MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wrdl3s3 Structured version   Visualization version   GIF version

Theorem wrdl3s3 14314
Description: A word of length 3 is a length 3 string. (Contributed by AV, 18-May-2021.)
Assertion
Ref Expression
wrdl3s3 ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 3) ↔ ∃𝑎𝑉𝑏𝑉𝑐𝑉 𝑊 = ⟨“𝑎𝑏𝑐”⟩)
Distinct variable groups:   𝑉,𝑎,𝑏,𝑐   𝑊,𝑎,𝑏,𝑐

Proof of Theorem wrdl3s3
StepHypRef Expression
1 c0ex 10623 . . . . . . . 8 0 ∈ V
21tpid1 4696 . . . . . . 7 0 ∈ {0, 1, 2}
3 fzo0to3tp 13111 . . . . . . 7 (0..^3) = {0, 1, 2}
42, 3eleqtrri 2909 . . . . . 6 0 ∈ (0..^3)
5 oveq2 7153 . . . . . 6 ((♯‘𝑊) = 3 → (0..^(♯‘𝑊)) = (0..^3))
64, 5eleqtrrid 2917 . . . . 5 ((♯‘𝑊) = 3 → 0 ∈ (0..^(♯‘𝑊)))
7 wrdsymbcl 13863 . . . . 5 ((𝑊 ∈ Word 𝑉 ∧ 0 ∈ (0..^(♯‘𝑊))) → (𝑊‘0) ∈ 𝑉)
86, 7sylan2 592 . . . 4 ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 3) → (𝑊‘0) ∈ 𝑉)
9 1ex 10625 . . . . . . . 8 1 ∈ V
109tpid2 4698 . . . . . . 7 1 ∈ {0, 1, 2}
1110, 3eleqtrri 2909 . . . . . 6 1 ∈ (0..^3)
1211, 5eleqtrrid 2917 . . . . 5 ((♯‘𝑊) = 3 → 1 ∈ (0..^(♯‘𝑊)))
13 wrdsymbcl 13863 . . . . 5 ((𝑊 ∈ Word 𝑉 ∧ 1 ∈ (0..^(♯‘𝑊))) → (𝑊‘1) ∈ 𝑉)
1412, 13sylan2 592 . . . 4 ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 3) → (𝑊‘1) ∈ 𝑉)
15 2ex 11702 . . . . . . . 8 2 ∈ V
1615tpid3 4701 . . . . . . 7 2 ∈ {0, 1, 2}
1716, 3eleqtrri 2909 . . . . . 6 2 ∈ (0..^3)
1817, 5eleqtrrid 2917 . . . . 5 ((♯‘𝑊) = 3 → 2 ∈ (0..^(♯‘𝑊)))
19 wrdsymbcl 13863 . . . . 5 ((𝑊 ∈ Word 𝑉 ∧ 2 ∈ (0..^(♯‘𝑊))) → (𝑊‘2) ∈ 𝑉)
2018, 19sylan2 592 . . . 4 ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 3) → (𝑊‘2) ∈ 𝑉)
21 simpr 485 . . . . 5 ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 3) → (♯‘𝑊) = 3)
22 eqid 2818 . . . . . 6 (𝑊‘0) = (𝑊‘0)
23 eqid 2818 . . . . . 6 (𝑊‘1) = (𝑊‘1)
24 eqid 2818 . . . . . 6 (𝑊‘2) = (𝑊‘2)
