Mathbox for metakunt |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > uzindd | Structured version Visualization version GIF version |
Description: Induction on the upper integers that start at 𝑀. The first four hypotheses give us the substitution instances we need; the following two are the basis and the induction step, a deduction version. (Contributed by metakunt, 8-Jun-2024.) |
Ref | Expression |
---|---|
uzindd.1 | ⊢ (𝑗 = 𝑀 → (𝜓 ↔ 𝜒)) |
uzindd.2 | ⊢ (𝑗 = 𝑘 → (𝜓 ↔ 𝜃)) |
uzindd.3 | ⊢ (𝑗 = (𝑘 + 1) → (𝜓 ↔ 𝜏)) |
uzindd.4 | ⊢ (𝑗 = 𝑁 → (𝜓 ↔ 𝜂)) |
uzindd.5 | ⊢ (𝜑 → 𝜒) |
uzindd.6 | ⊢ ((𝜑 ∧ 𝜃 ∧ (𝑘 ∈ ℤ ∧ 𝑀 ≤ 𝑘)) → 𝜏) |
uzindd.7 | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
uzindd.8 | ⊢ (𝜑 → 𝑁 ∈ ℤ) |
uzindd.9 | ⊢ (𝜑 → 𝑀 ≤ 𝑁) |
Ref | Expression |
---|---|
uzindd | ⊢ (𝜑 → 𝜂) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uzindd.7 | . . 3 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
2 | uzindd.8 | . . 3 ⊢ (𝜑 → 𝑁 ∈ ℤ) | |
3 | uzindd.9 | . . 3 ⊢ (𝜑 → 𝑀 ≤ 𝑁) | |
4 | 1, 2, 3 | 3jca 1128 | . 2 ⊢ (𝜑 → (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁)) |
5 | uzindd.1 | . . . 4 ⊢ (𝑗 = 𝑀 → (𝜓 ↔ 𝜒)) | |
6 | 5 | imbi2d 341 | . . 3 ⊢ (𝑗 = 𝑀 → ((𝜑 → 𝜓) ↔ (𝜑 → 𝜒))) |
7 | uzindd.2 | . . . 4 ⊢ (𝑗 = 𝑘 → (𝜓 ↔ 𝜃)) | |
8 | 7 | imbi2d 341 | . . 3 ⊢ (𝑗 = 𝑘 → ((𝜑 → 𝜓) ↔ (𝜑 → 𝜃))) |
9 | uzindd.3 | . . . 4 ⊢ (𝑗 = (𝑘 + 1) → (𝜓 ↔ 𝜏)) | |
10 | 9 | imbi2d 341 | . . 3 ⊢ (𝑗 = (𝑘 + 1) → ((𝜑 → 𝜓) ↔ (𝜑 → 𝜏))) |
11 | uzindd.4 | . . . 4 ⊢ (𝑗 = 𝑁 → (𝜓 ↔ 𝜂)) | |
12 | 11 | imbi2d 341 | . . 3 ⊢ (𝑗 = 𝑁 → ((𝜑 → 𝜓) ↔ (𝜑 → 𝜂))) |
13 | uzindd.5 | . . . . 5 ⊢ (𝜑 → 𝜒) | |
14 | 13 | adantr 482 | . . . 4 ⊢ ((𝜑 ∧ 𝑀 ∈ ℤ) → 𝜒) |
15 | 14 | expcom 415 | . . 3 ⊢ (𝑀 ∈ ℤ → (𝜑 → 𝜒)) |
16 | 3anass 1095 | . . . . . . . . . 10 ⊢ ((𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ 𝑀 ≤ 𝑘) ↔ (𝑀 ∈ ℤ ∧ (𝑘 ∈ ℤ ∧ 𝑀 ≤ 𝑘))) | |
17 | ancom 462 | . . . . . . . . . 10 ⊢ ((𝑀 ∈ ℤ ∧ (𝑘 ∈ ℤ ∧ 𝑀 ≤ 𝑘)) ↔ ((𝑘 ∈ ℤ ∧ 𝑀 ≤ 𝑘) ∧ 𝑀 ∈ ℤ)) | |
18 | 16, 17 | bitri 275 | . . . . . . . . 9 ⊢ ((𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ 𝑀 ≤ 𝑘) ↔ ((𝑘 ∈ ℤ ∧ 𝑀 ≤ 𝑘) ∧ 𝑀 ∈ ℤ)) |
19 | uzindd.6 | . . . . . . . . . . 11 ⊢ ((𝜑 ∧ 𝜃 ∧ (𝑘 ∈ ℤ ∧ 𝑀 ≤ 𝑘)) → 𝜏) | |
20 | 19 | ad4ant123 1172 | . . . . . . . . . 10 ⊢ ((((𝜑 ∧ 𝜃) ∧ (𝑘 ∈ ℤ ∧ 𝑀 ≤ 𝑘)) ∧ 𝑀 ∈ ℤ) → 𝜏) |
21 | 20 | anasss 468 | . . . . . . . . 9 ⊢ (((𝜑 ∧ 𝜃) ∧ ((𝑘 ∈ ℤ ∧ 𝑀 ≤ 𝑘) ∧ 𝑀 ∈ ℤ)) → 𝜏) |
