Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  satfrel Structured version   Visualization version   GIF version

Theorem satfrel 35389
Description: The value of the satisfaction predicate as function over wff codes at a natural number is a relation. (Contributed by AV, 12-Oct-2023.)
Assertion
Ref Expression
satfrel ((𝑀𝑉𝐸𝑊𝑁 ∈ ω) → Rel ((𝑀 Sat 𝐸)‘𝑁))

Proof of Theorem satfrel
Dummy variables 𝑎 𝑖 𝑗 𝑢 𝑣 𝑥 𝑦 𝑧 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6876 . . . . . 6 (𝑎 = ∅ → ((𝑀 Sat 𝐸)‘𝑎) = ((𝑀 Sat 𝐸)‘∅))
21releqd 5757 . . . . 5 (𝑎 = ∅ → (Rel ((𝑀 Sat 𝐸)‘𝑎) ↔ Rel ((𝑀 Sat 𝐸)‘∅)))
32imbi2d 340 . . . 4 (𝑎 = ∅ → (((𝑀𝑉𝐸𝑊) → Rel ((𝑀 Sat 𝐸)‘𝑎)) ↔ ((𝑀𝑉𝐸𝑊) → Rel ((𝑀 Sat 𝐸)‘∅))))
4 fveq2 6876 . . . . . 6 (𝑎 = 𝑏 → ((𝑀 Sat 𝐸)‘𝑎) = ((𝑀 Sat 𝐸)‘𝑏))
54releqd 5757 . . . . 5 (𝑎 = 𝑏 → (Rel ((𝑀 Sat 𝐸)‘𝑎) ↔ Rel ((𝑀 Sat 𝐸)‘𝑏)))
65imbi2d 340 . . . 4 (𝑎 = 𝑏 → (((𝑀𝑉𝐸𝑊) → Rel ((𝑀 Sat 𝐸)‘𝑎)) ↔ ((𝑀𝑉𝐸𝑊) → Rel ((𝑀 Sat 𝐸)‘𝑏))))
7 fveq2 6876 . . . . . 6 (𝑎 = suc 𝑏 → ((𝑀 Sat 𝐸)‘𝑎) = ((𝑀 Sat 𝐸)‘suc 𝑏))
87releqd 5757 . . . . 5 (𝑎 = suc 𝑏 → (Rel ((𝑀 Sat 𝐸)‘𝑎) ↔ Rel ((𝑀 Sat 𝐸)‘suc 𝑏)))
98imbi2d 340 . . . 4 (𝑎 = suc 𝑏 → (((𝑀𝑉𝐸𝑊) → Rel ((𝑀 Sat 𝐸)‘𝑎)) ↔ ((𝑀𝑉𝐸𝑊) → Rel ((𝑀 Sat 𝐸)‘suc 𝑏))))
10 fveq2 6876 . . . . . 6 (𝑎 = 𝑁 → ((𝑀 Sat 𝐸)‘𝑎) = ((𝑀 Sat 𝐸)‘𝑁))
1110releqd 5757 . . . . 5 (𝑎 = 𝑁 → (Rel ((𝑀 Sat 𝐸)‘𝑎) ↔ Rel ((𝑀 Sat 𝐸)‘𝑁)))
1211imbi2d 340 . . . 4 (𝑎 = 𝑁 → (((𝑀𝑉𝐸𝑊) → Rel ((𝑀 Sat 𝐸)‘𝑎)) ↔ ((𝑀𝑉𝐸𝑊) → Rel ((𝑀 Sat 𝐸)‘𝑁))))
13 relopabv 5800 . . . . 5 Rel {⟨𝑥, 𝑦⟩ ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)})}
14 eqid 2735 . . . . . . 7 (𝑀 Sat 𝐸) = (𝑀 Sat 𝐸)
1514satfv0 35380 . . . . . 6 ((𝑀𝑉𝐸𝑊) → ((𝑀 Sat 𝐸)‘∅) = {⟨𝑥, 𝑦⟩ ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)})})
1615releqd 5757 . . . . 5 ((𝑀𝑉𝐸𝑊) → (Rel ((𝑀 Sat 𝐸)‘∅) ↔ Rel {⟨𝑥, 𝑦⟩ ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)})}))
1713, 16mpbiri 258 . . . 4 ((𝑀𝑉𝐸𝑊) → Rel ((𝑀 Sat 𝐸)‘∅))
18 pm2.27 42 . . . . . 6 ((𝑀𝑉𝐸𝑊) → (((𝑀𝑉𝐸𝑊) → Rel ((𝑀 Sat 𝐸)‘𝑏)) → Rel ((𝑀 Sat 𝐸)‘𝑏)))
19 simpr 484 . . . . . . . . . 10 ((((𝑀𝑉𝐸𝑊) ∧ 𝑏 ∈ ω) ∧ Rel ((𝑀 Sat 𝐸)‘𝑏)) → Rel ((𝑀 Sat 𝐸)‘𝑏))
20 relopabv 5800 . . . . . . . . . 10 Rel {⟨𝑥, 𝑦⟩ ∣ ∃𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑏)(∃𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑏)(𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 ({⟨𝑖, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)}))}
21 relun 5790 . . . . . . . . . 10 (Rel (((𝑀 Sat 𝐸)‘𝑏) ∪ {⟨𝑥, 𝑦⟩ ∣ ∃𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑏)(∃𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑏)(𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 ({⟨𝑖, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)}))}) ↔ (Rel ((𝑀 Sat 𝐸)‘𝑏) ∧ Rel {⟨𝑥, 𝑦⟩ ∣ ∃𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑏)(∃𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑏)(𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 ({⟨𝑖, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)}))}))
