![]() |
Mathbox for metakunt |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > uzindd | Structured version Visualization version GIF version |
Description: Induction on the upper integers that start at 𝑀. The first four hypotheses give us the substitution instances we need; the following two are the basis and the induction step, a deduction version. (Contributed by metakunt, 8-Jun-2024.) |
Ref | Expression |
---|---|
uzindd.1 | ⊢ (𝑗 = 𝑀 → (𝜓 ↔ 𝜒)) |
uzindd.2 | ⊢ (𝑗 = 𝑘 → (𝜓 ↔ 𝜃)) |
uzindd.3 | ⊢ (𝑗 = (𝑘 + 1) → (𝜓 ↔ 𝜏)) |
uzindd.4 | ⊢ (𝑗 = 𝑁 → (𝜓 ↔ 𝜂)) |
uzindd.5 | ⊢ (𝜑 → 𝜒) |
uzindd.6 | ⊢ ((𝜑 ∧ 𝜃 ∧ (𝑘 ∈ ℤ ∧ 𝑀 ≤ 𝑘)) → 𝜏) |
uzindd.7 | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
uzindd.8 | ⊢ (𝜑 → 𝑁 ∈ ℤ) |
uzindd.9 | ⊢ (𝜑 → 𝑀 ≤ 𝑁) |
Ref | Expression |
---|---|
uzindd | ⊢ (𝜑 → 𝜂) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uzindd.7 | . . 3 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
2 | uzindd.8 | . . 3 ⊢ (𝜑 → 𝑁 ∈ ℤ) | |
3 | uzindd.9 | . . 3 ⊢ (𝜑 → 𝑀 ≤ 𝑁) | |
4 | 1, 2, 3 | 3jca 1126 | . 2 ⊢ (𝜑 → (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁)) |
5 | uzindd.1 | . . . 4 ⊢ (𝑗 = 𝑀 → (𝜓 ↔ 𝜒)) | |
6 | 5 | imbi2d 340 | . . 3 ⊢ (𝑗 = 𝑀 → ((𝜑 → 𝜓) ↔ (𝜑 → 𝜒))) |
7 | uzindd.2 | . . . 4 ⊢ (𝑗 = 𝑘 → (𝜓 ↔ 𝜃)) | |
8 | 7 | imbi2d 340 | . . 3 ⊢ (𝑗 = 𝑘 → ((𝜑 → 𝜓) ↔ (𝜑 → 𝜃))) |
9 | uzindd.3 | . . . 4 ⊢ (𝑗 = (𝑘 + 1) → (𝜓 ↔ 𝜏)) | |
10 | 9 | imbi2d 340 | . . 3 ⊢ (𝑗 = (𝑘 + 1) → ((𝜑 → 𝜓) ↔ (𝜑 → 𝜏))) |
11 | uzindd.4 | . . . 4 ⊢ (𝑗 = 𝑁 → (𝜓 ↔ 𝜂)) | |
12 | 11 | imbi2d 340 | . . 3 ⊢ (𝑗 = 𝑁 → ((𝜑 → 𝜓) ↔ (𝜑 → 𝜂))) |
13 | uzindd.5 | . . . . 5 ⊢ (𝜑 → 𝜒) | |
14 | 13 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑀 ∈ ℤ) → 𝜒) |
15 | 14 | expcom 413 | . . 3 ⊢ (𝑀 ∈ ℤ → (𝜑 → 𝜒)) |
16 | 3anass 1093 | . . . . . . . . . 10 ⊢ ((𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ 𝑀 ≤ 𝑘) ↔ (𝑀 ∈ ℤ ∧ (𝑘 ∈ ℤ ∧ 𝑀 ≤ 𝑘))) | |
17 | ancom 460 | . . . . . . . . . 10 ⊢ ((𝑀 ∈ ℤ ∧ (𝑘 ∈ ℤ ∧ 𝑀 ≤ 𝑘)) ↔ ((𝑘 ∈ ℤ ∧ 𝑀 ≤ 𝑘) ∧ 𝑀 ∈ ℤ)) | |
18 | 16, 17 | bitri 275 | . . . . . . . . 9 ⊢ ((𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ 𝑀 ≤ 𝑘) ↔ ((𝑘 ∈ ℤ ∧ 𝑀 ≤ 𝑘) ∧ 𝑀 ∈ ℤ)) |
19 | uzindd.6 | . . . . . . . . . . 11 ⊢ ((𝜑 ∧ 𝜃 ∧ (𝑘 ∈ ℤ ∧ 𝑀 ≤ 𝑘)) → 𝜏) | |
20 | 19 | ad4ant123 1170 | . . . . . . . . . 10 ⊢ ((((𝜑 ∧ 𝜃) ∧ (𝑘 ∈ ℤ ∧ 𝑀 ≤ 𝑘)) ∧ 𝑀 ∈ ℤ) → 𝜏) |
