MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  usgr2pthlem Structured version   Visualization version   GIF version

Theorem usgr2pthlem 26950
Description: Lemma for usgr2pth 26951. (Contributed by Alexander van der Vekens, 27-Jan-2018.) (Revised by AV, 5-Jun-2021.)
Hypotheses
Ref Expression
usgr2pthlem.v 𝑉 = (Vtx‘𝐺)
usgr2pthlem.i 𝐼 = (iEdg‘𝐺)
Assertion
Ref Expression
usgr2pthlem ((𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐼𝑃:(0...(♯‘𝐹))⟶𝑉 ∧ ∀𝑖 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}) → ((𝐺 ∈ USGraph ∧ (♯‘𝐹) = 2) → ∃𝑥𝑉𝑦 ∈ (𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧}))))
Distinct variable groups:   𝑖,𝐹   𝑥,𝐹,𝑦,𝑧   𝑥,𝐺,𝑦,𝑧   𝑖,𝐼   𝑥,𝐼,𝑦,𝑧   𝑃,𝑖   𝑥,𝑃,𝑦,𝑧   𝑥,𝑉,𝑦,𝑧
Allowed substitution hints:   𝐺(𝑖)   𝑉(𝑖)

Proof of Theorem usgr2pthlem
StepHypRef Expression
1 0nn0 11555 . . . . . . . . . . . . . 14 0 ∈ ℕ0
2 2nn0 11557 . . . . . . . . . . . . . 14 2 ∈ ℕ0
3 0le2 11381 . . . . . . . . . . . . . 14 0 ≤ 2
4 elfz2nn0 12638 . . . . . . . . . . . . . 14 (0 ∈ (0...2) ↔ (0 ∈ ℕ0 ∧ 2 ∈ ℕ0 ∧ 0 ≤ 2))
51, 2, 3, 4mpbir3an 1441 . . . . . . . . . . . . 13 0 ∈ (0...2)
6 ffvelrn 6547 . . . . . . . . . . . . 13 ((𝑃:(0...2)⟶𝑉 ∧ 0 ∈ (0...2)) → (𝑃‘0) ∈ 𝑉)
75, 6mpan2 682 . . . . . . . . . . . 12 (𝑃:(0...2)⟶𝑉 → (𝑃‘0) ∈ 𝑉)
87adantl 473 . . . . . . . . . . 11 ((((𝐹:(0..^2)–1-1→dom 𝐼 ∧ ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)})) ∧ 𝐺 ∈ USGraph) ∧ 𝑃:(0...2)⟶𝑉) → (𝑃‘0) ∈ 𝑉)
9 1nn0 11556 . . . . . . . . . . . . . . . . . 18 1 ∈ ℕ0
10 1le2 11487 . . . . . . . . . . . . . . . . . 18 1 ≤ 2
11 elfz2nn0 12638 . . . . . . . . . . . . . . . . . 18 (1 ∈ (0...2) ↔ (1 ∈ ℕ0 ∧ 2 ∈ ℕ0 ∧ 1 ≤ 2))
129, 2, 10, 11mpbir3an 1441 . . . . . . . . . . . . . . . . 17 1 ∈ (0...2)
13 ffvelrn 6547 . . . . . . . . . . . . . . . . 17 ((𝑃:(0...2)⟶𝑉 ∧ 1 ∈ (0...2)) → (𝑃‘1) ∈ 𝑉)
1412, 13mpan2 682 . . . . . . . . . . . . . . . 16 (𝑃:(0...2)⟶𝑉 → (𝑃‘1) ∈ 𝑉)
1514adantl 473 . . . . . . . . . . . . . . 15 ((((𝐹:(0..^2)–1-1→dom 𝐼 ∧ ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)})) ∧ 𝐺 ∈ USGraph) ∧ 𝑃:(0...2)⟶𝑉) → (𝑃‘1) ∈ 𝑉)
16 simpr 477 . . . . . . . . . . . . . . . . . . 19 (((𝐹:(0..^2)–1-1→dom 𝐼 ∧ ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)})) ∧ 𝐺 ∈ USGraph) → 𝐺 ∈ USGraph)
17 fvex 6388 . . . . . . . . . . . . . . . . . . 19 (𝑃‘1) ∈ V
1816, 17jctir 516 . . . . . . . . . . . . . . . . . 18 (((𝐹:(0..^2)–1-1→dom 𝐼 ∧ ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)})) ∧ 𝐺 ∈ USGraph) → (𝐺 ∈ USGraph ∧ (𝑃‘1) ∈ V))
19 prcom 4422 . . . . . . . . . . . . . . . . . . . . . 22 {(𝑃‘0), (𝑃‘1)} = {(𝑃‘1), (𝑃‘0)}
2019eqeq2i 2777 . . . . . . . . . . . . . . . . . . . . 21 ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ↔ (𝐼‘(𝐹‘0)) = {(𝑃‘1), (𝑃‘0)})
2120biimpi 207 . . . . . . . . . . . . . . . . . . . 20 ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} → (𝐼‘(𝐹‘0)) = {(𝑃‘1), (𝑃‘0)})
2221adantr 472 . . . . . . . . . . . . . . . . . . 19 (((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}) → (𝐼‘(𝐹‘0)) = {(𝑃‘1), (𝑃‘0)})
2322ad2antlr 718 . . . . . . . . . . . . . . . . . 18 (((𝐹:(0..^2)–1-1→dom 𝐼 ∧ ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)})) ∧ 𝐺 ∈ USGraph) → (𝐼‘(𝐹‘0)) = {(𝑃‘1), (𝑃‘0)})
24 usgr2pthlem.i . . . . . . . . . . . . . . . . . . 19 𝐼 = (iEdg‘𝐺)
