Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  uzindd Structured version   Visualization version   GIF version

Theorem uzindd 39257
Description: Induction on the upper integers that start at 𝑀. The first four hypotheses give us the substitution instances we need; the following two are the basis and the induction step, a deduction version. (Contributed by metakunt, 8-Jun-2024.)
Hypotheses
Ref Expression
uzindd.1 (𝑗 = 𝑀 → (𝜓𝜒))
uzindd.2 (𝑗 = 𝑘 → (𝜓𝜃))
uzindd.3 (𝑗 = (𝑘 + 1) → (𝜓𝜏))
uzindd.4 (𝑗 = 𝑁 → (𝜓𝜂))
uzindd.5 (𝜑𝜒)
uzindd.6 ((𝜑𝜃 ∧ (𝑘 ∈ ℤ ∧ 𝑀𝑘)) → 𝜏)
uzindd.7 (𝜑𝑀 ∈ ℤ)
uzindd.8 (𝜑𝑁 ∈ ℤ)
uzindd.9 (𝜑𝑀𝑁)
Assertion
Ref Expression
uzindd (𝜑𝜂)
Distinct variable groups:   𝑗,𝑀,𝑘   𝑗,𝑁   𝜒,𝑗   𝜂,𝑗   𝜑,𝑗,𝑘   𝜏,𝑗   𝜃,𝑗   𝜓,𝑘
Allowed substitution hints:   𝜓(𝑗)   𝜒(𝑘)   𝜃(𝑘)   𝜏(𝑘)   𝜂(𝑘)   𝑁(𝑘)

Proof of Theorem uzindd
StepHypRef Expression
1 uzindd.7 . . 3 (𝜑𝑀 ∈ ℤ)
2 uzindd.8 . . 3 (𝜑𝑁 ∈ ℤ)
3 uzindd.9 . . 3 (𝜑𝑀𝑁)
41, 2, 33jca 1125 . 2 (𝜑 → (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀𝑁))
5 uzindd.1 . . . 4 (𝑗 = 𝑀 → (𝜓𝜒))
65imbi2d 344 . . 3 (𝑗 = 𝑀 → ((𝜑𝜓) ↔ (𝜑𝜒)))
7 uzindd.2 . . . 4 (𝑗 = 𝑘 → (𝜓𝜃))
87imbi2d 344 . . 3 (𝑗 = 𝑘 → ((𝜑𝜓) ↔ (𝜑𝜃)))
9 uzindd.3 . . . 4 (𝑗 = (𝑘 + 1) → (𝜓𝜏))
109imbi2d 344 . . 3 (𝑗 = (𝑘 + 1) → ((𝜑𝜓) ↔ (𝜑𝜏)))
11 uzindd.4 . . . 4 (𝑗 = 𝑁 → (𝜓𝜂))
1211imbi2d 344 . . 3 (𝑗 = 𝑁 → ((𝜑𝜓) ↔ (𝜑𝜂)))
13 uzindd.5 . . . . 5 (𝜑𝜒)
1413adantr 484 . . . 4 ((𝜑𝑀 ∈ ℤ) → 𝜒)
1514expcom 417 . . 3 (𝑀 ∈ ℤ → (𝜑𝜒))
16 3anass 1092 . . . . . . . . . 10 ((𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ 𝑀𝑘) ↔ (𝑀 ∈ ℤ ∧ (𝑘 ∈ ℤ ∧ 𝑀𝑘)))
17 ancom 464 . . . . . . . . . 10 ((𝑀 ∈ ℤ ∧ (𝑘 ∈ ℤ ∧ 𝑀𝑘)) ↔ ((𝑘 ∈ ℤ ∧ 𝑀𝑘) ∧ 𝑀 ∈ ℤ))
1816, 17bitri 278 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ 𝑀𝑘) ↔ ((𝑘 ∈ ℤ ∧ 𝑀𝑘) ∧ 𝑀 ∈ ℤ))
19 uzindd.6 . . . . . . . . . . 11 ((𝜑𝜃 ∧ (𝑘 ∈ ℤ ∧ 𝑀𝑘)) → 𝜏)
2019ad4ant123 1169 . . . . . . . . . 10 ((((𝜑𝜃) ∧ (𝑘 ∈ ℤ ∧ 𝑀𝑘)) ∧ 𝑀 ∈ ℤ) → 𝜏)
2120anasss 470 . . . . . . . . 9 (((𝜑𝜃) ∧ ((𝑘 ∈ ℤ ∧ 𝑀𝑘) ∧ 𝑀 ∈ ℤ)) → 𝜏)
2218, 21sylan2b 596 . . . . . . . 8 (((𝜑𝜃) ∧ (𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ 𝑀𝑘)) → 𝜏)
23223impa 1107 . . . . . . 7 ((𝜑𝜃 ∧ (𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ 𝑀𝑘)) → 𝜏)
24233com23 1123 . . . . . 6 ((𝜑 ∧ (𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ 𝑀𝑘) ∧ 𝜃) → 𝜏)
25243expia 1118 . . . . 5 ((𝜑 ∧ (𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ 𝑀𝑘)) → (𝜃𝜏))
2625expcom 417 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ 𝑀𝑘) → (𝜑 → (𝜃𝜏)))
2726a2d 29 . . 3 ((𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ 𝑀𝑘) → ((𝜑𝜃) → (𝜑𝜏)))
286, 8, 10, 12, 15, 27uzind 12066 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀𝑁) → (𝜑𝜂))
294, 28mpcom 38 1 (𝜑𝜂)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2112   class class class wbr 5033  (class class class)co 7139  1c1 10531   + caddc 10533  cle 10669  cz 11973
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-mulcom 10594  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606  ax-pre-mulgt0 10607
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-nel 3095  df-ral 3114  df-rex 3115  df-reu 3116  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-pss 3903  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4804  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5428  df-eprel 5433  df-po 5442  df-so 5443  df-fr 5482  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6120  df-ord 6166  df-on 6167  df-lim 6168  df-suc 6169  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-riota 7097  df-ov 7142  df-oprab 7143  df-mpo 7144  df-om 7565  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-er 8276  df-en 8497  df-dom 8498  df-sdom 8499  df-pnf 10670  df-mnf 10671  df-xr 10672  df-ltxr 10673  df-le 10674  df-sub 10865  df-neg 10866  df-nn 11630  df-n0 11890  df-z 11974
This theorem is referenced by:  2ap1caineq  39340
  Copyright terms: Public domain W3C validator