MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ad5ant15 Structured version   Visualization version   GIF version

Theorem ad5ant15 758
Description: Deduction adding conjuncts to antecedent. (Contributed by Alan Sare, 17-Oct-2017.) (Proof shortened by Wolf Lammen, 14-Apr-2022.)
Hypothesis
Ref Expression
ad5ant2.1 ((𝜑𝜓) → 𝜒)
Assertion
Ref Expression
ad5ant15 (((((𝜑𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜓) → 𝜒)

Proof of Theorem ad5ant15
StepHypRef Expression
1 ad5ant2.1 . . 3 ((𝜑𝜓) → 𝜒)
21adantlr 715 . 2 (((𝜑𝜃) ∧ 𝜓) → 𝜒)
32ad4ant14 752 1 (((((𝜑𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜓) → 𝜒)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396
This theorem is referenced by:  summolem2  15682  ntrivcvg  15863  xkoccn  23506  abelthlem8  26349  rpvmasum2  27423  mulog2sumlem2  27446  f1otrge  28799  nn0xmulclb  32694  intlidl  33391  ply1degltdimlem  33618  fedgmul  33627  cos9thpiminplylem2  33773  signstfvneq0  34563  breprexplemc  34623  mblfinlem2  37652  supxrgelem  45333  supxrge  45334  rexabslelem  45414  uzub  45427  smflimlem4  46772  grimcnv  47888  iinfsubc  49047
  Copyright terms: Public domain W3C validator