Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  satfrel Structured version   Visualization version   GIF version

Theorem satfrel 34358
Description: The value of the satisfaction predicate as function over wff codes at a natural number is a relation. (Contributed by AV, 12-Oct-2023.)
Assertion
Ref Expression
satfrel ((𝑀𝑉𝐸𝑊𝑁 ∈ ω) → Rel ((𝑀 Sat 𝐸)‘𝑁))

Proof of Theorem satfrel
Dummy variables 𝑎 𝑖 𝑗 𝑢 𝑣 𝑥 𝑦 𝑧 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6892 . . . . . 6 (𝑎 = ∅ → ((𝑀 Sat 𝐸)‘𝑎) = ((𝑀 Sat 𝐸)‘∅))
21releqd 5779 . . . . 5 (𝑎 = ∅ → (Rel ((𝑀 Sat 𝐸)‘𝑎) ↔ Rel ((𝑀 Sat 𝐸)‘∅)))
32imbi2d 341 . . . 4 (𝑎 = ∅ → (((𝑀𝑉𝐸𝑊) → Rel ((𝑀 Sat 𝐸)‘𝑎)) ↔ ((𝑀𝑉𝐸𝑊) → Rel ((𝑀 Sat 𝐸)‘∅))))
4 fveq2 6892 . . . . . 6 (𝑎 = 𝑏 → ((𝑀 Sat 𝐸)‘𝑎) = ((𝑀 Sat 𝐸)‘𝑏))
54releqd 5779 . . . . 5 (𝑎 = 𝑏 → (Rel ((𝑀 Sat 𝐸)‘𝑎) ↔ Rel ((𝑀 Sat 𝐸)‘𝑏)))
65imbi2d 341 . . . 4 (𝑎 = 𝑏 → (((𝑀𝑉𝐸𝑊) → Rel ((𝑀 Sat 𝐸)‘𝑎)) ↔ ((𝑀𝑉𝐸𝑊) → Rel ((𝑀 Sat 𝐸)‘𝑏))))
7 fveq2 6892 . . . . . 6 (𝑎 = suc 𝑏 → ((𝑀 Sat 𝐸)‘𝑎) = ((𝑀 Sat 𝐸)‘suc 𝑏))
87releqd 5779 . . . . 5 (𝑎 = suc 𝑏 → (Rel ((𝑀 Sat 𝐸)‘𝑎) ↔ Rel ((𝑀 Sat 𝐸)‘suc 𝑏)))
98imbi2d 341 . . . 4 (𝑎 = suc 𝑏 → (((𝑀𝑉𝐸𝑊) → Rel ((𝑀 Sat 𝐸)‘𝑎)) ↔ ((𝑀𝑉𝐸𝑊) → Rel ((𝑀 Sat 𝐸)‘suc 𝑏))))
10 fveq2 6892 . . . . . 6 (𝑎 = 𝑁 → ((𝑀 Sat 𝐸)‘𝑎) = ((𝑀 Sat 𝐸)‘𝑁))
1110releqd 5779 . . . . 5 (𝑎 = 𝑁 → (Rel ((𝑀 Sat 𝐸)‘𝑎) ↔ Rel ((𝑀 Sat 𝐸)‘𝑁)))
1211imbi2d 341 . . . 4 (𝑎 = 𝑁 → (((𝑀𝑉𝐸𝑊) → Rel ((𝑀 Sat 𝐸)‘𝑎)) ↔ ((𝑀𝑉𝐸𝑊) → Rel ((𝑀 Sat 𝐸)‘𝑁))))
13 relopabv 5822 . . . . 5 Rel {⟨𝑥, 𝑦⟩ ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)})}
14 eqid 2733 . . . . . . 7 (𝑀 Sat 𝐸) = (𝑀 Sat 𝐸)
1514satfv0 34349 . . . . . 6 ((𝑀𝑉𝐸𝑊) → ((𝑀 Sat 𝐸)‘∅) = {⟨𝑥, 𝑦⟩ ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)})})
1615releqd 5779 . . . . 5 ((𝑀𝑉𝐸𝑊) → (Rel ((𝑀 Sat 𝐸)‘∅) ↔ Rel {⟨𝑥, 𝑦⟩ ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)})}))
1713, 16mpbiri 258 . . . 4 ((𝑀𝑉𝐸𝑊) → Rel ((𝑀 Sat 𝐸)‘∅))
18 pm2.27 42 . . . . . 6 ((𝑀𝑉𝐸𝑊) → (((𝑀𝑉𝐸𝑊) → Rel ((𝑀 Sat 𝐸)‘𝑏)) → Rel ((𝑀 Sat 𝐸)‘𝑏)))
19 simpr 486 . . . . . . . . . 10 ((((𝑀𝑉𝐸𝑊) ∧ 𝑏 ∈ ω) ∧ Rel ((𝑀 Sat 𝐸)‘𝑏)) → Rel ((𝑀 Sat 𝐸)‘𝑏))
20 relopabv 5822 . . . . . . . . . 10 Rel {⟨𝑥, 𝑦⟩ ∣ ∃𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑏)(∃𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑏)(𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 ({⟨𝑖, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)}))}
21 relun 5812 . . . . . . . . . 10 (Rel (((𝑀 Sat 𝐸)‘𝑏) ∪ {⟨𝑥, 𝑦⟩ ∣ ∃𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑏)(∃𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑏)(𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 ({⟨𝑖, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)}))}) ↔ (Rel ((𝑀 Sat 𝐸)‘𝑏) ∧ Rel {⟨𝑥, 𝑦⟩ ∣ ∃𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑏)(∃𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑏)(𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 ({⟨𝑖, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)}))}))
