| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ad5ant15 | Structured version Visualization version GIF version | ||
| Description: Deduction adding conjuncts to antecedent. (Contributed by Alan Sare, 17-Oct-2017.) (Proof shortened by Wolf Lammen, 14-Apr-2022.) |
| Ref | Expression |
|---|---|
| ad5ant2.1 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
| Ref | Expression |
|---|---|
| ad5ant15 | ⊢ (((((𝜑 ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜓) → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ad5ant2.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | |
| 2 | 1 | adantlr 715 | . 2 ⊢ (((𝜑 ∧ 𝜃) ∧ 𝜓) → 𝜒) |
| 3 | 2 | ad4ant14 752 | 1 ⊢ (((((𝜑 ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜓) → 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: summolem2 15641 ntrivcvg 15822 xkoccn 23522 abelthlem8 26365 rpvmasum2 27439 mulog2sumlem2 27462 f1otrge 28835 nn0xmulclb 32727 intlidl 33367 ply1degltdimlem 33594 fedgmul 33603 cos9thpiminplylem2 33749 signstfvneq0 34539 breprexplemc 34599 mblfinlem2 37637 supxrgelem 45317 supxrge 45318 rexabslelem 45398 uzub 45411 smflimlem4 46756 grimcnv 47873 iinfsubc 49044 |
| Copyright terms: Public domain | W3C validator |