Proof of Theorem usgr2pthlem
Step | Hyp | Ref
| Expression |
1 | | 0nn0 12178 |
. . . . . . . . . . . . . 14
⊢ 0 ∈
ℕ0 |
2 | | 2nn0 12180 |
. . . . . . . . . . . . . 14
⊢ 2 ∈
ℕ0 |
3 | | 0le2 12005 |
. . . . . . . . . . . . . 14
⊢ 0 ≤
2 |
4 | | elfz2nn0 13276 |
. . . . . . . . . . . . . 14
⊢ (0 ∈
(0...2) ↔ (0 ∈ ℕ0 ∧ 2 ∈ ℕ0
∧ 0 ≤ 2)) |
5 | 1, 2, 3, 4 | mpbir3an 1339 |
. . . . . . . . . . . . 13
⊢ 0 ∈
(0...2) |
6 | | ffvelrn 6941 |
. . . . . . . . . . . . 13
⊢ ((𝑃:(0...2)⟶𝑉 ∧ 0 ∈ (0...2)) →
(𝑃‘0) ∈ 𝑉) |
7 | 5, 6 | mpan2 687 |
. . . . . . . . . . . 12
⊢ (𝑃:(0...2)⟶𝑉 → (𝑃‘0) ∈ 𝑉) |
8 | 7 | adantl 481 |
. . . . . . . . . . 11
⊢ ((((𝐹:(0..^2)–1-1→dom 𝐼 ∧ ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)})) ∧ 𝐺 ∈ USGraph) ∧ 𝑃:(0...2)⟶𝑉) → (𝑃‘0) ∈ 𝑉) |
9 | | 1nn0 12179 |
. . . . . . . . . . . . . . . . . 18
⊢ 1 ∈
ℕ0 |
10 | | 1le2 12112 |
. . . . . . . . . . . . . . . . . 18
⊢ 1 ≤
2 |
11 | | elfz2nn0 13276 |
. . . . . . . . . . . . . . . . . 18
⊢ (1 ∈
(0...2) ↔ (1 ∈ ℕ0 ∧ 2 ∈ ℕ0
∧ 1 ≤ 2)) |
12 | 9, 2, 10, 11 | mpbir3an 1339 |
. . . . . . . . . . . . . . . . 17
⊢ 1 ∈
(0...2) |
13 | | ffvelrn 6941 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑃:(0...2)⟶𝑉 ∧ 1 ∈ (0...2)) →
(𝑃‘1) ∈ 𝑉) |
14 | 12, 13 | mpan2 687 |
. . . . . . . . . . . . . . . 16
⊢ (𝑃:(0...2)⟶𝑉 → (𝑃‘1) ∈ 𝑉) |
15 | 14 | adantl 481 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐹:(0..^2)–1-1→dom 𝐼 ∧ ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)})) ∧ 𝐺 ∈ USGraph) ∧ 𝑃:(0...2)⟶𝑉) → (𝑃‘1) ∈ 𝑉) |
16 | | simpr 484 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝐹:(0..^2)–1-1→dom 𝐼 ∧ ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)})) ∧ 𝐺 ∈ USGraph) → 𝐺 ∈ USGraph) |
17 | | fvex 6769 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑃‘1) ∈
V |
18 | 16, 17 | jctir 520 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝐹:(0..^2)–1-1→dom 𝐼 ∧ ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)})) ∧ 𝐺 ∈ USGraph) → (𝐺 ∈ USGraph ∧ (𝑃‘1) ∈ V)) |
19 | | prcom 4665 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ {(𝑃‘0), (𝑃‘1)} = {(𝑃‘1), (𝑃‘0)} |
20 | 19 | eqeq2i 2751 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ↔ (𝐼‘(𝐹‘0)) = {(𝑃‘1), (𝑃‘0)}) |
21 | 20 | biimpi 215 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} → (𝐼‘(𝐹‘0)) = {(𝑃‘1), (𝑃‘0)}) |
22 | 21 | adantr 480 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}) → (𝐼‘(𝐹‘0)) = {(𝑃‘1), (𝑃‘0)}) |
23 | 22 | ad2antlr 723 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝐹:(0..^2)–1-1→dom 𝐼 ∧ ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)})) ∧ 𝐺 ∈ USGraph) → (𝐼‘(𝐹‘0)) = {(𝑃‘1), (𝑃‘0)}) |
24 | | usgr2pthlem.i |
. . . . . . . . . . . . . . . . . . 19
⊢ 𝐼 = (iEdg‘𝐺) |
25 | 24 | usgrnloopv 27470 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐺 ∈ USGraph ∧ (𝑃‘1) ∈ V) →
((𝐼‘(𝐹‘0)) = {(𝑃‘1), (𝑃‘0)} → (𝑃‘1) ≠ (𝑃‘0))) |
26 | 18, 23, 25 | sylc 65 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝐹:(0..^2)–1-1→dom 𝐼 ∧ ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)})) ∧ 𝐺 ∈ USGraph) → (𝑃‘1) ≠ (𝑃‘0)) |
27 | 26 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝐹:(0..^2)–1-1→dom 𝐼 ∧ ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)})) ∧ 𝐺 ∈ USGraph) ∧ 𝑃:(0...2)⟶𝑉) → (𝑃‘1) ≠ (𝑃‘0)) |
