MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wrdl3s3 Structured version   Visualization version   GIF version

Theorem wrdl3s3 13926
Description: A word of length 3 is a length 3 string. (Contributed by AV, 18-May-2021.)
Assertion
Ref Expression
wrdl3s3 ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 3) ↔ ∃𝑎𝑉𝑏𝑉𝑐𝑉 𝑊 = ⟨“𝑎𝑏𝑐”⟩)
Distinct variable groups:   𝑉,𝑎,𝑏,𝑐   𝑊,𝑎,𝑏,𝑐

Proof of Theorem wrdl3s3
StepHypRef Expression
1 c0ex 10316 . . . . . . . 8 0 ∈ V
21tpid1 4491 . . . . . . 7 0 ∈ {0, 1, 2}
3 fzo0to3tp 12774 . . . . . . 7 (0..^3) = {0, 1, 2}
42, 3eleqtrri 2883 . . . . . 6 0 ∈ (0..^3)
5 oveq2 6879 . . . . . 6 ((♯‘𝑊) = 3 → (0..^(♯‘𝑊)) = (0..^3))
64, 5syl5eleqr 2891 . . . . 5 ((♯‘𝑊) = 3 → 0 ∈ (0..^(♯‘𝑊)))
7 wrdsymbcl 13525 . . . . 5 ((𝑊 ∈ Word 𝑉 ∧ 0 ∈ (0..^(♯‘𝑊))) → (𝑊‘0) ∈ 𝑉)
86, 7sylan2 582 . . . 4 ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 3) → (𝑊‘0) ∈ 𝑉)
9 1ex 10318 . . . . . . . 8 1 ∈ V
109tpid2 4492 . . . . . . 7 1 ∈ {0, 1, 2}
1110, 3eleqtrri 2883 . . . . . 6 1 ∈ (0..^3)
1211, 5syl5eleqr 2891 . . . . 5 ((♯‘𝑊) = 3 → 1 ∈ (0..^(♯‘𝑊)))
13 wrdsymbcl 13525 . . . . 5 ((𝑊 ∈ Word 𝑉 ∧ 1 ∈ (0..^(♯‘𝑊))) → (𝑊‘1) ∈ 𝑉)
1412, 13sylan2 582 . . . 4 ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 3) → (𝑊‘1) ∈ 𝑉)
15 2ex 11372 . . . . . . . 8 2 ∈ V
1615tpid3 4494 . . . . . . 7 2 ∈ {0, 1, 2}
1716, 3eleqtrri 2883 . . . . . 6 2 ∈ (0..^3)
1817, 5syl5eleqr 2891 . . . . 5 ((♯‘𝑊) = 3 → 2 ∈ (0..^(♯‘𝑊)))
19 wrdsymbcl 13525 . . . . 5 ((𝑊 ∈ Word 𝑉 ∧ 2 ∈ (0..^(♯‘𝑊))) → (𝑊‘2) ∈ 𝑉)
2018, 19sylan2 582 . . . 4 ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 3) → (𝑊‘2) ∈ 𝑉)
21 simpr 473 . . . . 5 ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 3) → (♯‘𝑊) = 3)
22 eqid 2805 . . . . . 6 (𝑊‘0) = (𝑊‘0)
23 eqid 2805 . . . . . 6 (𝑊‘1) = (𝑊‘1)
24 eqid 2805 . . . . . 6 (𝑊‘2) = (𝑊‘2)
2522, 23, 243pm3.2i 1431 . . . . 5 ((𝑊‘0) = (𝑊‘0) ∧ (𝑊‘1) = (𝑊‘1) ∧ (𝑊‘2) = (𝑊‘2))
2621, 25jctir 512 . . . 4 ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 3) → ((♯‘𝑊) = 3 ∧ ((𝑊‘0) = (𝑊‘0) ∧ (𝑊‘1) = (𝑊‘1) ∧ (𝑊‘2) = (𝑊‘2))))
27 eqeq2 2816 . . . . . . 7 (𝑎 = (𝑊‘0) → ((𝑊‘0) = 𝑎 ↔ (𝑊‘0) = (𝑊‘0)))
