| Step | Hyp | Ref
| Expression |
| 1 | | hoidmvle.s |
. 2
⊢ (𝜑 → X𝑘 ∈
𝑋 ((𝐴‘𝑘)[,)(𝐵‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) |
| 2 | | hoidmvle.d |
. . . 4
⊢ (𝜑 → 𝐷:ℕ⟶(ℝ ↑m
𝑋)) |
| 3 | | ovex 7464 |
. . . . . . 7
⊢ (ℝ
↑m 𝑋)
∈ V |
| 4 | | nnex 12272 |
. . . . . . 7
⊢ ℕ
∈ V |
| 5 | 3, 4 | pm3.2i 470 |
. . . . . 6
⊢ ((ℝ
↑m 𝑋)
∈ V ∧ ℕ ∈ V) |
| 6 | 5 | a1i 11 |
. . . . 5
⊢ (𝜑 → ((ℝ
↑m 𝑋)
∈ V ∧ ℕ ∈ V)) |
| 7 | | elmapg 8879 |
. . . . 5
⊢
(((ℝ ↑m 𝑋) ∈ V ∧ ℕ ∈ V) →
(𝐷 ∈ ((ℝ
↑m 𝑋)
↑m ℕ) ↔ 𝐷:ℕ⟶(ℝ ↑m
𝑋))) |
| 8 | 6, 7 | syl 17 |
. . . 4
⊢ (𝜑 → (𝐷 ∈ ((ℝ ↑m 𝑋) ↑m ℕ)
↔ 𝐷:ℕ⟶(ℝ ↑m
𝑋))) |
| 9 | 2, 8 | mpbird 257 |
. . 3
⊢ (𝜑 → 𝐷 ∈ ((ℝ ↑m 𝑋) ↑m
ℕ)) |
| 10 | | hoidmvle.c |
. . . . 5
⊢ (𝜑 → 𝐶:ℕ⟶(ℝ ↑m
𝑋)) |
| 11 | | elmapg 8879 |
. . . . . 6
⊢
(((ℝ ↑m 𝑋) ∈ V ∧ ℕ ∈ V) →
(𝐶 ∈ ((ℝ
↑m 𝑋)
↑m ℕ) ↔ 𝐶:ℕ⟶(ℝ ↑m
𝑋))) |
| 12 | 6, 11 | syl 17 |
. . . . 5
⊢ (𝜑 → (𝐶 ∈ ((ℝ ↑m 𝑋) ↑m ℕ)
↔ 𝐶:ℕ⟶(ℝ ↑m
𝑋))) |
| 13 | 10, 12 | mpbird 257 |
. . . 4
⊢ (𝜑 → 𝐶 ∈ ((ℝ ↑m 𝑋) ↑m
ℕ)) |
| 14 | | hoidmvle.b |
. . . . . 6
⊢ (𝜑 → 𝐵:𝑋⟶ℝ) |
| 15 | | reex 11246 |
. . . . . . . . 9
⊢ ℝ
∈ V |
| 16 | 15 | a1i 11 |
. . . . . . . 8
⊢ (𝜑 → ℝ ∈
V) |
| 17 | | hoidmvle.x |
. . . . . . . 8
⊢ (𝜑 → 𝑋 ∈ Fin) |
| 18 | 16, 17 | jca 511 |
. . . . . . 7
⊢ (𝜑 → (ℝ ∈ V ∧
𝑋 ∈
Fin)) |
| 19 | | elmapg 8879 |
. . . . . . 7
⊢ ((ℝ
∈ V ∧ 𝑋 ∈
Fin) → (𝐵 ∈
(ℝ ↑m 𝑋) ↔ 𝐵:𝑋⟶ℝ)) |
| 20 | 18, 19 | syl 17 |
. . . . . 6
⊢ (𝜑 → (𝐵 ∈ (ℝ ↑m 𝑋) ↔ 𝐵:𝑋⟶ℝ)) |
| 21 | 14, 20 | mpbird 257 |
. . . . 5
⊢ (𝜑 → 𝐵 ∈ (ℝ ↑m 𝑋)) |
| 22 | | hoidmvle.a |
. . . . . . 7
⊢ (𝜑 → 𝐴:𝑋⟶ℝ) |
| 23 | | elmapg 8879 |
. . . . . . . 8
⊢ ((ℝ
∈ V ∧ 𝑋 ∈
Fin) → (𝐴 ∈
(ℝ ↑m 𝑋) ↔ 𝐴:𝑋⟶ℝ)) |
| 24 | 18, 23 | syl 17 |
. . . . . . 7
⊢ (𝜑 → (𝐴 ∈ (ℝ ↑m 𝑋) ↔ 𝐴:𝑋⟶ℝ)) |
| 25 | 22, 24 | mpbird 257 |
. . . . . 6
⊢ (𝜑 → 𝐴 ∈ (ℝ ↑m 𝑋)) |
| 26 | | oveq2 7439 |
. . . . . . . . . 10
⊢ (𝑥 = ∅ → (ℝ
↑m 𝑥) =
(ℝ ↑m ∅)) |
| 27 | 26 | eleq2d 2827 |
. . . . . . . . 9
⊢ (𝑥 = ∅ → (𝑎 ∈ (ℝ
↑m 𝑥)
↔ 𝑎 ∈ (ℝ
↑m ∅))) |
| 28 | 26 | eleq2d 2827 |
. . . . . . . . . . 11
⊢ (𝑥 = ∅ → (𝑏 ∈ (ℝ
↑m 𝑥)
↔ 𝑏 ∈ (ℝ
↑m ∅))) |
| 29 | 26 | oveq1d 7446 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = ∅ → ((ℝ
↑m 𝑥)
↑m ℕ) = ((ℝ ↑m ∅)
↑m ℕ)) |
| 30 | 29 | eleq2d 2827 |
. . . . . . . . . . . . 13
⊢ (𝑥 = ∅ → (𝑐 ∈ ((ℝ
↑m 𝑥)
↑m ℕ) ↔ 𝑐 ∈ ((ℝ ↑m ∅)
↑m ℕ))) |
| 31 | 29 | eleq2d 2827 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = ∅ → (𝑑 ∈ ((ℝ
↑m 𝑥)
↑m ℕ) ↔ 𝑑 ∈ ((ℝ ↑m ∅)
↑m ℕ))) |
| 32 | | ixpeq1 8948 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 = ∅ → X𝑘 ∈
𝑥 ((𝑎‘𝑘)[,)(𝑏‘𝑘)) = X𝑘 ∈ ∅ ((𝑎‘𝑘)[,)(𝑏‘𝑘))) |
| 33 | | ixpeq1 8948 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 = ∅ → X𝑘 ∈
𝑥 (((𝑐‘𝑗)‘𝑘)[,)((𝑑‘𝑗)‘𝑘)) = X𝑘 ∈ ∅ (((𝑐‘𝑗)‘𝑘)[,)((𝑑‘𝑗)‘𝑘))) |
| 34 | 33 | iuneq2d 5022 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 = ∅ → ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑥 (((𝑐‘𝑗)‘𝑘)[,)((𝑑‘𝑗)‘𝑘)) = ∪
𝑗 ∈ ℕ X𝑘 ∈
∅ (((𝑐‘𝑗)‘𝑘)[,)((𝑑‘𝑗)‘𝑘))) |
| 35 | 32, 34 | sseq12d 4017 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 = ∅ → (X𝑘 ∈
𝑥 ((𝑎‘𝑘)[,)(𝑏‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑥 (((𝑐‘𝑗)‘𝑘)[,)((𝑑‘𝑗)‘𝑘)) ↔ X𝑘 ∈ ∅ ((𝑎‘𝑘)[,)(𝑏‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ ∅ (((𝑐‘𝑗)‘𝑘)[,)((𝑑‘𝑗)‘𝑘)))) |
| 36 | | fveq2 6906 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 = ∅ → (𝐿‘𝑥) = (𝐿‘∅)) |
| 37 | 36 | oveqd 7448 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 = ∅ → (𝑎(𝐿‘𝑥)𝑏) = (𝑎(𝐿‘∅)𝑏)) |
| 38 | 36 | oveqd 7448 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑥 = ∅ → ((𝑐‘𝑗)(𝐿‘𝑥)(𝑑‘𝑗)) = ((𝑐‘𝑗)(𝐿‘∅)(𝑑‘𝑗))) |
| 39 | 38 | mpteq2dv 5244 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 = ∅ → (𝑗 ∈ ℕ ↦ ((𝑐‘𝑗)(𝐿‘𝑥)(𝑑‘𝑗))) = (𝑗 ∈ ℕ ↦ ((𝑐‘𝑗)(𝐿‘∅)(𝑑‘𝑗)))) |
| 40 | 39 | fveq2d 6910 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 = ∅ →
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑐‘𝑗)(𝐿‘𝑥)(𝑑‘𝑗)))) =
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑐‘𝑗)(𝐿‘∅)(𝑑‘𝑗))))) |
| 41 | 37, 40 | breq12d 5156 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 = ∅ → ((𝑎(𝐿‘𝑥)𝑏) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑐‘𝑗)(𝐿‘𝑥)(𝑑‘𝑗)))) ↔ (𝑎(𝐿‘∅)𝑏) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑐‘𝑗)(𝐿‘∅)(𝑑‘𝑗)))))) |
| 42 | 35, 41 | imbi12d 344 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = ∅ → ((X𝑘 ∈
𝑥 ((𝑎‘𝑘)[,)(𝑏‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑥 (((𝑐‘𝑗)‘𝑘)[,)((𝑑‘𝑗)‘𝑘)) → (𝑎(𝐿‘𝑥)𝑏) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑐‘𝑗)(𝐿‘𝑥)(𝑑‘𝑗))))) ↔ (X𝑘 ∈ ∅ ((𝑎‘𝑘)[,)(𝑏‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ ∅ (((𝑐‘𝑗)‘𝑘)[,)((𝑑‘𝑗)‘𝑘)) → (𝑎(𝐿‘∅)𝑏) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑐‘𝑗)(𝐿‘∅)(𝑑‘𝑗))))))) |
| 43 | 31, 42 | imbi12d 344 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = ∅ → ((𝑑 ∈ ((ℝ
↑m 𝑥)
↑m ℕ) → (X𝑘 ∈ 𝑥 ((𝑎‘𝑘)[,)(𝑏‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑥 (((𝑐‘𝑗)‘𝑘)[,)((𝑑‘𝑗)‘𝑘)) → (𝑎(𝐿‘𝑥)𝑏) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑐‘𝑗)(𝐿‘𝑥)(𝑑‘𝑗)))))) ↔ (𝑑 ∈ ((ℝ ↑m ∅)
↑m ℕ) → (X𝑘 ∈ ∅ ((𝑎‘𝑘)[,)(𝑏‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ ∅ (((𝑐‘𝑗)‘𝑘)[,)((𝑑‘𝑗)‘𝑘)) → (𝑎(𝐿‘∅)𝑏) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑐‘𝑗)(𝐿‘∅)(𝑑‘𝑗)))))))) |
| 44 | 43 | ralbidv2 3174 |
. . . . . . . . . . . . 13
⊢ (𝑥 = ∅ → (∀𝑑 ∈ ((ℝ
↑m 𝑥)
↑m ℕ)(X𝑘 ∈ 𝑥 ((𝑎‘𝑘)[,)(𝑏‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑥 (((𝑐‘𝑗)‘𝑘)[,)((𝑑‘𝑗)‘𝑘)) → (𝑎(𝐿‘𝑥)𝑏) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑐‘𝑗)(𝐿‘𝑥)(𝑑‘𝑗))))) ↔ ∀𝑑 ∈ ((ℝ ↑m ∅)
