MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wrdl3s3 Structured version   Visualization version   GIF version

Theorem wrdl3s3 14605
Description: A word of length 3 is a length 3 string. (Contributed by AV, 18-May-2021.)
Assertion
Ref Expression
wrdl3s3 ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 3) ↔ ∃𝑎𝑉𝑏𝑉𝑐𝑉 𝑊 = ⟨“𝑎𝑏𝑐”⟩)
Distinct variable groups:   𝑉,𝑎,𝑏,𝑐   𝑊,𝑎,𝑏,𝑐

Proof of Theorem wrdl3s3
StepHypRef Expression
1 c0ex 10900 . . . . . . . 8 0 ∈ V
21tpid1 4701 . . . . . . 7 0 ∈ {0, 1, 2}
3 fzo0to3tp 13401 . . . . . . 7 (0..^3) = {0, 1, 2}
42, 3eleqtrri 2838 . . . . . 6 0 ∈ (0..^3)
5 oveq2 7263 . . . . . 6 ((♯‘𝑊) = 3 → (0..^(♯‘𝑊)) = (0..^3))
64, 5eleqtrrid 2846 . . . . 5 ((♯‘𝑊) = 3 → 0 ∈ (0..^(♯‘𝑊)))
7 wrdsymbcl 14158 . . . . 5 ((𝑊 ∈ Word 𝑉 ∧ 0 ∈ (0..^(♯‘𝑊))) → (𝑊‘0) ∈ 𝑉)
86, 7sylan2 592 . . . 4 ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 3) → (𝑊‘0) ∈ 𝑉)
9 1ex 10902 . . . . . . . 8 1 ∈ V
109tpid2 4703 . . . . . . 7 1 ∈ {0, 1, 2}
1110, 3eleqtrri 2838 . . . . . 6 1 ∈ (0..^3)
1211, 5eleqtrrid 2846 . . . . 5 ((♯‘𝑊) = 3 → 1 ∈ (0..^(♯‘𝑊)))
13 wrdsymbcl 14158 . . . . 5 ((𝑊 ∈ Word 𝑉 ∧ 1 ∈ (0..^(♯‘𝑊))) → (𝑊‘1) ∈ 𝑉)
1412, 13sylan2 592 . . . 4 ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 3) → (𝑊‘1) ∈ 𝑉)
15 2ex 11980 . . . . . . . 8 2 ∈ V
1615tpid3 4706 . . . . . . 7 2 ∈ {0, 1, 2}
1716, 3eleqtrri 2838 . . . . . 6 2 ∈ (0..^3)
1817, 5eleqtrrid 2846 . . . . 5 ((♯‘𝑊) = 3 → 2 ∈ (0..^(♯‘𝑊)))
19 wrdsymbcl 14158 . . . . 5 ((𝑊 ∈ Word 𝑉 ∧ 2 ∈ (0..^(♯‘𝑊))) → (𝑊‘2) ∈ 𝑉)
2018, 19sylan2 592 . . . 4 ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 3) → (𝑊‘2) ∈ 𝑉)