28273anbi1d 1557 . . . . . 6 (𝑎 = (𝑊‘0) → (((𝑊‘0) = 𝑎 ∧ (𝑊‘1) = 𝑏 ∧ (𝑊‘2) = 𝑐) ↔ ((𝑊‘0) = (𝑊‘0) ∧ (𝑊‘1) = 𝑏 ∧ (𝑊‘2) = 𝑐)))
2928anbi2d 616 . . . . 5 (𝑎 = (𝑊‘0) → (((♯‘𝑊) = 3 ∧ ((𝑊‘0) = 𝑎 ∧ (𝑊‘1) = 𝑏 ∧ (𝑊‘2) = 𝑐)) ↔ ((♯‘𝑊) = 3 ∧ ((𝑊‘0) = (𝑊‘0) ∧ (𝑊‘1) = 𝑏 ∧ (𝑊‘2) = 𝑐))))
30 eqeq2 2816 . . . . . . 7 (𝑏 = (𝑊‘1) → ((𝑊‘1) = 𝑏 ↔ (𝑊‘1) = (𝑊‘1)))
31303anbi2d 1558 . . . . . 6 (𝑏 = (𝑊‘1) → (((𝑊‘0) = (𝑊‘0) ∧ (𝑊‘1) = 𝑏 ∧ (𝑊‘2) = 𝑐) ↔ ((𝑊‘0) = (𝑊‘0) ∧ (𝑊‘1) = (𝑊‘1) ∧ (𝑊‘2) = 𝑐)))
3231anbi2d 616 . . . . 5 (𝑏 = (𝑊‘1) → (((♯‘𝑊) = 3 ∧ ((𝑊‘0) = (𝑊‘0) ∧ (𝑊‘1) = 𝑏 ∧ (𝑊‘2) = 𝑐)) ↔ ((♯‘𝑊) = 3 ∧ ((𝑊‘0) = (𝑊‘0) ∧ (𝑊‘1) = (𝑊‘1) ∧ (𝑊‘2) = 𝑐))))
33 eqeq2 2816 . . . . . . 7 (𝑐 = (𝑊‘2) → ((𝑊‘2) = 𝑐 ↔ (𝑊‘2) = (𝑊‘2)))
34333anbi3d 1559 . . . . . 6 (𝑐 = (𝑊‘2) → (((𝑊‘0) = (𝑊‘0) ∧ (𝑊‘1) = (𝑊‘1) ∧ (𝑊‘2) = 𝑐) ↔ ((𝑊‘0) = (𝑊‘0) ∧ (𝑊‘1) = (𝑊‘1) ∧ (𝑊‘2) = (𝑊‘2))))
3534anbi2d 616 . . . . 5 (𝑐 = (𝑊‘2) → (((♯‘𝑊) = 3 ∧ ((𝑊‘0) = (𝑊‘0) ∧ (𝑊‘1) = (𝑊‘1) ∧ (𝑊‘2) = 𝑐)) ↔ ((♯‘𝑊) = 3 ∧ ((𝑊‘0) = (𝑊‘0) ∧ (𝑊‘1) = (𝑊‘1) ∧ (𝑊‘2) = (𝑊‘2)))))
3629, 32, 35rspc3ev 3518 . . . 4 ((((𝑊‘0) ∈ 𝑉 ∧ (𝑊‘1) ∈ 𝑉 ∧ (𝑊‘2) ∈ 𝑉) ∧ ((♯‘𝑊) = 3 ∧ ((𝑊‘0) = (𝑊‘0) ∧ (𝑊‘1) = (𝑊‘1) ∧ (𝑊‘2) = (𝑊‘2)))) → ∃𝑎𝑉𝑏𝑉𝑐𝑉 ((♯‘𝑊) = 3 ∧ ((𝑊‘0) = 𝑎 ∧ (𝑊‘1) = 𝑏 ∧ (𝑊‘2) = 𝑐)))
378, 14, 20, 26, 36syl31anc 1485 . . 3 ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 3) → ∃𝑎𝑉𝑏𝑉𝑐𝑉 ((♯‘𝑊) = 3 ∧ ((𝑊‘0) = 𝑎 ∧ (𝑊‘1) = 𝑏 ∧ (𝑊‘2) = 𝑐)))
38 df-3an 1102 . . . . . . . . 9 ((𝑎𝑉𝑏𝑉𝑐𝑉) ↔ ((𝑎𝑉𝑏𝑉) ∧ 𝑐𝑉))
39 eqwrds3 13925 . . . . . . . . . 10 ((𝑊 ∈ Word 𝑉 ∧ (𝑎𝑉𝑏𝑉𝑐𝑉)) → (𝑊 = ⟨“𝑎𝑏𝑐”⟩ ↔ ((♯‘𝑊) = 3 ∧ ((𝑊‘0) = 𝑎 ∧ (𝑊‘1) = 𝑏 ∧ (𝑊‘2) = 𝑐))))
4039ex 399 . . . . . . . . 9 (𝑊 ∈ Word 𝑉 → ((𝑎𝑉𝑏𝑉𝑐𝑉) → (𝑊 = ⟨“𝑎𝑏𝑐”⟩ ↔ ((♯‘𝑊) = 3 ∧ ((𝑊‘0) = 𝑎 ∧ (𝑊‘1) = 𝑏 ∧ (𝑊‘2) = 𝑐)))))
4138, 40syl5bir 234 . . . . . . . 8 (𝑊 ∈ Word 𝑉 → (((𝑎𝑉𝑏𝑉) ∧ 𝑐𝑉) → (𝑊 = ⟨“𝑎𝑏𝑐”⟩ ↔ ((♯‘𝑊) = 3 ∧ ((𝑊‘0) = 𝑎 ∧ (𝑊‘1) = 𝑏 ∧ (𝑊‘2) = 𝑐)))))
4241expd 402 . . . . . . 7 (𝑊 ∈ Word 𝑉 → ((𝑎𝑉𝑏𝑉) → (𝑐𝑉 → (𝑊 = ⟨“𝑎𝑏𝑐”⟩ ↔ ((♯‘𝑊) = 3 ∧ ((𝑊‘0) = 𝑎 ∧ (𝑊‘1) = 𝑏 ∧ (𝑊‘2) = 𝑐))))))
4342adantr 468 . . . . . 6 ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 3) → ((𝑎𝑉𝑏𝑉) → (𝑐𝑉 → (𝑊 = ⟨“𝑎𝑏𝑐”⟩ ↔ ((♯‘𝑊) = 3 ∧ ((𝑊‘0) = 𝑎 ∧ (𝑊‘1) = 𝑏 ∧ (𝑊‘2) = 𝑐))))))
