| Mathbox for metakunt |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > uzindd | Structured version Visualization version GIF version | ||
| Description: Induction on the upper integers that start at 𝑀. The first four hypotheses give us the substitution instances we need; the following two are the basis and the induction step, a deduction version. (Contributed by metakunt, 8-Jun-2024.) |
| Ref | Expression |
|---|---|
| uzindd.1 | ⊢ (𝑗 = 𝑀 → (𝜓 ↔ 𝜒)) |
| uzindd.2 | ⊢ (𝑗 = 𝑘 → (𝜓 ↔ 𝜃)) |
| uzindd.3 | ⊢ (𝑗 = (𝑘 + 1) → (𝜓 ↔ 𝜏)) |
| uzindd.4 | ⊢ (𝑗 = 𝑁 → (𝜓 ↔ 𝜂)) |
| uzindd.5 | ⊢ (𝜑 → 𝜒) |
| uzindd.6 | ⊢ ((𝜑 ∧ 𝜃 ∧ (𝑘 ∈ ℤ ∧ 𝑀 ≤ 𝑘)) → 𝜏) |
| uzindd.7 | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
| uzindd.8 | ⊢ (𝜑 → 𝑁 ∈ ℤ) |
| uzindd.9 | ⊢ (𝜑 → 𝑀 ≤ 𝑁) |
| Ref | Expression |
|---|---|
| uzindd | ⊢ (𝜑 → 𝜂) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uzindd.7 | . . 3 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
| 2 | uzindd.8 | . . 3 ⊢ (𝜑 → 𝑁 ∈ ℤ) | |
| 3 | uzindd.9 | . . 3 ⊢ (𝜑 → 𝑀 ≤ 𝑁) | |
| 4 | 1, 2, 3 | 3jca 1128 | . 2 ⊢ (𝜑 → (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁)) |
| 5 | uzindd.1 | . . . 4 ⊢ (𝑗 = 𝑀 → (𝜓 ↔ 𝜒)) | |
| 6 | 5 | imbi2d 340 | . . 3 ⊢ (𝑗 = 𝑀 → ((𝜑 → 𝜓) ↔ (𝜑 → 𝜒))) |
| 7 | uzindd.2 | . . . 4 ⊢ (𝑗 = 𝑘 → (𝜓 ↔ 𝜃)) | |
| 8 | 7 | imbi2d 340 | . . 3 ⊢ (𝑗 = 𝑘 → ((𝜑 → 𝜓) ↔ (𝜑 → 𝜃))) |
| 9 | uzindd.3 | . . . 4 ⊢ (𝑗 = (𝑘 + 1) → (𝜓 ↔ 𝜏)) | |
| 10 | 9 | imbi2d 340 | . . 3 ⊢ (𝑗 = (𝑘 + 1) → ((𝜑 → 𝜓) ↔ (𝜑 → 𝜏))) |
| 11 | uzindd.4 | . . . 4 ⊢ (𝑗 = 𝑁 → (𝜓 ↔ 𝜂)) | |
| 12 | 11 | imbi2d 340 | . . 3 ⊢ (𝑗 = 𝑁 → ((𝜑 → 𝜓) ↔ (𝜑 → 𝜂))) |
| 13 | uzindd.5 | . . . . 5 ⊢ (𝜑 → 𝜒) | |
| 14 | 13 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑀 ∈ ℤ) → 𝜒) |
| 15 | 14 | expcom 413 | . . 3 ⊢ (𝑀 ∈ ℤ → (𝜑 → 𝜒)) |
| 16 | 3anass 1094 | . . . . . . . . . 10 ⊢ ((𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ 𝑀 ≤ 𝑘) ↔ (𝑀 ∈ ℤ ∧ (𝑘 ∈ ℤ ∧ 𝑀 ≤ 𝑘))) | |
| 17 | ancom 460 | . . . . . . . . . 10 ⊢ ((𝑀 ∈ ℤ ∧ (𝑘 ∈ ℤ ∧ 𝑀 ≤ 𝑘)) ↔ ((𝑘 ∈ ℤ ∧ 𝑀 ≤ 𝑘) ∧ 𝑀 ∈ ℤ)) | |
| 18 | 16, 17 | bitri 275 | . . . . . . . . 9 ⊢ ((𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ 𝑀 ≤ 𝑘) ↔ ((𝑘 ∈ ℤ ∧ 𝑀 ≤ 𝑘) ∧ 𝑀 ∈ ℤ)) |
| 19 | uzindd.6 | . . . . . . . . . . 11 ⊢ ((𝜑 ∧ 𝜃 ∧ (𝑘 ∈ ℤ ∧ 𝑀 ≤ 𝑘)) → 𝜏) | |
| 20 | 19 | ad4ant123 1173 | . . . . . . . . . 10 ⊢ ((((𝜑 ∧ 𝜃) ∧ (𝑘 ∈ ℤ ∧ 𝑀 ≤ 𝑘)) ∧ 𝑀 ∈ ℤ) → 𝜏) |
| 21 | 20 | anasss 466 | . . . . . . . . 9 ⊢ (((𝜑 ∧ 𝜃) ∧ ((𝑘 ∈ ℤ ∧ 𝑀 ≤ 𝑘) ∧ 𝑀 ∈ ℤ)) → 𝜏) |
| 22 | 18, 21 | sylan2b 594 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝜃) ∧ (𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ 𝑀 ≤ 𝑘)) → 𝜏) |
| 23 | 22 | 3impa 1109 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝜃 ∧ (𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ 𝑀 ≤ 𝑘)) → 𝜏) |
| 24 | 23 | 3com23 1126 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ 𝑀 ≤ 𝑘) ∧ 𝜃) → 𝜏) |
| 25 | 24 | 3expia 1121 | . . . . 5 ⊢ ((𝜑 ∧ (𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ 𝑀 ≤ 𝑘)) → (𝜃 → 𝜏)) |
| 26 | 25 | expcom 413 | . . . 4 ⊢ ((𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ 𝑀 ≤ 𝑘) → (𝜑 → (𝜃 → 𝜏))) |
| 27 | 26 | a2d 29 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ 𝑀 ≤ 𝑘) → ((𝜑 → 𝜃) → (𝜑 → 𝜏))) |
| 28 | 6, 8, 10, 12, 15, 27 | uzind 12685 | . 2 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁) → (𝜑 → 𝜂)) |
| 29 | 4, 28 | mpcom 38 | 1 ⊢ (𝜑 → 𝜂) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2108 class class class wbr 5119 (class class class)co 7405 1c1 11130 + caddc 11132 ≤ cle 11270 ℤcz 12588 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-er 8719 df-en 8960 df-dom 8961 df-sdom 8962 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-nn 12241 df-n0 12502 df-z 12589 |
| This theorem is referenced by: 2ap1caineq 42158 |
| Copyright terms: Public domain | W3C validator |