28 | 17 | elsn 4573 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑃‘1) ∈ {(𝑃‘0)} ↔ (𝑃‘1) = (𝑃‘0)) |
29 | 28 | necon3bbii 2990 |
. . . . . . . . . . . . . . . 16
⊢ (¬
(𝑃‘1) ∈ {(𝑃‘0)} ↔ (𝑃‘1) ≠ (𝑃‘0)) |
30 | 27, 29 | sylibr 233 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐹:(0..^2)–1-1→dom 𝐼 ∧ ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)})) ∧ 𝐺 ∈ USGraph) ∧ 𝑃:(0...2)⟶𝑉) → ¬ (𝑃‘1) ∈ {(𝑃‘0)}) |
31 | 15, 30 | eldifd 3894 |
. . . . . . . . . . . . . 14
⊢ ((((𝐹:(0..^2)–1-1→dom 𝐼 ∧ ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)})) ∧ 𝐺 ∈ USGraph) ∧ 𝑃:(0...2)⟶𝑉) → (𝑃‘1) ∈ (𝑉 ∖ {(𝑃‘0)})) |
32 | 31 | adantr 480 |
. . . . . . . . . . . . 13
⊢
(((((𝐹:(0..^2)–1-1→dom 𝐼 ∧ ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)})) ∧ 𝐺 ∈ USGraph) ∧ 𝑃:(0...2)⟶𝑉) ∧ 𝑥 = (𝑃‘0)) → (𝑃‘1) ∈ (𝑉 ∖ {(𝑃‘0)})) |
33 | | sneq 4568 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 = (𝑃‘0) → {𝑥} = {(𝑃‘0)}) |
34 | 33 | difeq2d 4053 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = (𝑃‘0) → (𝑉 ∖ {𝑥}) = (𝑉 ∖ {(𝑃‘0)})) |
35 | 34 | eleq2d 2824 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = (𝑃‘0) → ((𝑃‘1) ∈ (𝑉 ∖ {𝑥}) ↔ (𝑃‘1) ∈ (𝑉 ∖ {(𝑃‘0)}))) |
36 | 35 | adantl 481 |
. . . . . . . . . . . . 13
⊢
(((((𝐹:(0..^2)–1-1→dom 𝐼 ∧ ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)})) ∧ 𝐺 ∈ USGraph) ∧ 𝑃:(0...2)⟶𝑉) ∧ 𝑥 = (𝑃‘0)) → ((𝑃‘1) ∈ (𝑉 ∖ {𝑥}) ↔ (𝑃‘1) ∈ (𝑉 ∖ {(𝑃‘0)}))) |
37 | 32, 36 | mpbird 256 |
. . . . . . . . . . . 12
⊢
(((((𝐹:(0..^2)–1-1→dom 𝐼 ∧ ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)})) ∧ 𝐺 ∈ USGraph) ∧ 𝑃:(0...2)⟶𝑉) ∧ 𝑥 = (𝑃‘0)) → (𝑃‘1) ∈ (𝑉 ∖ {𝑥})) |
38 | | 2re 11977 |
. . . . . . . . . . . . . . . . . . . 20
⊢ 2 ∈
ℝ |
39 | 38 | leidi 11439 |
. . . . . . . . . . . . . . . . . . 19
⊢ 2 ≤
2 |
40 | | elfz2nn0 13276 |
. . . . . . . . . . . . . . . . . . 19
⊢ (2 ∈
(0...2) ↔ (2 ∈ ℕ0 ∧ 2 ∈ ℕ0
∧ 2 ≤ 2)) |
41 | 2, 2, 39, 40 | mpbir3an 1339 |
. . . . . . . . . . . . . . . . . 18
⊢ 2 ∈
(0...2) |
42 | | ffvelrn 6941 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑃:(0...2)⟶𝑉 ∧ 2 ∈ (0...2)) →
(𝑃‘2) ∈ 𝑉) |
43 | 41, 42 | mpan2 687 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑃:(0...2)⟶𝑉 → (𝑃‘2) ∈ 𝑉) |
44 | 43 | adantl 481 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝐹:(0..^2)–1-1→dom 𝐼 ∧ ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)})) ∧ 𝐺 ∈ USGraph) ∧ 𝑃:(0...2)⟶𝑉) → (𝑃‘2) ∈ 𝑉) |
45 | 24 | usgrf1 27445 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝐺 ∈ USGraph → 𝐼:dom 𝐼–1-1→ran 𝐼) |
46 | 45 | ad2antlr 723 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝐹:(0..^2)–1-1→dom 𝐼 ∧ ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)})) ∧ 𝐺 ∈ USGraph) ∧ 𝑃:(0...2)⟶𝑉) → 𝐼:dom 𝐼–1-1→ran 𝐼) |
47 | | simpl 482 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝐹:(0..^2)–1-1→dom 𝐼 ∧ ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)})) → 𝐹:(0..^2)–1-1→dom 𝐼) |
48 | 47 | ad2antrr 722 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝐹:(0..^2)–1-1→dom 𝐼 ∧ ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)})) ∧ 𝐺 ∈ USGraph) ∧ 𝑃:(0...2)⟶𝑉) → 𝐹:(0..^2)–1-1→dom 𝐼) |