4443imp31 406 . . . . 5 ((((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 3) ∧ (𝑎𝑉𝑏𝑉)) ∧ 𝑐𝑉) → (𝑊 = ⟨“𝑎𝑏𝑐”⟩ ↔ ((♯‘𝑊) = 3 ∧ ((𝑊‘0) = 𝑎 ∧ (𝑊‘1) = 𝑏 ∧ (𝑊‘2) = 𝑐))))
4544rexbidva 3236 . . . 4 (((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 3) ∧ (𝑎𝑉𝑏𝑉)) → (∃𝑐𝑉 𝑊 = ⟨“𝑎𝑏𝑐”⟩ ↔ ∃𝑐𝑉 ((♯‘𝑊) = 3 ∧ ((𝑊‘0) = 𝑎 ∧ (𝑊‘1) = 𝑏 ∧ (𝑊‘2) = 𝑐))))
46452rexbidva 3243 . . 3 ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 3) → (∃𝑎𝑉𝑏𝑉𝑐𝑉 𝑊 = ⟨“𝑎𝑏𝑐”⟩ ↔ ∃𝑎𝑉𝑏𝑉𝑐𝑉 ((♯‘𝑊) = 3 ∧ ((𝑊‘0) = 𝑎 ∧ (𝑊‘1) = 𝑏 ∧ (𝑊‘2) = 𝑐))))
4737, 46mpbird 248 . 2 ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 3) → ∃𝑎𝑉𝑏𝑉𝑐𝑉 𝑊 = ⟨“𝑎𝑏𝑐”⟩)
48 s3cl 13844 . . . . . . . 8 ((𝑎𝑉𝑏𝑉𝑐𝑉) → ⟨“𝑎𝑏𝑐”⟩ ∈ Word 𝑉)
4948ad4ant123 1206 . . . . . . 7 ((((𝑎𝑉𝑏𝑉) ∧ 𝑐𝑉) ∧ 𝑊 = ⟨“𝑎𝑏𝑐”⟩) → ⟨“𝑎𝑏𝑐”⟩ ∈ Word 𝑉)
50 s3len 13859 . . . . . . 7 (♯‘⟨“𝑎𝑏𝑐”⟩) = 3
5149, 50jctir 512 . . . . . 6 ((((𝑎𝑉𝑏𝑉) ∧ 𝑐𝑉) ∧ 𝑊 = ⟨“𝑎𝑏𝑐”⟩) → (⟨“𝑎𝑏𝑐”⟩ ∈ Word 𝑉 ∧ (♯‘⟨“𝑎𝑏𝑐”⟩) = 3))
52 eleq1 2872 . . . . . . . 8 (𝑊 = ⟨“𝑎𝑏𝑐”⟩ → (𝑊 ∈ Word 𝑉 ↔ ⟨“𝑎𝑏𝑐”⟩ ∈ Word 𝑉))
53 fveqeq2 6414 . . . . . . . 8 (𝑊 = ⟨“𝑎𝑏𝑐”⟩ → ((♯‘𝑊) = 3 ↔ (♯‘⟨“𝑎𝑏𝑐”⟩) = 3))
5452, 53anbi12d 618 . . . . . . 7 (𝑊 = ⟨“𝑎𝑏𝑐”⟩ → ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 3) ↔ (⟨“𝑎𝑏𝑐”⟩ ∈ Word 𝑉 ∧ (♯‘⟨“𝑎𝑏𝑐”⟩) = 3)))
5554adantl 469 . . . . . 6 ((((𝑎𝑉𝑏𝑉) ∧ 𝑐𝑉) ∧ 𝑊 = ⟨“𝑎𝑏𝑐”⟩) → ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 3) ↔ (⟨“𝑎𝑏𝑐”⟩ ∈ Word 𝑉 ∧ (♯‘⟨“𝑎𝑏𝑐”⟩) = 3)))
5651, 55mpbird 248 . . . . 5 ((((𝑎𝑉𝑏𝑉) ∧ 𝑐𝑉) ∧ 𝑊 = ⟨“𝑎𝑏𝑐”⟩) → (𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 3))
5756ex 399 . . . 4 (((𝑎𝑉𝑏𝑉) ∧ 𝑐𝑉) → (𝑊 = ⟨“𝑎𝑏𝑐”⟩ → (𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 3)))
5857rexlimdva 3218 . . 3 ((𝑎𝑉𝑏𝑉) → (∃𝑐𝑉 𝑊 = ⟨“𝑎𝑏𝑐”⟩ → (𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 3)))
5958rexlimivv 3223 . 2 (∃𝑎𝑉𝑏𝑉𝑐𝑉 𝑊 = ⟨“𝑎𝑏𝑐”⟩ → (𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 3))
6047, 59impbii 200 1 ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 3) ↔ ∃𝑎𝑉𝑏𝑉𝑐𝑉 𝑊 = ⟨“𝑎𝑏𝑐”⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 197  wa 384  w3a 1100   = wceq 1637  wcel 2158  wrex 3096  {ctp 4371  cfv 6098  (class class class)co 6871  0cc0 10218  1c1 10219  2c2 11352  3c3 11353  ..^cfzo 12685  chash 13333  Word cword 13498  ⟨“cs3 13807
