![]() |
Mathbox for metakunt |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > uzindd | Structured version Visualization version GIF version |
Description: Induction on the upper integers that start at 𝑀. The first four hypotheses give us the substitution instances we need; the following two are the basis and the induction step, a deduction version. (Contributed by metakunt, 8-Jun-2024.) |
Ref | Expression |
---|---|
uzindd.1 | ⊢ (𝑗 = 𝑀 → (𝜓 ↔ 𝜒)) |
uzindd.2 | ⊢ (𝑗 = 𝑘 → (𝜓 ↔ 𝜃)) |
uzindd.3 | ⊢ (𝑗 = (𝑘 + 1) → (𝜓 ↔ 𝜏)) |
uzindd.4 | ⊢ (𝑗 = 𝑁 → (𝜓 ↔ 𝜂)) |
uzindd.5 | ⊢ (𝜑 → 𝜒) |
uzindd.6 | ⊢ ((𝜑 ∧ 𝜃 ∧ (𝑘 ∈ ℤ ∧ 𝑀 ≤ 𝑘)) → 𝜏) |
uzindd.7 | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
uzindd.8 | ⊢ (𝜑 → 𝑁 ∈ ℤ) |
uzindd.9 | ⊢ (𝜑 → 𝑀 ≤ 𝑁) |
Ref | Expression |
---|---|
uzindd | ⊢ (𝜑 → 𝜂) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uzindd.7 | . . 3 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
2 | uzindd.8 | . . 3 ⊢ (𝜑 → 𝑁 ∈ ℤ) | |
3 | uzindd.9 | . . 3 ⊢ (𝜑 → 𝑀 ≤ 𝑁) | |
4 | 1, 2, 3 | 3jca 1127 | . 2 ⊢ (𝜑 → (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁)) |
5 | uzindd.1 | . . . 4 ⊢ (𝑗 = 𝑀 → (𝜓 ↔ 𝜒)) | |
6 | 5 | imbi2d 340 | . . 3 ⊢ (𝑗 = 𝑀 → ((𝜑 → 𝜓) ↔ (𝜑 → 𝜒))) |
7 | uzindd.2 | . . . 4 ⊢ (𝑗 = 𝑘 → (𝜓 ↔ 𝜃)) | |
8 | 7 | imbi2d 340 | . . 3 ⊢ (𝑗 = 𝑘 → ((𝜑 → 𝜓) ↔ (𝜑 → 𝜃))) |
9 | uzindd.3 | . . . 4 ⊢ (𝑗 = (𝑘 + 1) → (𝜓 ↔ 𝜏)) | |
10 | 9 | imbi2d 340 | . . 3 ⊢ (𝑗 = (𝑘 + 1) → ((𝜑 → 𝜓) ↔ (𝜑 → 𝜏))) |
11 | uzindd.4 | . . . 4 ⊢ (𝑗 = 𝑁 → (𝜓 ↔ 𝜂)) | |
12 | 11 | imbi2d 340 | . . 3 ⊢ (𝑗 = 𝑁 → ((𝜑 → 𝜓) ↔ (𝜑 → 𝜂))) |
13 | uzindd.5 | . . . . 5 ⊢ (𝜑 → 𝜒) | |
14 | 13 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑀 ∈ ℤ) → 𝜒) |
15 | 14 | expcom 413 | . . 3 ⊢ (𝑀 ∈ ℤ → (𝜑 → 𝜒)) |
16 | 3anass 1094 | . . . . . . . . . 10 ⊢ ((𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ 𝑀 ≤ 𝑘) ↔ (𝑀 ∈ ℤ ∧ (𝑘 ∈ ℤ ∧ 𝑀 ≤ 𝑘))) | |
17 | ancom 460 | . . . . . . . . . 10 ⊢ ((𝑀 ∈ ℤ ∧ (𝑘 ∈ ℤ ∧ 𝑀 ≤ 𝑘)) ↔ ((𝑘 ∈ ℤ ∧ 𝑀 ≤ 𝑘) ∧ 𝑀 ∈ ℤ)) | |
18 | 16, 17 | bitri 275 | . . . . . . . . 9 ⊢ ((𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ 𝑀 ≤ 𝑘) ↔ ((𝑘 ∈ ℤ ∧ 𝑀 ≤ 𝑘) ∧ 𝑀 ∈ ℤ)) |
19 | uzindd.6 | . . . . . . . . . . 11 ⊢ ((𝜑 ∧ 𝜃 ∧ (𝑘 ∈ ℤ ∧ 𝑀 ≤ 𝑘)) → 𝜏) | |
20 | 19 | ad4ant123 1171 | . . . . . . . . . 10 ⊢ ((((𝜑 ∧ 𝜃) ∧ (𝑘 ∈ ℤ ∧ 𝑀 ≤ 𝑘)) ∧ 𝑀 ∈ ℤ) → 𝜏) |
21 | 20 | anasss 466 | . . . . . . . . 9 ⊢ (((𝜑 ∧ 𝜃) ∧ ((𝑘 ∈ ℤ ∧ 𝑀 ≤ 𝑘) ∧ 𝑀 ∈ ℤ)) → 𝜏) |
22 | 18, 21 | sylan2b 594 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝜃) ∧ (𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ 𝑀 ≤ 𝑘)) → 𝜏) |
23 | 22 | 3impa 1109 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝜃 ∧ (𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ 𝑀 ≤ 𝑘)) → 𝜏) |
24 | 23 | 3com23 1125 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ 𝑀 ≤ 𝑘) ∧ 𝜃) → 𝜏) |
25 | 24 | 3expia 1120 | . . . . 5 ⊢ ((𝜑 ∧ (𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ 𝑀 ≤ 𝑘)) → (𝜃 → 𝜏)) |
26 | 25 | expcom 413 | . . . 4 ⊢ ((𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ 𝑀 ≤ 𝑘) → (𝜑 → (𝜃 → 𝜏))) |
27 | 26 | a2d 29 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ 𝑀 ≤ 𝑘) → ((𝜑 → 𝜃) → (𝜑 → 𝜏))) |
28 | 6, 8, 10, 12, 15, 27 | uzind 12708 | . 2 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁) → (𝜑 → 𝜂)) |
29 | 4, 28 | mpcom 38 | 1 ⊢ (𝜑 → 𝜂) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1537 ∈ wcel 2106 class class class wbr 5148 (class class class)co 7431 1c1 11154 + caddc 11156 ≤ cle 11294 ℤcz 12611 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-er 8744 df-en 8985 df-dom 8986 df-sdom 8987 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-nn 12265 df-n0 12525 df-z 12612 |
This theorem is referenced by: 2ap1caineq 42127 |
Copyright terms: Public domain | W3C validator |