49 | 46, 48 | jca 511 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝐹:(0..^2)–1-1→dom 𝐼 ∧ ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)})) ∧ 𝐺 ∈ USGraph) ∧ 𝑃:(0...2)⟶𝑉) → (𝐼:dom 𝐼–1-1→ran 𝐼 ∧ 𝐹:(0..^2)–1-1→dom 𝐼)) |
50 | | 2nn 11976 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ 2 ∈
ℕ |
51 | | lbfzo0 13355 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (0 ∈
(0..^2) ↔ 2 ∈ ℕ) |
52 | 50, 51 | mpbir 230 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ 0 ∈
(0..^2) |
53 | | 1lt2 12074 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ 1 <
2 |
54 | | elfzo0 13356 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (1 ∈
(0..^2) ↔ (1 ∈ ℕ0 ∧ 2 ∈ ℕ ∧ 1
< 2)) |
55 | 9, 50, 53, 54 | mpbir3an 1339 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ 1 ∈
(0..^2) |
56 | 52, 55 | pm3.2i 470 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (0 ∈
(0..^2) ∧ 1 ∈ (0..^2)) |
57 | 56 | a1i 11 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝐹:(0..^2)–1-1→dom 𝐼 ∧ ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)})) ∧ 𝐺 ∈ USGraph) ∧ 𝑃:(0...2)⟶𝑉) → (0 ∈ (0..^2) ∧ 1 ∈
(0..^2))) |
58 | | 0ne1 11974 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ 0 ≠
1 |
59 | 58 | a1i 11 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝐹:(0..^2)–1-1→dom 𝐼 ∧ ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)})) ∧ 𝐺 ∈ USGraph) ∧ 𝑃:(0...2)⟶𝑉) → 0 ≠ 1) |
60 | 49, 57, 59 | 3jca 1126 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝐹:(0..^2)–1-1→dom 𝐼 ∧ ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)})) ∧ 𝐺 ∈ USGraph) ∧ 𝑃:(0...2)⟶𝑉) → ((𝐼:dom 𝐼–1-1→ran 𝐼 ∧ 𝐹:(0..^2)–1-1→dom 𝐼) ∧ (0 ∈ (0..^2) ∧ 1 ∈
(0..^2)) ∧ 0 ≠ 1)) |
61 | | simpr 484 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐹:(0..^2)–1-1→dom 𝐼 ∧ ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)})) → ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)})) |
62 | 61 | ad2antrr 722 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝐹:(0..^2)–1-1→dom 𝐼 ∧ ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)})) ∧ 𝐺 ∈ USGraph) ∧ 𝑃:(0...2)⟶𝑉) → ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)})) |
63 | | 2f1fvneq 7114 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝐼:dom 𝐼–1-1→ran 𝐼 ∧ 𝐹:(0..^2)–1-1→dom 𝐼) ∧ (0 ∈ (0..^2) ∧ 1 ∈
(0..^2)) ∧ 0 ≠ 1) → (((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}) → {(𝑃‘0), (𝑃‘1)} ≠ {(𝑃‘1), (𝑃‘2)})) |
64 | 60, 62, 63 | sylc 65 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝐹:(0..^2)–1-1→dom 𝐼 ∧ ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)})) ∧ 𝐺 ∈ USGraph) ∧ 𝑃:(0...2)⟶𝑉) → {(𝑃‘0), (𝑃‘1)} ≠ {(𝑃‘1), (𝑃‘2)}) |
65 | | necom 2996 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑃‘2) ≠ (𝑃‘0) ↔ (𝑃‘0) ≠ (𝑃‘2)) |
66 | | fvex 6769 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑃‘0) ∈
V |
67 | | fvex 6769 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑃‘2) ∈
V |
68 | 66, 17, 67 | 3pm3.2i 1337 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑃‘0) ∈ V ∧ (𝑃‘1) ∈ V ∧ (𝑃‘2) ∈
V) |
69 | | fvexd 6771 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝐹:(0..^2)–1-1→dom 𝐼 ∧ ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)})) ∧ 𝐺 ∈ USGraph) → (𝑃‘0) ∈ V) |
