MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ad5ant15 Structured version   Visualization version   GIF version

Theorem ad5ant15 758
Description: Deduction adding conjuncts to antecedent. (Contributed by Alan Sare, 17-Oct-2017.) (Proof shortened by Wolf Lammen, 14-Apr-2022.)
Hypothesis
Ref Expression
ad5ant2.1 ((𝜑𝜓) → 𝜒)
Assertion
Ref Expression
ad5ant15 (((((𝜑𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜓) → 𝜒)

Proof of Theorem ad5ant15
StepHypRef Expression
1 ad5ant2.1 . . 3 ((𝜑𝜓) → 𝜒)
21adantlr 715 . 2 (((𝜑𝜃) ∧ 𝜓) → 𝜒)
32ad4ant14 752 1 (((((𝜑𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜓) → 𝜒)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396
This theorem is referenced by:  summolem2  15627  ntrivcvg  15808  xkoccn  23537  abelthlem8  26379  rpvmasum2  27453  mulog2sumlem2  27476  f1otrge  28853  nn0xmulclb  32760  intlidl  33394  ply1degltdimlem  33658  fedgmul  33667  cos9thpiminplylem2  33819  signstfvneq0  34608  breprexplemc  34668  mblfinlem2  37721  supxrgelem  45463  supxrge  45464  rexabslelem  45543  uzub  45556  smflimlem4  46899  grimcnv  48015  iinfsubc  49186
  Copyright terms: Public domain W3C validator