| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ad5ant23 | Structured version Visualization version GIF version | ||
| Description: Deduction adding conjuncts to antecedent. (Contributed by Alan Sare, 17-Oct-2017.) (Proof shortened by Wolf Lammen, 14-Apr-2022.) |
| Ref | Expression |
|---|---|
| ad5ant2.1 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
| Ref | Expression |
|---|---|
| ad5ant23 | ⊢ (((((𝜃 ∧ 𝜑) ∧ 𝜓) ∧ 𝜏) ∧ 𝜂) → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ad5ant2.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | |
| 2 | 1 | adantll 714 | . 2 ⊢ (((𝜃 ∧ 𝜑) ∧ 𝜓) → 𝜒) |
| 3 | 2 | ad2antrr 726 | 1 ⊢ (((((𝜃 ∧ 𝜑) ∧ 𝜓) ∧ 𝜏) ∧ 𝜂) → 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: funcpropd 17920 natpropd 17997 pmtr3ncom 19461 dmatscmcl 22446 opreu2reuALT 32463 matunitlindflem2 37646 rexabslelem 45412 hoidmvle 46596 |
| Copyright terms: Public domain | W3C validator |