ ∅))
8685rabbidv 3404 . . . . . . . . . . 11 (𝑏 = ∅ → {𝑐𝐴𝑐𝑏} = {𝑐𝐴𝑐 ≼ ∅})
8786unieqd 4850 . . . . . . . . . 10 (𝑏 = ∅ → {𝑐𝐴𝑐𝑏} = {𝑐𝐴𝑐 ≼ ∅})
8887rspceeqv 3567 . . . . . . . . 9 ((∅ ∈ ω ∧ ∅ = {𝑐𝐴𝑐 ≼ ∅}) → ∃𝑏 ∈ ω ∅ = {𝑐𝐴𝑐𝑏})
8972, 84, 88sylancr 586 . . . . . . . 8 (( [] Or 𝐴𝐴 ⊆ Fin) → ∃𝑏 ∈ ω ∅ = {𝑐𝐴𝑐𝑏})
90 eqeq1 2742 . . . . . . . . 9 (𝑑 = ∅ → (𝑑 = {𝑐𝐴𝑐𝑏} ↔ ∅ = {𝑐𝐴𝑐𝑏}))
9190rexbidv 3225 . . . . . . . 8 (𝑑 = ∅ → (∃𝑏 ∈ ω 𝑑 = {𝑐𝐴𝑐𝑏} ↔ ∃𝑏 ∈ ω ∅ = {𝑐𝐴𝑐𝑏}))
9289, 91syl5ibrcom 246 . . . . . . 7 (( [] Or 𝐴𝐴 ⊆ Fin) → (𝑑 = ∅ → ∃𝑏 ∈ ω 𝑑 = {𝑐𝐴𝑐𝑏}))
9371, 92syl5bi 241 . . . . . 6 (( [] Or 𝐴𝐴 ⊆ Fin) → (𝑑 ∈ {∅} → ∃𝑏 ∈ ω 𝑑 = {𝑐𝐴𝑐𝑏}))
9470, 93jaod 855 . . . . 5 (( [] Or 𝐴𝐴 ⊆ Fin) → ((𝑑𝐴𝑑 ∈ {∅}) → ∃𝑏 ∈ ω 𝑑 = {𝑐𝐴𝑐𝑏}))
9527, 94impbid 211 . . . 4 (( [] Or 𝐴𝐴 ⊆ Fin) → (∃𝑏 ∈ ω 𝑑 = {𝑐𝐴𝑐𝑏} ↔ (𝑑𝐴𝑑 ∈ {∅})))
96 elun 4079 . . . 4 (𝑑 ∈ (𝐴 ∪ {∅}) ↔ (𝑑𝐴𝑑 ∈ {∅}))
9795, 96bitr4di 288 . . 3 (( [] Or 𝐴𝐴 ⊆ Fin) → (∃𝑏 ∈ ω 𝑑 = {𝑐𝐴𝑐𝑏} ↔ 𝑑 ∈ (𝐴 ∪ {∅})))
9897abbi1dv 2877 . 2 (( [] Or 𝐴𝐴 ⊆ Fin) → {𝑑 ∣ ∃𝑏 ∈ ω 𝑑 = {𝑐𝐴𝑐𝑏}} = (𝐴 ∪ {∅}))
992, 98eqtrid 2790 1 (( [] Or 𝐴𝐴 ⊆ Fin) → ran (𝑏 ∈ ω ↦ {𝑐𝐴𝑐𝑏}) = (𝐴 ∪ {∅}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wo 843   = wceq 1539  wcel 2108  {cab 2715  wne 2942  wral 3063  wrex 3064  {crab 3067  cun 3881  wss 3883  c0 4253  {csn 4558   cuni 4836   class class class wbr 5070  cmpt 5153   Or wor 5493  ran crn 5581  cfv 6418   [] crpss 7553  ωcom 7687  cen 8688  cdom 8689  Fincfn 8691  cardccrd 9624
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-rpss 7554  df-om 7688  df-1o 8267  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-card 9628
This theorem is referenced by:  fin1a2lem12  10098
  Copyright terms: Public domain W3C validator