Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  satfrel Structured version   Visualization version   GIF version

Theorem satfrel 35108
Description: The value of the satisfaction predicate as function over wff codes at a natural number is a relation. (Contributed by AV, 12-Oct-2023.)
Assertion
Ref Expression
satfrel ((𝑀𝑉𝐸𝑊𝑁 ∈ ω) → Rel ((𝑀 Sat 𝐸)‘𝑁))

Proof of Theorem satfrel
Dummy variables 𝑎 𝑖 𝑗 𝑢 𝑣 𝑥 𝑦 𝑧 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6896 . . . . . 6 (𝑎 = ∅ → ((𝑀 Sat 𝐸)‘𝑎) = ((𝑀 Sat 𝐸)‘∅))
21releqd 5780 . . . . 5 (𝑎 = ∅ → (Rel ((𝑀 Sat 𝐸)‘𝑎) ↔ Rel ((𝑀 Sat 𝐸)‘∅)))
32imbi2d 339 . . . 4 (𝑎 = ∅ → (((𝑀𝑉𝐸𝑊) → Rel ((𝑀 Sat 𝐸)‘𝑎)) ↔ ((𝑀𝑉𝐸𝑊) → Rel ((𝑀 Sat 𝐸)‘∅))))
4 fveq2 6896 . . . . . 6 (𝑎 = 𝑏 → ((𝑀 Sat 𝐸)‘𝑎) = ((𝑀 Sat 𝐸)‘𝑏))
54releqd 5780 . . . . 5 (𝑎 = 𝑏 → (Rel ((𝑀 Sat 𝐸)‘𝑎) ↔ Rel ((𝑀 Sat 𝐸)‘𝑏)))
65imbi2d 339 . . . 4 (𝑎 = 𝑏 → (((𝑀𝑉𝐸𝑊) → Rel ((𝑀 Sat 𝐸)‘𝑎)) ↔ ((𝑀𝑉𝐸𝑊) → Rel ((𝑀 Sat 𝐸)‘𝑏))))
7 fveq2 6896 . . . . . 6 (𝑎 = suc 𝑏 → ((𝑀 Sat 𝐸)‘𝑎) = ((𝑀 Sat 𝐸)‘suc 𝑏))
87releqd 5780 . . . . 5 (𝑎 = suc 𝑏 → (Rel ((𝑀 Sat 𝐸)‘𝑎) ↔ Rel ((𝑀 Sat 𝐸)‘suc 𝑏)))
98imbi2d 339 . . . 4 (𝑎 = suc 𝑏 → (((𝑀𝑉𝐸𝑊) → Rel ((𝑀 Sat 𝐸)‘𝑎)) ↔ ((𝑀𝑉𝐸𝑊) → Rel ((𝑀 Sat 𝐸)‘suc 𝑏))))
10 fveq2 6896 . . . . . 6 (𝑎 = 𝑁 → ((𝑀 Sat 𝐸)‘𝑎) = ((𝑀 Sat 𝐸)‘𝑁))
1110releqd 5780 . . . . 5 (𝑎 = 𝑁 → (Rel ((𝑀 Sat 𝐸)‘𝑎) ↔ Rel ((𝑀 Sat 𝐸)‘𝑁)))
1211imbi2d 339 . . . 4 (𝑎 = 𝑁 → (((𝑀𝑉𝐸𝑊) → Rel ((𝑀 Sat 𝐸)‘𝑎)) ↔ ((𝑀𝑉𝐸𝑊) → Rel ((𝑀 Sat 𝐸)‘𝑁))))
13 relopabv 5823 . . . . 5 Rel {⟨𝑥, 𝑦⟩ ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)})}
14 eqid 2725 . . . . . . 7 (𝑀 Sat 𝐸) = (𝑀 Sat 𝐸)
1514satfv0 35099 . . . . . 6 ((𝑀𝑉𝐸𝑊) → ((𝑀 Sat 𝐸)‘∅) = {⟨𝑥, 𝑦⟩ ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)})})
1615releqd 5780 . . . . 5 ((𝑀𝑉𝐸𝑊) → (Rel ((𝑀 Sat 𝐸)‘∅) ↔ Rel {⟨𝑥, 𝑦⟩ ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)})}))
1713, 16mpbiri 257 . . . 4 ((𝑀𝑉𝐸𝑊) → Rel ((𝑀 Sat 𝐸)‘∅))
18 pm2.27 42 . . . . . 6 ((𝑀𝑉𝐸𝑊) → (((𝑀𝑉𝐸𝑊) → Rel ((𝑀 Sat 𝐸)‘𝑏)) → Rel ((𝑀 Sat 𝐸)‘𝑏)))
19 simpr 483 . . . . . . . . . 10 ((((𝑀𝑉𝐸𝑊) ∧ 𝑏 ∈ ω) ∧ Rel ((𝑀 Sat 𝐸)‘𝑏)) → Rel ((𝑀 Sat 𝐸)‘𝑏))
20 relopabv 5823 . . . . . . . . . 10 Rel {⟨𝑥, 𝑦⟩ ∣ ∃𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑏)(∃𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑏)(𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 ({⟨𝑖, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)}))}
21 relun 5813 . . . . . . . . . 10 (Rel (((𝑀 Sat 𝐸)‘𝑏) ∪ {⟨𝑥, 𝑦⟩ ∣ ∃𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑏)(∃𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑏)(𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 ({⟨𝑖, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)}))}) ↔ (Rel ((𝑀 Sat 𝐸)‘𝑏) ∧ Rel {⟨𝑥, 𝑦⟩ ∣ ∃𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑏)(∃𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑏)(𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 ({⟨𝑖, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)}))}))