22 | 18, 21 | sylan2b 595 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝜃) ∧ (𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ 𝑀 ≤ 𝑘)) → 𝜏) |
23 | 22 | 3impa 1110 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝜃 ∧ (𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ 𝑀 ≤ 𝑘)) → 𝜏) |
24 | 23 | 3com23 1126 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ 𝑀 ≤ 𝑘) ∧ 𝜃) → 𝜏) |
25 | 24 | 3expia 1121 | . . . . 5 ⊢ ((𝜑 ∧ (𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ 𝑀 ≤ 𝑘)) → (𝜃 → 𝜏)) |
26 | 25 | expcom 415 | . . . 4 ⊢ ((𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ 𝑀 ≤ 𝑘) → (𝜑 → (𝜃 → 𝜏))) |
27 | 26 | a2d 29 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ 𝑀 ≤ 𝑘) → ((𝜑 → 𝜃) → (𝜑 → 𝜏))) |
28 | 6, 8, 10, 12, 15, 27 | uzind 12458 | . 2 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁) → (𝜑 → 𝜂)) |
29 | 4, 28 | mpcom 38 | 1 ⊢ (𝜑 → 𝜂) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 ∧ w3a 1087 = wceq 1539 ∈ wcel 2104 class class class wbr 5081 (class class class)co 7307 1c1 10918 + caddc 10920 ≤ cle 11056 ℤcz 12365 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-sep 5232 ax-nul 5239 ax-pow 5297 ax-pr 5361 ax-un 7620 ax-resscn 10974 ax-1cn 10975 ax-icn 10976 ax-addcl 10977 ax-addrcl 10978 ax-mulcl 10979 ax-mulrcl 10980 ax-mulcom 10981 ax-addass 10982 ax-mulass 10983 ax-distr 10984 ax-i2m1 10985 ax-1ne0 10986 ax-1rid 10987 ax-rnegex 10988 ax-rrecex 10989 ax-cnre 10990 ax-pre-lttri 10991 ax-pre-lttrn 10992 ax-pre-ltadd 10993 ax-pre-mulgt0 10994 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-reu 3286 df-rab 3287 df-v 3439 df-sbc 3722 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-iun 4933 df-br 5082 df-opab 5144 df-mpt 5165 df-tr 5199 df-id 5500 df-eprel 5506 df-po 5514 df-so 5515 df-fr 5555 df-we 5557 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-pred 6217 df-ord 6284 df-on 6285 df-lim 6286 df-suc 6287 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-f1 6463 df-fo 6464 df-f1o 6465 df-fv 6466 df-riota 7264 df-ov 7310 df-oprab 7311 df-mpo 7312 df-om 7745 df-2nd 7864 df-frecs 8128 df-wrecs 8159 df-recs 8233 df-rdg 8272 df-er 8529 df-en 8765 df-dom 8766 df-sdom 8767 df-pnf 11057 df-mnf 11058 df-xr 11059 df-ltxr 11060 df-le 11061 df-sub 11253 df-neg 11254 df-nn 12020 df-n0 12280 df-z 12366 |
This theorem is referenced by: 2ap1caineq 40143 |
Copyright terms: Public domain | W3C validator |