70 | | simpl 482 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}) → (𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)}) |
71 | 70 | ad2antlr 723 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝐹:(0..^2)–1-1→dom 𝐼 ∧ ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)})) ∧ 𝐺 ∈ USGraph) → (𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)}) |
72 | 16, 69, 71 | jca31 514 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝐹:(0..^2)–1-1→dom 𝐼 ∧ ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)})) ∧ 𝐺 ∈ USGraph) → ((𝐺 ∈ USGraph ∧ (𝑃‘0) ∈ V) ∧ (𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)})) |
73 | 72 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝐹:(0..^2)–1-1→dom 𝐼 ∧ ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)})) ∧ 𝐺 ∈ USGraph) ∧ 𝑃:(0...2)⟶𝑉) → ((𝐺 ∈ USGraph ∧ (𝑃‘0) ∈ V) ∧ (𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)})) |
74 | 24 | usgrnloopv 27470 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝐺 ∈ USGraph ∧ (𝑃‘0) ∈ V) →
((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} → (𝑃‘0) ≠ (𝑃‘1))) |
75 | 74 | imp 406 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝐺 ∈ USGraph ∧ (𝑃‘0) ∈ V) ∧ (𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)}) → (𝑃‘0) ≠ (𝑃‘1)) |
76 | 73, 75 | syl 17 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝐹:(0..^2)–1-1→dom 𝐼 ∧ ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)})) ∧ 𝐺 ∈ USGraph) ∧ 𝑃:(0...2)⟶𝑉) → (𝑃‘0) ≠ (𝑃‘1)) |
77 | | pr1nebg 4785 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝑃‘0) ∈ V ∧ (𝑃‘1) ∈ V ∧ (𝑃‘2) ∈ V) ∧ (𝑃‘0) ≠ (𝑃‘1)) → ((𝑃‘0) ≠ (𝑃‘2) ↔ {(𝑃‘0), (𝑃‘1)} ≠ {(𝑃‘1), (𝑃‘2)})) |
78 | 68, 76, 77 | sylancr 586 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝐹:(0..^2)–1-1→dom 𝐼 ∧ ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)})) ∧ 𝐺 ∈ USGraph) ∧ 𝑃:(0...2)⟶𝑉) → ((𝑃‘0) ≠ (𝑃‘2) ↔ {(𝑃‘0), (𝑃‘1)} ≠ {(𝑃‘1), (𝑃‘2)})) |
79 | 65, 78 | syl5bb 282 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝐹:(0..^2)–1-1→dom 𝐼 ∧ ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)})) ∧ 𝐺 ∈ USGraph) ∧ 𝑃:(0...2)⟶𝑉) → ((𝑃‘2) ≠ (𝑃‘0) ↔ {(𝑃‘0), (𝑃‘1)} ≠ {(𝑃‘1), (𝑃‘2)})) |
80 | 64, 79 | mpbird 256 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝐹:(0..^2)–1-1→dom 𝐼 ∧ ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)})) ∧ 𝐺 ∈ USGraph) ∧ 𝑃:(0...2)⟶𝑉) → (𝑃‘2) ≠ (𝑃‘0)) |
81 | | fvexd 6771 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝐹:(0..^2)–1-1→dom 𝐼 ∧ ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)})) ∧ 𝐺 ∈ USGraph) → (𝑃‘2) ∈ V) |
82 | | prcom 4665 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ {(𝑃‘1), (𝑃‘2)} = {(𝑃‘2), (𝑃‘1)} |
83 | 82 | eqeq2i 2751 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)} ↔ (𝐼‘(𝐹‘1)) = {(𝑃‘2), (𝑃‘1)}) |
84 | 83 | biimpi 215 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)} → (𝐼‘(𝐹‘1)) = {(𝑃‘2), (𝑃‘1)}) |
85 | 84 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}) → (𝐼‘(𝐹‘1)) = {(𝑃‘2), (𝑃‘1)}) |
86 | 85 | ad2antlr 723 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝐹:(0..^2)–1-1→dom 𝐼 ∧ ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)})) ∧ 𝐺 ∈ USGraph) → (𝐼‘(𝐹‘1)) = {(𝑃‘2), (𝑃‘1)}) |