↑m ℕ)(X𝑘 ∈ ∅ ((𝑎‘𝑘)[,)(𝑏‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ ∅ (((𝑐‘𝑗)‘𝑘)[,)((𝑑‘𝑗)‘𝑘)) → (𝑎(𝐿‘∅)𝑏) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑐‘𝑗)(𝐿‘∅)(𝑑‘𝑗))))))) |
| 45 | 30, 44 | imbi12d 344 |
. . . . . . . . . . . 12
⊢ (𝑥 = ∅ → ((𝑐 ∈ ((ℝ
↑m 𝑥)
↑m ℕ) → ∀𝑑 ∈ ((ℝ ↑m 𝑥) ↑m
ℕ)(X𝑘 ∈ 𝑥 ((𝑎‘𝑘)[,)(𝑏‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑥 (((𝑐‘𝑗)‘𝑘)[,)((𝑑‘𝑗)‘𝑘)) → (𝑎(𝐿‘𝑥)𝑏) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑐‘𝑗)(𝐿‘𝑥)(𝑑‘𝑗)))))) ↔ (𝑐 ∈ ((ℝ ↑m ∅)
↑m ℕ) → ∀𝑑 ∈ ((ℝ ↑m ∅)
↑m ℕ)(X𝑘 ∈ ∅ ((𝑎‘𝑘)[,)(𝑏‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ ∅ (((𝑐‘𝑗)‘𝑘)[,)((𝑑‘𝑗)‘𝑘)) → (𝑎(𝐿‘∅)𝑏) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑐‘𝑗)(𝐿‘∅)(𝑑‘𝑗)))))))) |
| 46 | 45 | ralbidv2 3174 |
. . . . . . . . . . 11
⊢ (𝑥 = ∅ → (∀𝑐 ∈ ((ℝ
↑m 𝑥)
↑m ℕ)∀𝑑 ∈ ((ℝ ↑m 𝑥) ↑m
ℕ)(X𝑘 ∈ 𝑥 ((𝑎‘𝑘)[,)(𝑏‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑥 (((𝑐‘𝑗)‘𝑘)[,)((𝑑‘𝑗)‘𝑘)) → (𝑎(𝐿‘𝑥)𝑏) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑐‘𝑗)(𝐿‘𝑥)(𝑑‘𝑗))))) ↔ ∀𝑐 ∈ ((ℝ ↑m ∅)
↑m ℕ)∀𝑑 ∈ ((ℝ ↑m ∅)
↑m ℕ)(X𝑘 ∈ ∅ ((𝑎‘𝑘)[,)(𝑏‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ ∅ (((𝑐‘𝑗)‘𝑘)[,)((𝑑‘𝑗)‘𝑘)) → (𝑎(𝐿‘∅)𝑏) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑐‘𝑗)(𝐿‘∅)(𝑑‘𝑗))))))) |
| 47 | 28, 46 | imbi12d 344 |
. . . . . . . . . 10
⊢ (𝑥 = ∅ → ((𝑏 ∈ (ℝ
↑m 𝑥)
→ ∀𝑐 ∈
((ℝ ↑m 𝑥) ↑m ℕ)∀𝑑 ∈ ((ℝ
↑m 𝑥)
↑m ℕ)(X𝑘 ∈ 𝑥 ((𝑎‘𝑘)[,)(𝑏‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑥 (((𝑐‘𝑗)‘𝑘)[,)((𝑑‘𝑗)‘𝑘)) → (𝑎(𝐿‘𝑥)𝑏) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑐‘𝑗)(𝐿‘𝑥)(𝑑‘𝑗)))))) ↔ (𝑏 ∈ (ℝ ↑m ∅)
→ ∀𝑐 ∈
((ℝ ↑m ∅) ↑m ℕ)∀𝑑 ∈ ((ℝ
↑m ∅) ↑m ℕ)(X𝑘 ∈
∅ ((𝑎‘𝑘)[,)(𝑏‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ ∅ (((𝑐‘𝑗)‘𝑘)[,)((𝑑‘𝑗)‘𝑘)) → (𝑎(𝐿‘∅)𝑏) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑐‘𝑗)(𝐿‘∅)(𝑑‘𝑗)))))))) |
| 48 | 47 | ralbidv2 3174 |
. . . . . . . . 9
⊢ (𝑥 = ∅ → (∀𝑏 ∈ (ℝ
↑m 𝑥)∀𝑐 ∈ ((ℝ ↑m 𝑥) ↑m
ℕ)∀𝑑 ∈
((ℝ ↑m 𝑥) ↑m ℕ)(X𝑘 ∈
𝑥 ((𝑎‘𝑘)[,)(𝑏‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑥 (((𝑐‘𝑗)‘𝑘)[,)((𝑑‘𝑗)‘𝑘)) → (𝑎(𝐿‘𝑥)𝑏) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑐‘𝑗)(𝐿‘𝑥)(𝑑‘𝑗))))) ↔ ∀𝑏 ∈ (ℝ ↑m
∅)∀𝑐 ∈
((ℝ ↑m ∅) ↑m ℕ)∀𝑑 ∈ ((ℝ
↑m ∅) ↑m ℕ)(X𝑘 ∈
∅ ((𝑎‘𝑘)[,)(𝑏‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ ∅ (((𝑐‘𝑗)‘𝑘)[,)((𝑑‘𝑗)‘𝑘)) → (𝑎(𝐿‘∅)𝑏) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑐‘𝑗)(𝐿‘∅)(𝑑‘𝑗))))))) |
| 49 | 27, 48 | imbi12d 344 |
. . . . . . . 8
⊢ (𝑥 = ∅ → ((𝑎 ∈ (ℝ
↑m 𝑥)
→ ∀𝑏 ∈
(ℝ ↑m 𝑥)∀𝑐 ∈ ((ℝ ↑m 𝑥) ↑m
ℕ)∀𝑑 ∈
((ℝ ↑m 𝑥) ↑m ℕ)(X𝑘 ∈
𝑥 ((𝑎‘𝑘)[,)(𝑏‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑥 (((𝑐‘𝑗)‘𝑘)[,)((𝑑‘𝑗)‘𝑘)) → (𝑎(𝐿‘𝑥)𝑏) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑐‘𝑗)(𝐿‘𝑥)(𝑑‘𝑗)))))) ↔ (𝑎 ∈ (ℝ ↑m ∅)
→ ∀𝑏 ∈
(ℝ ↑m ∅)∀𝑐 ∈ ((ℝ ↑m ∅)
↑m ℕ)∀𝑑 ∈ ((ℝ ↑m ∅)
↑m ℕ)(X𝑘 ∈ ∅ ((𝑎‘𝑘)[,)(𝑏‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ ∅ (((𝑐‘𝑗)‘𝑘)[,)((𝑑‘𝑗)‘𝑘)) → (𝑎(𝐿‘∅)𝑏) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑐‘𝑗)(𝐿‘∅)(𝑑‘𝑗)))))))) |
| 50 | 49 | ralbidv2 3174 |
. . . . . . 7
⊢ (𝑥 = ∅ → (∀𝑎 ∈ (ℝ
↑m 𝑥)∀𝑏 ∈ (ℝ ↑m 𝑥)∀𝑐 ∈ ((ℝ ↑m 𝑥) ↑m
ℕ)∀𝑑 ∈
((ℝ ↑m 𝑥) ↑m ℕ)(X𝑘 ∈
𝑥 ((𝑎‘𝑘)[,)(𝑏‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑥 (((𝑐‘𝑗)‘𝑘)[,)((𝑑‘𝑗)‘𝑘)) → (𝑎(𝐿‘𝑥)𝑏) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑐‘𝑗)(𝐿‘𝑥)(𝑑‘𝑗))))) ↔ ∀𝑎 ∈ (ℝ ↑m
∅)∀𝑏 ∈
(ℝ ↑m ∅)∀𝑐 ∈ ((ℝ ↑m ∅)
↑m ℕ)∀𝑑 ∈ ((ℝ ↑m ∅)
↑m ℕ)(X𝑘 ∈ ∅ ((𝑎‘𝑘)[,)(𝑏‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ ∅ (((𝑐‘𝑗)‘𝑘)[,)((𝑑‘𝑗)‘𝑘)) → (𝑎(𝐿‘∅)𝑏) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑐‘𝑗)(𝐿‘∅)(𝑑‘𝑗))))))) |
| 51 | | oveq2 7439 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑦 → (ℝ ↑m 𝑥) = (ℝ ↑m
𝑦)) |
| 52 | 51 | eleq2d 2827 |
. . . . . . . . 9
⊢ (𝑥 = 𝑦 → (𝑎 ∈ (ℝ ↑m 𝑥) ↔ 𝑎 ∈ (ℝ ↑m 𝑦))) |
| 53 | 51 | eleq2d 2827 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑦 → (𝑏 ∈ (ℝ ↑m 𝑥) ↔ 𝑏 ∈ (ℝ ↑m 𝑦))) |
| 54 | 51 | oveq1d 7446 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = 𝑦 → ((ℝ ↑m 𝑥) ↑m ℕ) =
((ℝ ↑m 𝑦) ↑m
ℕ)) |
| 55 | 54 | eleq2d 2827 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑦 → (𝑐 ∈ ((ℝ ↑m 𝑥) ↑m ℕ)
↔ 𝑐 ∈ ((ℝ
↑m 𝑦)
↑m ℕ))) |
| 56 | 54 | eleq2d 2827 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = 𝑦 → (𝑑 ∈ ((ℝ ↑m 𝑥) ↑m ℕ)
↔ 𝑑 ∈ ((ℝ
↑m 𝑦)
↑m ℕ))) |
| 57 | | ixpeq1 8948 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 = 𝑦 → X𝑘 ∈ 𝑥 ((𝑎‘𝑘)[,)(𝑏‘𝑘)) = X𝑘 ∈ 𝑦 ((𝑎‘𝑘)[,)(𝑏‘𝑘))) |
| 58 | | ixpeq1 8948 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 = 𝑦 → X𝑘 ∈ 𝑥 (((𝑐‘𝑗)‘𝑘)[,)((𝑑‘𝑗)‘𝑘)) = X𝑘 ∈ 𝑦 (((𝑐‘𝑗)‘𝑘)[,)((𝑑‘𝑗)‘𝑘))) |
| 59 | 58 | iuneq2d 5022 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 = 𝑦 → ∪
𝑗 ∈ ℕ X𝑘 ∈
𝑥 (((𝑐‘𝑗)‘𝑘)[,)((𝑑‘𝑗)‘𝑘)) = ∪
𝑗 ∈ ℕ X𝑘 ∈
𝑦 (((𝑐‘𝑗)‘𝑘)[,)((𝑑‘𝑗)‘𝑘))) |
| 60 | 57, 59 | sseq12d 4017 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 = 𝑦 → (X𝑘 ∈ 𝑥 ((𝑎‘𝑘)[,)(𝑏‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑥 (((𝑐‘𝑗)‘𝑘)[,)((𝑑‘𝑗)‘𝑘)) ↔ X𝑘 ∈ 𝑦 ((𝑎‘𝑘)[,)(𝑏‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑦 (((𝑐‘𝑗)‘𝑘)[,)((𝑑‘𝑗)‘𝑘)))) |
| 61 | | fveq2 6906 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 = 𝑦 → (𝐿‘𝑥) = (𝐿‘𝑦)) |
| 62 | 61 | oveqd 7448 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 = 𝑦 → (𝑎(𝐿‘𝑥)𝑏) = (𝑎(𝐿‘𝑦)𝑏)) |
| 63 | 61 | oveqd 7448 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑥 = 𝑦 → ((𝑐‘𝑗)(𝐿‘𝑥)(𝑑‘𝑗)) = ((𝑐‘𝑗)(𝐿‘𝑦)(𝑑‘𝑗))) |
| 64 | 63 | mpteq2dv 5244 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 = 𝑦 → (𝑗 ∈ ℕ ↦ ((𝑐‘𝑗)(𝐿‘𝑥)(𝑑‘𝑗))) = (𝑗 ∈ ℕ ↦ ((𝑐‘𝑗)(𝐿‘𝑦)(𝑑‘𝑗)))) |
| 65 | 64 | fveq2d 6910 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 = 𝑦 →
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑐‘𝑗)(𝐿‘𝑥)(𝑑‘𝑗)))) =
