MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wrdl3s3 Structured version   Visualization version   GIF version

Theorem wrdl3s3 14529
Description: A word of length 3 is a length 3 string. (Contributed by AV, 18-May-2021.)
Assertion
Ref Expression
wrdl3s3 ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 3) ↔ ∃𝑎𝑉𝑏𝑉𝑐𝑉 𝑊 = ⟨“𝑎𝑏𝑐”⟩)
Distinct variable groups:   𝑉,𝑎,𝑏,𝑐   𝑊,𝑎,𝑏,𝑐

Proof of Theorem wrdl3s3
StepHypRef Expression
1 c0ex 10827 . . . . . . . 8 0 ∈ V
21tpid1 4684 . . . . . . 7 0 ∈ {0, 1, 2}
3 fzo0to3tp 13328 . . . . . . 7 (0..^3) = {0, 1, 2}
42, 3eleqtrri 2837 . . . . . 6 0 ∈ (0..^3)
5 oveq2 7221 . . . . . 6 ((♯‘𝑊) = 3 → (0..^(♯‘𝑊)) = (0..^3))
64, 5eleqtrrid 2845 . . . . 5 ((♯‘𝑊) = 3 → 0 ∈ (0..^(♯‘𝑊)))
7 wrdsymbcl 14082 . . . . 5 ((𝑊 ∈ Word 𝑉 ∧ 0 ∈ (0..^(♯‘𝑊))) → (𝑊‘0) ∈ 𝑉)
86, 7sylan2 596 . . . 4 ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 3) → (𝑊‘0) ∈ 𝑉)
9 1ex 10829 . . . . . . . 8 1 ∈ V
109tpid2 4686 . . . . . . 7 1 ∈ {0, 1, 2}
1110, 3eleqtrri 2837 . . . . . 6 1 ∈ (0..^3)
1211, 5eleqtrrid 2845 . . . . 5 ((♯‘𝑊) = 3 → 1 ∈ (0..^(♯‘𝑊)))
13 wrdsymbcl 14082 . . . . 5 ((𝑊 ∈ Word 𝑉 ∧ 1 ∈ (0..^(♯‘𝑊))) → (𝑊‘1) ∈ 𝑉)
1412, 13sylan2 596 . . . 4 ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 3) → (𝑊‘1) ∈ 𝑉)
15 2ex 11907 . . . . . . . 8 2 ∈ V
1615tpid3 4689 . . . . . . 7 2 ∈ {0, 1, 2}
1716, 3eleqtrri 2837 . . . . . 6 2 ∈ (0..^3)
1817, 5eleqtrrid 2845 . . . . 5 ((♯‘𝑊) = 3 → 2 ∈ (0..^(♯‘𝑊)))
19 wrdsymbcl 14082 . . . . 5 ((𝑊 ∈ Word 𝑉 ∧ 2 ∈ (0..^(♯‘𝑊))) → (𝑊‘2) ∈ 𝑉)
2018, 19sylan2 596 . . . 4 ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 3) → (𝑊‘2) ∈ 𝑉)
21 simpr 488 . . . . 5 ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 3) → (♯‘𝑊) = 3)
22 eqid 2737 . . . . . 6 (𝑊‘0) = (𝑊‘0)
23 eqid 2737 . . . . . 6 (𝑊‘1) = (𝑊‘1)
24 eqid 2737 . . . . . 6 (𝑊‘2) = (𝑊‘2)
2522, 23, 243pm3.2i 1341 . . . . 5 ((𝑊‘0) = (𝑊‘0) ∧ (𝑊‘1) = (𝑊‘1) ∧ (𝑊‘2) = (𝑊‘2))
