MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ad5ant15 Structured version   Visualization version   GIF version

Theorem ad5ant15 758
Description: Deduction adding conjuncts to antecedent. (Contributed by Alan Sare, 17-Oct-2017.) (Proof shortened by Wolf Lammen, 14-Apr-2022.)
Hypothesis
Ref Expression
ad5ant2.1 ((𝜑𝜓) → 𝜒)
Assertion
Ref Expression
ad5ant15 (((((𝜑𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜓) → 𝜒)

Proof of Theorem ad5ant15
StepHypRef Expression
1 ad5ant2.1 . . 3 ((𝜑𝜓) → 𝜒)
21adantlr 715 . 2 (((𝜑𝜃) ∧ 𝜓) → 𝜒)
32ad4ant14 752 1 (((((𝜑𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜓) → 𝜒)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396
This theorem is referenced by:  summolem2  15641  ntrivcvg  15822  xkoccn  23522  abelthlem8  26365  rpvmasum2  27439  mulog2sumlem2  27462  f1otrge  28835  nn0xmulclb  32727  intlidl  33367  ply1degltdimlem  33594  fedgmul  33603  cos9thpiminplylem2  33749  signstfvneq0  34539  breprexplemc  34599  mblfinlem2  37637  supxrgelem  45317  supxrge  45318  rexabslelem  45398  uzub  45411  smflimlem4  46756  grimcnv  47873  iinfsubc  49044
  Copyright terms: Public domain W3C validator