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑐‘𝑗)(𝐿‘𝑦)(𝑑‘𝑗))))) |
| 66 | 62, 65 | breq12d 5156 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 = 𝑦 → ((𝑎(𝐿‘𝑥)𝑏) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑐‘𝑗)(𝐿‘𝑥)(𝑑‘𝑗)))) ↔ (𝑎(𝐿‘𝑦)𝑏) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑐‘𝑗)(𝐿‘𝑦)(𝑑‘𝑗)))))) |
| 67 | 60, 66 | imbi12d 344 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = 𝑦 → ((X𝑘 ∈ 𝑥 ((𝑎‘𝑘)[,)(𝑏‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑥 (((𝑐‘𝑗)‘𝑘)[,)((𝑑‘𝑗)‘𝑘)) → (𝑎(𝐿‘𝑥)𝑏) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑐‘𝑗)(𝐿‘𝑥)(𝑑‘𝑗))))) ↔ (X𝑘 ∈ 𝑦 ((𝑎‘𝑘)[,)(𝑏‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑦 (((𝑐‘𝑗)‘𝑘)[,)((𝑑‘𝑗)‘𝑘)) → (𝑎(𝐿‘𝑦)𝑏) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑐‘𝑗)(𝐿‘𝑦)(𝑑‘𝑗))))))) |
| 68 | 56, 67 | imbi12d 344 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = 𝑦 → ((𝑑 ∈ ((ℝ ↑m 𝑥) ↑m ℕ)
→ (X𝑘 ∈ 𝑥 ((𝑎‘𝑘)[,)(𝑏‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑥 (((𝑐‘𝑗)‘𝑘)[,)((𝑑‘𝑗)‘𝑘)) → (𝑎(𝐿‘𝑥)𝑏) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑐‘𝑗)(𝐿‘𝑥)(𝑑‘𝑗)))))) ↔ (𝑑 ∈ ((ℝ ↑m 𝑦) ↑m ℕ)
→ (X𝑘 ∈ 𝑦 ((𝑎‘𝑘)[,)(𝑏‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑦 (((𝑐‘𝑗)‘𝑘)[,)((𝑑‘𝑗)‘𝑘)) → (𝑎(𝐿‘𝑦)𝑏) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑐‘𝑗)(𝐿‘𝑦)(𝑑‘𝑗)))))))) |
| 69 | 68 | ralbidv2 3174 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑦 → (∀𝑑 ∈ ((ℝ ↑m 𝑥) ↑m
ℕ)(X𝑘 ∈ 𝑥 ((𝑎‘𝑘)[,)(𝑏‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑥 (((𝑐‘𝑗)‘𝑘)[,)((𝑑‘𝑗)‘𝑘)) → (𝑎(𝐿‘𝑥)𝑏) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑐‘𝑗)(𝐿‘𝑥)(𝑑‘𝑗))))) ↔ ∀𝑑 ∈ ((ℝ ↑m 𝑦) ↑m
ℕ)(X𝑘 ∈ 𝑦 ((𝑎‘𝑘)[,)(𝑏‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑦 (((𝑐‘𝑗)‘𝑘)[,)((𝑑‘𝑗)‘𝑘)) → (𝑎(𝐿‘𝑦)𝑏) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑐‘𝑗)(𝐿‘𝑦)(𝑑‘𝑗))))))) |
| 70 | 55, 69 | imbi12d 344 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑦 → ((𝑐 ∈ ((ℝ ↑m 𝑥) ↑m ℕ)
→ ∀𝑑 ∈
((ℝ ↑m 𝑥) ↑m ℕ)(X𝑘 ∈
𝑥 ((𝑎‘𝑘)[,)(𝑏‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑥 (((𝑐‘𝑗)‘𝑘)[,)((𝑑‘𝑗)‘𝑘)) → (𝑎(𝐿‘𝑥)𝑏) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑐‘𝑗)(𝐿‘𝑥)(𝑑‘𝑗)))))) ↔ (𝑐 ∈ ((ℝ ↑m 𝑦) ↑m ℕ)
→ ∀𝑑 ∈
((ℝ ↑m 𝑦) ↑m ℕ)(X𝑘 ∈
𝑦 ((𝑎‘𝑘)[,)(𝑏‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑦 (((𝑐‘𝑗)‘𝑘)[,)((𝑑‘𝑗)‘𝑘)) → (𝑎(𝐿‘𝑦)𝑏) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑐‘𝑗)(𝐿‘𝑦)(𝑑‘𝑗)))))))) |
| 71 | 70 | ralbidv2 3174 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑦 → (∀𝑐 ∈ ((ℝ ↑m 𝑥) ↑m
ℕ)∀𝑑 ∈
((ℝ ↑m 𝑥) ↑m ℕ)(X𝑘 ∈
𝑥 ((𝑎‘𝑘)[,)(𝑏‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑥 (((𝑐‘𝑗)‘𝑘)[,)((𝑑‘𝑗)‘𝑘)) → (𝑎(𝐿‘𝑥)𝑏) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑐‘𝑗)(𝐿‘𝑥)(𝑑‘𝑗))))) ↔ ∀𝑐 ∈ ((ℝ ↑m 𝑦) ↑m
ℕ)∀𝑑 ∈
((ℝ ↑m 𝑦) ↑m ℕ)(X𝑘 ∈
𝑦 ((𝑎‘𝑘)[,)(𝑏‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑦 (((𝑐‘𝑗)‘𝑘)[,)((𝑑‘𝑗)‘𝑘)) → (𝑎(𝐿‘𝑦)𝑏) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑐‘𝑗)(𝐿‘𝑦)(𝑑‘𝑗))))))) |
| 72 | 53, 71 | imbi12d 344 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑦 → ((𝑏 ∈ (ℝ ↑m 𝑥) → ∀𝑐 ∈ ((ℝ
↑m 𝑥)
↑m ℕ)∀𝑑 ∈ ((ℝ ↑m 𝑥) ↑m
ℕ)(X𝑘 ∈ 𝑥 ((𝑎‘𝑘)[,)(𝑏‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑥 (((𝑐‘𝑗)‘𝑘)[,)((𝑑‘𝑗)‘𝑘)) → (𝑎(𝐿‘𝑥)𝑏) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑐‘𝑗)(𝐿‘𝑥)(𝑑‘𝑗)))))) ↔ (𝑏 ∈ (ℝ ↑m 𝑦) → ∀𝑐 ∈ ((ℝ
↑m 𝑦)
↑m ℕ)∀𝑑 ∈ ((ℝ ↑m 𝑦) ↑m
ℕ)(X𝑘 ∈ 𝑦 ((𝑎‘𝑘)[,)(𝑏‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑦 (((𝑐‘𝑗)‘𝑘)[,)((𝑑‘𝑗)‘𝑘)) → (𝑎(𝐿‘𝑦)𝑏) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑐‘𝑗)(𝐿‘𝑦)(𝑑‘𝑗)))))))) |
| 73 | 72 | ralbidv2 3174 |
. . . . . . . . 9
⊢ (𝑥 = 𝑦 → (∀𝑏 ∈ (ℝ ↑m 𝑥)∀𝑐 ∈ ((ℝ ↑m 𝑥) ↑m
ℕ)∀𝑑 ∈
((ℝ ↑m 𝑥) ↑m ℕ)(X𝑘 ∈
𝑥 ((𝑎‘𝑘)[,)(𝑏‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑥 (((𝑐‘𝑗)‘𝑘)[,)((𝑑‘𝑗)‘𝑘)) → (𝑎(𝐿‘𝑥)𝑏) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑐‘𝑗)(𝐿‘𝑥)(𝑑‘𝑗))))) ↔ ∀𝑏 ∈ (ℝ ↑m 𝑦)∀𝑐 ∈ ((ℝ ↑m 𝑦) ↑m
ℕ)∀𝑑 ∈
((ℝ ↑m 𝑦) ↑m ℕ)(X𝑘 ∈
𝑦 ((𝑎‘𝑘)[,)(𝑏‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑦 (((𝑐‘𝑗)‘𝑘)[,)((𝑑‘𝑗)‘𝑘)) → (𝑎(𝐿‘𝑦)𝑏) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑐‘𝑗)(𝐿‘𝑦)(𝑑‘𝑗))))))) |
| 74 | 52, 73 | imbi12d 344 |
. . . . . . . 8
⊢ (𝑥 = 𝑦 → ((𝑎 ∈ (ℝ ↑m 𝑥) → ∀𝑏 ∈ (ℝ
↑m 𝑥)∀𝑐 ∈ ((ℝ ↑m 𝑥) ↑m
ℕ)∀𝑑 ∈
((ℝ ↑m 𝑥) ↑m ℕ)(X𝑘 ∈
𝑥 ((𝑎‘𝑘)[,)(𝑏‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑥 (((𝑐‘𝑗)‘𝑘)[,)((𝑑‘𝑗)‘𝑘)) → (𝑎(𝐿‘𝑥)𝑏) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑐‘𝑗)(𝐿‘𝑥)(𝑑‘𝑗)))))) ↔ (𝑎 ∈ (ℝ ↑m 𝑦) → ∀𝑏 ∈ (ℝ
↑m 𝑦)∀𝑐 ∈ ((ℝ ↑m 𝑦) ↑m
ℕ)∀𝑑 ∈
((ℝ ↑m 𝑦) ↑m ℕ)(X𝑘 ∈
𝑦 ((𝑎‘𝑘)[,)(𝑏‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑦 (((𝑐‘𝑗)‘𝑘)[,)((𝑑‘𝑗)‘𝑘)) → (𝑎(𝐿‘𝑦)𝑏) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑐‘𝑗)(𝐿‘𝑦)(𝑑‘𝑗)))))))) |
| 75 | 74 | ralbidv2 3174 |
. . . . . . 7
⊢ (𝑥 = 𝑦 → (∀𝑎 ∈ (ℝ ↑m 𝑥)∀𝑏 ∈ (ℝ ↑m 𝑥)∀𝑐 ∈ ((ℝ ↑m 𝑥) ↑m
ℕ)∀𝑑 ∈
((ℝ ↑m 𝑥) ↑m ℕ)(X𝑘 ∈
𝑥 ((𝑎‘𝑘)[,)(𝑏‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑥 (((𝑐‘𝑗)‘𝑘)[,)((𝑑‘𝑗)‘𝑘)) → (𝑎(𝐿‘𝑥)𝑏) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑐‘𝑗)(𝐿‘𝑥)(𝑑‘𝑗))))) ↔ ∀𝑎 ∈ (ℝ ↑m 𝑦)∀𝑏 ∈ (ℝ ↑m 𝑦)∀𝑐 ∈ ((ℝ ↑m 𝑦) ↑m
ℕ)∀𝑑 ∈
((ℝ ↑m 𝑦) ↑m ℕ)(X𝑘 ∈
𝑦 ((𝑎‘𝑘)[,)(𝑏‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑦 (((𝑐‘𝑗)‘𝑘)[,)((𝑑‘𝑗)‘𝑘)) → (𝑎(𝐿‘𝑦)𝑏) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑐‘𝑗)(𝐿‘𝑦)(𝑑‘𝑗))))))) |
| 76 | | oveq2 7439 |
. . . . . . . . . 10
⊢ (𝑥 = (𝑦 ∪ {𝑧}) → (ℝ ↑m 𝑥) = (ℝ ↑m
(𝑦 ∪ {𝑧}))) |
| 77 | 76 | eleq2d 2827 |
. . . . . . . . 9
⊢ (𝑥 = (𝑦 ∪ {𝑧}) → (𝑎 ∈ (ℝ ↑m 𝑥) ↔ 𝑎 ∈ (ℝ ↑m (𝑦 ∪ {𝑧})))) |
| 78 | 76 | eleq2d 2827 |
. . . . . . . . . . 11
⊢ (𝑥 = (𝑦 ∪ {𝑧}) → (𝑏 ∈ (ℝ ↑m 𝑥) ↔ 𝑏 ∈ (ℝ ↑m (𝑦 ∪ {𝑧})))) |