2219, 20, 21sylanblrc 590 . . . . . . . . 9 ((((𝑀𝑉𝐸𝑊) ∧ 𝑏 ∈ ω) ∧ Rel ((𝑀 Sat 𝐸)‘𝑏)) → Rel (((𝑀 Sat 𝐸)‘𝑏) ∪ {⟨𝑥, 𝑦⟩ ∣ ∃𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑏)(∃𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑏)(𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 ({⟨𝑖, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)}))}))
2314satfvsuc 35383 . . . . . . . . . . 11 ((𝑀𝑉𝐸𝑊𝑏 ∈ ω) → ((𝑀 Sat 𝐸)‘suc 𝑏) = (((𝑀 Sat 𝐸)‘𝑏) ∪ {⟨𝑥, 𝑦⟩ ∣ ∃𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑏)(∃𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑏)(𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 ({⟨𝑖, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)}))}))
2423ad4ant123 1173 . . . . . . . . . 10 ((((𝑀𝑉𝐸𝑊) ∧ 𝑏 ∈ ω) ∧ Rel ((𝑀 Sat 𝐸)‘𝑏)) → ((𝑀 Sat 𝐸)‘suc 𝑏) = (((𝑀 Sat 𝐸)‘𝑏) ∪ {⟨𝑥, 𝑦⟩ ∣ ∃𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑏)(∃𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑏)(𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 ({⟨𝑖, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)}))}))
2524releqd 5757 . . . . . . . . 9 ((((𝑀𝑉𝐸𝑊) ∧ 𝑏 ∈ ω) ∧ Rel ((𝑀 Sat 𝐸)‘𝑏)) → (Rel ((𝑀 Sat 𝐸)‘suc 𝑏) ↔ Rel (((𝑀 Sat 𝐸)‘𝑏) ∪ {⟨𝑥, 𝑦⟩ ∣ ∃𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑏)(∃𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑏)(𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 ({⟨𝑖, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)}))})))
2622, 25mpbird 257 . . . . . . . 8 ((((𝑀𝑉𝐸𝑊) ∧ 𝑏 ∈ ω) ∧ Rel ((𝑀 Sat 𝐸)‘𝑏)) → Rel ((𝑀 Sat 𝐸)‘suc 𝑏))
2726exp31 419 . . . . . . 7 ((𝑀𝑉𝐸𝑊) → (𝑏 ∈ ω → (Rel ((𝑀 Sat 𝐸)‘𝑏) → Rel ((𝑀 Sat 𝐸)‘suc 𝑏))))
2827com23 86 . . . . . 6 ((𝑀𝑉𝐸𝑊) → (Rel ((𝑀 Sat 𝐸)‘𝑏) → (𝑏 ∈ ω → Rel ((𝑀 Sat 𝐸)‘suc 𝑏))))
2918, 28syld 47 . . . . 5 ((𝑀𝑉𝐸𝑊) → (((𝑀𝑉𝐸𝑊) → Rel ((𝑀 Sat 𝐸)‘𝑏)) → (𝑏 ∈ ω → Rel ((𝑀 Sat 𝐸)‘suc 𝑏))))
3029com13 88 . . . 4 (𝑏 ∈ ω → (((𝑀𝑉𝐸𝑊) → Rel ((𝑀 Sat 𝐸)‘𝑏)) → ((𝑀𝑉𝐸𝑊) → Rel ((𝑀 Sat 𝐸)‘suc 𝑏))))
313, 6, 9, 12, 17, 30finds 7892 . . 3 (𝑁 ∈ ω → ((𝑀𝑉𝐸𝑊) → Rel ((𝑀 Sat 𝐸)‘𝑁)))
3231com12 32 . 2 ((𝑀𝑉𝐸𝑊) → (𝑁 ∈ ω → Rel ((𝑀 Sat 𝐸)‘𝑁)))
33323impia 1117 1 ((𝑀𝑉𝐸𝑊𝑁 ∈ ω) → Rel ((𝑀 Sat 𝐸)‘𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2108  wral 3051  wrex 3060  {crab 3415  cdif 3923  cun 3924  cin 3925  c0 4308  {csn 4601  cop 4607   class class class wbr 5119  {copab 5181  cres 5656  Rel wrel 5659  suc csuc 6354  cfv 6531  (class class class)co 7405  ωcom 7861  1st c1st 7986  2nd c2nd 7987  m cmap 8840  𝑔cgoe 35355  𝑔cgna 35356  𝑔cgol 35357   Sat csat 35358
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-inf2 9655
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-goel 35362  df-sat 35365
This theorem is referenced by:  satfdmlem  35390  satffunlem1lem2  35425  satffunlem2lem2  35428
  Copyright terms: Public domain W3C validator