21 | 20 | anasss 466 | . . . . . . . . 9 ⊢ (((𝜑 ∧ 𝜃) ∧ ((𝑘 ∈ ℤ ∧ 𝑀 ≤ 𝑘) ∧ 𝑀 ∈ ℤ)) → 𝜏) |
22 | 18, 21 | sylan2b 593 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝜃) ∧ (𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ 𝑀 ≤ 𝑘)) → 𝜏) |
23 | 22 | 3impa 1108 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝜃 ∧ (𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ 𝑀 ≤ 𝑘)) → 𝜏) |
24 | 23 | 3com23 1124 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ 𝑀 ≤ 𝑘) ∧ 𝜃) → 𝜏) |
25 | 24 | 3expia 1119 | . . . . 5 ⊢ ((𝜑 ∧ (𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ 𝑀 ≤ 𝑘)) → (𝜃 → 𝜏)) |
26 | 25 | expcom 413 | . . . 4 ⊢ ((𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ 𝑀 ≤ 𝑘) → (𝜑 → (𝜃 → 𝜏))) |
27 | 26 | a2d 29 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ 𝑀 ≤ 𝑘) → ((𝜑 → 𝜃) → (𝜑 → 𝜏))) |
28 | 6, 8, 10, 12, 15, 27 | uzind 12685 | . 2 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁) → (𝜑 → 𝜂)) |
29 | 4, 28 | mpcom 38 | 1 ⊢ (𝜑 → 𝜂) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∧ w3a 1085 = wceq 1534 ∈ wcel 2099 class class class wbr 5148 (class class class)co 7420 1c1 11140 + caddc 11142 ≤ cle 11280 ℤcz 12589 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5299 ax-nul 5306 ax-pow 5365 ax-pr 5429 ax-un 7740 ax-resscn 11196 ax-1cn 11197 ax-icn 11198 ax-addcl 11199 ax-addrcl 11200 ax-mulcl 11201 ax-mulrcl 11202 ax-mulcom 11203 ax-addass 11204 ax-mulass 11205 ax-distr 11206 ax-i2m1 11207 ax-1ne0 11208 ax-1rid 11209 ax-rnegex 11210 ax-rrecex 11211 ax-cnre 11212 ax-pre-lttri 11213 ax-pre-lttrn 11214 ax-pre-ltadd 11215 ax-pre-mulgt0 11216 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-reu 3374 df-rab 3430 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6305 df-ord 6372 df-on 6373 df-lim 6374 df-suc 6375 df-iota 6500 df-fun 6550 df-fn 6551 df-f 6552 df-f1 6553 df-fo 6554 df-f1o 6555 df-fv 6556 df-riota 7376 df-ov 7423 df-oprab 7424 df-mpo 7425 df-om 7871 df-2nd 7994 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-er 8725 df-en 8965 df-dom 8966 df-sdom 8967 df-pnf 11281 df-mnf 11282 df-xr 11283 df-ltxr 11284 df-le 11285 df-sub 11477 df-neg 11478 df-nn 12244 df-n0 12504 df-z 12590 |
This theorem is referenced by: 2ap1caineq 41617 |
Copyright terms: Public domain | W3C validator |