MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ad5ant15 Structured version   Visualization version   GIF version

Theorem ad5ant15 756
Description: Deduction adding conjuncts to antecedent. (Contributed by Alan Sare, 17-Oct-2017.) (Proof shortened by Wolf Lammen, 14-Apr-2022.)
Hypothesis
Ref Expression
ad5ant2.1 ((𝜑𝜓) → 𝜒)
Assertion
Ref Expression
ad5ant15 (((((𝜑𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜓) → 𝜒)

Proof of Theorem ad5ant15
StepHypRef Expression
1 ad5ant2.1 . . 3 ((𝜑𝜓) → 𝜒)
21adantlr 712 . 2 (((𝜑𝜃) ∧ 𝜓) → 𝜒)
32ad4ant14 749 1 (((((𝜑𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜓) → 𝜒)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 396
This theorem is referenced by:  summolem2  15658  ntrivcvg  15839  xkoccn  23444  abelthlem8  26292  rpvmasum2  27360  mulog2sumlem2  27383  f1otrge  28558  nn0xmulclb  32419  intlidl  32971  ply1degltdimlem  33152  fedgmul  33161  signstfvneq0  34038  breprexplemc  34099  mblfinlem2  36982  supxrgelem  44498  supxrge  44499  rexabslelem  44579  uzub  44592  smflimlem4  45941
  Copyright terms: Public domain W3C validator