2524usgrnloopv 26370 . . . . . . . . . . . . . . . . . 18 ((𝐺 ∈ USGraph ∧ (𝑃‘1) ∈ V) → ((𝐼‘(𝐹‘0)) = {(𝑃‘1), (𝑃‘0)} → (𝑃‘1) ≠ (𝑃‘0)))
2618, 23, 25sylc 65 . . . . . . . . . . . . . . . . 17 (((𝐹:(0..^2)–1-1→dom 𝐼 ∧ ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)})) ∧ 𝐺 ∈ USGraph) → (𝑃‘1) ≠ (𝑃‘0))
2726adantr 472 . . . . . . . . . . . . . . . 16 ((((𝐹:(0..^2)–1-1→dom 𝐼 ∧ ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)})) ∧ 𝐺 ∈ USGraph) ∧ 𝑃:(0...2)⟶𝑉) → (𝑃‘1) ≠ (𝑃‘0))
2817elsn 4349 . . . . . . . . . . . . . . . . 17 ((𝑃‘1) ∈ {(𝑃‘0)} ↔ (𝑃‘1) = (𝑃‘0))
2928necon3bbii 2984 . . . . . . . . . . . . . . . 16 (¬ (𝑃‘1) ∈ {(𝑃‘0)} ↔ (𝑃‘1) ≠ (𝑃‘0))
3027, 29sylibr 225 . . . . . . . . . . . . . . 15 ((((𝐹:(0..^2)–1-1→dom 𝐼 ∧ ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)})) ∧ 𝐺 ∈ USGraph) ∧ 𝑃:(0...2)⟶𝑉) → ¬ (𝑃‘1) ∈ {(𝑃‘0)})
3115, 30eldifd 3743 . . . . . . . . . . . . . 14 ((((𝐹:(0..^2)–1-1→dom 𝐼 ∧ ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)})) ∧ 𝐺 ∈ USGraph) ∧ 𝑃:(0...2)⟶𝑉) → (𝑃‘1) ∈ (𝑉 ∖ {(𝑃‘0)}))
3231adantr 472 . . . . . . . . . . . . 13 (((((𝐹:(0..^2)–1-1→dom 𝐼 ∧ ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)})) ∧ 𝐺 ∈ USGraph) ∧ 𝑃:(0...2)⟶𝑉) ∧ 𝑥 = (𝑃‘0)) → (𝑃‘1) ∈ (𝑉 ∖ {(𝑃‘0)}))
33 sneq 4344 . . . . . . . . . . . . . . . 16 (𝑥 = (𝑃‘0) → {𝑥} = {(𝑃‘0)})
3433difeq2d 3890 . . . . . . . . . . . . . . 15 (𝑥 = (𝑃‘0) → (𝑉 ∖ {𝑥}) = (𝑉 ∖ {(𝑃‘0)}))
3534eleq2d 2830 . . . . . . . . . . . . . 14 (𝑥 = (𝑃‘0) → ((𝑃‘1) ∈ (𝑉 ∖ {𝑥}) ↔ (𝑃‘1) ∈ (𝑉 ∖ {(𝑃‘0)})))
3635adantl 473 . . . . . . . . . . . . 13 (((((𝐹:(0..^2)–1-1→dom 𝐼 ∧ ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)})) ∧ 𝐺 ∈ USGraph) ∧ 𝑃:(0...2)⟶𝑉) ∧ 𝑥 = (𝑃‘0)) → ((𝑃‘1) ∈ (𝑉 ∖ {𝑥}) ↔ (𝑃‘1) ∈ (𝑉 ∖ {(𝑃‘0)})))
3732, 36mpbird 248 . . . . . . . . . . . 12 (((((𝐹:(0..^2)–1-1→dom 𝐼 ∧ ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)})) ∧ 𝐺 ∈ USGraph) ∧ 𝑃:(0...2)⟶𝑉) ∧ 𝑥 = (𝑃‘0)) → (𝑃‘1) ∈ (𝑉 ∖ {𝑥}))
38 2re 11346 . . . . . . . . . . . . . . . . . . . 20 2 ∈ ℝ
3938leidi 10816 . . . . . . . . . . . . . . . . . . 19 2 ≤ 2
40 elfz2nn0 12638 . . . . . . . . . . . . . . . . . . 19 (2 ∈ (0...2) ↔ (2 ∈ ℕ0 ∧ 2 ∈ ℕ0 ∧ 2 ≤ 2))
412, 2, 39, 40mpbir3an 1441 . . . . . . . . . . . . . . . . . 18 2 ∈ (0...2)
42 ffvelrn 6547 . . . . . . . . . . . . . . . . . 18 ((𝑃:(0...2)⟶𝑉 ∧ 2 ∈ (0...2)) → (𝑃‘2) ∈ 𝑉)
4341, 42mpan2 682 . . . . . . . . . . . . . . . . 17 (𝑃:(0...2)⟶𝑉 → (𝑃‘2) ∈ 𝑉)
4443adantl 473 . . . . . . . . . . . . . . . 16 ((((𝐹:(0..^2)–1-1→dom 𝐼 ∧ ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)})) ∧ 𝐺 ∈ USGraph) ∧ 𝑃:(0...2)⟶𝑉) → (𝑃‘2) ∈ 𝑉)
4524usgrf1 26345 . . . . . . . . . . . . . . . . . . . . . 22 (𝐺 ∈ USGraph → 𝐼:dom 𝐼1-1→ran 𝐼)
4645ad2antlr 718 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐹:(0..^2)–1-1→dom 𝐼 ∧ ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)})) ∧ 𝐺 ∈ USGraph) ∧ 𝑃:(0...2)⟶𝑉) → 𝐼:dom 𝐼1-1→ran 𝐼)
47 simpl 474 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐹:(0..^2)–1-1→dom 𝐼 ∧ ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)})) → 𝐹:(0..^2)–1-1→dom 𝐼)
4847ad2antrr 717 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐹:(0..^2)–1-1→dom 𝐼 ∧ ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)})) ∧ 𝐺 ∈ USGraph) ∧ 𝑃:(0...2)⟶𝑉) → 𝐹:(0..^2)–1-1→dom 𝐼)
4946, 48jca 507 . . . . . . . . . . . . . . . . . . . 20 ((((𝐹:(0..^2)–1-1→dom 𝐼 ∧ ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)})) ∧ 𝐺 ∈ USGraph) ∧ 𝑃:(0...2)⟶𝑉) → (𝐼:dom 𝐼1-1→ran 𝐼𝐹:(0..^2)–1-1→dom 𝐼))
