Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  uzindd Structured version   Visualization version   GIF version

Theorem uzindd 41978
Description: Induction on the upper integers that start at 𝑀. The first four hypotheses give us the substitution instances we need; the following two are the basis and the induction step, a deduction version. (Contributed by metakunt, 8-Jun-2024.)
Hypotheses
Ref Expression
uzindd.1 (𝑗 = 𝑀 → (𝜓𝜒))
uzindd.2 (𝑗 = 𝑘 → (𝜓𝜃))
uzindd.3 (𝑗 = (𝑘 + 1) → (𝜓𝜏))
uzindd.4 (𝑗 = 𝑁 → (𝜓𝜂))
uzindd.5 (𝜑𝜒)
uzindd.6 ((𝜑𝜃 ∧ (𝑘 ∈ ℤ ∧ 𝑀𝑘)) → 𝜏)
uzindd.7 (𝜑𝑀 ∈ ℤ)
uzindd.8 (𝜑𝑁 ∈ ℤ)
uzindd.9 (𝜑𝑀𝑁)
Assertion
Ref Expression
uzindd (𝜑𝜂)
Distinct variable groups:   𝑗,𝑀,𝑘   𝑗,𝑁   𝜒,𝑗   𝜂,𝑗   𝜑,𝑗,𝑘   𝜏,𝑗   𝜃,𝑗   𝜓,𝑘
Allowed substitution hints:   𝜓(𝑗)   𝜒(𝑘)   𝜃(𝑘)   𝜏(𝑘)   𝜂(𝑘)   𝑁(𝑘)

Proof of Theorem uzindd
StepHypRef Expression
1 uzindd.7 . . 3 (𝜑𝑀 ∈ ℤ)
2 uzindd.8 . . 3 (𝜑𝑁 ∈ ℤ)
3 uzindd.9 . . 3 (𝜑𝑀𝑁)
41, 2, 33jca 1129 . 2 (𝜑 → (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀𝑁))
5 uzindd.1 . . . 4 (𝑗 = 𝑀 → (𝜓𝜒))
65imbi2d 340 . . 3 (𝑗 = 𝑀 → ((𝜑𝜓) ↔ (𝜑𝜒)))
7 uzindd.2 . . . 4 (𝑗 = 𝑘 → (𝜓𝜃))
87imbi2d 340 . . 3 (𝑗 = 𝑘 → ((𝜑𝜓) ↔ (𝜑𝜃)))
9 uzindd.3 . . . 4 (𝑗 = (𝑘 + 1) → (𝜓𝜏))
109imbi2d 340 . . 3 (𝑗 = (𝑘 + 1) → ((𝜑𝜓) ↔ (𝜑𝜏)))
11 uzindd.4 . . . 4 (𝑗 = 𝑁 → (𝜓𝜂))
1211imbi2d 340 . . 3 (𝑗 = 𝑁 → ((𝜑𝜓) ↔ (𝜑𝜂)))
13 uzindd.5 . . . . 5 (𝜑𝜒)
1413adantr 480 . . . 4 ((𝜑𝑀 ∈ ℤ) → 𝜒)
1514expcom 413 . . 3 (𝑀 ∈ ℤ → (𝜑𝜒))
16 3anass 1095 . . . . . . . . . 10 ((𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ 𝑀𝑘) ↔ (𝑀 ∈ ℤ ∧ (𝑘 ∈ ℤ ∧ 𝑀𝑘)))
17 ancom 460 . . . . . . . . . 10 ((𝑀 ∈ ℤ ∧ (𝑘 ∈ ℤ ∧ 𝑀𝑘)) ↔ ((𝑘 ∈ ℤ ∧ 𝑀𝑘) ∧ 𝑀 ∈ ℤ))
1816, 17bitri 275 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ 𝑀𝑘) ↔ ((𝑘 ∈ ℤ ∧ 𝑀𝑘) ∧ 𝑀 ∈ ℤ))
19 uzindd.6 . . . . . . . . . . 11 ((𝜑𝜃 ∧ (𝑘 ∈ ℤ ∧ 𝑀𝑘)) → 𝜏)
2019ad4ant123 1173 . . . . . . . . . 10 ((((𝜑𝜃) ∧ (𝑘 ∈ ℤ ∧ 𝑀𝑘)) ∧ 𝑀 ∈ ℤ) → 𝜏)
2120anasss 466 . . . . . . . . 9 (((𝜑𝜃) ∧ ((𝑘 ∈ ℤ ∧ 𝑀𝑘) ∧ 𝑀 ∈ ℤ)) → 𝜏)
2218, 21sylan2b 594 . . . . . . . 8 (((𝜑𝜃) ∧ (𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ 𝑀𝑘)) → 𝜏)
23223impa 1110 . . . . . . 7 ((𝜑𝜃 ∧ (𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ 𝑀𝑘)) → 𝜏)
24233com23 1127 . . . . . 6 ((𝜑 ∧ (𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ 𝑀𝑘) ∧ 𝜃) → 𝜏)
25243expia 1122 . . . . 5 ((𝜑 ∧ (𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ 𝑀𝑘)) → (𝜃𝜏))
2625expcom 413 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ 𝑀𝑘) → (𝜑 → (𝜃𝜏)))
2726a2d 29 . . 3 ((𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ 𝑀𝑘) → ((𝜑𝜃) → (𝜑𝜏)))
286, 8, 10, 12, 15, 27uzind 12710 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀𝑁) → (𝜑𝜂))
294, 28mpcom 38 1 (𝜑𝜂)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1540  wcel 2108   class class class wbr 5143  (class class class)co 7431  1c1 11156   + caddc 11158  cle 11296  cz 12613
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-n0 12527  df-z 12614
This theorem is referenced by:  2ap1caineq  42146
  Copyright terms: Public domain W3C validator