| 79 | 76 | oveq1d 7446 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = (𝑦 ∪ {𝑧}) → ((ℝ ↑m 𝑥) ↑m ℕ) =
((ℝ ↑m (𝑦 ∪ {𝑧})) ↑m
ℕ)) |
| 80 | 79 | eleq2d 2827 |
. . . . . . . . . . . . 13
⊢ (𝑥 = (𝑦 ∪ {𝑧}) → (𝑐 ∈ ((ℝ ↑m 𝑥) ↑m ℕ)
↔ 𝑐 ∈ ((ℝ
↑m (𝑦 ∪
{𝑧})) ↑m
ℕ))) |
| 81 | 79 | eleq2d 2827 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = (𝑦 ∪ {𝑧}) → (𝑑 ∈ ((ℝ ↑m 𝑥) ↑m ℕ)
↔ 𝑑 ∈ ((ℝ
↑m (𝑦 ∪
{𝑧})) ↑m
ℕ))) |
| 82 | | ixpeq1 8948 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 = (𝑦 ∪ {𝑧}) → X𝑘 ∈ 𝑥 ((𝑎‘𝑘)[,)(𝑏‘𝑘)) = X𝑘 ∈ (𝑦 ∪ {𝑧})((𝑎‘𝑘)[,)(𝑏‘𝑘))) |
| 83 | | ixpeq1 8948 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 = (𝑦 ∪ {𝑧}) → X𝑘 ∈ 𝑥 (((𝑐‘𝑗)‘𝑘)[,)((𝑑‘𝑗)‘𝑘)) = X𝑘 ∈ (𝑦 ∪ {𝑧})(((𝑐‘𝑗)‘𝑘)[,)((𝑑‘𝑗)‘𝑘))) |
| 84 | 83 | iuneq2d 5022 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 = (𝑦 ∪ {𝑧}) → ∪
𝑗 ∈ ℕ X𝑘 ∈
𝑥 (((𝑐‘𝑗)‘𝑘)[,)((𝑑‘𝑗)‘𝑘)) = ∪
𝑗 ∈ ℕ X𝑘 ∈
(𝑦 ∪ {𝑧})(((𝑐‘𝑗)‘𝑘)[,)((𝑑‘𝑗)‘𝑘))) |
| 85 | 82, 84 | sseq12d 4017 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 = (𝑦 ∪ {𝑧}) → (X𝑘 ∈ 𝑥 ((𝑎‘𝑘)[,)(𝑏‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑥 (((𝑐‘𝑗)‘𝑘)[,)((𝑑‘𝑗)‘𝑘)) ↔ X𝑘 ∈ (𝑦 ∪ {𝑧})((𝑎‘𝑘)[,)(𝑏‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ (𝑦 ∪ {𝑧})(((𝑐‘𝑗)‘𝑘)[,)((𝑑‘𝑗)‘𝑘)))) |
| 86 | | fveq2 6906 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 = (𝑦 ∪ {𝑧}) → (𝐿‘𝑥) = (𝐿‘(𝑦 ∪ {𝑧}))) |
| 87 | 86 | oveqd 7448 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 = (𝑦 ∪ {𝑧}) → (𝑎(𝐿‘𝑥)𝑏) = (𝑎(𝐿‘(𝑦 ∪ {𝑧}))𝑏)) |
| 88 | 86 | oveqd 7448 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑥 = (𝑦 ∪ {𝑧}) → ((𝑐‘𝑗)(𝐿‘𝑥)(𝑑‘𝑗)) = ((𝑐‘𝑗)(𝐿‘(𝑦 ∪ {𝑧}))(𝑑‘𝑗))) |
| 89 | 88 | mpteq2dv 5244 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 = (𝑦 ∪ {𝑧}) → (𝑗 ∈ ℕ ↦ ((𝑐‘𝑗)(𝐿‘𝑥)(𝑑‘𝑗))) = (𝑗 ∈ ℕ ↦ ((𝑐‘𝑗)(𝐿‘(𝑦 ∪ {𝑧}))(𝑑‘𝑗)))) |
| 90 | 89 | fveq2d 6910 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 = (𝑦 ∪ {𝑧}) →
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑐‘𝑗)(𝐿‘𝑥)(𝑑‘𝑗)))) =
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑐‘𝑗)(𝐿‘(𝑦 ∪ {𝑧}))(𝑑‘𝑗))))) |
| 91 | 87, 90 | breq12d 5156 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 = (𝑦 ∪ {𝑧}) → ((𝑎(𝐿‘𝑥)𝑏) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑐‘𝑗)(𝐿‘𝑥)(𝑑‘𝑗)))) ↔ (𝑎(𝐿‘(𝑦 ∪ {𝑧}))𝑏) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑐‘𝑗)(𝐿‘(𝑦 ∪ {𝑧}))(𝑑‘𝑗)))))) |
| 92 | 85, 91 | imbi12d 344 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = (𝑦 ∪ {𝑧}) → ((X𝑘 ∈ 𝑥 ((𝑎‘𝑘)[,)(𝑏‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑥 (((𝑐‘𝑗)‘𝑘)[,)((𝑑‘𝑗)‘𝑘)) → (𝑎(𝐿‘𝑥)𝑏) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑐‘𝑗)(𝐿‘𝑥)(𝑑‘𝑗))))) ↔ (X𝑘 ∈ (𝑦 ∪ {𝑧})((𝑎‘𝑘)[,)(𝑏‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ (𝑦 ∪ {𝑧})(((𝑐‘𝑗)‘𝑘)[,)((𝑑‘𝑗)‘𝑘)) → (𝑎(𝐿‘(𝑦 ∪ {𝑧}))𝑏) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑐‘𝑗)(𝐿‘(𝑦 ∪ {𝑧}))(𝑑‘𝑗))))))) |
| 93 | 81, 92 | imbi12d 344 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = (𝑦 ∪ {𝑧}) → ((𝑑 ∈ ((ℝ ↑m 𝑥) ↑m ℕ)
→ (X𝑘 ∈ 𝑥 ((𝑎‘𝑘)[,)(𝑏‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑥 (((𝑐‘𝑗)‘𝑘)[,)((𝑑‘𝑗)‘𝑘)) → (𝑎(𝐿‘𝑥)𝑏) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑐‘𝑗)(𝐿‘𝑥)(𝑑‘𝑗)))))) ↔ (𝑑 ∈ ((ℝ ↑m (𝑦 ∪ {𝑧})) ↑m ℕ) → (X𝑘 ∈
(𝑦 ∪ {𝑧})((𝑎‘𝑘)[,)(𝑏‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ (𝑦 ∪ {𝑧})(((𝑐‘𝑗)‘𝑘)[,)((𝑑‘𝑗)‘𝑘)) → (𝑎(𝐿‘(𝑦 ∪ {𝑧}))𝑏) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑐‘𝑗)(𝐿‘(𝑦 ∪ {𝑧}))(𝑑‘𝑗)))))))) |
| 94 | 93 | ralbidv2 3174 |
. . . . . . . . . . . . 13
⊢ (𝑥 = (𝑦 ∪ {𝑧}) → (∀𝑑 ∈ ((ℝ ↑m 𝑥) ↑m
ℕ)(X𝑘 ∈ 𝑥 ((𝑎‘𝑘)[,)(𝑏‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑥 (((𝑐‘𝑗)‘𝑘)[,)((𝑑‘𝑗)‘𝑘)) → (𝑎(𝐿‘𝑥)𝑏) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑐‘𝑗)(𝐿‘𝑥)(𝑑‘𝑗))))) ↔ ∀𝑑 ∈ ((ℝ ↑m (𝑦 ∪ {𝑧})) ↑m ℕ)(X𝑘 ∈
(𝑦 ∪ {𝑧})((𝑎‘𝑘)[,)(𝑏‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ (𝑦 ∪ {𝑧})(((𝑐‘𝑗)‘𝑘)[,)((𝑑‘𝑗)‘𝑘)) → (𝑎(𝐿‘(𝑦 ∪ {𝑧}))𝑏) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑐‘𝑗)(𝐿‘(𝑦 ∪ {𝑧}))(𝑑‘𝑗))))))) |
| 95 | 80, 94 | imbi12d 344 |
. . . . . . . . . . . 12
⊢ (𝑥 = (𝑦 ∪ {𝑧}) → ((𝑐 ∈ ((ℝ ↑m 𝑥) ↑m ℕ)
→ ∀𝑑 ∈
((ℝ ↑m 𝑥) ↑m ℕ)(X𝑘 ∈
𝑥 ((𝑎‘𝑘)[,)(𝑏‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑥 (((𝑐‘𝑗)‘𝑘)[,)((𝑑‘𝑗)‘𝑘)) → (𝑎(𝐿‘𝑥)𝑏) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑐‘𝑗)(𝐿‘𝑥)(𝑑‘𝑗)))))) ↔ (𝑐 ∈ ((ℝ ↑m (𝑦 ∪ {𝑧})) ↑m ℕ) →
∀𝑑 ∈ ((ℝ
↑m (𝑦 ∪
{𝑧})) ↑m
ℕ)(X𝑘 ∈ (𝑦 ∪ {𝑧})((𝑎‘𝑘)[,)(𝑏‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ (𝑦 ∪ {𝑧})(((𝑐‘𝑗)‘𝑘)[,)((𝑑‘𝑗)‘𝑘)) → (𝑎(𝐿‘(𝑦 ∪ {𝑧}))𝑏) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑐‘𝑗)(𝐿‘(𝑦 ∪ {𝑧}))(𝑑‘𝑗)))))))) |
| 96 | 95 | ralbidv2 3174 |
. . . . . . . . . . 11
⊢ (𝑥 = (𝑦 ∪ {𝑧}) → (∀𝑐 ∈ ((ℝ ↑m 𝑥) ↑m
ℕ)∀𝑑 ∈
((ℝ ↑m 𝑥) ↑m ℕ)(X𝑘 ∈
𝑥 ((𝑎‘𝑘)[,)(𝑏‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑥 (((𝑐‘𝑗)‘𝑘)[,)((𝑑‘𝑗)‘𝑘)) → (𝑎(𝐿‘𝑥)𝑏) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑐‘𝑗)(𝐿‘𝑥)(𝑑‘𝑗))))) ↔ ∀𝑐 ∈ ((ℝ ↑m (𝑦 ∪ {𝑧})) ↑m ℕ)∀𝑑 ∈ ((ℝ
↑m (𝑦 ∪
{𝑧})) ↑m
ℕ)(X𝑘 ∈ (𝑦 ∪ {𝑧})((𝑎‘𝑘)[,)(𝑏‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ (𝑦 ∪ {𝑧})(((𝑐‘𝑗)‘𝑘)[,)((𝑑‘𝑗)‘𝑘)) → (𝑎(𝐿‘(𝑦 ∪ {𝑧}))𝑏) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑐‘𝑗)(𝐿‘(𝑦 ∪ {𝑧}))(𝑑‘𝑗))))))) |
| 97 | 78, 96 | imbi12d 344 |
. . . . . . . . . 10
⊢ (𝑥 = (𝑦 ∪ {𝑧}) → ((𝑏 ∈ (ℝ ↑m 𝑥) → ∀𝑐 ∈ ((ℝ
↑m 𝑥)
↑m ℕ)∀𝑑 ∈ ((ℝ ↑m 𝑥) ↑m
ℕ)(X𝑘 ∈ 𝑥 ((𝑎‘𝑘)[,)(𝑏‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑥 (((𝑐‘𝑗)‘𝑘)[,)((𝑑‘𝑗)‘𝑘)) → (𝑎(𝐿‘𝑥)𝑏) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑐‘𝑗)(𝐿‘𝑥)(𝑑‘𝑗)))))) ↔ (𝑏 ∈ (ℝ ↑m (𝑦 ∪ {𝑧})) → ∀𝑐 ∈ ((ℝ ↑m (𝑦 ∪ {𝑧})) ↑m ℕ)∀𝑑 ∈ ((ℝ
↑m (𝑦 ∪
{𝑧})) ↑m