50 2nn 11345 . . . . . . . . . . . . . . . . . . . . . . 23 2 ∈ ℕ
51 lbfzo0 12716 . . . . . . . . . . . . . . . . . . . . . . 23 (0 ∈ (0..^2) ↔ 2 ∈ ℕ)
5250, 51mpbir 222 . . . . . . . . . . . . . . . . . . . . . 22 0 ∈ (0..^2)
53 1lt2 11449 . . . . . . . . . . . . . . . . . . . . . . 23 1 < 2
54 elfzo0 12717 . . . . . . . . . . . . . . . . . . . . . . 23 (1 ∈ (0..^2) ↔ (1 ∈ ℕ0 ∧ 2 ∈ ℕ ∧ 1 < 2))
559, 50, 53, 54mpbir3an 1441 . . . . . . . . . . . . . . . . . . . . . 22 1 ∈ (0..^2)
5652, 55pm3.2i 462 . . . . . . . . . . . . . . . . . . . . 21 (0 ∈ (0..^2) ∧ 1 ∈ (0..^2))
5756a1i 11 . . . . . . . . . . . . . . . . . . . 20 ((((𝐹:(0..^2)–1-1→dom 𝐼 ∧ ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)})) ∧ 𝐺 ∈ USGraph) ∧ 𝑃:(0...2)⟶𝑉) → (0 ∈ (0..^2) ∧ 1 ∈ (0..^2)))
58 0ne1 11343 . . . . . . . . . . . . . . . . . . . . 21 0 ≠ 1
5958a1i 11 . . . . . . . . . . . . . . . . . . . 20 ((((𝐹:(0..^2)–1-1→dom 𝐼 ∧ ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)})) ∧ 𝐺 ∈ USGraph) ∧ 𝑃:(0...2)⟶𝑉) → 0 ≠ 1)
6049, 57, 593jca 1158 . . . . . . . . . . . . . . . . . . 19 ((((𝐹:(0..^2)–1-1→dom 𝐼 ∧ ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)})) ∧ 𝐺 ∈ USGraph) ∧ 𝑃:(0...2)⟶𝑉) → ((𝐼:dom 𝐼1-1→ran 𝐼𝐹:(0..^2)–1-1→dom 𝐼) ∧ (0 ∈ (0..^2) ∧ 1 ∈ (0..^2)) ∧ 0 ≠ 1))
61 simpr 477 . . . . . . . . . . . . . . . . . . . 20 ((𝐹:(0..^2)–1-1→dom 𝐼 ∧ ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)})) → ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}))
6261ad2antrr 717 . . . . . . . . . . . . . . . . . . 19 ((((𝐹:(0..^2)–1-1→dom 𝐼 ∧ ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)})) ∧ 𝐺 ∈ USGraph) ∧ 𝑃:(0...2)⟶𝑉) → ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}))
63 2f1fvneq 6709 . . . . . . . . . . . . . . . . . . 19 (((𝐼:dom 𝐼1-1→ran 𝐼𝐹:(0..^2)–1-1→dom 𝐼) ∧ (0 ∈ (0..^2) ∧ 1 ∈ (0..^2)) ∧ 0 ≠ 1) → (((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}) → {(𝑃‘0), (𝑃‘1)} ≠ {(𝑃‘1), (𝑃‘2)}))
6460, 62, 63sylc 65 . . . . . . . . . . . . . . . . . 18 ((((𝐹:(0..^2)–1-1→dom 𝐼 ∧ ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)})) ∧ 𝐺 ∈ USGraph) ∧ 𝑃:(0...2)⟶𝑉) → {(𝑃‘0), (𝑃‘1)} ≠ {(𝑃‘1), (𝑃‘2)})
65 necom 2990 . . . . . . . . . . . . . . . . . . 19 ((𝑃‘2) ≠ (𝑃‘0) ↔ (𝑃‘0) ≠ (𝑃‘2))
66 fvex 6388 . . . . . . . . . . . . . . . . . . . . 21 (𝑃‘0) ∈ V
67 fvex 6388 . . . . . . . . . . . . . . . . . . . . 21 (𝑃‘2) ∈ V
6866, 17, 673pm3.2i 1438 . . . . . . . . . . . . . . . . . . . 20 ((𝑃‘0) ∈ V ∧ (𝑃‘1) ∈ V ∧ (𝑃‘2) ∈ V)
69 fvexd 6390 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝐹:(0..^2)–1-1→dom 𝐼 ∧ ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)})) ∧ 𝐺 ∈ USGraph) → (𝑃‘0) ∈ V)
70 simpl 474 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}) → (𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)})
7170ad2antlr 718 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝐹:(0..^2)–1-1→dom 𝐼 ∧ ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)})) ∧ 𝐺 ∈ USGraph) → (𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)})
7216, 69, 71jca31 510 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐹:(0..^2)–1-1→dom 𝐼 ∧ ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)})) ∧ 𝐺 ∈ USGraph) → ((𝐺 ∈ USGraph ∧ (𝑃‘0) ∈ V) ∧ (𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)}))