87 | 16, 81, 86 | jca31 514 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝐹:(0..^2)–1-1→dom 𝐼 ∧ ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)})) ∧ 𝐺 ∈ USGraph) → ((𝐺 ∈ USGraph ∧ (𝑃‘2) ∈ V) ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘2), (𝑃‘1)})) |
88 | 87 | adantr 480 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝐹:(0..^2)–1-1→dom 𝐼 ∧ ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)})) ∧ 𝐺 ∈ USGraph) ∧ 𝑃:(0...2)⟶𝑉) → ((𝐺 ∈ USGraph ∧ (𝑃‘2) ∈ V) ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘2), (𝑃‘1)})) |
89 | 24 | usgrnloopv 27470 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐺 ∈ USGraph ∧ (𝑃‘2) ∈ V) →
((𝐼‘(𝐹‘1)) = {(𝑃‘2), (𝑃‘1)} → (𝑃‘2) ≠ (𝑃‘1))) |
90 | 89 | imp 406 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝐺 ∈ USGraph ∧ (𝑃‘2) ∈ V) ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘2), (𝑃‘1)}) → (𝑃‘2) ≠ (𝑃‘1)) |
91 | 88, 90 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝐹:(0..^2)–1-1→dom 𝐼 ∧ ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)})) ∧ 𝐺 ∈ USGraph) ∧ 𝑃:(0...2)⟶𝑉) → (𝑃‘2) ≠ (𝑃‘1)) |
92 | 80, 91 | nelprd 4589 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝐹:(0..^2)–1-1→dom 𝐼 ∧ ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)})) ∧ 𝐺 ∈ USGraph) ∧ 𝑃:(0...2)⟶𝑉) → ¬ (𝑃‘2) ∈ {(𝑃‘0), (𝑃‘1)}) |
93 | 44, 92 | eldifd 3894 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐹:(0..^2)–1-1→dom 𝐼 ∧ ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)})) ∧ 𝐺 ∈ USGraph) ∧ 𝑃:(0...2)⟶𝑉) → (𝑃‘2) ∈ (𝑉 ∖ {(𝑃‘0), (𝑃‘1)})) |
94 | 93 | ad2antrr 722 |
. . . . . . . . . . . . . 14
⊢
((((((𝐹:(0..^2)–1-1→dom 𝐼 ∧ ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)})) ∧ 𝐺 ∈ USGraph) ∧ 𝑃:(0...2)⟶𝑉) ∧ 𝑥 = (𝑃‘0)) ∧ 𝑦 = (𝑃‘1)) → (𝑃‘2) ∈ (𝑉 ∖ {(𝑃‘0), (𝑃‘1)})) |
95 | | preq12 4668 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑥 = (𝑃‘0) ∧ 𝑦 = (𝑃‘1)) → {𝑥, 𝑦} = {(𝑃‘0), (𝑃‘1)}) |
96 | 95 | difeq2d 4053 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑥 = (𝑃‘0) ∧ 𝑦 = (𝑃‘1)) → (𝑉 ∖ {𝑥, 𝑦}) = (𝑉 ∖ {(𝑃‘0), (𝑃‘1)})) |
97 | 96 | eleq2d 2824 |
. . . . . . . . . . . . . . 15
⊢ ((𝑥 = (𝑃‘0) ∧ 𝑦 = (𝑃‘1)) → ((𝑃‘2) ∈ (𝑉 ∖ {𝑥, 𝑦}) ↔ (𝑃‘2) ∈ (𝑉 ∖ {(𝑃‘0), (𝑃‘1)}))) |
98 | 97 | adantll 710 |
. . . . . . . . . . . . . 14
⊢
((((((𝐹:(0..^2)–1-1→dom 𝐼 ∧ ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)})) ∧ 𝐺 ∈ USGraph) ∧ 𝑃:(0...2)⟶𝑉) ∧ 𝑥 = (𝑃‘0)) ∧ 𝑦 = (𝑃‘1)) → ((𝑃‘2) ∈ (𝑉 ∖ {𝑥, 𝑦}) ↔ (𝑃‘2) ∈ (𝑉 ∖ {(𝑃‘0), (𝑃‘1)}))) |
99 | 94, 98 | mpbird 256 |
. . . . . . . . . . . . 13
⊢
((((((𝐹:(0..^2)–1-1→dom 𝐼 ∧ ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)})) ∧ 𝐺 ∈ USGraph) ∧ 𝑃:(0...2)⟶𝑉) ∧ 𝑥 = (𝑃‘0)) ∧ 𝑦 = (𝑃‘1)) → (𝑃‘2) ∈ (𝑉 ∖ {𝑥, 𝑦})) |
100 | | eqcom 2745 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑥 = (𝑃‘0) ↔ (𝑃‘0) = 𝑥) |
101 | | eqcom 2745 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑦 = (𝑃‘1) ↔ (𝑃‘1) = 𝑦) |
102 | | eqcom 2745 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑧 = (𝑃‘2) ↔ (𝑃‘2) = 𝑧) |
103 | 100, 101,
102 | 3anbi123i 1153 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑥 = (𝑃‘0) ∧ 𝑦 = (𝑃‘1) ∧ 𝑧 = (𝑃‘2)) ↔ ((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧)) |