2522, 23, 243pm3.2i 1331 . . . . 5 ((𝑊‘0) = (𝑊‘0) ∧ (𝑊‘1) = (𝑊‘1) ∧ (𝑊‘2) = (𝑊‘2))
2621, 25jctir 521 . . . 4 ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 3) → ((♯‘𝑊) = 3 ∧ ((𝑊‘0) = (𝑊‘0) ∧ (𝑊‘1) = (𝑊‘1) ∧ (𝑊‘2) = (𝑊‘2))))
27 eqeq2 2830 . . . . . . 7 (𝑎 = (𝑊‘0) → ((𝑊‘0) = 𝑎 ↔ (𝑊‘0) = (𝑊‘0)))
28273anbi1d 1431 . . . . . 6 (𝑎 = (𝑊‘0) → (((𝑊‘0) = 𝑎 ∧ (𝑊‘1) = 𝑏 ∧ (𝑊‘2) = 𝑐) ↔ ((𝑊‘0) = (𝑊‘0) ∧ (𝑊‘1) = 𝑏 ∧ (𝑊‘2) = 𝑐)))
2928anbi2d 628 . . . . 5 (𝑎 = (𝑊‘0) → (((♯‘𝑊) = 3 ∧ ((𝑊‘0) = 𝑎 ∧ (𝑊‘1) = 𝑏 ∧ (𝑊‘2) = 𝑐)) ↔ ((♯‘𝑊) = 3 ∧ ((𝑊‘0) = (𝑊‘0) ∧ (𝑊‘1) = 𝑏 ∧ (𝑊‘2) = 𝑐))))
30 eqeq2 2830 . . . . . . 7 (𝑏 = (𝑊‘1) → ((𝑊‘1) = 𝑏 ↔ (𝑊‘1) = (𝑊‘1)))
31303anbi2d 1432 . . . . . 6 (𝑏 = (𝑊‘1) → (((𝑊‘0) = (𝑊‘0) ∧ (𝑊‘1) = 𝑏 ∧ (𝑊‘2) = 𝑐) ↔ ((𝑊‘0) = (𝑊‘0) ∧ (𝑊‘1) = (𝑊‘1) ∧ (𝑊‘2) = 𝑐)))
3231anbi2d 628 . . . . 5 (𝑏 = (𝑊‘1) → (((♯‘𝑊) = 3 ∧ ((𝑊‘0) = (𝑊‘0) ∧ (𝑊‘1) = 𝑏 ∧ (𝑊‘2) = 𝑐)) ↔ ((♯‘𝑊) = 3 ∧ ((𝑊‘0) = (𝑊‘0) ∧ (𝑊‘1) = (𝑊‘1) ∧ (𝑊‘2) = 𝑐))))
33 eqeq2 2830 . . . . . . 7 (𝑐 = (𝑊‘2) → ((𝑊‘2) = 𝑐 ↔ (𝑊‘2) = (𝑊‘2)))
34333anbi3d 1433 . . . . . 6 (𝑐 = (𝑊‘2) → (((𝑊‘0) = (𝑊‘0) ∧ (𝑊‘1) = (𝑊‘1) ∧ (𝑊‘2) = 𝑐) ↔ ((𝑊‘0) = (𝑊‘0) ∧ (𝑊‘1) = (𝑊‘1) ∧ (𝑊‘2) = (𝑊‘2))))
3534anbi2d 628 . . . . 5 (𝑐 = (𝑊‘2) → (((♯‘𝑊) = 3 ∧ ((𝑊‘0) = (𝑊‘0) ∧ (𝑊‘1) = (𝑊‘1) ∧ (𝑊‘2) = 𝑐)) ↔ ((♯‘𝑊) = 3 ∧ ((𝑊‘0) = (𝑊‘0) ∧ (𝑊‘1) = (𝑊‘1) ∧ (𝑊‘2) = (𝑊‘2)))))
3629, 32, 35rspc3ev 3634 . . . 4 ((((𝑊‘0) ∈ 𝑉 ∧ (𝑊‘1) ∈ 𝑉 ∧ (𝑊‘2) ∈ 𝑉) ∧ ((♯‘𝑊) = 3 ∧ ((𝑊‘0) = (𝑊‘0) ∧ (𝑊‘1) = (𝑊‘1) ∧ (𝑊‘2) = (𝑊‘2)))) → ∃𝑎𝑉𝑏𝑉𝑐𝑉 ((♯‘𝑊) = 3 ∧ ((𝑊‘0) = 𝑎 ∧ (𝑊‘1) = 𝑏 ∧ (𝑊‘2) = 𝑐)))
378, 14, 20, 26, 36syl31anc 1365 . . 3 ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 3) → ∃𝑎𝑉𝑏𝑉𝑐𝑉 ((♯‘𝑊) = 3 ∧ ((𝑊‘0) = 𝑎 ∧ (𝑊‘1) = 𝑏 ∧ (𝑊‘2) = 𝑐)))
38 df-3an 1081 . . . . . . . . 9 ((𝑎𝑉𝑏𝑉𝑐𝑉) ↔ ((𝑎𝑉𝑏𝑉) ∧ 𝑐𝑉))
39 eqwrds3 14313 . . . . . . . . . 10 ((𝑊 ∈ Word 𝑉 ∧ (𝑎𝑉𝑏𝑉𝑐𝑉)) → (𝑊 = ⟨“𝑎𝑏𝑐”⟩ ↔ ((♯‘𝑊) = 3 ∧ ((𝑊‘0) = 𝑎 ∧ (𝑊‘1) = 𝑏 ∧ (𝑊‘2) = 𝑐))))