7372adantr 472 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐹:(0..^2)–1-1→dom 𝐼 ∧ ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)})) ∧ 𝐺 ∈ USGraph) ∧ 𝑃:(0...2)⟶𝑉) → ((𝐺 ∈ USGraph ∧ (𝑃‘0) ∈ V) ∧ (𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)}))
7424usgrnloopv 26370 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐺 ∈ USGraph ∧ (𝑃‘0) ∈ V) → ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} → (𝑃‘0) ≠ (𝑃‘1)))
7574imp 395 . . . . . . . . . . . . . . . . . . . . 21 (((𝐺 ∈ USGraph ∧ (𝑃‘0) ∈ V) ∧ (𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)}) → (𝑃‘0) ≠ (𝑃‘1))
7673, 75syl 17 . . . . . . . . . . . . . . . . . . . 20 ((((𝐹:(0..^2)–1-1→dom 𝐼 ∧ ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)})) ∧ 𝐺 ∈ USGraph) ∧ 𝑃:(0...2)⟶𝑉) → (𝑃‘0) ≠ (𝑃‘1))
77 pr1nebg 4542 . . . . . . . . . . . . . . . . . . . 20 ((((𝑃‘0) ∈ V ∧ (𝑃‘1) ∈ V ∧ (𝑃‘2) ∈ V) ∧ (𝑃‘0) ≠ (𝑃‘1)) → ((𝑃‘0) ≠ (𝑃‘2) ↔ {(𝑃‘0), (𝑃‘1)} ≠ {(𝑃‘1), (𝑃‘2)}))
7868, 76, 77sylancr 581 . . . . . . . . . . . . . . . . . . 19 ((((𝐹:(0..^2)–1-1→dom 𝐼 ∧ ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)})) ∧ 𝐺 ∈ USGraph) ∧ 𝑃:(0...2)⟶𝑉) → ((𝑃‘0) ≠ (𝑃‘2) ↔ {(𝑃‘0), (𝑃‘1)} ≠ {(𝑃‘1), (𝑃‘2)}))
7965, 78syl5bb 274 . . . . . . . . . . . . . . . . . 18 ((((𝐹:(0..^2)–1-1→dom 𝐼 ∧ ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)})) ∧ 𝐺 ∈ USGraph) ∧ 𝑃:(0...2)⟶𝑉) → ((𝑃‘2) ≠ (𝑃‘0) ↔ {(𝑃‘0), (𝑃‘1)} ≠ {(𝑃‘1), (𝑃‘2)}))
8064, 79mpbird 248 . . . . . . . . . . . . . . . . 17 ((((𝐹:(0..^2)–1-1→dom 𝐼 ∧ ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)})) ∧ 𝐺 ∈ USGraph) ∧ 𝑃:(0...2)⟶𝑉) → (𝑃‘2) ≠ (𝑃‘0))
81 fvexd 6390 . . . . . . . . . . . . . . . . . . . 20 (((𝐹:(0..^2)–1-1→dom 𝐼 ∧ ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)})) ∧ 𝐺 ∈ USGraph) → (𝑃‘2) ∈ V)
82 prcom 4422 . . . . . . . . . . . . . . . . . . . . . . . 24 {(𝑃‘1), (𝑃‘2)} = {(𝑃‘2), (𝑃‘1)}
8382eqeq2i 2777 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)} ↔ (𝐼‘(𝐹‘1)) = {(𝑃‘2), (𝑃‘1)})
8483biimpi 207 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)} → (𝐼‘(𝐹‘1)) = {(𝑃‘2), (𝑃‘1)})
8584adantl 473 . . . . . . . . . . . . . . . . . . . . 21 (((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}) → (𝐼‘(𝐹‘1)) = {(𝑃‘2), (𝑃‘1)})
8685ad2antlr 718 . . . . . . . . . . . . . . . . . . . 20 (((𝐹:(0..^2)–1-1→dom 𝐼 ∧ ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)})) ∧ 𝐺 ∈ USGraph) → (𝐼‘(𝐹‘1)) = {(𝑃‘2), (𝑃‘1)})
8716, 81, 86jca31 510 . . . . . . . . . . . . . . . . . . 19 (((𝐹:(0..^2)–1-1→dom 𝐼 ∧ ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)})) ∧ 𝐺 ∈ USGraph) → ((𝐺 ∈ USGraph ∧ (𝑃‘2) ∈ V) ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘2), (𝑃‘1)}))
8887adantr 472 . . . . . . . . . . . . . . . . . 18 ((((𝐹:(0..^2)–1-1→dom 𝐼 ∧ ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)})) ∧ 𝐺 ∈ USGraph) ∧ 𝑃:(0...2)⟶𝑉) → ((𝐺 ∈ USGraph ∧ (𝑃‘2) ∈ V) ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘2), (𝑃‘1)}))
8924usgrnloopv 26370 . . . . . . . . . . . . . . . . . . 19 ((𝐺 ∈ USGraph ∧ (𝑃‘2) ∈ V) → ((𝐼‘(𝐹‘1)) = {(𝑃‘2), (𝑃‘1)} → (𝑃‘2) ≠ (𝑃‘1)))
9089imp 395 . . . . . . . . . . . . . . . . . 18 (((𝐺 ∈ USGraph ∧ (𝑃‘2) ∈ V) ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘2), (𝑃‘1)}) → (𝑃‘2) ≠ (𝑃‘1))