2621, 25jctir 524 . . . 4 ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 3) → ((♯‘𝑊) = 3 ∧ ((𝑊‘0) = (𝑊‘0) ∧ (𝑊‘1) = (𝑊‘1) ∧ (𝑊‘2) = (𝑊‘2))))
27 eqeq2 2749 . . . . . . 7 (𝑎 = (𝑊‘0) → ((𝑊‘0) = 𝑎 ↔ (𝑊‘0) = (𝑊‘0)))
28273anbi1d 1442 . . . . . 6 (𝑎 = (𝑊‘0) → (((𝑊‘0) = 𝑎 ∧ (𝑊‘1) = 𝑏 ∧ (𝑊‘2) = 𝑐) ↔ ((𝑊‘0) = (𝑊‘0) ∧ (𝑊‘1) = 𝑏 ∧ (𝑊‘2) = 𝑐)))
2928anbi2d 632 . . . . 5 (𝑎 = (𝑊‘0) → (((♯‘𝑊) = 3 ∧ ((𝑊‘0) = 𝑎 ∧ (𝑊‘1) = 𝑏 ∧ (𝑊‘2) = 𝑐)) ↔ ((♯‘𝑊) = 3 ∧ ((𝑊‘0) = (𝑊‘0) ∧ (𝑊‘1) = 𝑏 ∧ (𝑊‘2) = 𝑐))))
30 eqeq2 2749 . . . . . . 7 (𝑏 = (𝑊‘1) → ((𝑊‘1) = 𝑏 ↔ (𝑊‘1) = (𝑊‘1)))
31303anbi2d 1443 . . . . . 6 (𝑏 = (𝑊‘1) → (((𝑊‘0) = (𝑊‘0) ∧ (𝑊‘1) = 𝑏 ∧ (𝑊‘2) = 𝑐) ↔ ((𝑊‘0) = (𝑊‘0) ∧ (𝑊‘1) = (𝑊‘1) ∧ (𝑊‘2) = 𝑐)))
3231anbi2d 632 . . . . 5 (𝑏 = (𝑊‘1) → (((♯‘𝑊) = 3 ∧ ((𝑊‘0) = (𝑊‘0) ∧ (𝑊‘1) = 𝑏 ∧ (𝑊‘2) = 𝑐)) ↔ ((♯‘𝑊) = 3 ∧ ((𝑊‘0) = (𝑊‘0) ∧ (𝑊‘1) = (𝑊‘1) ∧ (𝑊‘2) = 𝑐))))
33 eqeq2 2749 . . . . . . 7 (𝑐 = (𝑊‘2) → ((𝑊‘2) = 𝑐 ↔ (𝑊‘2) = (𝑊‘2)))
34333anbi3d 1444 . . . . . 6 (𝑐 = (𝑊‘2) → (((𝑊‘0) = (𝑊‘0) ∧ (𝑊‘1) = (𝑊‘1) ∧ (𝑊‘2) = 𝑐) ↔ ((𝑊‘0) = (𝑊‘0) ∧ (𝑊‘1) = (𝑊‘1) ∧ (𝑊‘2) = (𝑊‘2))))
3534anbi2d 632 . . . . 5 (𝑐 = (𝑊‘2) → (((♯‘𝑊) = 3 ∧ ((𝑊‘0) = (𝑊‘0) ∧ (𝑊‘1) = (𝑊‘1) ∧ (𝑊‘2) = 𝑐)) ↔ ((♯‘𝑊) = 3 ∧ ((𝑊‘0) = (𝑊‘0) ∧ (𝑊‘1) = (𝑊‘1) ∧ (𝑊‘2) = (𝑊‘2)))))
3629, 32, 35rspc3ev 3551 . . . 4 ((((𝑊‘0) ∈ 𝑉 ∧ (𝑊‘1) ∈ 𝑉 ∧ (𝑊‘2) ∈ 𝑉) ∧ ((♯‘𝑊) = 3 ∧ ((𝑊‘0) = (𝑊‘0) ∧ (𝑊‘1) = (𝑊‘1) ∧ (𝑊‘2) = (𝑊‘2)))) → ∃𝑎𝑉𝑏𝑉𝑐𝑉 ((♯‘𝑊) = 3 ∧ ((𝑊‘0) = 𝑎 ∧ (𝑊‘1) = 𝑏 ∧ (𝑊‘2) = 𝑐)))
378, 14, 20, 26, 36syl31anc 1375 . . 3 ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 3) → ∃𝑎𝑉𝑏𝑉𝑐𝑉 ((♯‘𝑊) = 3 ∧ ((𝑊‘0) = 𝑎 ∧ (𝑊‘1) = 𝑏 ∧ (𝑊‘2) = 𝑐)))
38 df-3an 1091 . . . . . . . . 9 ((𝑎𝑉𝑏𝑉𝑐𝑉) ↔ ((𝑎𝑉𝑏𝑉) ∧ 𝑐𝑉))
39 eqwrds3 14528 . . . . . . . . . 10 ((𝑊 ∈ Word 𝑉 ∧ (𝑎𝑉𝑏𝑉𝑐𝑉)) → (𝑊 = ⟨“𝑎𝑏𝑐”⟩ ↔ ((♯‘𝑊) = 3 ∧ ((𝑊‘0) = 𝑎 ∧ (𝑊‘1) = 𝑏 ∧ (𝑊‘2) = 𝑐))))
4039ex 416 . . . . . . . . 9 (𝑊 ∈ Word 𝑉 → ((𝑎𝑉𝑏𝑉𝑐𝑉) → (𝑊 = ⟨“𝑎𝑏𝑐”⟩ ↔ ((♯‘𝑊) = 3 ∧ ((𝑊‘0) = 𝑎 ∧ (𝑊‘1) = 𝑏 ∧ (𝑊‘2) = 𝑐)))))
4138, 40syl5bir 246 . . . . . . . 8 (𝑊 ∈ Word 𝑉 → (((𝑎𝑉𝑏𝑉) ∧ 𝑐𝑉) → (𝑊 = ⟨“𝑎𝑏𝑐”⟩ ↔ ((♯‘𝑊) = 3 ∧ ((𝑊‘0) = 𝑎 ∧ (𝑊‘1) = 𝑏 ∧ (𝑊‘2) = 𝑐)))))