104 | 103 | biimpi 215 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑥 = (𝑃‘0) ∧ 𝑦 = (𝑃‘1) ∧ 𝑧 = (𝑃‘2)) → ((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧)) |
105 | 104 | ad4ant123 1170 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝑥 = (𝑃‘0) ∧ 𝑦 = (𝑃‘1)) ∧ 𝑧 = (𝑃‘2)) ∧ ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)})) → ((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧)) |
106 | 100 | biimpi 215 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑥 = (𝑃‘0) → (𝑃‘0) = 𝑥) |
107 | 106 | ad2antrr 722 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝑥 = (𝑃‘0) ∧ 𝑦 = (𝑃‘1)) ∧ 𝑧 = (𝑃‘2)) → (𝑃‘0) = 𝑥) |
108 | 101 | biimpi 215 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑦 = (𝑃‘1) → (𝑃‘1) = 𝑦) |
109 | 108 | ad2antlr 723 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝑥 = (𝑃‘0) ∧ 𝑦 = (𝑃‘1)) ∧ 𝑧 = (𝑃‘2)) → (𝑃‘1) = 𝑦) |
110 | 107, 109 | preq12d 4674 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑥 = (𝑃‘0) ∧ 𝑦 = (𝑃‘1)) ∧ 𝑧 = (𝑃‘2)) → {(𝑃‘0), (𝑃‘1)} = {𝑥, 𝑦}) |
111 | 110 | eqeq2d 2749 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑥 = (𝑃‘0) ∧ 𝑦 = (𝑃‘1)) ∧ 𝑧 = (𝑃‘2)) → ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ↔ (𝐼‘(𝐹‘0)) = {𝑥, 𝑦})) |
112 | 102 | biimpi 215 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑧 = (𝑃‘2) → (𝑃‘2) = 𝑧) |
113 | 112 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝑥 = (𝑃‘0) ∧ 𝑦 = (𝑃‘1)) ∧ 𝑧 = (𝑃‘2)) → (𝑃‘2) = 𝑧) |
114 | 109, 113 | preq12d 4674 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑥 = (𝑃‘0) ∧ 𝑦 = (𝑃‘1)) ∧ 𝑧 = (𝑃‘2)) → {(𝑃‘1), (𝑃‘2)} = {𝑦, 𝑧}) |
115 | 114 | eqeq2d 2749 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑥 = (𝑃‘0) ∧ 𝑦 = (𝑃‘1)) ∧ 𝑧 = (𝑃‘2)) → ((𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)} ↔ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧})) |
116 | 111, 115 | anbi12d 630 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑥 = (𝑃‘0) ∧ 𝑦 = (𝑃‘1)) ∧ 𝑧 = (𝑃‘2)) → (((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}) ↔ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧}))) |
117 | 116 | biimpa 476 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝑥 = (𝑃‘0) ∧ 𝑦 = (𝑃‘1)) ∧ 𝑧 = (𝑃‘2)) ∧ ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)})) → ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧})) |
118 | 105, 117 | jca 511 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝑥 = (𝑃‘0) ∧ 𝑦 = (𝑃‘1)) ∧ 𝑧 = (𝑃‘2)) ∧ ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)})) → (((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧}))) |
119 | 118 | exp41 434 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = (𝑃‘0) → (𝑦 = (𝑃‘1) → (𝑧 = (𝑃‘2) → (((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}) → (((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧})))))) |
120 | 119 | adantl 481 |
. . . . . . . . . . . . . 14
⊢
(((((𝐹:(0..^2)–1-1→dom 𝐼 ∧ ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)})) ∧ 𝐺 ∈ USGraph) ∧ 𝑃:(0...2)⟶𝑉) ∧ 𝑥 = (𝑃‘0)) → (𝑦 = (𝑃‘1) → (𝑧 = (𝑃‘2) → (((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}) → (((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧})))))) |
121 | 120 | imp31 417 |
. . . . . . . . . . . . 13