9188, 90syl 17 . . . . . . . . . . . . . . . . 17 ((((𝐹:(0..^2)–1-1→dom 𝐼 ∧ ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)})) ∧ 𝐺 ∈ USGraph) ∧ 𝑃:(0...2)⟶𝑉) → (𝑃‘2) ≠ (𝑃‘1))
9280, 91nelprd 4361 . . . . . . . . . . . . . . . 16 ((((𝐹:(0..^2)–1-1→dom 𝐼 ∧ ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)})) ∧ 𝐺 ∈ USGraph) ∧ 𝑃:(0...2)⟶𝑉) → ¬ (𝑃‘2) ∈ {(𝑃‘0), (𝑃‘1)})
9344, 92eldifd 3743 . . . . . . . . . . . . . . 15 ((((𝐹:(0..^2)–1-1→dom 𝐼 ∧ ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)})) ∧ 𝐺 ∈ USGraph) ∧ 𝑃:(0...2)⟶𝑉) → (𝑃‘2) ∈ (𝑉 ∖ {(𝑃‘0), (𝑃‘1)}))
9493ad2antrr 717 . . . . . . . . . . . . . 14 ((((((𝐹:(0..^2)–1-1→dom 𝐼 ∧ ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)})) ∧ 𝐺 ∈ USGraph) ∧ 𝑃:(0...2)⟶𝑉) ∧ 𝑥 = (𝑃‘0)) ∧ 𝑦 = (𝑃‘1)) → (𝑃‘2) ∈ (𝑉 ∖ {(𝑃‘0), (𝑃‘1)}))
95 preq12 4425 . . . . . . . . . . . . . . . . 17 ((𝑥 = (𝑃‘0) ∧ 𝑦 = (𝑃‘1)) → {𝑥, 𝑦} = {(𝑃‘0), (𝑃‘1)})
9695difeq2d 3890 . . . . . . . . . . . . . . . 16 ((𝑥 = (𝑃‘0) ∧ 𝑦 = (𝑃‘1)) → (𝑉 ∖ {𝑥, 𝑦}) = (𝑉 ∖ {(𝑃‘0), (𝑃‘1)}))
9796eleq2d 2830 . . . . . . . . . . . . . . 15 ((𝑥 = (𝑃‘0) ∧ 𝑦 = (𝑃‘1)) → ((𝑃‘2) ∈ (𝑉 ∖ {𝑥, 𝑦}) ↔ (𝑃‘2) ∈ (𝑉 ∖ {(𝑃‘0), (𝑃‘1)})))
9897adantll 705 . . . . . . . . . . . . . 14 ((((((𝐹:(0..^2)–1-1→dom 𝐼 ∧ ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)})) ∧ 𝐺 ∈ USGraph) ∧ 𝑃:(0...2)⟶𝑉) ∧ 𝑥 = (𝑃‘0)) ∧ 𝑦 = (𝑃‘1)) → ((𝑃‘2) ∈ (𝑉 ∖ {𝑥, 𝑦}) ↔ (𝑃‘2) ∈ (𝑉 ∖ {(𝑃‘0), (𝑃‘1)})))
9994, 98mpbird 248 . . . . . . . . . . . . 13 ((((((𝐹:(0..^2)–1-1→dom 𝐼 ∧ ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)})) ∧ 𝐺 ∈ USGraph) ∧ 𝑃:(0...2)⟶𝑉) ∧ 𝑥 = (𝑃‘0)) ∧ 𝑦 = (𝑃‘1)) → (𝑃‘2) ∈ (𝑉 ∖ {𝑥, 𝑦}))
100 eqcom 2772 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = (𝑃‘0) ↔ (𝑃‘0) = 𝑥)
101 eqcom 2772 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = (𝑃‘1) ↔ (𝑃‘1) = 𝑦)
102 eqcom 2772 . . . . . . . . . . . . . . . . . . . 20 (𝑧 = (𝑃‘2) ↔ (𝑃‘2) = 𝑧)
103100, 101, 1023anbi123i 1194 . . . . . . . . . . . . . . . . . . 19 ((𝑥 = (𝑃‘0) ∧ 𝑦 = (𝑃‘1) ∧ 𝑧 = (𝑃‘2)) ↔ ((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧))
104103biimpi 207 . . . . . . . . . . . . . . . . . 18 ((𝑥 = (𝑃‘0) ∧ 𝑦 = (𝑃‘1) ∧ 𝑧 = (𝑃‘2)) → ((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧))
105104ad4ant123 1213 . . . . . . . . . . . . . . . . 17 ((((𝑥 = (𝑃‘0) ∧ 𝑦 = (𝑃‘1)) ∧ 𝑧 = (𝑃‘2)) ∧ ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)})) → ((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧))
106100biimpi 207 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 = (𝑃‘0) → (𝑃‘0) = 𝑥)
107106ad2antrr 717 . . . . . . . . . . . . . . . . . . . . 21 (((𝑥 = (𝑃‘0) ∧ 𝑦 = (𝑃‘1)) ∧ 𝑧 = (𝑃‘2)) → (𝑃‘0) = 𝑥)
108101biimpi 207 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦 = (𝑃‘1) → (𝑃‘1) = 𝑦)
109108ad2antlr 718 . . . . . . . . . . . . . . . . . . . . 21 (((𝑥 = (𝑃‘0) ∧ 𝑦 = (𝑃‘1)) ∧ 𝑧 = (𝑃‘2)) → (𝑃‘1) = 𝑦)
110107, 109preq12d 4431 . . . . . . . . . . . . . . . . . . . 20 (((𝑥 = (𝑃‘0) ∧ 𝑦 = (𝑃‘1)) ∧ 𝑧 = (𝑃‘2)) → {(𝑃‘0), (𝑃‘1)} = {𝑥, 𝑦})
111110eqeq2d 2775 . . . . . . . . . . . . . . . . . . 19 (((𝑥 = (𝑃‘0) ∧ 𝑦 = (𝑃‘1)) ∧ 𝑧 = (𝑃‘2)) → ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ↔ (𝐼‘(𝐹‘0)) = {𝑥, 𝑦}))
112102biimpi 207 . . . . . . . . . . . . . . . . . . . . . 22 (𝑧 = (𝑃‘2) → (𝑃‘2) = 𝑧)
113112adantl 473 . . . . . . . . . . . . . . . . . . . . 21 (((𝑥 = (𝑃‘0) ∧ 𝑦 = (𝑃‘1)) ∧ 𝑧 = (𝑃‘2)) → (𝑃‘2) = 𝑧)
114109, 113preq12d 4431 . . . . . . . . . . . . . . . . . . . 20 (((𝑥 = (𝑃‘0) ∧ 𝑦 = (𝑃‘1)) ∧ 𝑧 = (𝑃‘2)) → {(𝑃‘1), (𝑃‘2)} = {𝑦, 𝑧})