4241expd 419 . . . . . . 7 (𝑊 ∈ Word 𝑉 → ((𝑎𝑉𝑏𝑉) → (𝑐𝑉 → (𝑊 = ⟨“𝑎𝑏𝑐”⟩ ↔ ((♯‘𝑊) = 3 ∧ ((𝑊‘0) = 𝑎 ∧ (𝑊‘1) = 𝑏 ∧ (𝑊‘2) = 𝑐))))))
4342adantr 484 . . . . . 6 ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 3) → ((𝑎𝑉𝑏𝑉) → (𝑐𝑉 → (𝑊 = ⟨“𝑎𝑏𝑐”⟩ ↔ ((♯‘𝑊) = 3 ∧ ((𝑊‘0) = 𝑎 ∧ (𝑊‘1) = 𝑏 ∧ (𝑊‘2) = 𝑐))))))
4443imp31 421 . . . . 5 ((((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 3) ∧ (𝑎𝑉𝑏𝑉)) ∧ 𝑐𝑉) → (𝑊 = ⟨“𝑎𝑏𝑐”⟩ ↔ ((♯‘𝑊) = 3 ∧ ((𝑊‘0) = 𝑎 ∧ (𝑊‘1) = 𝑏 ∧ (𝑊‘2) = 𝑐))))
4544rexbidva 3215 . . . 4 (((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 3) ∧ (𝑎𝑉𝑏𝑉)) → (∃𝑐𝑉 𝑊 = ⟨“𝑎𝑏𝑐”⟩ ↔ ∃𝑐𝑉 ((♯‘𝑊) = 3 ∧ ((𝑊‘0) = 𝑎 ∧ (𝑊‘1) = 𝑏 ∧ (𝑊‘2) = 𝑐))))
46452rexbidva 3218 . . 3 ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 3) → (∃𝑎𝑉𝑏𝑉𝑐𝑉 𝑊 = ⟨“𝑎𝑏𝑐”⟩ ↔ ∃𝑎𝑉𝑏𝑉𝑐𝑉 ((♯‘𝑊) = 3 ∧ ((𝑊‘0) = 𝑎 ∧ (𝑊‘1) = 𝑏 ∧ (𝑊‘2) = 𝑐))))
4737, 46mpbird 260 . 2 ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 3) → ∃𝑎𝑉𝑏𝑉𝑐𝑉 𝑊 = ⟨“𝑎𝑏𝑐”⟩)
48 s3cl 14444 . . . . . . 7 ((𝑎𝑉𝑏𝑉𝑐𝑉) → ⟨“𝑎𝑏𝑐”⟩ ∈ Word 𝑉)
4948ad4ant123 1174 . . . . . 6 ((((𝑎𝑉𝑏𝑉) ∧ 𝑐𝑉) ∧ 𝑊 = ⟨“𝑎𝑏𝑐”⟩) → ⟨“𝑎𝑏𝑐”⟩ ∈ Word 𝑉)
50 s3len 14459 . . . . . 6 (♯‘⟨“𝑎𝑏𝑐”⟩) = 3
5149, 50jctir 524 . . . . 5 ((((𝑎𝑉𝑏𝑉) ∧ 𝑐𝑉) ∧ 𝑊 = ⟨“𝑎𝑏𝑐”⟩) → (⟨“𝑎𝑏𝑐”⟩ ∈ Word 𝑉 ∧ (♯‘⟨“𝑎𝑏𝑐”⟩) = 3))
52 eleq1 2825 . . . . . . 7 (𝑊 = ⟨“𝑎𝑏𝑐”⟩ → (𝑊 ∈ Word 𝑉 ↔ ⟨“𝑎𝑏𝑐”⟩ ∈ Word 𝑉))
53 fveqeq2 6726 . . . . . . 7 (𝑊 = ⟨“𝑎𝑏𝑐”⟩ → ((♯‘𝑊) = 3 ↔ (♯‘⟨“𝑎𝑏𝑐”⟩) = 3))
5452, 53anbi12d 634 . . . . . 6 (𝑊 = ⟨“𝑎𝑏𝑐”⟩ → ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 3) ↔ (⟨“𝑎𝑏𝑐”⟩ ∈ Word 𝑉 ∧ (♯‘⟨“𝑎𝑏𝑐”⟩) = 3)))
5554adantl 485 . . . . 5 ((((𝑎𝑉𝑏𝑉) ∧ 𝑐𝑉) ∧ 𝑊 = ⟨“𝑎𝑏𝑐”⟩) → ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 3) ↔ (⟨“𝑎𝑏𝑐”⟩ ∈ Word 𝑉 ∧ (♯‘⟨“𝑎𝑏𝑐”⟩) = 3)))
5651, 55mpbird 260 . . . 4 ((((𝑎𝑉𝑏𝑉) ∧ 𝑐𝑉) ∧ 𝑊 = ⟨“𝑎𝑏𝑐”⟩) → (𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 3))
5756rexlimdva2 3206 . . 3 ((𝑎𝑉𝑏𝑉) → (∃𝑐𝑉 𝑊 = ⟨“𝑎𝑏𝑐”⟩ → (𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 3)))
5857rexlimivv 3211 . 2 (∃𝑎𝑉𝑏𝑉𝑐𝑉 𝑊 = ⟨“𝑎𝑏𝑐”⟩ → (𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 3))
