| Step | Hyp | Ref
| Expression |
| 1 | | fveq2 6906 |
. . . . . 6
⊢ (𝑎 = ∅ → ((𝑀 Sat 𝐸)‘𝑎) = ((𝑀 Sat 𝐸)‘∅)) |
| 2 | 1 | releqd 5788 |
. . . . 5
⊢ (𝑎 = ∅ → (Rel ((𝑀 Sat 𝐸)‘𝑎) ↔ Rel ((𝑀 Sat 𝐸)‘∅))) |
| 3 | 2 | imbi2d 340 |
. . . 4
⊢ (𝑎 = ∅ → (((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) → Rel ((𝑀 Sat 𝐸)‘𝑎)) ↔ ((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) → Rel ((𝑀 Sat 𝐸)‘∅)))) |
| 4 | | fveq2 6906 |
. . . . . 6
⊢ (𝑎 = 𝑏 → ((𝑀 Sat 𝐸)‘𝑎) = ((𝑀 Sat 𝐸)‘𝑏)) |
| 5 | 4 | releqd 5788 |
. . . . 5
⊢ (𝑎 = 𝑏 → (Rel ((𝑀 Sat 𝐸)‘𝑎) ↔ Rel ((𝑀 Sat 𝐸)‘𝑏))) |
| 6 | 5 | imbi2d 340 |
. . . 4
⊢ (𝑎 = 𝑏 → (((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) → Rel ((𝑀 Sat 𝐸)‘𝑎)) ↔ ((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) → Rel ((𝑀 Sat 𝐸)‘𝑏)))) |
| 7 | | fveq2 6906 |
. . . . . 6
⊢ (𝑎 = suc 𝑏 → ((𝑀 Sat 𝐸)‘𝑎) = ((𝑀 Sat 𝐸)‘suc 𝑏)) |
| 8 | 7 | releqd 5788 |
. . . . 5
⊢ (𝑎 = suc 𝑏 → (Rel ((𝑀 Sat 𝐸)‘𝑎) ↔ Rel ((𝑀 Sat 𝐸)‘suc 𝑏))) |
| 9 | 8 | imbi2d 340 |
. . . 4
⊢ (𝑎 = suc 𝑏 → (((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) → Rel ((𝑀 Sat 𝐸)‘𝑎)) ↔ ((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) → Rel ((𝑀 Sat 𝐸)‘suc 𝑏)))) |
| 10 | | fveq2 6906 |
. . . . . 6
⊢ (𝑎 = 𝑁 → ((𝑀 Sat 𝐸)‘𝑎) = ((𝑀 Sat 𝐸)‘𝑁)) |
| 11 | 10 | releqd 5788 |
. . . . 5
⊢ (𝑎 = 𝑁 → (Rel ((𝑀 Sat 𝐸)‘𝑎) ↔ Rel ((𝑀 Sat 𝐸)‘𝑁))) |
| 12 | 11 | imbi2d 340 |
. . . 4
⊢ (𝑎 = 𝑁 → (((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) → Rel ((𝑀 Sat 𝐸)‘𝑎)) ↔ ((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) → Rel ((𝑀 Sat 𝐸)‘𝑁)))) |
| 13 | | relopabv 5831 |
. . . . 5
⊢ Rel
{〈𝑥, 𝑦〉 ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖∈𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑖)𝐸(𝑎‘𝑗)})} |
| 14 | | eqid 2737 |
. . . . . . 7
⊢ (𝑀 Sat 𝐸) = (𝑀 Sat 𝐸) |
| 15 | 14 | satfv0 35363 |
. . . . . 6
⊢ ((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) → ((𝑀 Sat 𝐸)‘∅) = {〈𝑥, 𝑦〉 ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖∈𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑖)𝐸(𝑎‘𝑗)})}) |
| 16 | 15 | releqd 5788 |
. . . . 5
⊢ ((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) → (Rel ((𝑀 Sat 𝐸)‘∅) ↔ Rel {〈𝑥, 𝑦〉 ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖∈𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑖)𝐸(𝑎‘𝑗)})})) |
| 17 | 13, 16 | mpbiri 258 |
. . . 4
⊢ ((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) → Rel ((𝑀 Sat 𝐸)‘∅)) |
| 18 | | pm2.27 42 |
. . . . . 6
⊢ ((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) → (((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) → Rel ((𝑀 Sat 𝐸)‘𝑏)) → Rel ((𝑀 Sat 𝐸)‘𝑏))) |