115114eqeq2d 2775 . . . . . . . . . . . . . . . . . . 19 (((𝑥 = (𝑃‘0) ∧ 𝑦 = (𝑃‘1)) ∧ 𝑧 = (𝑃‘2)) → ((𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)} ↔ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧}))
116111, 115anbi12d 624 . . . . . . . . . . . . . . . . . 18 (((𝑥 = (𝑃‘0) ∧ 𝑦 = (𝑃‘1)) ∧ 𝑧 = (𝑃‘2)) → (((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}) ↔ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧})))
117116biimpa 468 . . . . . . . . . . . . . . . . 17 ((((𝑥 = (𝑃‘0) ∧ 𝑦 = (𝑃‘1)) ∧ 𝑧 = (𝑃‘2)) ∧ ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)})) → ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧}))
118105, 117jca 507 . . . . . . . . . . . . . . . 16 ((((𝑥 = (𝑃‘0) ∧ 𝑦 = (𝑃‘1)) ∧ 𝑧 = (𝑃‘2)) ∧ ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)})) → (((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧})))
119118exp41 425 . . . . . . . . . . . . . . 15 (𝑥 = (𝑃‘0) → (𝑦 = (𝑃‘1) → (𝑧 = (𝑃‘2) → (((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}) → (((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧}))))))
120119adantl 473 . . . . . . . . . . . . . 14 (((((𝐹:(0..^2)–1-1→dom 𝐼 ∧ ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)})) ∧ 𝐺 ∈ USGraph) ∧ 𝑃:(0...2)⟶𝑉) ∧ 𝑥 = (𝑃‘0)) → (𝑦 = (𝑃‘1) → (𝑧 = (𝑃‘2) → (((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}) → (((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧}))))))
121120imp31 408 . . . . . . . . . . . . 13 (((((((𝐹:(0..^2)–1-1→dom 𝐼 ∧ ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)})) ∧ 𝐺 ∈ USGraph) ∧ 𝑃:(0...2)⟶𝑉) ∧ 𝑥 = (𝑃‘0)) ∧ 𝑦 = (𝑃‘1)) ∧ 𝑧 = (𝑃‘2)) → (((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}) → (((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧}))))
12299, 121rspcimedv 3463 . . . . . . . . . . . 12 ((((((𝐹:(0..^2)–1-1→dom 𝐼 ∧ ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)})) ∧ 𝐺 ∈ USGraph) ∧ 𝑃:(0...2)⟶𝑉) ∧ 𝑥 = (𝑃‘0)) ∧ 𝑦 = (𝑃‘1)) → (((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}) → ∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧}))))
12337, 122rspcimedv 3463 . . . . . . . . . . 11 (((((𝐹:(0..^2)–1-1→dom 𝐼 ∧ ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)})) ∧ 𝐺 ∈ USGraph) ∧ 𝑃:(0...2)⟶𝑉) ∧ 𝑥 = (𝑃‘0)) → (((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}) → ∃𝑦 ∈ (𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧}))))
1248, 123rspcimedv 3463 . . . . . . . . . 10 ((((𝐹:(0..^2)–1-1→dom 𝐼 ∧ ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)})) ∧ 𝐺 ∈ USGraph) ∧ 𝑃:(0...2)⟶𝑉) → (((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}) → ∃𝑥𝑉𝑦 ∈ (𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧}))))
125124exp41 425 . . . . . . . . 9 (𝐹:(0..^2)–1-1→dom 𝐼 → (((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}) → (𝐺 ∈ USGraph → (𝑃:(0...2)⟶𝑉 → (((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}) → ∃𝑥𝑉𝑦 ∈ (𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧})))))))
126125com15 101 . . . . . . . 8 (((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}) → (((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}) → (𝐺 ∈ USGraph → (𝑃:(0...2)⟶𝑉 → (𝐹:(0..^2)–1-1→dom 𝐼 → ∃𝑥𝑉𝑦 ∈ (𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧})))))))