4039ex 413 . . . . . . . . 9 (𝑊 ∈ Word 𝑉 → ((𝑎𝑉𝑏𝑉𝑐𝑉) → (𝑊 = ⟨“𝑎𝑏𝑐”⟩ ↔ ((♯‘𝑊) = 3 ∧ ((𝑊‘0) = 𝑎 ∧ (𝑊‘1) = 𝑏 ∧ (𝑊‘2) = 𝑐)))))
4138, 40syl5bir 244 . . . . . . . 8 (𝑊 ∈ Word 𝑉 → (((𝑎𝑉𝑏𝑉) ∧ 𝑐𝑉) → (𝑊 = ⟨“𝑎𝑏𝑐”⟩ ↔ ((♯‘𝑊) = 3 ∧ ((𝑊‘0) = 𝑎 ∧ (𝑊‘1) = 𝑏 ∧ (𝑊‘2) = 𝑐)))))
4241expd 416 . . . . . . 7 (𝑊 ∈ Word 𝑉 → ((𝑎𝑉𝑏𝑉) → (𝑐𝑉 → (𝑊 = ⟨“𝑎𝑏𝑐”⟩ ↔ ((♯‘𝑊) = 3 ∧ ((𝑊‘0) = 𝑎 ∧ (𝑊‘1) = 𝑏 ∧ (𝑊‘2) = 𝑐))))))
4342adantr 481 . . . . . 6 ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 3) → ((𝑎𝑉𝑏𝑉) → (𝑐𝑉 → (𝑊 = ⟨“𝑎𝑏𝑐”⟩ ↔ ((♯‘𝑊) = 3 ∧ ((𝑊‘0) = 𝑎 ∧ (𝑊‘1) = 𝑏 ∧ (𝑊‘2) = 𝑐))))))
4443imp31 418 . . . . 5 ((((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 3) ∧ (𝑎𝑉𝑏𝑉)) ∧ 𝑐𝑉) → (𝑊 = ⟨“𝑎𝑏𝑐”⟩ ↔ ((♯‘𝑊) = 3 ∧ ((𝑊‘0) = 𝑎 ∧ (𝑊‘1) = 𝑏 ∧ (𝑊‘2) = 𝑐))))
4544rexbidva 3293 . . . 4 (((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 3) ∧ (𝑎𝑉𝑏𝑉)) → (∃𝑐𝑉 𝑊 = ⟨“𝑎𝑏𝑐”⟩ ↔ ∃𝑐𝑉 ((♯‘𝑊) = 3 ∧ ((𝑊‘0) = 𝑎 ∧ (𝑊‘1) = 𝑏 ∧ (𝑊‘2) = 𝑐))))
46452rexbidva 3296 . . 3 ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 3) → (∃𝑎𝑉𝑏𝑉𝑐𝑉 𝑊 = ⟨“𝑎𝑏𝑐”⟩ ↔ ∃𝑎𝑉𝑏𝑉𝑐𝑉 ((♯‘𝑊) = 3 ∧ ((𝑊‘0) = 𝑎 ∧ (𝑊‘1) = 𝑏 ∧ (𝑊‘2) = 𝑐))))
4737, 46mpbird 258 . 2 ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 3) → ∃𝑎𝑉𝑏𝑉𝑐𝑉 𝑊 = ⟨“𝑎𝑏𝑐”⟩)
48 s3cl 14229 . . . . . . 7 ((𝑎𝑉𝑏𝑉𝑐𝑉) → ⟨“𝑎𝑏𝑐”⟩ ∈ Word 𝑉)
4948ad4ant123 1164 . . . . . 6 ((((𝑎𝑉𝑏𝑉) ∧ 𝑐𝑉) ∧ 𝑊 = ⟨“𝑎𝑏𝑐”⟩) → ⟨“𝑎𝑏𝑐”⟩ ∈ Word 𝑉)
50 s3len 14244 . . . . . 6 (♯‘⟨“𝑎𝑏𝑐”⟩) = 3
5149, 50jctir 521 . . . . 5 ((((𝑎𝑉𝑏𝑉) ∧ 𝑐𝑉) ∧ 𝑊 = ⟨“𝑎𝑏𝑐”⟩) → (⟨“𝑎𝑏𝑐”⟩ ∈ Word 𝑉 ∧ (♯‘⟨“𝑎𝑏𝑐”⟩) = 3))
52 eleq1 2897 . . . . . . 7 (𝑊 = ⟨“𝑎𝑏𝑐”⟩ → (𝑊 ∈ Word 𝑉 ↔ ⟨“𝑎𝑏𝑐”⟩ ∈ Word 𝑉))
53 fveqeq2 6672 . . . . . . 7 (𝑊 = ⟨“𝑎𝑏𝑐”⟩ → ((♯‘𝑊) = 3 ↔ (♯‘⟨“𝑎𝑏𝑐”⟩) = 3))
5452, 53anbi12d 630 . . . . . 6 (𝑊 = ⟨“𝑎𝑏𝑐”⟩ → ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 3) ↔ (⟨“𝑎𝑏𝑐”⟩ ∈ Word 𝑉 ∧ (♯‘⟨“𝑎𝑏𝑐”⟩) = 3)))
5554adantl 482 . . . . 5 ((((𝑎𝑉𝑏𝑉) ∧ 𝑐𝑉) ∧ 𝑊 = ⟨“𝑎𝑏𝑐”⟩) → ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 3) ↔ (⟨“𝑎𝑏𝑐”⟩ ∈ Word 𝑉 ∧ (♯‘⟨“𝑎𝑏𝑐”⟩) = 3)))