ℕ)(X𝑘 ∈ (𝑦 ∪ {𝑧})((𝑎‘𝑘)[,)(𝑏‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ (𝑦 ∪ {𝑧})(((𝑐‘𝑗)‘𝑘)[,)((𝑑‘𝑗)‘𝑘)) → (𝑎(𝐿‘(𝑦 ∪ {𝑧}))𝑏) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑐‘𝑗)(𝐿‘(𝑦 ∪ {𝑧}))(𝑑‘𝑗)))))))) |
| 98 | 97 | ralbidv2 3174 |
. . . . . . . . 9
⊢ (𝑥 = (𝑦 ∪ {𝑧}) → (∀𝑏 ∈ (ℝ ↑m 𝑥)∀𝑐 ∈ ((ℝ ↑m 𝑥) ↑m
ℕ)∀𝑑 ∈
((ℝ ↑m 𝑥) ↑m ℕ)(X𝑘 ∈
𝑥 ((𝑎‘𝑘)[,)(𝑏‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑥 (((𝑐‘𝑗)‘𝑘)[,)((𝑑‘𝑗)‘𝑘)) → (𝑎(𝐿‘𝑥)𝑏) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑐‘𝑗)(𝐿‘𝑥)(𝑑‘𝑗))))) ↔ ∀𝑏 ∈ (ℝ ↑m (𝑦 ∪ {𝑧}))∀𝑐 ∈ ((ℝ ↑m (𝑦 ∪ {𝑧})) ↑m ℕ)∀𝑑 ∈ ((ℝ
↑m (𝑦 ∪
{𝑧})) ↑m
ℕ)(X𝑘 ∈ (𝑦 ∪ {𝑧})((𝑎‘𝑘)[,)(𝑏‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ (𝑦 ∪ {𝑧})(((𝑐‘𝑗)‘𝑘)[,)((𝑑‘𝑗)‘𝑘)) → (𝑎(𝐿‘(𝑦 ∪ {𝑧}))𝑏) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑐‘𝑗)(𝐿‘(𝑦 ∪ {𝑧}))(𝑑‘𝑗))))))) |
| 99 | 77, 98 | imbi12d 344 |
. . . . . . . 8
⊢ (𝑥 = (𝑦 ∪ {𝑧}) → ((𝑎 ∈ (ℝ ↑m 𝑥) → ∀𝑏 ∈ (ℝ
↑m 𝑥)∀𝑐 ∈ ((ℝ ↑m 𝑥) ↑m
ℕ)∀𝑑 ∈
((ℝ ↑m 𝑥) ↑m ℕ)(X𝑘 ∈
𝑥 ((𝑎‘𝑘)[,)(𝑏‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑥 (((𝑐‘𝑗)‘𝑘)[,)((𝑑‘𝑗)‘𝑘)) → (𝑎(𝐿‘𝑥)𝑏) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑐‘𝑗)(𝐿‘𝑥)(𝑑‘𝑗)))))) ↔ (𝑎 ∈ (ℝ ↑m (𝑦 ∪ {𝑧})) → ∀𝑏 ∈ (ℝ ↑m (𝑦 ∪ {𝑧}))∀𝑐 ∈ ((ℝ ↑m (𝑦 ∪ {𝑧})) ↑m ℕ)∀𝑑 ∈ ((ℝ
↑m (𝑦 ∪
{𝑧})) ↑m
ℕ)(X𝑘 ∈ (𝑦 ∪ {𝑧})((𝑎‘𝑘)[,)(𝑏‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ (𝑦 ∪ {𝑧})(((𝑐‘𝑗)‘𝑘)[,)((𝑑‘𝑗)‘𝑘)) → (𝑎(𝐿‘(𝑦 ∪ {𝑧}))𝑏) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑐‘𝑗)(𝐿‘(𝑦 ∪ {𝑧}))(𝑑‘𝑗)))))))) |
| 100 | 99 | ralbidv2 3174 |
. . . . . . 7
⊢ (𝑥 = (𝑦 ∪ {𝑧}) → (∀𝑎 ∈ (ℝ ↑m 𝑥)∀𝑏 ∈ (ℝ ↑m 𝑥)∀𝑐 ∈ ((ℝ ↑m 𝑥) ↑m
ℕ)∀𝑑 ∈
((ℝ ↑m 𝑥) ↑m ℕ)(X𝑘 ∈
𝑥 ((𝑎‘𝑘)[,)(𝑏‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑥 (((𝑐‘𝑗)‘𝑘)[,)((𝑑‘𝑗)‘𝑘)) → (𝑎(𝐿‘𝑥)𝑏) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑐‘𝑗)(𝐿‘𝑥)(𝑑‘𝑗))))) ↔ ∀𝑎 ∈ (ℝ ↑m (𝑦 ∪ {𝑧}))∀𝑏 ∈ (ℝ ↑m (𝑦 ∪ {𝑧}))∀𝑐 ∈ ((ℝ ↑m (𝑦 ∪ {𝑧})) ↑m ℕ)∀𝑑 ∈ ((ℝ
↑m (𝑦 ∪
{𝑧})) ↑m
ℕ)(X𝑘 ∈ (𝑦 ∪ {𝑧})((𝑎‘𝑘)[,)(𝑏‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ (𝑦 ∪ {𝑧})(((𝑐‘𝑗)‘𝑘)[,)((𝑑‘𝑗)‘𝑘)) → (𝑎(𝐿‘(𝑦 ∪ {𝑧}))𝑏) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑐‘𝑗)(𝐿‘(𝑦 ∪ {𝑧}))(𝑑‘𝑗))))))) |
| 101 | | oveq2 7439 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑋 → (ℝ ↑m 𝑥) = (ℝ ↑m
𝑋)) |
| 102 | 101 | eleq2d 2827 |
. . . . . . . . 9
⊢ (𝑥 = 𝑋 → (𝑎 ∈ (ℝ ↑m 𝑥) ↔ 𝑎 ∈ (ℝ ↑m 𝑋))) |
| 103 | 101 | eleq2d 2827 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑋 → (𝑏 ∈ (ℝ ↑m 𝑥) ↔ 𝑏 ∈ (ℝ ↑m 𝑋))) |
| 104 | 101 | oveq1d 7446 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = 𝑋 → ((ℝ ↑m 𝑥) ↑m ℕ) =
((ℝ ↑m 𝑋) ↑m
ℕ)) |
| 105 | 104 | eleq2d 2827 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑋 → (𝑐 ∈ ((ℝ ↑m 𝑥) ↑m ℕ)
↔ 𝑐 ∈ ((ℝ
↑m 𝑋)
↑m ℕ))) |
| 106 | 104 | eleq2d 2827 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = 𝑋 → (𝑑 ∈ ((ℝ ↑m 𝑥) ↑m ℕ)
↔ 𝑑 ∈ ((ℝ
↑m 𝑋)
↑m ℕ))) |
| 107 | | ixpeq1 8948 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 = 𝑋 → X𝑘 ∈ 𝑥 ((𝑎‘𝑘)[,)(𝑏‘𝑘)) = X𝑘 ∈ 𝑋 ((𝑎‘𝑘)[,)(𝑏‘𝑘))) |
| 108 | | ixpeq1 8948 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 = 𝑋 → X𝑘 ∈ 𝑥 (((𝑐‘𝑗)‘𝑘)[,)((𝑑‘𝑗)‘𝑘)) = X𝑘 ∈ 𝑋 (((𝑐‘𝑗)‘𝑘)[,)((𝑑‘𝑗)‘𝑘))) |
| 109 | 108 | iuneq2d 5022 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 = 𝑋 → ∪
𝑗 ∈ ℕ X𝑘 ∈
𝑥 (((𝑐‘𝑗)‘𝑘)[,)((𝑑‘𝑗)‘𝑘)) = ∪
𝑗 ∈ ℕ X𝑘 ∈
𝑋 (((𝑐‘𝑗)‘𝑘)[,)((𝑑‘𝑗)‘𝑘))) |
| 110 | 107, 109 | sseq12d 4017 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 = 𝑋 → (X𝑘 ∈ 𝑥 ((𝑎‘𝑘)[,)(𝑏‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑥 (((𝑐‘𝑗)‘𝑘)[,)((𝑑‘𝑗)‘𝑘)) ↔ X𝑘 ∈ 𝑋 ((𝑎‘𝑘)[,)(𝑏‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (((𝑐‘𝑗)‘𝑘)[,)((𝑑‘𝑗)‘𝑘)))) |
| 111 | | fveq2 6906 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 = 𝑋 → (𝐿‘𝑥) = (𝐿‘𝑋)) |
| 112 | 111 | oveqd 7448 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 = 𝑋 → (𝑎(𝐿‘𝑥)𝑏) = (𝑎(𝐿‘𝑋)𝑏)) |
| 113 | 111 | oveqd 7448 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑥 = 𝑋 → ((𝑐‘𝑗)(𝐿‘𝑥)(𝑑‘𝑗)) = ((𝑐‘𝑗)(𝐿‘𝑋)(𝑑‘𝑗))) |
| 114 | 113 | mpteq2dv 5244 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 = 𝑋 → (𝑗 ∈ ℕ ↦ ((𝑐‘𝑗)(𝐿‘𝑥)(𝑑‘𝑗))) = (𝑗 ∈ ℕ ↦ ((𝑐‘𝑗)(𝐿‘𝑋)(𝑑‘𝑗)))) |
| 115 | 114 | fveq2d 6910 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 = 𝑋 →
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑐‘𝑗)(𝐿‘𝑥)(𝑑‘𝑗)))) =
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑐‘𝑗)(𝐿‘𝑋)(𝑑‘𝑗))))) |
| 116 | 112, 115 | breq12d 5156 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 = 𝑋 → ((𝑎(𝐿‘𝑥)𝑏) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑐‘𝑗)(𝐿‘𝑥)(𝑑‘𝑗)))) ↔ (𝑎(𝐿‘𝑋)𝑏) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑐‘𝑗)(𝐿‘𝑋)(𝑑‘𝑗)))))) |
| 117 | 110, 116 | imbi12d 344 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = 𝑋 → ((X𝑘 ∈ 𝑥 ((𝑎‘𝑘)[,)(𝑏‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑥 (((𝑐‘𝑗)‘𝑘)[,)((𝑑‘𝑗)‘𝑘)) → (𝑎(𝐿‘𝑥)𝑏) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑐‘𝑗)(𝐿‘𝑥)(𝑑‘𝑗))))) ↔ (X𝑘 ∈ 𝑋 ((𝑎‘𝑘)[,)(𝑏‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (((𝑐‘𝑗)‘𝑘)[,)((𝑑‘𝑗)‘𝑘)) → (𝑎(𝐿‘𝑋)𝑏) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑐‘𝑗)(𝐿‘𝑋)(𝑑‘𝑗))))))) |
| 118 | 106, 117 | imbi12d 344 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = 𝑋 → ((𝑑 ∈ ((ℝ ↑m 𝑥) ↑m ℕ)
→ (X𝑘 ∈ 𝑥 ((𝑎‘𝑘)[,)(𝑏‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑥 (((𝑐‘𝑗)‘𝑘)[,)((𝑑‘𝑗)‘𝑘)) → (𝑎(𝐿‘𝑥)𝑏) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑐‘𝑗)(𝐿‘𝑥)(𝑑‘𝑗)))))) ↔ (𝑑 ∈ ((ℝ ↑m 𝑋) ↑m ℕ)
→ (X𝑘 ∈ 𝑋 ((𝑎‘𝑘)[,)(𝑏‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (((𝑐‘𝑗)‘𝑘)[,)((𝑑‘𝑗)‘𝑘)) → (𝑎(𝐿‘𝑋)𝑏) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑐‘𝑗)(𝐿‘𝑋)(𝑑‘𝑗)))))))) |