127126pm2.43i 52 . . . . . . 7 (((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}) → (𝐺 ∈ USGraph → (𝑃:(0...2)⟶𝑉 → (𝐹:(0..^2)–1-1→dom 𝐼 → ∃𝑥𝑉𝑦 ∈ (𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧}))))))
128127com12 32 . . . . . 6 (𝐺 ∈ USGraph → (((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}) → (𝑃:(0...2)⟶𝑉 → (𝐹:(0..^2)–1-1→dom 𝐼 → ∃𝑥𝑉𝑦 ∈ (𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧}))))))
129128adantr 472 . . . . 5 ((𝐺 ∈ USGraph ∧ (♯‘𝐹) = 2) → (((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}) → (𝑃:(0...2)⟶𝑉 → (𝐹:(0..^2)–1-1→dom 𝐼 → ∃𝑥𝑉𝑦 ∈ (𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧}))))))
130 oveq2 6850 . . . . . . . 8 ((♯‘𝐹) = 2 → (0..^(♯‘𝐹)) = (0..^2))
131130raleqdv 3292 . . . . . . 7 ((♯‘𝐹) = 2 → (∀𝑖 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ↔ ∀𝑖 ∈ (0..^2)(𝐼‘(𝐹𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}))
132 fzo0to2pr 12761 . . . . . . . . 9 (0..^2) = {0, 1}
133132raleqi 3290 . . . . . . . 8 (∀𝑖 ∈ (0..^2)(𝐼‘(𝐹𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ↔ ∀𝑖 ∈ {0, 1} (𝐼‘(𝐹𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))})
134 2wlklem 26854 . . . . . . . 8 (∀𝑖 ∈ {0, 1} (𝐼‘(𝐹𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ↔ ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}))
135133, 134bitri 266 . . . . . . 7 (∀𝑖 ∈ (0..^2)(𝐼‘(𝐹𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ↔ ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}))
136131, 135syl6bb 278 . . . . . 6 ((♯‘𝐹) = 2 → (∀𝑖 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ↔ ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)})))
137136adantl 473 . . . . 5 ((𝐺 ∈ USGraph ∧ (♯‘𝐹) = 2) → (∀𝑖 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ↔ ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)})))
138 oveq2 6850 . . . . . . . 8 ((♯‘𝐹) = 2 → (0...(♯‘𝐹)) = (0...2))
139138feq2d 6209 . . . . . . 7 ((♯‘𝐹) = 2 → (𝑃:(0...(♯‘𝐹))⟶𝑉𝑃:(0...2)⟶𝑉))
140139adantl 473 . . . . . 6 ((𝐺 ∈ USGraph ∧ (♯‘𝐹) = 2) → (𝑃:(0...(♯‘𝐹))⟶𝑉𝑃:(0...2)⟶𝑉))
141 f1eq2 6279 . . . . . . . . 9 ((0..^(♯‘𝐹)) = (0..^2) → (𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐼𝐹:(0..^2)–1-1→dom 𝐼))
142130, 141syl 17 . . . . . . . 8 ((♯‘𝐹) = 2 → (𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐼𝐹:(0..^2)–1-1→dom 𝐼))
143142imbi1d 332 . . . . . . 7 ((♯‘𝐹) = 2 → ((𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐼 → ∃𝑥𝑉𝑦 ∈ (𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧}))) ↔ (𝐹:(0..^2)–1-1→dom 𝐼 → ∃𝑥𝑉𝑦 ∈ (𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧})))))
144143adantl 473 . . . . . 6 ((𝐺 ∈ USGraph ∧ (♯‘𝐹) = 2) → ((𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐼 → ∃𝑥𝑉𝑦 ∈ (𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧}))) ↔ (𝐹:(0..^2)–1-1→dom 𝐼 → ∃𝑥𝑉𝑦 ∈ (𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧})))))
145140, 144imbi12d 335 . . . . 5 ((𝐺 ∈ USGraph ∧ (♯‘𝐹) = 2) → ((𝑃:(0...(♯‘𝐹))⟶𝑉 → (𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐼 → ∃𝑥𝑉𝑦 ∈ (𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧})))) ↔ (𝑃:(0...2)⟶𝑉 → (𝐹:(0..^2)–1-1→dom 𝐼 → ∃𝑥𝑉𝑦 ∈ (𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧}))))))
146129, 137, 1453imtr4d 285 . . . 4 ((𝐺 ∈ USGraph ∧ (♯‘𝐹) = 2) → (∀𝑖 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))} → (𝑃:(0...(♯‘𝐹))⟶𝑉 → (𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐼 → ∃𝑥𝑉𝑦 ∈ (𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧}))))))
