MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ad5ant15 Structured version   Visualization version   GIF version

Theorem ad5ant15 756
Description: Deduction adding conjuncts to antecedent. (Contributed by Alan Sare, 17-Oct-2017.) (Proof shortened by Wolf Lammen, 14-Apr-2022.)
Hypothesis
Ref Expression
ad5ant2.1 ((𝜑𝜓) → 𝜒)
Assertion
Ref Expression
ad5ant15 (((((𝜑𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜓) → 𝜒)

Proof of Theorem ad5ant15
StepHypRef Expression
1 ad5ant2.1 . . 3 ((𝜑𝜓) → 𝜒)
21adantlr 712 . 2 (((𝜑𝜃) ∧ 𝜓) → 𝜒)
32ad4ant14 749 1 (((((𝜑𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜓) → 𝜒)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 397
This theorem is referenced by:  summolem2  15428  ntrivcvg  15609  xkoccn  22770  abelthlem8  25598  rpvmasum2  26660  mulog2sumlem2  26683  f1otrge  27233  nn0xmulclb  31094  intlidl  31602  fedgmul  31712  signstfvneq0  32551  breprexplemc  32612  mblfinlem2  35815  supxrgelem  42876  supxrge  42877  rexabslelem  42958  uzub  42971  smflimlem4  44309
  Copyright terms: Public domain W3C validator