5947, 58impbii 212 1 ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 3) ↔ ∃𝑎𝑉𝑏𝑉𝑐𝑉 𝑊 = ⟨“𝑎𝑏𝑐”⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1089   = wceq 1543  wcel 2110  wrex 3062  {ctp 4545  cfv 6380  (class class class)co 7213  0cc0 10729  1c1 10730  2c2 11885  3c3 11886  ..^cfzo 13238  chash 13896  Word cword 14069  ⟨“cs3 14407
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-rep 5179  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523  ax-cnex 10785  ax-resscn 10786  ax-1cn 10787  ax-icn 10788  ax-addcl 10789  ax-addrcl 10790  ax-mulcl 10791  ax-mulrcl 10792  ax-mulcom 10793  ax-addass 10794  ax-mulass 10795  ax-distr 10796  ax-i2m1 10797  ax-1ne0 10798  ax-1rid 10799  ax-rnegex 10800  ax-rrecex 10801  ax-cnre 10802  ax-pre-lttri 10803  ax-pre-lttrn 10804  ax-pre-ltadd 10805  ax-pre-mulgt0 10806
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-pss 3885  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-tp 4546  df-op 4548  df-uni 4820  df-int 4860  df-iun 4906  df-br 5054  df-opab 5116  df-mpt 5136  df-tr 5162  df-id 5455  df-eprel 5460  df-po 5468  df-so 5469  df-fr 5509  df-we 5511  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-pred 6160  df-ord 6216  df-on 6217  df-lim 6218  df-suc 6219  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-riota 7170  df-ov 7216  df-oprab 7217  df-mpo 7218  df-om 7645  df-1st 7761  df-2nd 7762  df-wrecs 8047  df-recs 8108  df-rdg 8146  df-1o 8202  df-er 8391  df-en 8627  df-dom 8628  df-sdom 8629  df-fin 8630  df-card 9555  df-pnf 10869  df-mnf 10870  df-xr 10871  df-ltxr 10872  df-le 10873  df-sub 11064  df-neg 11065  df-nn 11831  df-2 11893  df-3 11894  df-n0 12091  df-z 12177  df-uz 12439  df-fz 13096  df-fzo 13239  df-hash 13897  df-word 14070  df-concat 14126  df-s1 14153  df-s2 14413  df-s3 14414
This theorem is referenced by:  elwwlks2s3  28035
  Copyright terms: Public domain W3C validator