2219, 20, 21sylanblrc 591 . . . . . . . . 9 ((((𝑀𝑉𝐸𝑊) ∧ 𝑏 ∈ ω) ∧ Rel ((𝑀 Sat 𝐸)‘𝑏)) → Rel (((𝑀 Sat 𝐸)‘𝑏) ∪ {⟨𝑥, 𝑦⟩ ∣ ∃𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑏)(∃𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑏)(𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 ({⟨𝑖, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)}))}))
2314satfvsuc 34352 . . . . . . . . . . 11 ((𝑀𝑉𝐸𝑊𝑏 ∈ ω) → ((𝑀 Sat 𝐸)‘suc 𝑏) = (((𝑀 Sat 𝐸)‘𝑏) ∪ {⟨𝑥, 𝑦⟩ ∣ ∃𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑏)(∃𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑏)(𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 ({⟨𝑖, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)}))}))
2423ad4ant123 1173 . . . . . . . . . 10 ((((𝑀𝑉𝐸𝑊) ∧ 𝑏 ∈ ω) ∧ Rel ((𝑀 Sat 𝐸)‘𝑏)) → ((𝑀 Sat 𝐸)‘suc 𝑏) = (((𝑀 Sat 𝐸)‘𝑏) ∪ {⟨𝑥, 𝑦⟩ ∣ ∃𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑏)(∃𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑏)(𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 ({⟨𝑖, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)}))}))
2524releqd 5779 . . . . . . . . 9 ((((𝑀𝑉𝐸𝑊) ∧ 𝑏 ∈ ω) ∧ Rel ((𝑀 Sat 𝐸)‘𝑏)) → (Rel ((𝑀 Sat 𝐸)‘suc 𝑏) ↔ Rel (((𝑀 Sat 𝐸)‘𝑏) ∪ {⟨𝑥, 𝑦⟩ ∣ ∃𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑏)(∃𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑏)(𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 ({⟨𝑖, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)}))})))
2622, 25mpbird 257 . . . . . . . 8 ((((𝑀𝑉𝐸𝑊) ∧ 𝑏 ∈ ω) ∧ Rel ((𝑀 Sat 𝐸)‘𝑏)) → Rel ((𝑀 Sat 𝐸)‘suc 𝑏))
2726exp31 421 . . . . . . 7 ((𝑀𝑉𝐸𝑊) → (𝑏 ∈ ω → (Rel ((𝑀 Sat 𝐸)‘𝑏) → Rel ((𝑀 Sat 𝐸)‘suc 𝑏))))
2827com23 86 . . . . . 6 ((𝑀𝑉𝐸𝑊) → (Rel ((𝑀 Sat 𝐸)‘𝑏) → (𝑏 ∈ ω → Rel ((𝑀 Sat 𝐸)‘suc 𝑏))))
2918, 28syld 47 . . . . 5 ((𝑀𝑉𝐸𝑊) → (((𝑀𝑉𝐸𝑊) → Rel ((𝑀 Sat 𝐸)‘𝑏)) → (𝑏 ∈ ω → Rel ((𝑀 Sat 𝐸)‘suc 𝑏))))
3029com13 88 . . . 4 (𝑏 ∈ ω → (((𝑀𝑉𝐸𝑊) → Rel ((𝑀 Sat 𝐸)‘𝑏)) → ((𝑀𝑉𝐸𝑊) → Rel ((𝑀 Sat 𝐸)‘suc 𝑏))))
313, 6, 9, 12, 17, 30finds 7889 . . 3 (𝑁 ∈ ω → ((𝑀𝑉𝐸𝑊) → Rel ((𝑀 Sat 𝐸)‘𝑁)))
3231com12 32 . 2 ((𝑀𝑉𝐸𝑊) → (𝑁 ∈ ω → Rel ((𝑀 Sat 𝐸)‘𝑁)))
33323impia 1118 1 ((𝑀𝑉𝐸𝑊𝑁 ∈ ω) → Rel ((𝑀 Sat 𝐸)‘𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397  wo 846  w3a 1088   = wceq 1542  wcel 2107  wral 3062  wrex 3071  {crab 3433  cdif 3946  cun 3947  cin 3948  c0 4323  {csn 4629  cop 4635   class class class wbr 5149  {copab 5211  cres 5679  Rel wrel 5682  suc csuc 6367  cfv 6544  (class class class)co 7409  ωcom 7855  1st c1st 7973  2nd c2nd 7974  m cmap 8820  𝑔cgoe 34324  𝑔cgna 34325  𝑔cgol 34326   Sat csat 34327
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725  ax-inf2 9636
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-ov 7412  df-oprab 7413  df-mpo 7414  df-om 7856  df-2nd 7976  df-frecs 8266  df-wrecs 8297  df-recs 8371  df-rdg 8410  df-goel 34331  df-sat 34334
This theorem is referenced by:  satfdmlem  34359  satffunlem1lem2  34394  satffunlem2lem2  34397
  Copyright terms: Public domain W3C validator