| 119 | 118 | ralbidv2 3174 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑋 → (∀𝑑 ∈ ((ℝ ↑m 𝑥) ↑m
ℕ)(X𝑘 ∈ 𝑥 ((𝑎‘𝑘)[,)(𝑏‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑥 (((𝑐‘𝑗)‘𝑘)[,)((𝑑‘𝑗)‘𝑘)) → (𝑎(𝐿‘𝑥)𝑏) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑐‘𝑗)(𝐿‘𝑥)(𝑑‘𝑗))))) ↔ ∀𝑑 ∈ ((ℝ ↑m 𝑋) ↑m
ℕ)(X𝑘 ∈ 𝑋 ((𝑎‘𝑘)[,)(𝑏‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (((𝑐‘𝑗)‘𝑘)[,)((𝑑‘𝑗)‘𝑘)) → (𝑎(𝐿‘𝑋)𝑏) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑐‘𝑗)(𝐿‘𝑋)(𝑑‘𝑗))))))) |
| 120 | 105, 119 | imbi12d 344 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑋 → ((𝑐 ∈ ((ℝ ↑m 𝑥) ↑m ℕ)
→ ∀𝑑 ∈
((ℝ ↑m 𝑥) ↑m ℕ)(X𝑘 ∈
𝑥 ((𝑎‘𝑘)[,)(𝑏‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑥 (((𝑐‘𝑗)‘𝑘)[,)((𝑑‘𝑗)‘𝑘)) → (𝑎(𝐿‘𝑥)𝑏) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑐‘𝑗)(𝐿‘𝑥)(𝑑‘𝑗)))))) ↔ (𝑐 ∈ ((ℝ ↑m 𝑋) ↑m ℕ)
→ ∀𝑑 ∈
((ℝ ↑m 𝑋) ↑m ℕ)(X𝑘 ∈
𝑋 ((𝑎‘𝑘)[,)(𝑏‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (((𝑐‘𝑗)‘𝑘)[,)((𝑑‘𝑗)‘𝑘)) → (𝑎(𝐿‘𝑋)𝑏) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑐‘𝑗)(𝐿‘𝑋)(𝑑‘𝑗)))))))) |
| 121 | 120 | ralbidv2 3174 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑋 → (∀𝑐 ∈ ((ℝ ↑m 𝑥) ↑m
ℕ)∀𝑑 ∈
((ℝ ↑m 𝑥) ↑m ℕ)(X𝑘 ∈
𝑥 ((𝑎‘𝑘)[,)(𝑏‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑥 (((𝑐‘𝑗)‘𝑘)[,)((𝑑‘𝑗)‘𝑘)) → (𝑎(𝐿‘𝑥)𝑏) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑐‘𝑗)(𝐿‘𝑥)(𝑑‘𝑗))))) ↔ ∀𝑐 ∈ ((ℝ ↑m 𝑋) ↑m
ℕ)∀𝑑 ∈
((ℝ ↑m 𝑋) ↑m ℕ)(X𝑘 ∈
𝑋 ((𝑎‘𝑘)[,)(𝑏‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (((𝑐‘𝑗)‘𝑘)[,)((𝑑‘𝑗)‘𝑘)) → (𝑎(𝐿‘𝑋)𝑏) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑐‘𝑗)(𝐿‘𝑋)(𝑑‘𝑗))))))) |
| 122 | 103, 121 | imbi12d 344 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑋 → ((𝑏 ∈ (ℝ ↑m 𝑥) → ∀𝑐 ∈ ((ℝ
↑m 𝑥)
↑m ℕ)∀𝑑 ∈ ((ℝ ↑m 𝑥) ↑m
ℕ)(X𝑘 ∈ 𝑥 ((𝑎‘𝑘)[,)(𝑏‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑥 (((𝑐‘𝑗)‘𝑘)[,)((𝑑‘𝑗)‘𝑘)) → (𝑎(𝐿‘𝑥)𝑏) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑐‘𝑗)(𝐿‘𝑥)(𝑑‘𝑗)))))) ↔ (𝑏 ∈ (ℝ ↑m 𝑋) → ∀𝑐 ∈ ((ℝ
↑m 𝑋)
↑m ℕ)∀𝑑 ∈ ((ℝ ↑m 𝑋) ↑m
ℕ)(X𝑘 ∈ 𝑋 ((𝑎‘𝑘)[,)(𝑏‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (((𝑐‘𝑗)‘𝑘)[,)((𝑑‘𝑗)‘𝑘)) → (𝑎(𝐿‘𝑋)𝑏) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑐‘𝑗)(𝐿‘𝑋)(𝑑‘𝑗)))))))) |
| 123 | 122 | ralbidv2 3174 |
. . . . . . . . 9
⊢ (𝑥 = 𝑋 → (∀𝑏 ∈ (ℝ ↑m 𝑥)∀𝑐 ∈ ((ℝ ↑m 𝑥) ↑m
ℕ)∀𝑑 ∈
((ℝ ↑m 𝑥) ↑m ℕ)(X𝑘 ∈
𝑥 ((𝑎‘𝑘)[,)(𝑏‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑥 (((𝑐‘𝑗)‘𝑘)[,)((𝑑‘𝑗)‘𝑘)) → (𝑎(𝐿‘𝑥)𝑏) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑐‘𝑗)(𝐿‘𝑥)(𝑑‘𝑗))))) ↔ ∀𝑏 ∈ (ℝ ↑m 𝑋)∀𝑐 ∈ ((ℝ ↑m 𝑋) ↑m
ℕ)∀𝑑 ∈
((ℝ ↑m 𝑋) ↑m ℕ)(X𝑘 ∈
𝑋 ((𝑎‘𝑘)[,)(𝑏‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (((𝑐‘𝑗)‘𝑘)[,)((𝑑‘𝑗)‘𝑘)) → (𝑎(𝐿‘𝑋)𝑏) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑐‘𝑗)(𝐿‘𝑋)(𝑑‘𝑗))))))) |
| 124 | 102, 123 | imbi12d 344 |
. . . . . . . 8
⊢ (𝑥 = 𝑋 → ((𝑎 ∈ (ℝ ↑m 𝑥) → ∀𝑏 ∈ (ℝ
↑m 𝑥)∀𝑐 ∈ ((ℝ ↑m 𝑥) ↑m
ℕ)∀𝑑 ∈
((ℝ ↑m 𝑥) ↑m ℕ)(X𝑘 ∈
𝑥 ((𝑎‘𝑘)[,)(𝑏‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑥 (((𝑐‘𝑗)‘𝑘)[,)((𝑑‘𝑗)‘𝑘)) → (𝑎(𝐿‘𝑥)𝑏) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑐‘𝑗)(𝐿‘𝑥)(𝑑‘𝑗)))))) ↔ (𝑎 ∈ (ℝ ↑m 𝑋) → ∀𝑏 ∈ (ℝ
↑m 𝑋)∀𝑐 ∈ ((ℝ ↑m 𝑋) ↑m
ℕ)∀𝑑 ∈
((ℝ ↑m 𝑋) ↑m ℕ)(X𝑘 ∈
𝑋 ((𝑎‘𝑘)[,)(𝑏‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (((𝑐‘𝑗)‘𝑘)[,)((𝑑‘𝑗)‘𝑘)) → (𝑎(𝐿‘𝑋)𝑏) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑐‘𝑗)(𝐿‘𝑋)(𝑑‘𝑗)))))))) |
| 125 | 124 | ralbidv2 3174 |
. . . . . . 7
⊢ (𝑥 = 𝑋 → (∀𝑎 ∈ (ℝ ↑m 𝑥)∀𝑏 ∈ (ℝ ↑m 𝑥)∀𝑐 ∈ ((ℝ ↑m 𝑥) ↑m
ℕ)∀𝑑 ∈
((ℝ ↑m 𝑥) ↑m ℕ)(X𝑘 ∈
𝑥 ((𝑎‘𝑘)[,)(𝑏‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑥 (((𝑐‘𝑗)‘𝑘)[,)((𝑑‘𝑗)‘𝑘)) → (𝑎(𝐿‘𝑥)𝑏) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑐‘𝑗)(𝐿‘𝑥)(𝑑‘𝑗))))) ↔ ∀𝑎 ∈ (ℝ ↑m 𝑋)∀𝑏 ∈ (ℝ ↑m 𝑋)∀𝑐 ∈ ((ℝ ↑m 𝑋) ↑m
ℕ)∀𝑑 ∈
((ℝ ↑m 𝑋) ↑m ℕ)(X𝑘 ∈
𝑋 ((𝑎‘𝑘)[,)(𝑏‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (((𝑐‘𝑗)‘𝑘)[,)((𝑑‘𝑗)‘𝑘)) → (𝑎(𝐿‘𝑋)𝑏) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑐‘𝑗)(𝐿‘𝑋)(𝑑‘𝑗))))))) |
| 126 | | hoidmvle.l |
. . . . . . . . . . . . . . . 16
⊢ 𝐿 = (𝑥 ∈ Fin ↦ (𝑎 ∈ (ℝ ↑m 𝑥), 𝑏 ∈ (ℝ ↑m 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑘 ∈ 𝑥 (vol‘((𝑎‘𝑘)[,)(𝑏‘𝑘)))))) |
| 127 | | fveq1 6905 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑎 = 𝑒 → (𝑎‘𝑘) = (𝑒‘𝑘)) |
| 128 | 127 | oveq1d 7446 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑎 = 𝑒 → ((𝑎‘𝑘)[,)(𝑏‘𝑘)) = ((𝑒‘𝑘)[,)(𝑏‘𝑘))) |
| 129 | 128 | fveq2d 6910 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑎 = 𝑒 → (vol‘((𝑎‘𝑘)[,)(𝑏‘𝑘))) = (vol‘((𝑒‘𝑘)[,)(𝑏‘𝑘)))) |
| 130 | 129 | prodeq2ad 45607 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑎 = 𝑒 → ∏𝑘 ∈ 𝑥 (vol‘((𝑎‘𝑘)[,)(𝑏‘𝑘))) = ∏𝑘 ∈ 𝑥 (vol‘((𝑒‘𝑘)[,)(𝑏‘𝑘)))) |
| 131 | 130 | ifeq2d 4546 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑎 = 𝑒 → if(𝑥 = ∅, 0, ∏𝑘 ∈ 𝑥 (vol‘((𝑎‘𝑘)[,)(𝑏‘𝑘)))) = if(𝑥 = ∅, 0, ∏𝑘 ∈ 𝑥 (vol‘((𝑒‘𝑘)[,)(𝑏‘𝑘))))) |
| 132 | | fveq1 6905 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑏 = 𝑓 → (𝑏‘𝑘) = (𝑓‘𝑘)) |
| 133 | 132 | oveq2d 7447 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑏 = 𝑓 → ((𝑒‘𝑘)[,)(𝑏‘𝑘)) = ((𝑒‘𝑘)[,)(𝑓‘𝑘))) |
| 134 | 133 | fveq2d 6910 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑏 = 𝑓 → (vol‘((𝑒‘𝑘)[,)(𝑏‘𝑘))) = (vol‘((𝑒‘𝑘)[,)(𝑓‘𝑘)))) |
| 135 | 134 | prodeq2ad 45607 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑏 = 𝑓 → ∏𝑘 ∈ 𝑥 (vol‘((𝑒‘𝑘)[,)(𝑏‘𝑘))) = ∏𝑘 ∈ 𝑥 (vol‘((𝑒‘𝑘)[,)(𝑓‘𝑘)))) |
| 136 | 135 | ifeq2d 4546 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑏 = 𝑓 → if(𝑥 = ∅, 0, ∏𝑘 ∈ 𝑥 (vol‘((𝑒‘𝑘)[,)(𝑏‘𝑘)))) = if(𝑥 = ∅, 0, ∏𝑘 ∈ 𝑥 (vol‘((𝑒‘𝑘)[,)(𝑓‘𝑘))))) |
| 137 | 131, 136 | cbvmpov 7528 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑎 ∈ (ℝ