21 simpr 484 . . . . 5 ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 3) → (♯‘𝑊) = 3)
22 eqid 2738 . . . . . 6 (𝑊‘0) = (𝑊‘0)
23 eqid 2738 . . . . . 6 (𝑊‘1) = (𝑊‘1)
24 eqid 2738 . . . . . 6 (𝑊‘2) = (𝑊‘2)
2522, 23, 243pm3.2i 1337 . . . . 5 ((𝑊‘0) = (𝑊‘0) ∧ (𝑊‘1) = (𝑊‘1) ∧ (𝑊‘2) = (𝑊‘2))
2621, 25jctir 520 . . . 4 ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 3) → ((♯‘𝑊) = 3 ∧ ((𝑊‘0) = (𝑊‘0) ∧ (𝑊‘1) = (𝑊‘1) ∧ (𝑊‘2) = (𝑊‘2))))
27 eqeq2 2750 . . . . . . 7 (𝑎 = (𝑊‘0) → ((𝑊‘0) = 𝑎 ↔ (𝑊‘0) = (𝑊‘0)))
28273anbi1d 1438 . . . . . 6 (𝑎 = (𝑊‘0) → (((𝑊‘0) = 𝑎 ∧ (𝑊‘1) = 𝑏 ∧ (𝑊‘2) = 𝑐) ↔ ((𝑊‘0) = (𝑊‘0) ∧ (𝑊‘1) = 𝑏 ∧ (𝑊‘2) = 𝑐)))
2928anbi2d 628 . . . . 5 (𝑎 = (𝑊‘0) → (((♯‘𝑊) = 3 ∧ ((𝑊‘0) = 𝑎 ∧ (𝑊‘1) = 𝑏 ∧ (𝑊‘2) = 𝑐)) ↔ ((♯‘𝑊) = 3 ∧ ((𝑊‘0) = (𝑊‘0) ∧ (𝑊‘1) = 𝑏 ∧ (𝑊‘2) = 𝑐))))
30 eqeq2 2750 . . . . . . 7 (𝑏 = (𝑊‘1) → ((𝑊‘1) = 𝑏 ↔ (𝑊‘1) = (𝑊‘1)))
31303anbi2d 1439 . . . . . 6 (𝑏 = (𝑊‘1) → (((𝑊‘0) = (𝑊‘0) ∧ (𝑊‘1) = 𝑏 ∧ (𝑊‘2) = 𝑐) ↔ ((𝑊‘0) = (𝑊‘0) ∧ (𝑊‘1) = (𝑊‘1) ∧ (𝑊‘2) = 𝑐)))
3231anbi2d 628 . . . . 5 (𝑏 = (𝑊‘1) → (((♯‘𝑊) = 3 ∧ ((𝑊‘0) = (𝑊‘0) ∧ (𝑊‘1) = 𝑏 ∧ (𝑊‘2) = 𝑐)) ↔ ((♯‘𝑊) = 3 ∧ ((𝑊‘0) = (𝑊‘0) ∧ (𝑊‘1) = (𝑊‘1) ∧ (𝑊‘2) = 𝑐))))
33 eqeq2 2750 . . . . . . 7 (𝑐 = (𝑊‘2) → ((𝑊‘2) = 𝑐 ↔ (𝑊‘2) = (𝑊‘2)))
34333anbi3d 1440 . . . . . 6 (𝑐 = (𝑊‘2) → (((𝑊‘0) = (𝑊‘0) ∧ (𝑊‘1) = (𝑊‘1) ∧ (𝑊‘2) = 𝑐) ↔ ((𝑊‘0) = (𝑊‘0) ∧ (𝑊‘1) = (𝑊‘1) ∧ (𝑊‘2) = (𝑊‘2))))
3534anbi2d 628 . . . . 5 (𝑐 = (𝑊‘2) → (((♯‘𝑊) = 3 ∧ ((𝑊‘0) = (𝑊‘0) ∧ (𝑊‘1) = (𝑊‘1) ∧ (𝑊‘2) = 𝑐)) ↔ ((♯‘𝑊) = 3 ∧ ((𝑊‘0) = (𝑊‘0) ∧ (𝑊‘1) = (𝑊‘1) ∧ (𝑊‘2) = (𝑊‘2)))))
3629, 32, 35rspc3ev 3566 . . . 4 ((((𝑊‘0) ∈ 𝑉 ∧ (𝑊‘1) ∈ 𝑉 ∧ (𝑊‘2) ∈ 𝑉) ∧ ((♯‘𝑊) = 3 ∧ ((𝑊‘0) = (𝑊‘0) ∧ (𝑊‘1) = (𝑊‘1) ∧ (𝑊‘2) = (𝑊‘2)))) → ∃𝑎𝑉𝑏𝑉𝑐𝑉 ((♯‘𝑊) = 3 ∧ ((𝑊‘0) = 𝑎 ∧ (𝑊‘1) = 𝑏 ∧ (𝑊‘2) = 𝑐)))
