| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ad5ant15 | Structured version Visualization version GIF version | ||
| Description: Deduction adding conjuncts to antecedent. (Contributed by Alan Sare, 17-Oct-2017.) (Proof shortened by Wolf Lammen, 14-Apr-2022.) |
| Ref | Expression |
|---|---|
| ad5ant2.1 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
| Ref | Expression |
|---|---|
| ad5ant15 | ⊢ (((((𝜑 ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜓) → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ad5ant2.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | |
| 2 | 1 | adantlr 715 | . 2 ⊢ (((𝜑 ∧ 𝜃) ∧ 𝜓) → 𝜒) |
| 3 | 2 | ad4ant14 752 | 1 ⊢ (((((𝜑 ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜓) → 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: summolem2 15682 ntrivcvg 15863 xkoccn 23506 abelthlem8 26349 rpvmasum2 27423 mulog2sumlem2 27446 f1otrge 28799 nn0xmulclb 32694 intlidl 33391 ply1degltdimlem 33618 fedgmul 33627 cos9thpiminplylem2 33773 signstfvneq0 34563 breprexplemc 34623 mblfinlem2 37652 supxrgelem 45333 supxrge 45334 rexabslelem 45414 uzub 45427 smflimlem4 46772 grimcnv 47888 iinfsubc 49047 |
| Copyright terms: Public domain | W3C validator |