⊢
(((((((𝐹:(0..^2)–1-1→dom 𝐼 ∧ ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)})) ∧ 𝐺 ∈ USGraph) ∧ 𝑃:(0...2)⟶𝑉) ∧ 𝑥 = (𝑃‘0)) ∧ 𝑦 = (𝑃‘1)) ∧ 𝑧 = (𝑃‘2)) → (((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}) → (((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧})))) |
122 | 99, 121 | rspcimedv 3542 |
. . . . . . . . . . . 12
⊢
((((((𝐹:(0..^2)–1-1→dom 𝐼 ∧ ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)})) ∧ 𝐺 ∈ USGraph) ∧ 𝑃:(0...2)⟶𝑉) ∧ 𝑥 = (𝑃‘0)) ∧ 𝑦 = (𝑃‘1)) → (((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}) → ∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧})))) |
123 | 37, 122 | rspcimedv 3542 |
. . . . . . . . . . 11
⊢
(((((𝐹:(0..^2)–1-1→dom 𝐼 ∧ ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)})) ∧ 𝐺 ∈ USGraph) ∧ 𝑃:(0...2)⟶𝑉) ∧ 𝑥 = (𝑃‘0)) → (((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}) → ∃𝑦 ∈ (𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧})))) |
124 | 8, 123 | rspcimedv 3542 |
. . . . . . . . . 10
⊢ ((((𝐹:(0..^2)–1-1→dom 𝐼 ∧ ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)})) ∧ 𝐺 ∈ USGraph) ∧ 𝑃:(0...2)⟶𝑉) → (((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}) → ∃𝑥 ∈ 𝑉 ∃𝑦 ∈ (𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧})))) |
125 | 124 | exp41 434 |
. . . . . . . . 9
⊢ (𝐹:(0..^2)–1-1→dom 𝐼 → (((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}) → (𝐺 ∈ USGraph → (𝑃:(0...2)⟶𝑉 → (((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}) → ∃𝑥 ∈ 𝑉 ∃𝑦 ∈ (𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧}))))))) |
126 | 125 | com15 101 |
. . . . . . . 8
⊢ (((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}) → (((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}) → (𝐺 ∈ USGraph → (𝑃:(0...2)⟶𝑉 → (𝐹:(0..^2)–1-1→dom 𝐼 → ∃𝑥 ∈ 𝑉 ∃𝑦 ∈ (𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧}))))))) |
127 | 126 | pm2.43i 52 |
. . . . . . 7
⊢ (((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}) → (𝐺 ∈ USGraph → (𝑃:(0...2)⟶𝑉 → (𝐹:(0..^2)–1-1→dom 𝐼 → ∃𝑥 ∈ 𝑉 ∃𝑦 ∈ (𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧})))))) |
128 | 127 | com12 32 |
. . . . . 6
⊢ (𝐺 ∈ USGraph → (((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}) → (𝑃:(0...2)⟶𝑉 → (𝐹:(0..^2)–1-1→dom 𝐼 → ∃𝑥 ∈ 𝑉 ∃𝑦 ∈ (𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧})))))) |
129 | 128 | adantr 480 |
. . . . 5
⊢ ((𝐺 ∈ USGraph ∧
(♯‘𝐹) = 2)
→ (((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}) → (𝑃:(0...2)⟶𝑉 → (𝐹:(0..^2)–1-1→dom 𝐼 → ∃𝑥 ∈ 𝑉 ∃𝑦 ∈ (𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧})))))) |
130 | | oveq2 7263 |
. . . . . . . 8
⊢
((♯‘𝐹) =
2 → (0..^(♯‘𝐹)) = (0..^2)) |
131 | 130 | raleqdv 3339 |
. . . . . . 7
⊢
((♯‘𝐹) =
2 → (∀𝑖 ∈
(0..^(♯‘𝐹))(𝐼‘(𝐹‘𝑖)) = {(𝑃‘𝑖), (𝑃‘(𝑖 + 1))} ↔ ∀𝑖 ∈ (0..^2)(𝐼‘(𝐹‘𝑖)) = {(𝑃‘𝑖), (𝑃‘(𝑖 + 1))})) |
132 | | fzo0to2pr 13400 |
. . . . . . . . 9
⊢ (0..^2) =
{0, 1} |
133 | 132 | raleqi 3337 |
. . . . . . . 8
⊢
(∀𝑖 ∈
(0..^2)(𝐼‘(𝐹‘𝑖)) = {(𝑃‘𝑖), (𝑃‘(𝑖 + 1))} ↔ ∀𝑖 ∈ {0, 1} (𝐼‘(𝐹‘𝑖)) = {(𝑃‘𝑖), (𝑃‘(𝑖 + 1))}) |
134 | | 2wlklem 27937 |
. . . . . . . 8
⊢
(∀𝑖 ∈
{0, 1} (𝐼‘(𝐹‘𝑖)) = {(𝑃‘𝑖), (𝑃‘(𝑖 + 1))} ↔ ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)})) |
135 | 133, 134 | bitri 274 |
