Mathbox for Mario Carneiro < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  satfrel Structured version   Visualization version   GIF version

Theorem satfrel 32632
 Description: The value of the satisfaction predicate as function over wff codes at a natural number is a relation. (Contributed by AV, 12-Oct-2023.)
Assertion
Ref Expression
satfrel ((𝑀𝑉𝐸𝑊𝑁 ∈ ω) → Rel ((𝑀 Sat 𝐸)‘𝑁))

Proof of Theorem satfrel
Dummy variables 𝑎 𝑖 𝑗 𝑢 𝑣 𝑥 𝑦 𝑧 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6651 . . . . . 6 (𝑎 = ∅ → ((𝑀 Sat 𝐸)‘𝑎) = ((𝑀 Sat 𝐸)‘∅))
21releqd 5634 . . . . 5 (𝑎 = ∅ → (Rel ((𝑀 Sat 𝐸)‘𝑎) ↔ Rel ((𝑀 Sat 𝐸)‘∅)))
32imbi2d 344 . . . 4 (𝑎 = ∅ → (((𝑀𝑉𝐸𝑊) → Rel ((𝑀 Sat 𝐸)‘𝑎)) ↔ ((𝑀𝑉𝐸𝑊) → Rel ((𝑀 Sat 𝐸)‘∅))))
4 fveq2 6651 . . . . . 6 (𝑎 = 𝑏 → ((𝑀 Sat 𝐸)‘𝑎) = ((𝑀 Sat 𝐸)‘𝑏))
54releqd 5634 . . . . 5 (𝑎 = 𝑏 → (Rel ((𝑀 Sat 𝐸)‘𝑎) ↔ Rel ((𝑀 Sat 𝐸)‘𝑏)))
65imbi2d 344 . . . 4 (𝑎 = 𝑏 → (((𝑀𝑉𝐸𝑊) → Rel ((𝑀 Sat 𝐸)‘𝑎)) ↔ ((𝑀𝑉𝐸𝑊) → Rel ((𝑀 Sat 𝐸)‘𝑏))))
7 fveq2 6651 . . . . . 6 (𝑎 = suc 𝑏 → ((𝑀 Sat 𝐸)‘𝑎) = ((𝑀 Sat 𝐸)‘suc 𝑏))
87releqd 5634 . . . . 5 (𝑎 = suc 𝑏 → (Rel ((𝑀 Sat 𝐸)‘𝑎) ↔ Rel ((𝑀 Sat 𝐸)‘suc 𝑏)))
98imbi2d 344 . . . 4 (𝑎 = suc 𝑏 → (((𝑀𝑉𝐸𝑊) → Rel ((𝑀 Sat 𝐸)‘𝑎)) ↔ ((𝑀𝑉𝐸𝑊) → Rel ((𝑀 Sat 𝐸)‘suc 𝑏))))
10 fveq2 6651 . . . . . 6 (𝑎 = 𝑁 → ((𝑀 Sat 𝐸)‘𝑎) = ((𝑀 Sat 𝐸)‘𝑁))
1110releqd 5634 . . . . 5 (𝑎 = 𝑁 → (Rel ((𝑀 Sat 𝐸)‘𝑎) ↔ Rel ((𝑀 Sat 𝐸)‘𝑁)))
1211imbi2d 344 . . . 4 (𝑎 = 𝑁 → (((𝑀𝑉𝐸𝑊) → Rel ((𝑀 Sat 𝐸)‘𝑎)) ↔ ((𝑀𝑉𝐸𝑊) → Rel ((𝑀 Sat 𝐸)‘𝑁))))
13 relopab 5677 . . . . 5 Rel {⟨𝑥, 𝑦⟩ ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)})}
14 eqid 2824 . . . . . . 7 (𝑀 Sat 𝐸) = (𝑀 Sat 𝐸)
1514satfv0 32623 . . . . . 6 ((𝑀𝑉𝐸𝑊) → ((𝑀 Sat 𝐸)‘∅) = {⟨𝑥, 𝑦⟩ ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)})})
1615releqd 5634 . . . . 5 ((𝑀𝑉𝐸𝑊) → (Rel ((𝑀 Sat 𝐸)‘∅) ↔ Rel {⟨𝑥, 𝑦⟩ ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)})}))
1713, 16mpbiri 261 . . . 4 ((𝑀𝑉𝐸𝑊) → Rel ((𝑀 Sat 𝐸)‘∅))
18 pm2.27 42 . . . . . 6 ((𝑀𝑉𝐸𝑊) → (((𝑀𝑉𝐸𝑊) → Rel ((𝑀 Sat 𝐸)‘𝑏)) → Rel ((𝑀 Sat 𝐸)‘𝑏)))
19 simpr 488 . . . . . . . . . 10 ((((𝑀𝑉𝐸𝑊) ∧ 𝑏 ∈ ω) ∧ Rel ((𝑀 Sat 𝐸)‘𝑏)) → Rel ((𝑀 Sat 𝐸)‘𝑏))