147146com14 96 . . 3 (𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐼 → (∀𝑖 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))} → (𝑃:(0...(♯‘𝐹))⟶𝑉 → ((𝐺 ∈ USGraph ∧ (♯‘𝐹) = 2) → ∃𝑥𝑉𝑦 ∈ (𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧}))))))
148147com23 86 . 2 (𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐼 → (𝑃:(0...(♯‘𝐹))⟶𝑉 → (∀𝑖 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))} → ((𝐺 ∈ USGraph ∧ (♯‘𝐹) = 2) → ∃𝑥𝑉𝑦 ∈ (𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧}))))))
1491483imp 1137 1 ((𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐼𝑃:(0...(♯‘𝐹))⟶𝑉 ∧ ∀𝑖 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}) → ((𝐺 ∈ USGraph ∧ (♯‘𝐹) = 2) → ∃𝑥𝑉𝑦 ∈ (𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧}))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 197  wa 384  w3a 1107   = wceq 1652  wcel 2155  wne 2937  wral 3055  wrex 3056  Vcvv 3350  cdif 3729  {csn 4334  {cpr 4336   class class class wbr 4809  dom cdm 5277  ran crn 5278  wf 6064  1-1wf1 6065  cfv 6068  (class class class)co 6842  0cc0 10189  1c1 10190   + caddc 10192   < clt 10328  cle 10329  cn 11274  2c2 11327  0cn0 11538  ...cfz 12533  ..^cfzo 12673  chash 13321  Vtxcvtx 26165  iEdgciedg 26166  USGraphcusgr 26322
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2069  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-rep 4930  ax-sep 4941  ax-nul 4949  ax-pow 5001  ax-pr 5062  ax-un 7147  ax-cnex 10245  ax-resscn 10246  ax-1cn 10247  ax-icn 10248  ax-addcl 10249  ax-addrcl 10250  ax-mulcl 10251  ax-mulrcl 10252  ax-mulcom 10253  ax-addass 10254  ax-mulass 10255  ax-distr 10256  ax-i2m1 10257  ax-1ne0 10258  ax-1rid 10259  ax-rnegex 10260  ax-rrecex 10261  ax-cnre 10262  ax-pre-lttri 10263  ax-pre-lttrn 10264  ax-pre-ltadd 10265  ax-pre-mulgt0 10266
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2062  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-nel 3041  df-ral 3060  df-rex 3061  df-reu 3062  df-rmo 3063  df-rab 3064  df-v 3352  df-sbc 3597  df-csb 3692  df-dif 3735  df-un 3737  df-in 3739  df-ss 3746  df-pss 3748  df-nul 4080  df-if 4244  df-pw 4317  df-sn 4335  df-pr 4337  df-tp 4339  df-op 4341  df-uni 4595  df-int 4634  df-iun 4678  df-br 4810  df-opab 4872  df-mpt 4889  df-tr 4912  df-id 5185  df-eprel 5190  df-po 5198  df-so 5199  df-fr 5236  df-we 5238  df-xp 5283  df-rel 5284  df-cnv 5285  df-co 5286  df-dm 5287  df-rn 5288  df-res 5289  df-ima 5290  df-pred 5865  df-ord 5911  df-on 5912  df-lim 5913  df-suc 5914  df-iota 6031  df-fun 6070  df-fn 6071  df-f 6072  df-f1 6073  df-fo 6074  df-f1o 6075  df-fv 6076  df-riota 6803  df-ov 6845  df-oprab 6846  df-mpt2 6847  df-om 7264  df-1st 7366  df-2nd 7367  df-wrecs 7610  df-recs 7672  df-rdg 7710  df-1o 7764  df-oadd 7768  df-er 7947  df-en 8161  df-dom 8162  df-sdom 8163  df-fin 8164  df-card 9016  df-cda 9243  df-pnf 10330  df-mnf 10331  df-xr 10332  df-ltxr 10333  df-le 10334  df-sub 10522  df-neg 10523  df-nn 11275  df-2 11335  df-n0 11539  df-z 11625  df-uz 11887  df-fz 12534  df-fzo 12674  df-hash 13322  df-umgr 26255  df-usgr 26324
This theorem is referenced by:  usgr2pth  26951
  Copyright terms: Public domain W3C validator