MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ad5ant15 Structured version   Visualization version   GIF version

Theorem ad5ant15 758
Description: Deduction adding conjuncts to antecedent. (Contributed by Alan Sare, 17-Oct-2017.) (Proof shortened by Wolf Lammen, 14-Apr-2022.)
Hypothesis
Ref Expression
ad5ant2.1 ((𝜑𝜓) → 𝜒)
Assertion
Ref Expression
ad5ant15 (((((𝜑𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜓) → 𝜒)

Proof of Theorem ad5ant15
StepHypRef Expression
1 ad5ant2.1 . . 3 ((𝜑𝜓) → 𝜒)
21adantlr 714 . 2 (((𝜑𝜃) ∧ 𝜓) → 𝜒)
32ad4ant14 751 1 (((((𝜑𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜓) → 𝜒)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396
This theorem is referenced by:  summolem2  15764  ntrivcvg  15945  xkoccn  23648  abelthlem8  26501  rpvmasum2  27574  mulog2sumlem2  27597  f1otrge  28898  nn0xmulclb  32778  intlidl  33413  ply1degltdimlem  33635  fedgmul  33644  signstfvneq0  34549  breprexplemc  34609  mblfinlem2  37618  supxrgelem  45252  supxrge  45253  rexabslelem  45333  uzub  45346  smflimlem4  46695  grimcnv  47763
  Copyright terms: Public domain W3C validator