20 relopab 5677 . . . . . . . . . 10 Rel {⟨𝑥, 𝑦⟩ ∣ ∃𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑏)(∃𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑏)(𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 ({⟨𝑖, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)}))}
21 relun 5665 . . . . . . . . . 10 (Rel (((𝑀 Sat 𝐸)‘𝑏) ∪ {⟨𝑥, 𝑦⟩ ∣ ∃𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑏)(∃𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑏)(𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 ({⟨𝑖, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)}))}) ↔ (Rel ((𝑀 Sat 𝐸)‘𝑏) ∧ Rel {⟨𝑥, 𝑦⟩ ∣ ∃𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑏)(∃𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑏)(𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 ({⟨𝑖, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)}))}))
2219, 20, 21sylanblrc 593 . . . . . . . . 9 ((((𝑀𝑉𝐸𝑊) ∧ 𝑏 ∈ ω) ∧ Rel ((𝑀 Sat 𝐸)‘𝑏)) → Rel (((𝑀 Sat 𝐸)‘𝑏) ∪ {⟨𝑥, 𝑦⟩ ∣ ∃𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑏)(∃𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑏)(𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 ({⟨𝑖, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)}))}))
2314satfvsuc 32626 . . . . . . . . . . 11 ((𝑀𝑉𝐸𝑊𝑏 ∈ ω) → ((𝑀 Sat 𝐸)‘suc 𝑏) = (((𝑀 Sat 𝐸)‘𝑏) ∪ {⟨𝑥, 𝑦⟩ ∣ ∃𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑏)(∃𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑏)(𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 ({⟨𝑖, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)}))}))
2423ad4ant123 1169 . . . . . . . . . 10 ((((𝑀𝑉𝐸𝑊) ∧ 𝑏 ∈ ω) ∧ Rel ((𝑀 Sat 𝐸)‘𝑏)) → ((𝑀 Sat 𝐸)‘suc 𝑏) = (((𝑀 Sat 𝐸)‘𝑏) ∪ {⟨𝑥, 𝑦⟩ ∣ ∃𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑏)(∃𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑏)(𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 ({⟨𝑖, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)}))}))
2524releqd 5634 . . . . . . . . 9 ((((𝑀𝑉𝐸𝑊) ∧ 𝑏 ∈ ω) ∧ Rel ((𝑀 Sat 𝐸)‘𝑏)) → (Rel ((𝑀 Sat 𝐸)‘suc 𝑏) ↔ Rel (((𝑀 Sat 𝐸)‘𝑏) ∪ {⟨𝑥, 𝑦⟩ ∣ ∃𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑏)(∃𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑏)(𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 ({⟨𝑖, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)}))})))