378, 14, 20, 26, 36syl31anc 1371 . . 3 ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 3) → ∃𝑎𝑉𝑏𝑉𝑐𝑉 ((♯‘𝑊) = 3 ∧ ((𝑊‘0) = 𝑎 ∧ (𝑊‘1) = 𝑏 ∧ (𝑊‘2) = 𝑐)))
38 df-3an 1087 . . . . . . . . 9 ((𝑎𝑉𝑏𝑉𝑐𝑉) ↔ ((𝑎𝑉𝑏𝑉) ∧ 𝑐𝑉))
39 eqwrds3 14604 . . . . . . . . . 10 ((𝑊 ∈ Word 𝑉 ∧ (𝑎𝑉𝑏𝑉𝑐𝑉)) → (𝑊 = ⟨“𝑎𝑏𝑐”⟩ ↔ ((♯‘𝑊) = 3 ∧ ((𝑊‘0) = 𝑎 ∧ (𝑊‘1) = 𝑏 ∧ (𝑊‘2) = 𝑐))))
4039ex 412 . . . . . . . . 9 (𝑊 ∈ Word 𝑉 → ((𝑎𝑉𝑏𝑉𝑐𝑉) → (𝑊 = ⟨“𝑎𝑏𝑐”⟩ ↔ ((♯‘𝑊) = 3 ∧ ((𝑊‘0) = 𝑎 ∧ (𝑊‘1) = 𝑏 ∧ (𝑊‘2) = 𝑐)))))
4138, 40syl5bir 242 . . . . . . . 8 (𝑊 ∈ Word 𝑉 → (((𝑎𝑉𝑏𝑉) ∧ 𝑐𝑉) → (𝑊 = ⟨“𝑎𝑏𝑐”⟩ ↔ ((♯‘𝑊) = 3 ∧ ((𝑊‘0) = 𝑎 ∧ (𝑊‘1) = 𝑏 ∧ (𝑊‘2) = 𝑐)))))
4241expd 415 . . . . . . 7 (𝑊 ∈ Word 𝑉 → ((𝑎𝑉𝑏𝑉) → (𝑐𝑉 → (𝑊 = ⟨“𝑎𝑏𝑐”⟩ ↔ ((♯‘𝑊) = 3 ∧ ((𝑊‘0) = 𝑎 ∧ (𝑊‘1) = 𝑏 ∧ (𝑊‘2) = 𝑐))))))
4342adantr 480 . . . . . 6 ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 3) → ((𝑎𝑉𝑏𝑉) → (𝑐𝑉 → (𝑊 = ⟨“𝑎𝑏𝑐”⟩ ↔ ((♯‘𝑊) = 3 ∧ ((𝑊‘0) = 𝑎 ∧ (𝑊‘1) = 𝑏 ∧ (𝑊‘2) = 𝑐))))))
4443imp31 417 . . . . 5 ((((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 3) ∧ (𝑎𝑉𝑏𝑉)) ∧ 𝑐𝑉) → (𝑊 = ⟨“𝑎𝑏𝑐”⟩ ↔ ((♯‘𝑊) = 3 ∧ ((𝑊‘0) = 𝑎 ∧ (𝑊‘1) = 𝑏 ∧ (𝑊‘2) = 𝑐))))
4544rexbidva 3224 . . . 4 (((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 3) ∧ (𝑎𝑉𝑏𝑉)) → (∃𝑐𝑉 𝑊 = ⟨“𝑎𝑏𝑐”⟩ ↔ ∃𝑐𝑉 ((♯‘𝑊) = 3 ∧ ((𝑊‘0) = 𝑎 ∧ (𝑊‘1) = 𝑏 ∧ (𝑊‘2) = 𝑐))))
46452rexbidva 3227 . . 3 ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 3) → (∃𝑎𝑉𝑏𝑉𝑐𝑉 𝑊 = ⟨“𝑎𝑏𝑐”⟩ ↔ ∃𝑎𝑉𝑏𝑉𝑐𝑉 ((♯‘𝑊) = 3 ∧ ((𝑊‘0) = 𝑎 ∧ (𝑊‘1) = 𝑏 ∧ (𝑊‘2) = 𝑐))))
4737, 46mpbird 256 . 2 ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 3) → ∃𝑎𝑉𝑏𝑉𝑐𝑉 𝑊 = ⟨“𝑎𝑏𝑐”⟩)
48 s3cl 14520 . . . . . . 7 ((𝑎𝑉𝑏𝑉𝑐𝑉) → ⟨“𝑎𝑏𝑐”⟩ ∈ Word 𝑉)
