Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  uzindd Structured version   Visualization version   GIF version

Theorem uzindd 42080
Description: Induction on the upper integers that start at 𝑀. The first four hypotheses give us the substitution instances we need; the following two are the basis and the induction step, a deduction version. (Contributed by metakunt, 8-Jun-2024.)
Hypotheses
Ref Expression
uzindd.1 (𝑗 = 𝑀 → (𝜓𝜒))
uzindd.2 (𝑗 = 𝑘 → (𝜓𝜃))
uzindd.3 (𝑗 = (𝑘 + 1) → (𝜓𝜏))
uzindd.4 (𝑗 = 𝑁 → (𝜓𝜂))
uzindd.5 (𝜑𝜒)
uzindd.6 ((𝜑𝜃 ∧ (𝑘 ∈ ℤ ∧ 𝑀𝑘)) → 𝜏)
uzindd.7 (𝜑𝑀 ∈ ℤ)
uzindd.8 (𝜑𝑁 ∈ ℤ)
uzindd.9 (𝜑𝑀𝑁)
Assertion
Ref Expression
uzindd (𝜑𝜂)
Distinct variable groups:   𝑗,𝑀,𝑘   𝑗,𝑁   𝜒,𝑗   𝜂,𝑗   𝜑,𝑗,𝑘   𝜏,𝑗   𝜃,𝑗   𝜓,𝑘
Allowed substitution hints:   𝜓(𝑗)   𝜒(𝑘)   𝜃(𝑘)   𝜏(𝑘)   𝜂(𝑘)   𝑁(𝑘)

Proof of Theorem uzindd
StepHypRef Expression
1 uzindd.7 . . 3 (𝜑𝑀 ∈ ℤ)
2 uzindd.8 . . 3 (𝜑𝑁 ∈ ℤ)
3 uzindd.9 . . 3 (𝜑𝑀𝑁)
41, 2, 33jca 1128 . 2 (𝜑 → (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀𝑁))
5 uzindd.1 . . . 4 (𝑗 = 𝑀 → (𝜓𝜒))
65imbi2d 340 . . 3 (𝑗 = 𝑀 → ((𝜑𝜓) ↔ (𝜑𝜒)))
7 uzindd.2 . . . 4 (𝑗 = 𝑘 → (𝜓𝜃))
87imbi2d 340 . . 3 (𝑗 = 𝑘 → ((𝜑𝜓) ↔ (𝜑𝜃)))
9 uzindd.3 . . . 4 (𝑗 = (𝑘 + 1) → (𝜓𝜏))
109imbi2d 340 . . 3 (𝑗 = (𝑘 + 1) → ((𝜑𝜓) ↔ (𝜑𝜏)))
11 uzindd.4 . . . 4 (𝑗 = 𝑁 → (𝜓𝜂))
1211imbi2d 340 . . 3 (𝑗 = 𝑁 → ((𝜑𝜓) ↔ (𝜑𝜂)))
13 uzindd.5 . . . . 5 (𝜑𝜒)
1413adantr 480 . . . 4 ((𝜑𝑀 ∈ ℤ) → 𝜒)
1514expcom 413 . . 3 (𝑀 ∈ ℤ → (𝜑𝜒))
16 3anass 1094 . . . . . . . . . 10 ((𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ 𝑀𝑘) ↔ (𝑀 ∈ ℤ ∧ (𝑘 ∈ ℤ ∧ 𝑀𝑘)))
17 ancom 460 . . . . . . . . . 10 ((𝑀 ∈ ℤ ∧ (𝑘 ∈ ℤ ∧ 𝑀𝑘)) ↔ ((𝑘 ∈ ℤ ∧ 𝑀𝑘) ∧ 𝑀 ∈ ℤ))
1816, 17bitri 275 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ 𝑀𝑘) ↔ ((𝑘 ∈ ℤ ∧ 𝑀𝑘) ∧ 𝑀 ∈ ℤ))
19 uzindd.6 . . . . . . . . . . 11 ((𝜑𝜃 ∧ (𝑘 ∈ ℤ ∧ 𝑀𝑘)) → 𝜏)
2019ad4ant123 1173 . . . . . . . . . 10 ((((𝜑𝜃) ∧ (𝑘 ∈ ℤ ∧ 𝑀𝑘)) ∧ 𝑀 ∈ ℤ) → 𝜏)
2120anasss 466 . . . . . . . . 9 (((𝜑𝜃) ∧ ((𝑘 ∈ ℤ ∧ 𝑀𝑘) ∧ 𝑀 ∈ ℤ)) → 𝜏)
2218, 21sylan2b 594 . . . . . . . 8 (((𝜑𝜃) ∧ (𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ 𝑀𝑘)) → 𝜏)
23223impa 1109 . . . . . . 7 ((𝜑𝜃 ∧ (𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ 𝑀𝑘)) → 𝜏)
24233com23 1126 . . . . . 6 ((𝜑 ∧ (𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ 𝑀𝑘) ∧ 𝜃) → 𝜏)
25243expia 1121 . . . . 5 ((𝜑 ∧ (𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ 𝑀𝑘)) → (𝜃𝜏))
2625expcom 413 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ 𝑀𝑘) → (𝜑 → (𝜃𝜏)))
2726a2d 29 . . 3 ((𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ 𝑀𝑘) → ((𝜑𝜃) → (𝜑𝜏)))
286, 8, 10, 12, 15, 27uzind 12565 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀𝑁) → (𝜑𝜂))
294, 28mpcom 38 1 (𝜑𝜂)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111   class class class wbr 5089  (class class class)co 7346  1c1 11007   + caddc 11009  cle 11147  cz 12468
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-n0 12382  df-z 12469
This theorem is referenced by:  2ap1caineq  42248
  Copyright terms: Public domain W3C validator