2622, 25mpbird 260 . . . . . . . 8 ((((𝑀𝑉𝐸𝑊) ∧ 𝑏 ∈ ω) ∧ Rel ((𝑀 Sat 𝐸)‘𝑏)) → Rel ((𝑀 Sat 𝐸)‘suc 𝑏))
2726exp31 423 . . . . . . 7 ((𝑀𝑉𝐸𝑊) → (𝑏 ∈ ω → (Rel ((𝑀 Sat 𝐸)‘𝑏) → Rel ((𝑀 Sat 𝐸)‘suc 𝑏))))
2827com23 86 . . . . . 6 ((𝑀𝑉𝐸𝑊) → (Rel ((𝑀 Sat 𝐸)‘𝑏) → (𝑏 ∈ ω → Rel ((𝑀 Sat 𝐸)‘suc 𝑏))))
2918, 28syld 47 . . . . 5 ((𝑀𝑉𝐸𝑊) → (((𝑀𝑉𝐸𝑊) → Rel ((𝑀 Sat 𝐸)‘𝑏)) → (𝑏 ∈ ω → Rel ((𝑀 Sat 𝐸)‘suc 𝑏))))
3029com13 88 . . . 4 (𝑏 ∈ ω → (((𝑀𝑉𝐸𝑊) → Rel ((𝑀 Sat 𝐸)‘𝑏)) → ((𝑀𝑉𝐸𝑊) → Rel ((𝑀 Sat 𝐸)‘suc 𝑏))))
313, 6, 9, 12, 17, 30finds 7591 . . 3 (𝑁 ∈ ω → ((𝑀𝑉𝐸𝑊) → Rel ((𝑀 Sat 𝐸)‘𝑁)))
3231com12 32 . 2 ((𝑀𝑉𝐸𝑊) → (𝑁 ∈ ω → Rel ((𝑀 Sat 𝐸)‘𝑁)))
33323impia 1114 1 ((𝑀𝑉𝐸𝑊𝑁 ∈ ω) → Rel ((𝑀 Sat 𝐸)‘𝑁))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 399   ∨ wo 844   ∧ w3a 1084   = wceq 1538   ∈ wcel 2115  ∀wral 3132  ∃wrex 3133  {crab 3136   ∖ cdif 3915   ∪ cun 3916   ∩ cin 3917  ∅c0 4274  {csn 4548  ⟨cop 4554   class class class wbr 5047  {copab 5109   ↾ cres 5538  Rel wrel 5541  suc csuc 6174  ‘cfv 6336  (class class class)co 7138  ωcom 7563  1st c1st 7670  2nd c2nd 7671   ↑m cmap 8389  ∈𝑔cgoe 32598  ⊼𝑔cgna 32599  ∀𝑔cgol 32600   Sat csat 32601 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-rep 5171  ax-sep 5184  ax-nul 5191  ax-pow 5247  ax-pr 5311  ax-un 7444  ax-inf2 9088 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3014  df-ral 3137  df-rex 3138  df-reu 3139  df-rab 3141  df-v 3481  df-sbc 3758  df-csb 3866  df-dif 3921  df-un 3923  df-in 3925  df-ss 3935  df-pss 3937  df-nul 4275  df-if 4449  df-pw 4522  df-sn 4549  df-pr 4551  df-tp 4553  df-op 4555  df-uni 4820  df-iun 4902  df-br 5048  df-opab 5110  df-mpt 5128  df-tr 5154  df-id 5441  df-eprel 5446  df-po 5455  df-so 5456  df-fr 5495  df-we 5497  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-pred 6129  df-ord 6175  df-on 6176  df-lim 6177  df-suc 6178  df-iota 6295  df-fun 6338  df-fn 6339  df-f 6340  df-f1 6341  df-fo 6342  df-f1o 6343  df-fv 6344  df-ov 7141  df-oprab 7142  df-mpo 7143  df-om 7564  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-goel 32605  df-sat 32608 This theorem is referenced by:  satfdmlem  32633  satffunlem1lem2  32668  satffunlem2lem2  32671
 Copyright terms: Public domain W3C validator