↑m 𝑥),
𝑏 ∈ (ℝ
↑m 𝑥)
↦ if(𝑥 = ∅, 0,
∏𝑘 ∈ 𝑥 (vol‘((𝑎‘𝑘)[,)(𝑏‘𝑘))))) = (𝑒 ∈ (ℝ ↑m 𝑥), 𝑓 ∈ (ℝ ↑m 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑘 ∈ 𝑥 (vol‘((𝑒‘𝑘)[,)(𝑓‘𝑘))))) |
| 138 | 137 | mpteq2i 5247 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 ∈ Fin ↦ (𝑎 ∈ (ℝ
↑m 𝑥),
𝑏 ∈ (ℝ
↑m 𝑥)
↦ if(𝑥 = ∅, 0,
∏𝑘 ∈ 𝑥 (vol‘((𝑎‘𝑘)[,)(𝑏‘𝑘)))))) = (𝑥 ∈ Fin ↦ (𝑒 ∈ (ℝ ↑m 𝑥), 𝑓 ∈ (ℝ ↑m 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑘 ∈ 𝑥 (vol‘((𝑒‘𝑘)[,)(𝑓‘𝑘)))))) |
| 139 | 126, 138 | eqtri 2765 |
. . . . . . . . . . . . . . 15
⊢ 𝐿 = (𝑥 ∈ Fin ↦ (𝑒 ∈ (ℝ ↑m 𝑥), 𝑓 ∈ (ℝ ↑m 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑘 ∈ 𝑥 (vol‘((𝑒‘𝑘)[,)(𝑓‘𝑘)))))) |
| 140 | | elmapi 8889 |
. . . . . . . . . . . . . . . 16
⊢ (𝑎 ∈ (ℝ
↑m ∅) → 𝑎:∅⟶ℝ) |
| 141 | 140 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ ((𝑎 ∈ (ℝ
↑m ∅) ∧ 𝑏 ∈ (ℝ ↑m ∅))
→ 𝑎:∅⟶ℝ) |
| 142 | | elmapi 8889 |
. . . . . . . . . . . . . . . 16
⊢ (𝑏 ∈ (ℝ
↑m ∅) → 𝑏:∅⟶ℝ) |
| 143 | 142 | adantl 481 |
. . . . . . . . . . . . . . 15
⊢ ((𝑎 ∈ (ℝ
↑m ∅) ∧ 𝑏 ∈ (ℝ ↑m ∅))
→ 𝑏:∅⟶ℝ) |
| 144 | 139, 141,
143 | hoidmv0val 46598 |
. . . . . . . . . . . . . 14
⊢ ((𝑎 ∈ (ℝ
↑m ∅) ∧ 𝑏 ∈ (ℝ ↑m ∅))
→ (𝑎(𝐿‘∅)𝑏) = 0) |
| 145 | 144 | ad5ant23 760 |
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ 𝑎 ∈ (ℝ
↑m ∅)) ∧ 𝑏 ∈ (ℝ ↑m ∅))
∧ 𝑐 ∈ ((ℝ
↑m ∅) ↑m ℕ)) ∧ 𝑑 ∈ ((ℝ
↑m ∅) ↑m ℕ)) → (𝑎(𝐿‘∅)𝑏) = 0) |
| 146 | | nfv 1914 |
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑗(𝑐 ∈ ((ℝ
↑m ∅) ↑m ℕ) ∧ 𝑑 ∈ ((ℝ
↑m ∅) ↑m ℕ)) |
| 147 | 4 | a1i 11 |
. . . . . . . . . . . . . . 15
⊢ ((𝑐 ∈ ((ℝ
↑m ∅) ↑m ℕ) ∧ 𝑑 ∈ ((ℝ
↑m ∅) ↑m ℕ)) → ℕ ∈
V) |
| 148 | | icossicc 13476 |
. . . . . . . . . . . . . . . 16
⊢
(0[,)+∞) ⊆ (0[,]+∞) |
| 149 | | 0fi 9082 |
. . . . . . . . . . . . . . . . . 18
⊢ ∅
∈ Fin |
| 150 | 149 | a1i 11 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑐 ∈ ((ℝ
↑m ∅) ↑m ℕ) ∧ 𝑑 ∈ ((ℝ
↑m ∅) ↑m ℕ)) ∧ 𝑗 ∈ ℕ) → ∅
∈ Fin) |
| 151 | | ovexd 7466 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑐 ∈ ((ℝ
↑m ∅) ↑m ℕ) ∧ 𝑗 ∈ ℕ) → (ℝ
↑m ∅) ∈ V) |
| 152 | 4 | a1i 11 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑐 ∈ ((ℝ
↑m ∅) ↑m ℕ) ∧ 𝑗 ∈ ℕ) → ℕ
∈ V) |
| 153 | | simpl 482 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑐 ∈ ((ℝ
↑m ∅) ↑m ℕ) ∧ 𝑗 ∈ ℕ) → 𝑐 ∈ ((ℝ
↑m ∅) ↑m ℕ)) |
| 154 | | simpr 484 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑐 ∈ ((ℝ
↑m ∅) ↑m ℕ) ∧ 𝑗 ∈ ℕ) → 𝑗 ∈
ℕ) |
| 155 | 151, 152,
153, 154 | fvmap 45203 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑐 ∈ ((ℝ
↑m ∅) ↑m ℕ) ∧ 𝑗 ∈ ℕ) → (𝑐‘𝑗) ∈ (ℝ ↑m
∅)) |
| 156 | | elmapi 8889 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑐‘𝑗) ∈ (ℝ ↑m ∅)
→ (𝑐‘𝑗):∅⟶ℝ) |
| 157 | 155, 156 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑐 ∈ ((ℝ
↑m ∅) ↑m ℕ) ∧ 𝑗 ∈ ℕ) → (𝑐‘𝑗):∅⟶ℝ) |
| 158 | 157 | adantlr 715 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑐 ∈ ((ℝ
↑m ∅) ↑m ℕ) ∧ 𝑑 ∈ ((ℝ
↑m ∅) ↑m ℕ)) ∧ 𝑗 ∈ ℕ) → (𝑐‘𝑗):∅⟶ℝ) |
| 159 | | ovexd 7466 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑑 ∈ ((ℝ
↑m ∅) ↑m ℕ) ∧ 𝑗 ∈ ℕ) → (ℝ
↑m ∅) ∈ V) |
| 160 | 4 | a1i 11 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑑 ∈ ((ℝ
↑m ∅) ↑m ℕ) ∧ 𝑗 ∈ ℕ) → ℕ
∈ V) |
| 161 | | simpl 482 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑑 ∈ ((ℝ
↑m ∅) ↑m ℕ) ∧ 𝑗 ∈ ℕ) → 𝑑 ∈ ((ℝ
↑m ∅) ↑m ℕ)) |
| 162 | | simpr 484 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑑 ∈ ((ℝ
↑m ∅) ↑m ℕ) ∧ 𝑗 ∈ ℕ) → 𝑗 ∈
ℕ) |
| 163 | 159, 160,
161, 162 | fvmap 45203 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑑 ∈ ((ℝ
↑m ∅) ↑m ℕ) ∧ 𝑗 ∈ ℕ) → (𝑑‘𝑗) ∈ (ℝ ↑m
∅)) |
| 164 | | elmapi 8889 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑑‘𝑗) ∈ (ℝ ↑m ∅)
→ (𝑑‘𝑗):∅⟶ℝ) |
| 165 | 163, 164 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑑 ∈ ((ℝ
↑m ∅) ↑m ℕ) ∧ 𝑗 ∈ ℕ) → (𝑑‘𝑗):∅⟶ℝ) |
| 166 | 165 | adantll 714 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑐 ∈ ((ℝ
↑m ∅) ↑m ℕ) ∧ 𝑑 ∈ ((ℝ
↑m ∅) ↑m ℕ)) ∧ 𝑗 ∈ ℕ) → (𝑑‘𝑗):∅⟶ℝ) |
| 167 | 126, 150,
158, 166 | hoidmvcl 46597 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑐 ∈ ((ℝ
↑m ∅) ↑m ℕ) ∧ 𝑑 ∈ ((ℝ
↑m ∅) ↑m ℕ)) ∧ 𝑗 ∈ ℕ) → ((𝑐‘𝑗)(𝐿‘∅)(𝑑‘𝑗)) ∈ (0[,)+∞)) |
| 168 | 148, 167 | sselid 3981 |
. . . . . . . . . . . . . . 15
⊢ (((𝑐 ∈ ((ℝ
↑m ∅) ↑m ℕ) ∧ 𝑑 ∈ ((ℝ
↑m ∅) ↑m ℕ)) ∧ 𝑗 ∈ ℕ) → ((𝑐‘𝑗)(𝐿‘∅)(𝑑‘𝑗)) ∈ (0[,]+∞)) |
| 169 | 146, 147,
168 | sge0ge0mpt 46453 |
. . . . . . . . . . . . . 14
⊢ ((𝑐 ∈ ((ℝ
↑m ∅) ↑m ℕ) ∧ 𝑑 ∈ ((ℝ
↑m ∅) ↑m ℕ)) → 0 ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑐‘𝑗)(𝐿‘∅)(𝑑‘𝑗))))) |
| 170 | 169 | adantll 714 |
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ 𝑎 ∈ (ℝ
↑m ∅)) ∧ 𝑏 ∈ (ℝ ↑m ∅))
∧ 𝑐 ∈ ((ℝ
↑m ∅) ↑m ℕ)) ∧ 𝑑 ∈ ((ℝ
↑m ∅) ↑m ℕ)) → 0 ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑐‘𝑗)(𝐿‘∅)(𝑑‘𝑗))))) |
| 171 | 145, 170 | eqbrtrd 5165 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ 𝑎 ∈ (ℝ
↑m ∅)) ∧ 𝑏 ∈ (ℝ ↑m ∅))
∧ 𝑐 ∈ ((ℝ
↑m ∅) ↑m ℕ)) ∧ 𝑑 ∈ ((ℝ
↑m ∅) ↑m ℕ)) → (𝑎(𝐿‘∅)𝑏) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑐‘𝑗)(𝐿‘∅)(𝑑‘𝑗))))) |
| 172 | 171 | a1d 25 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝑎 ∈ (ℝ
↑m ∅)) ∧ 𝑏 ∈ (ℝ ↑m ∅))
∧ 𝑐 ∈ ((ℝ
↑m ∅) ↑m ℕ)) ∧ 𝑑 ∈ ((ℝ
↑m ∅) ↑m ℕ)) → (X𝑘 ∈
∅ ((𝑎‘𝑘)[,)(𝑏‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ ∅ (((𝑐‘𝑗)‘𝑘)[,)((𝑑‘𝑗)‘𝑘)) → (𝑎(𝐿‘∅)𝑏) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑐‘𝑗)(𝐿‘∅)(𝑑‘𝑗)))))) |
| 173 | 172 | ralrimiva 3146 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑎 ∈ (ℝ ↑m ∅))
∧ 𝑏 ∈ (ℝ
↑m ∅)) ∧ 𝑐 ∈ ((ℝ ↑m ∅)
↑m ℕ)) → ∀𝑑 ∈ ((ℝ ↑m ∅)
