![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ad5ant15 | Structured version Visualization version GIF version |
Description: Deduction adding conjuncts to antecedent. (Contributed by Alan Sare, 17-Oct-2017.) (Proof shortened by Wolf Lammen, 14-Apr-2022.) |
Ref | Expression |
---|---|
ad5ant2.1 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
Ref | Expression |
---|---|
ad5ant15 | ⊢ (((((𝜑 ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜓) → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ad5ant2.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | |
2 | 1 | adantlr 714 | . 2 ⊢ (((𝜑 ∧ 𝜃) ∧ 𝜓) → 𝜒) |
3 | 2 | ad4ant14 751 | 1 ⊢ (((((𝜑 ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜓) → 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 |
This theorem is referenced by: summolem2 15764 ntrivcvg 15945 xkoccn 23648 abelthlem8 26501 rpvmasum2 27574 mulog2sumlem2 27597 f1otrge 28898 nn0xmulclb 32778 intlidl 33413 ply1degltdimlem 33635 fedgmul 33644 signstfvneq0 34549 breprexplemc 34609 mblfinlem2 37618 supxrgelem 45252 supxrge 45253 rexabslelem 45333 uzub 45346 smflimlem4 46695 grimcnv 47763 |
Copyright terms: Public domain | W3C validator |