4948ad4ant123 1170 . . . . . 6 ((((𝑎𝑉𝑏𝑉) ∧ 𝑐𝑉) ∧ 𝑊 = ⟨“𝑎𝑏𝑐”⟩) → ⟨“𝑎𝑏𝑐”⟩ ∈ Word 𝑉)
50 s3len 14535 . . . . . 6 (♯‘⟨“𝑎𝑏𝑐”⟩) = 3
5149, 50jctir 520 . . . . 5 ((((𝑎𝑉𝑏𝑉) ∧ 𝑐𝑉) ∧ 𝑊 = ⟨“𝑎𝑏𝑐”⟩) → (⟨“𝑎𝑏𝑐”⟩ ∈ Word 𝑉 ∧ (♯‘⟨“𝑎𝑏𝑐”⟩) = 3))
52 eleq1 2826 . . . . . . 7 (𝑊 = ⟨“𝑎𝑏𝑐”⟩ → (𝑊 ∈ Word 𝑉 ↔ ⟨“𝑎𝑏𝑐”⟩ ∈ Word 𝑉))
53 fveqeq2 6765 . . . . . . 7 (𝑊 = ⟨“𝑎𝑏𝑐”⟩ → ((♯‘𝑊) = 3 ↔ (♯‘⟨“𝑎𝑏𝑐”⟩) = 3))
5452, 53anbi12d 630 . . . . . 6 (𝑊 = ⟨“𝑎𝑏𝑐”⟩ → ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 3) ↔ (⟨“𝑎𝑏𝑐”⟩ ∈ Word 𝑉 ∧ (♯‘⟨“𝑎𝑏𝑐”⟩) = 3)))
5554adantl 481 . . . . 5 ((((𝑎𝑉𝑏𝑉) ∧ 𝑐𝑉) ∧ 𝑊 = ⟨“𝑎𝑏𝑐”⟩) → ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 3) ↔ (⟨“𝑎𝑏𝑐”⟩ ∈ Word 𝑉 ∧ (♯‘⟨“𝑎𝑏𝑐”⟩) = 3)))
5651, 55mpbird 256 . . . 4 ((((𝑎𝑉𝑏𝑉) ∧ 𝑐𝑉) ∧ 𝑊 = ⟨“𝑎𝑏𝑐”⟩) → (𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 3))
5756rexlimdva2 3215 . . 3 ((𝑎𝑉𝑏𝑉) → (∃𝑐𝑉 𝑊 = ⟨“𝑎𝑏𝑐”⟩ → (𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 3)))
5857rexlimivv 3220 . 2 (∃𝑎𝑉𝑏𝑉𝑐𝑉 𝑊 = ⟨“𝑎𝑏𝑐”⟩ → (𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 3))
5947, 58impbii 208 1 ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 3) ↔ ∃𝑎𝑉𝑏𝑉𝑐𝑉 𝑊 = ⟨“𝑎𝑏𝑐”⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wrex 3064  {ctp 4562  cfv 6418  (class class class)co 7255  0cc0 10802  1c1 10803  2c2 11958  3c3 11959  ..^cfzo 13311  chash 13972  Word cword 14145  ⟨“cs3 14483
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-3 11967  df-n0 12164  df-z 12250  df-uz 12512  df-fz 13169  df-fzo 13312  df-hash 13973  df-word 14146  df-concat 14202  df-s1 14229  df-s2 14489  df-s3 14490
This theorem is referenced by:  elwwlks2s3  28217
  Copyright terms: Public domain W3C validator