| 19 | | simpr 484 |
. . . . . . . . . 10
⊢ ((((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) ∧ 𝑏 ∈ ω) ∧ Rel ((𝑀 Sat 𝐸)‘𝑏)) → Rel ((𝑀 Sat 𝐸)‘𝑏)) |
| 20 | | relopabv 5831 |
. . . . . . . . . 10
⊢ Rel
{〈𝑥, 𝑦〉 ∣ ∃𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑏)(∃𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑏)(𝑥 = ((1st ‘𝑢)⊼𝑔(1st
‘𝑣)) ∧ 𝑦 = ((𝑀 ↑m ω) ∖
((2nd ‘𝑢)
∩ (2nd ‘𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st ‘𝑢) ∧ 𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣
∀𝑧 ∈ 𝑀 ({〈𝑖, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑖}))) ∈ (2nd ‘𝑢)}))} |
| 21 | | relun 5821 |
. . . . . . . . . 10
⊢ (Rel
(((𝑀 Sat 𝐸)‘𝑏) ∪ {〈𝑥, 𝑦〉 ∣ ∃𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑏)(∃𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑏)(𝑥 = ((1st ‘𝑢)⊼𝑔(1st
‘𝑣)) ∧ 𝑦 = ((𝑀 ↑m ω) ∖
((2nd ‘𝑢)
∩ (2nd ‘𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st ‘𝑢) ∧ 𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣
∀𝑧 ∈ 𝑀 ({〈𝑖, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑖}))) ∈ (2nd ‘𝑢)}))}) ↔ (Rel ((𝑀 Sat 𝐸)‘𝑏) ∧ Rel {〈𝑥, 𝑦〉 ∣ ∃𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑏)(∃𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑏)(𝑥 = ((1st ‘𝑢)⊼𝑔(1st
‘𝑣)) ∧ 𝑦 = ((𝑀 ↑m ω) ∖
((2nd ‘𝑢)
∩ (2nd ‘𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st ‘𝑢) ∧ 𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣
∀𝑧 ∈ 𝑀 ({〈𝑖, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑖}))) ∈ (2nd ‘𝑢)}))})) |
| 22 | 19, 20, 21 | sylanblrc 590 |
. . . . . . . . 9
⊢ ((((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) ∧ 𝑏 ∈ ω) ∧ Rel ((𝑀 Sat 𝐸)‘𝑏)) → Rel (((𝑀 Sat 𝐸)‘𝑏) ∪ {〈𝑥, 𝑦〉 ∣ ∃𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑏)(∃𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑏)(𝑥 = ((1st ‘𝑢)⊼𝑔(1st
‘𝑣)) ∧ 𝑦 = ((𝑀 ↑m ω) ∖
((2nd ‘𝑢)
∩ (2nd ‘𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st ‘𝑢) ∧ 𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣
∀𝑧 ∈ 𝑀 ({〈𝑖, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑖}))) ∈ (2nd ‘𝑢)}))})) |
| 23 | 14 | satfvsuc 35366 |
. . . . . . . . . . 11
⊢ ((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ∧ 𝑏 ∈ ω) → ((𝑀 Sat 𝐸)‘suc 𝑏) = (((𝑀 Sat 𝐸)‘𝑏) ∪ {〈𝑥, 𝑦〉 ∣ ∃𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑏)(∃𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑏)(𝑥 = ((1st ‘𝑢)⊼𝑔(1st
‘𝑣)) ∧ 𝑦 = ((𝑀 ↑m ω) ∖
((2nd ‘𝑢)
∩ (2nd ‘𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st ‘𝑢) ∧ 𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣
∀𝑧 ∈ 𝑀 ({〈𝑖, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑖}))) ∈ (2nd ‘𝑢)}))})) |
| 24 | 23 | ad4ant123 1173 |
. . . . . . . . . 10
⊢ ((((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) ∧ 𝑏 ∈ ω) ∧ Rel ((𝑀 Sat 𝐸)‘𝑏)) → ((𝑀 Sat 𝐸)‘suc 𝑏) = (((𝑀 Sat 𝐸)‘𝑏) ∪ {〈𝑥, 𝑦〉 ∣ ∃𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑏)(∃𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑏)(𝑥 = ((1st ‘𝑢)⊼𝑔(1st
‘𝑣)) ∧ 𝑦 = ((𝑀 ↑m ω) ∖
((2nd ‘𝑢)
∩ (2nd ‘𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st ‘𝑢) ∧ 𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣
∀𝑧 ∈ 𝑀 ({〈𝑖, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑖}))) ∈ (2nd ‘𝑢)}))})) |
| 25 | 24 | releqd 5788 |
. . . . . . . . 9
⊢ ((((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) ∧ 𝑏 ∈ ω) ∧ Rel ((𝑀 Sat 𝐸)‘𝑏)) → (Rel ((𝑀 Sat 𝐸)‘suc 𝑏) ↔ Rel (((𝑀 Sat 𝐸)‘𝑏) ∪ {〈𝑥, 𝑦〉 ∣ ∃𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑏)(∃𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑏)(𝑥 = ((1st ‘𝑢)⊼𝑔(1st
‘𝑣)) ∧ 𝑦 = ((𝑀 ↑m ω) ∖
((2nd ‘𝑢)
∩ (2nd ‘𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st ‘𝑢) ∧ 𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣
∀𝑧 ∈ 𝑀 ({〈𝑖, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑖}))) ∈ (2nd ‘𝑢)}))}))) |
| 26 | 22, 25 | mpbird 257 |
. . . . . . . 8
⊢ ((((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) ∧ 𝑏 ∈ ω) ∧ Rel ((𝑀 Sat 𝐸)‘𝑏)) → Rel ((𝑀 Sat 𝐸)‘suc 𝑏)) |
| 27 | 26 | exp31 419 |
. . . . . . 7
⊢ ((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) → (𝑏 ∈ ω → (Rel ((𝑀 Sat 𝐸)‘𝑏) → Rel ((𝑀 Sat 𝐸)‘suc 𝑏)))) |
| 28 | 27 | com23 86 |
. . . . . 6
⊢ ((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) → (Rel ((𝑀 Sat 𝐸)‘𝑏) → (𝑏 ∈ ω → Rel ((𝑀 Sat 𝐸)‘suc 𝑏)))) |
| 29 | 18, 28 | syld 47 |
. . . . 5
⊢ ((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) → (((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) → Rel ((𝑀 Sat 𝐸)‘𝑏)) → (𝑏 ∈ ω → Rel ((𝑀 Sat 𝐸)‘suc 𝑏)))) |
| 30 | 29 | com13 88 |
. . . 4
⊢ (𝑏 ∈ ω → (((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) → Rel ((𝑀 Sat 𝐸)‘𝑏)) → ((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) → Rel ((𝑀 Sat 𝐸)‘suc 𝑏)))) |
| 31 | 3, 6, 9, 12, 17, 30 | finds 7918 |
. . 3
⊢ (𝑁 ∈ ω → ((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) → Rel ((𝑀 Sat 𝐸)‘𝑁))) |
| 32 | 31 | com12 32 |
. 2
⊢ ((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) → (𝑁 ∈ ω → Rel ((𝑀 Sat 𝐸)‘𝑁))) |
| 33 | 32 | 3impia 1118 |
1
⊢ ((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ∧ 𝑁 ∈ ω) → Rel ((𝑀 Sat 𝐸)‘𝑁)) |