2219, 20, 21sylanblrc 588 . . . . . . . . 9 ((((𝑀𝑉𝐸𝑊) ∧ 𝑏 ∈ ω) ∧ Rel ((𝑀 Sat 𝐸)‘𝑏)) → Rel (((𝑀 Sat 𝐸)‘𝑏) ∪ {⟨𝑥, 𝑦⟩ ∣ ∃𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑏)(∃𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑏)(𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 ({⟨𝑖, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)}))}))
2314satfvsuc 35102 . . . . . . . . . . 11 ((𝑀𝑉𝐸𝑊𝑏 ∈ ω) → ((𝑀 Sat 𝐸)‘suc 𝑏) = (((𝑀 Sat 𝐸)‘𝑏) ∪ {⟨𝑥, 𝑦⟩ ∣ ∃𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑏)(∃𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑏)(𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 ({⟨𝑖, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)}))}))
2423ad4ant123 1169 . . . . . . . . . 10 ((((𝑀𝑉𝐸𝑊) ∧ 𝑏 ∈ ω) ∧ Rel ((𝑀 Sat 𝐸)‘𝑏)) → ((𝑀 Sat 𝐸)‘suc 𝑏) = (((𝑀 Sat 𝐸)‘𝑏) ∪ {⟨𝑥, 𝑦⟩ ∣ ∃𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑏)(∃𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑏)(𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 ({⟨𝑖, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)}))}))
2524releqd 5780 . . . . . . . . 9 ((((𝑀𝑉𝐸𝑊) ∧ 𝑏 ∈ ω) ∧ Rel ((𝑀 Sat 𝐸)‘𝑏)) → (Rel ((𝑀 Sat 𝐸)‘suc 𝑏) ↔ Rel (((𝑀 Sat 𝐸)‘𝑏) ∪ {⟨𝑥, 𝑦⟩ ∣ ∃𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑏)(∃𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑏)(𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 ({⟨𝑖, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)}))})))
2622, 25mpbird 256 . . . . . . . 8 ((((𝑀𝑉𝐸𝑊) ∧ 𝑏 ∈ ω) ∧ Rel ((𝑀 Sat 𝐸)‘𝑏)) → Rel ((𝑀 Sat 𝐸)‘suc 𝑏))
2726exp31 418 . . . . . . 7 ((𝑀𝑉𝐸𝑊) → (𝑏 ∈ ω → (Rel ((𝑀 Sat 𝐸)‘𝑏) → Rel ((𝑀 Sat 𝐸)‘suc 𝑏))))
2827com23 86 . . . . . 6 ((𝑀𝑉𝐸𝑊) → (Rel ((𝑀 Sat 𝐸)‘𝑏) → (𝑏 ∈ ω → Rel ((𝑀 Sat 𝐸)‘suc 𝑏))))
2918, 28syld 47 . . . . 5 ((𝑀𝑉𝐸𝑊) → (((𝑀𝑉𝐸𝑊) → Rel ((𝑀 Sat 𝐸)‘𝑏)) → (𝑏 ∈ ω → Rel ((𝑀 Sat 𝐸)‘suc 𝑏))))
3029com13 88 . . . 4 (𝑏 ∈ ω → (((𝑀𝑉𝐸𝑊) → Rel ((𝑀 Sat 𝐸)‘𝑏)) → ((𝑀𝑉𝐸𝑊) → Rel ((𝑀 Sat 𝐸)‘suc 𝑏))))
313, 6, 9, 12, 17, 30finds 7904 . . 3 (𝑁 ∈ ω → ((𝑀𝑉𝐸𝑊) → Rel ((𝑀 Sat 𝐸)‘𝑁)))
3231com12 32 . 2 ((𝑀𝑉𝐸𝑊) → (𝑁 ∈ ω → Rel ((𝑀 Sat 𝐸)‘𝑁)))
33323impia 1114 1 ((𝑀𝑉𝐸𝑊𝑁 ∈ ω) → Rel ((𝑀 Sat 𝐸)‘𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394  wo 845  w3a 1084   = wceq 1533  wcel 2098  wral 3050  wrex 3059  {crab 3418  cdif 3941  cun 3942  cin 3943  c0 4322  {csn 4630  cop 4636   class class class wbr 5149  {copab 5211  cres 5680  Rel wrel 5683  suc csuc 6373  cfv 6549  (class class class)co 7419  ωcom 7871  1st c1st 7992  2nd c2nd 7993  m cmap 8845  𝑔cgoe 35074  𝑔cgna 35075  𝑔cgol 35076   Sat csat 35077
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741  ax-inf2 9666
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-ral 3051  df-rex 3060  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3964  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-iun 4999  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6307  df-ord 6374  df-on 6375  df-lim 6376  df-suc 6377  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-ov 7422  df-oprab 7423  df-mpo 7424  df-om 7872  df-2nd 7995  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-goel 35081  df-sat 35084
This theorem is referenced by:  satfdmlem  35109  satffunlem1lem2  35144  satffunlem2lem2  35147
  Copyright terms: Public domain W3C validator