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1880  ax-4 1897  ax-5 2004  ax-6 2070  ax-7 2106  ax-8 2160  ax-9 2167  ax-10 2187  ax-11 2203  ax-12 2216  ax-13 2422  ax-ext 2784  ax-rep 4960  ax-sep 4971  ax-nul 4980  ax-pow 5032  ax-pr 5093  ax-un 7176  ax-cnex 10274  ax-resscn 10275  ax-1cn 10276  ax-icn 10277  ax-addcl 10278  ax-addrcl 10279  ax-mulcl 10280  ax-mulrcl 10281  ax-mulcom 10282  ax-addass 10283  ax-mulass 10284  ax-distr 10285  ax-i2m1 10286  ax-1ne0 10287  ax-1rid 10288  ax-rnegex 10289  ax-rrecex 10290  ax-cnre 10291  ax-pre-lttri 10292  ax-pre-lttrn 10293  ax-pre-ltadd 10294  ax-pre-mulgt0 10295
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 866  df-3or 1101  df-3an 1102  df-tru 1641  df-ex 1860  df-nf 1865  df-sb 2063  df-eu 2636  df-mo 2637  df-clab 2792  df-cleq 2798  df-clel 2801  df-nfc 2936  df-ne 2978  df-nel 3081  df-ral 3100  df-rex 3101  df-reu 3102  df-rab 3104  df-v 3392  df-sbc 3631  df-csb 3726  df-dif 3769  df-un 3771  df-in 3773  df-ss 3780  df-pss 3782  df-nul 4114  df-if 4277  df-pw 4350  df-sn 4368  df-pr 4370  df-tp 4372  df-op 4374  df-uni 4627  df-int 4666  df-iun 4710  df-br 4841  df-opab 4903  df-mpt 4920  df-tr 4943  df-id 5216  df-eprel 5221  df-po 5229  df-so 5230  df-fr 5267  df-we 5269  df-xp 5314  df-rel 5315  df-cnv 5316  df-co 5317  df-dm 5318  df-rn 5319  df-res 5320  df-ima 5321  df-pred 5890  df-ord 5936  df-on 5937  df-lim 5938  df-suc 5939  df-iota 6061  df-fun 6100  df-fn 6101  df-f 6102  df-f1 6103  df-fo 6104  df-f1o 6105  df-fv 6106  df-riota 6832  df-ov 6874  df-oprab 6875  df-mpt2 6876  df-om 7293  df-1st 7395  df-2nd 7396  df-wrecs 7639  df-recs 7701  df-rdg 7739  df-1o 7793  df-oadd 7797  df-er 7976  df-en 8190  df-dom 8191  df-sdom 8192  df-fin 8193  df-card 9045  df-pnf 10358  df-mnf 10359  df-xr 10360  df-ltxr 10361  df-le 10362  df-sub 10550  df-neg 10551  df-nn 11303  df-2 11360  df-3 11361  df-n0 11556  df-z 11640  df-uz 11901  df-fz 12546  df-fzo 12686  df-hash 13334  df-word 13506  df-concat 13508  df-s1 13509  df-s2 13813  df-s3 13814
This theorem is referenced by:  elwwlks2s3  27087
  Copyright terms: Public domain W3C validator