|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > ad5ant23 | Structured version Visualization version GIF version | ||
| Description: Deduction adding conjuncts to antecedent. (Contributed by Alan Sare, 17-Oct-2017.) (Proof shortened by Wolf Lammen, 14-Apr-2022.) | 
| Ref | Expression | 
|---|---|
| ad5ant2.1 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | 
| Ref | Expression | 
|---|---|
| ad5ant23 | ⊢ (((((𝜃 ∧ 𝜑) ∧ 𝜓) ∧ 𝜏) ∧ 𝜂) → 𝜒) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ad5ant2.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | |
| 2 | 1 | adantll 714 | . 2 ⊢ (((𝜃 ∧ 𝜑) ∧ 𝜓) → 𝜒) | 
| 3 | 2 | ad2antrr 726 | 1 ⊢ (((((𝜃 ∧ 𝜑) ∧ 𝜓) ∧ 𝜏) ∧ 𝜂) → 𝜒) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∧ wa 395 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 | 
| This theorem depends on definitions: df-bi 207 df-an 396 | 
| This theorem is referenced by: funcpropd 17948 natpropd 18025 pmtr3ncom 19494 dmatscmcl 22510 opreu2reuALT 32497 matunitlindflem2 37625 rexabslelem 45434 hoidmvle 46620 | 
| Copyright terms: Public domain | W3C validator |