5651, 55mpbird 258 . . . 4 ((((𝑎𝑉𝑏𝑉) ∧ 𝑐𝑉) ∧ 𝑊 = ⟨“𝑎𝑏𝑐”⟩) → (𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 3))
5756rexlimdva2 3284 . . 3 ((𝑎𝑉𝑏𝑉) → (∃𝑐𝑉 𝑊 = ⟨“𝑎𝑏𝑐”⟩ → (𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 3)))
5857rexlimivv 3289 . 2 (∃𝑎𝑉𝑏𝑉𝑐𝑉 𝑊 = ⟨“𝑎𝑏𝑐”⟩ → (𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 3))
5947, 58impbii 210 1 ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 3) ↔ ∃𝑎𝑉𝑏𝑉𝑐𝑉 𝑊 = ⟨“𝑎𝑏𝑐”⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396  w3a 1079   = wceq 1528  wcel 2105  wrex 3136  {ctp 4561  cfv 6348  (class class class)co 7145  0cc0 10525  1c1 10526  2c2 11680  3c3 11681  ..^cfzo 13021  chash 13678  Word cword 13849  ⟨“cs3 14192
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-cnex 10581  ax-resscn 10582  ax-1cn 10583  ax-icn 10584  ax-addcl 10585  ax-addrcl 10586  ax-mulcl 10587  ax-mulrcl 10588  ax-mulcom 10589  ax-addass 10590  ax-mulass 10591  ax-distr 10592  ax-i2m1 10593  ax-1ne0 10594  ax-1rid 10595  ax-rnegex 10596  ax-rrecex 10597  ax-cnre 10598  ax-pre-lttri 10599  ax-pre-lttrn 10600  ax-pre-ltadd 10601  ax-pre-mulgt0 10602
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-reu 3142  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4831  df-int 4868  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-om 7570  df-1st 7678  df-2nd 7679  df-wrecs 7936  df-recs 7997  df-rdg 8035  df-1o 8091  df-oadd 8095  df-er 8278  df-en 8498  df-dom 8499  df-sdom 8500  df-fin 8501  df-card 9356  df-pnf 10665  df-mnf 10666  df-xr 10667  df-ltxr 10668  df-le 10669  df-sub 10860  df-neg 10861  df-nn 11627  df-2 11688  df-3 11689  df-n0 11886  df-z 11970  df-uz 12232  df-fz 12881  df-fzo 13022  df-hash 13679  df-word 13850  df-concat 13911  df-s1 13938  df-s2 14198  df-s3 14199
This theorem is referenced by:  elwwlks2s3  27657
  Copyright terms: Public domain W3C validator