. . . . . . 7
⊢
(∀𝑖 ∈
(0..^2)(𝐼‘(𝐹‘𝑖)) = {(𝑃‘𝑖), (𝑃‘(𝑖 + 1))} ↔ ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)})) |
136 | 131, 135 | bitrdi 286 |
. . . . . 6
⊢
((♯‘𝐹) =
2 → (∀𝑖 ∈
(0..^(♯‘𝐹))(𝐼‘(𝐹‘𝑖)) = {(𝑃‘𝑖), (𝑃‘(𝑖 + 1))} ↔ ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}))) |
137 | 136 | adantl 481 |
. . . . 5
⊢ ((𝐺 ∈ USGraph ∧
(♯‘𝐹) = 2)
→ (∀𝑖 ∈
(0..^(♯‘𝐹))(𝐼‘(𝐹‘𝑖)) = {(𝑃‘𝑖), (𝑃‘(𝑖 + 1))} ↔ ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}))) |
138 | | oveq2 7263 |
. . . . . . . 8
⊢
((♯‘𝐹) =
2 → (0...(♯‘𝐹)) = (0...2)) |
139 | 138 | feq2d 6570 |
. . . . . . 7
⊢
((♯‘𝐹) =
2 → (𝑃:(0...(♯‘𝐹))⟶𝑉 ↔ 𝑃:(0...2)⟶𝑉)) |
140 | 139 | adantl 481 |
. . . . . 6
⊢ ((𝐺 ∈ USGraph ∧
(♯‘𝐹) = 2)
→ (𝑃:(0...(♯‘𝐹))⟶𝑉 ↔ 𝑃:(0...2)⟶𝑉)) |
141 | | f1eq2 6650 |
. . . . . . . . 9
⊢
((0..^(♯‘𝐹)) = (0..^2) → (𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐼 ↔ 𝐹:(0..^2)–1-1→dom 𝐼)) |
142 | 130, 141 | syl 17 |
. . . . . . . 8
⊢
((♯‘𝐹) =
2 → (𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐼 ↔ 𝐹:(0..^2)–1-1→dom 𝐼)) |
143 | 142 | imbi1d 341 |
. . . . . . 7
⊢
((♯‘𝐹) =
2 → ((𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐼 → ∃𝑥 ∈ 𝑉 ∃𝑦 ∈ (𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧}))) ↔ (𝐹:(0..^2)–1-1→dom 𝐼 → ∃𝑥 ∈ 𝑉 ∃𝑦 ∈ (𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧}))))) |
144 | 143 | adantl 481 |
. . . . . 6
⊢ ((𝐺 ∈ USGraph ∧
(♯‘𝐹) = 2)
→ ((𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐼 → ∃𝑥 ∈ 𝑉 ∃𝑦 ∈ (𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧}))) ↔ (𝐹:(0..^2)–1-1→dom 𝐼 → ∃𝑥 ∈ 𝑉 ∃𝑦 ∈ (𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧}))))) |
145 | 140, 144 | imbi12d 344 |
. . . . 5
⊢ ((𝐺 ∈ USGraph ∧
(♯‘𝐹) = 2)
→ ((𝑃:(0...(♯‘𝐹))⟶𝑉 → (𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐼 → ∃𝑥 ∈ 𝑉 ∃𝑦 ∈ (𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧})))) ↔ (𝑃:(0...2)⟶𝑉 → (𝐹:(0..^2)–1-1→dom 𝐼 → ∃𝑥 ∈ 𝑉 ∃𝑦 ∈ (𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧})))))) |
146 | 129, 137,
145 | 3imtr4d 293 |
. . . 4
⊢ ((𝐺 ∈ USGraph ∧
(♯‘𝐹) = 2)
→ (∀𝑖 ∈
(0..^(♯‘𝐹))(𝐼‘(𝐹‘𝑖)) = {(𝑃‘𝑖), (𝑃‘(𝑖 + 1))} → (𝑃:(0...(♯‘𝐹))⟶𝑉 → (𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐼 → ∃𝑥 ∈ 𝑉 ∃𝑦 ∈ (𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧})))))) |
147 | 146 | com14 96 |
. . 3
⊢ (𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐼 → (∀𝑖 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹‘𝑖)) = {(𝑃‘𝑖), (𝑃‘(𝑖 + 1))} → (𝑃:(0...(♯‘𝐹))⟶𝑉 → ((𝐺 ∈ USGraph ∧ (♯‘𝐹) = 2) → ∃𝑥 ∈ 𝑉 ∃𝑦 ∈ (𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧})))))) |
148 | 147 | com23 86 |
. 2
⊢ (𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐼 → (𝑃:(0...(♯‘𝐹))⟶𝑉 → (∀𝑖 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹‘𝑖)) = {(𝑃‘𝑖), (𝑃‘(𝑖 + 1))} → ((𝐺 ∈ USGraph ∧ (♯‘𝐹) = 2) → ∃𝑥 ∈ 𝑉 ∃𝑦 ∈ (𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧})))))) |
149 | 148 | 3imp 1109 |
1
⊢ ((𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐼 ∧ 𝑃:(0...(♯‘𝐹))⟶𝑉 ∧ ∀𝑖 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹‘𝑖)) = {(𝑃‘𝑖), (𝑃‘(𝑖 + 1))}) → ((𝐺 ∈ USGraph ∧ (♯‘𝐹) = 2) → ∃𝑥 ∈ 𝑉 ∃𝑦 ∈ (𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧})))) |