↑m ℕ)(X𝑘 ∈ ∅ ((𝑎‘𝑘)[,)(𝑏‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ ∅ (((𝑐‘𝑗)‘𝑘)[,)((𝑑‘𝑗)‘𝑘)) → (𝑎(𝐿‘∅)𝑏) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑐‘𝑗)(𝐿‘∅)(𝑑‘𝑗)))))) |
| 174 | 173 | ralrimiva 3146 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑎 ∈ (ℝ ↑m ∅))
∧ 𝑏 ∈ (ℝ
↑m ∅)) → ∀𝑐 ∈ ((ℝ ↑m ∅)
↑m ℕ)∀𝑑 ∈ ((ℝ ↑m ∅)
↑m ℕ)(X𝑘 ∈ ∅ ((𝑎‘𝑘)[,)(𝑏‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ ∅ (((𝑐‘𝑗)‘𝑘)[,)((𝑑‘𝑗)‘𝑘)) → (𝑎(𝐿‘∅)𝑏) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑐‘𝑗)(𝐿‘∅)(𝑑‘𝑗)))))) |
| 175 | 174 | ralrimiva 3146 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑎 ∈ (ℝ ↑m ∅))
→ ∀𝑏 ∈
(ℝ ↑m ∅)∀𝑐 ∈ ((ℝ ↑m ∅)
↑m ℕ)∀𝑑 ∈ ((ℝ ↑m ∅)
↑m ℕ)(X𝑘 ∈ ∅ ((𝑎‘𝑘)[,)(𝑏‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ ∅ (((𝑐‘𝑗)‘𝑘)[,)((𝑑‘𝑗)‘𝑘)) → (𝑎(𝐿‘∅)𝑏) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑐‘𝑗)(𝐿‘∅)(𝑑‘𝑗)))))) |
| 176 | 175 | ralrimiva 3146 |
. . . . . . 7
⊢ (𝜑 → ∀𝑎 ∈ (ℝ ↑m
∅)∀𝑏 ∈
(ℝ ↑m ∅)∀𝑐 ∈ ((ℝ ↑m ∅)
↑m ℕ)∀𝑑 ∈ ((ℝ ↑m ∅)
↑m ℕ)(X𝑘 ∈ ∅ ((𝑎‘𝑘)[,)(𝑏‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ ∅ (((𝑐‘𝑗)‘𝑘)[,)((𝑑‘𝑗)‘𝑘)) → (𝑎(𝐿‘∅)𝑏) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑐‘𝑗)(𝐿‘∅)(𝑑‘𝑗)))))) |
| 177 | | simpl 482 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑦 ⊆ 𝑋 ∧ 𝑧 ∈ (𝑋 ∖ 𝑦))) ∧ ∀𝑎 ∈ (ℝ ↑m 𝑦)∀𝑏 ∈ (ℝ ↑m 𝑦)∀𝑐 ∈ ((ℝ ↑m 𝑦) ↑m
ℕ)∀𝑑 ∈
((ℝ ↑m 𝑦) ↑m ℕ)(X𝑘 ∈
𝑦 ((𝑎‘𝑘)[,)(𝑏‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑦 (((𝑐‘𝑗)‘𝑘)[,)((𝑑‘𝑗)‘𝑘)) → (𝑎(𝐿‘𝑦)𝑏) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑐‘𝑗)(𝐿‘𝑦)(𝑑‘𝑗)))))) → (𝜑 ∧ (𝑦 ⊆ 𝑋 ∧ 𝑧 ∈ (𝑋 ∖ 𝑦)))) |
| 178 | 128 | ixpeq2dv 8953 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑎 = 𝑒 → X𝑘 ∈ 𝑦 ((𝑎‘𝑘)[,)(𝑏‘𝑘)) = X𝑘 ∈ 𝑦 ((𝑒‘𝑘)[,)(𝑏‘𝑘))) |
| 179 | 178 | sseq1d 4015 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑎 = 𝑒 → (X𝑘 ∈ 𝑦 ((𝑎‘𝑘)[,)(𝑏‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑦 (((𝑐‘𝑗)‘𝑘)[,)((𝑑‘𝑗)‘𝑘)) ↔ X𝑘 ∈ 𝑦 ((𝑒‘𝑘)[,)(𝑏‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑦 (((𝑐‘𝑗)‘𝑘)[,)((𝑑‘𝑗)‘𝑘)))) |
| 180 | | oveq1 7438 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑎 = 𝑒 → (𝑎(𝐿‘𝑦)𝑏) = (𝑒(𝐿‘𝑦)𝑏)) |
| 181 | 180 | breq1d 5153 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑎 = 𝑒 → ((𝑎(𝐿‘𝑦)𝑏) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑐‘𝑗)(𝐿‘𝑦)(𝑑‘𝑗)))) ↔ (𝑒(𝐿‘𝑦)𝑏) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑐‘𝑗)(𝐿‘𝑦)(𝑑‘𝑗)))))) |
| 182 | 179, 181 | imbi12d 344 |
. . . . . . . . . . . . . . . 16
⊢ (𝑎 = 𝑒 → ((X𝑘 ∈ 𝑦 ((𝑎‘𝑘)[,)(𝑏‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑦 (((𝑐‘𝑗)‘𝑘)[,)((𝑑‘𝑗)‘𝑘)) → (𝑎(𝐿‘𝑦)𝑏) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑐‘𝑗)(𝐿‘𝑦)(𝑑‘𝑗))))) ↔ (X𝑘 ∈ 𝑦 ((𝑒‘𝑘)[,)(𝑏‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑦 (((𝑐‘𝑗)‘𝑘)[,)((𝑑‘𝑗)‘𝑘)) → (𝑒(𝐿‘𝑦)𝑏) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑐‘𝑗)(𝐿‘𝑦)(𝑑‘𝑗))))))) |
| 183 | 182 | ralbidv 3178 |
. . . . . . . . . . . . . . 15
⊢ (𝑎 = 𝑒 → (∀𝑑 ∈ ((ℝ ↑m 𝑦) ↑m
ℕ)(X𝑘 ∈ 𝑦 ((𝑎‘𝑘)[,)(𝑏‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑦 (((𝑐‘𝑗)‘𝑘)[,)((𝑑‘𝑗)‘𝑘)) → (𝑎(𝐿‘𝑦)𝑏) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑐‘𝑗)(𝐿‘𝑦)(𝑑‘𝑗))))) ↔ ∀𝑑 ∈ ((ℝ ↑m 𝑦) ↑m
ℕ)(X𝑘 ∈ 𝑦 ((𝑒‘𝑘)[,)(𝑏‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑦 (((𝑐‘𝑗)‘𝑘)[,)((𝑑‘𝑗)‘𝑘)) → (𝑒(𝐿‘𝑦)𝑏) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑐‘𝑗)(𝐿‘𝑦)(𝑑‘𝑗))))))) |
| 184 | 183 | ralbidv 3178 |
. . . . . . . . . . . . . 14
⊢ (𝑎 = 𝑒 → (∀𝑐 ∈ ((ℝ ↑m 𝑦) ↑m
ℕ)∀𝑑 ∈
((ℝ ↑m 𝑦) ↑m ℕ)(X𝑘 ∈
𝑦 ((𝑎‘𝑘)[,)(𝑏‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑦 (((𝑐‘𝑗)‘𝑘)[,)((𝑑‘𝑗)‘𝑘)) → (𝑎(𝐿‘𝑦)𝑏) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑐‘𝑗)(𝐿‘𝑦)(𝑑‘𝑗))))) ↔ ∀𝑐 ∈ ((ℝ ↑m 𝑦) ↑m
ℕ)∀𝑑 ∈
((ℝ ↑m 𝑦) ↑m ℕ)(X𝑘 ∈
𝑦 ((𝑒‘𝑘)[,)(𝑏‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑦 (((𝑐‘𝑗)‘𝑘)[,)((𝑑‘𝑗)‘𝑘)) → (𝑒(𝐿‘𝑦)𝑏) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑐‘𝑗)(𝐿‘𝑦)(𝑑‘𝑗))))))) |
| 185 | 184 | ralbidv 3178 |
. . . . . . . . . . . . 13
⊢ (𝑎 = 𝑒 → (∀𝑏 ∈ (ℝ ↑m 𝑦)∀𝑐 ∈ ((ℝ ↑m 𝑦) ↑m
ℕ)∀𝑑 ∈
((ℝ ↑m 𝑦) ↑m ℕ)(X𝑘 ∈
𝑦 ((𝑎‘𝑘)[,)(𝑏‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑦 (((𝑐‘𝑗)‘𝑘)[,)((𝑑‘𝑗)‘𝑘)) → (𝑎(𝐿‘𝑦)𝑏) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑐‘𝑗)(𝐿‘𝑦)(𝑑‘𝑗))))) ↔ ∀𝑏 ∈ (ℝ ↑m 𝑦)∀𝑐 ∈ ((ℝ ↑m 𝑦) ↑m
ℕ)∀𝑑 ∈
((ℝ ↑m 𝑦) ↑m ℕ)(X𝑘 ∈
𝑦 ((𝑒‘𝑘)[,)(𝑏‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑦 (((𝑐‘𝑗)‘𝑘)[,)((𝑑‘𝑗)‘𝑘)) → (𝑒(𝐿‘𝑦)𝑏) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑐‘𝑗)(𝐿‘𝑦)(𝑑‘𝑗))))))) |
| 186 | 133 | ixpeq2dv 8953 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑏 = 𝑓 → X𝑘 ∈ 𝑦 ((𝑒‘𝑘)[,)(𝑏‘𝑘)) = X𝑘 ∈ 𝑦 ((𝑒‘𝑘)[,)(𝑓‘𝑘))) |
| 187 | 186 | sseq1d 4015 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑏 = 𝑓 → (X𝑘 ∈ 𝑦 ((𝑒‘𝑘)[,)(𝑏‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑦 (((𝑐‘𝑗)‘𝑘)[,)((𝑑‘𝑗)‘𝑘)) ↔ X𝑘 ∈ 𝑦 ((𝑒‘𝑘)[,)(𝑓‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑦 (((𝑐‘𝑗)‘𝑘)[,)((𝑑‘𝑗)‘𝑘)))) |
| 188 | | oveq2 7439 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑏 = 𝑓 → (𝑒(𝐿‘𝑦)𝑏) = (𝑒(𝐿‘𝑦)𝑓)) |
| 189 | 188 | breq1d 5153 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑏 = 𝑓 → ((𝑒(𝐿‘𝑦)𝑏) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑐‘𝑗)(𝐿‘𝑦)(𝑑‘𝑗)))) ↔ (𝑒(𝐿‘𝑦)𝑓) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑐‘𝑗)(𝐿‘𝑦)(𝑑‘𝑗)))))) |
| 190 | 187, 189 | imbi12d 344 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑏 = 𝑓 → ((X𝑘 ∈ 𝑦 ((𝑒‘𝑘)[,)(𝑏‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑦 (((𝑐‘𝑗)‘𝑘)[,)((𝑑‘𝑗)‘𝑘)) → (𝑒(𝐿‘𝑦)𝑏) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑐‘𝑗)(𝐿‘𝑦)(𝑑‘𝑗))))) ↔ (X𝑘 ∈ 𝑦 ((𝑒‘𝑘)[,)(𝑓‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑦 (((𝑐‘𝑗)‘𝑘)[,)((𝑑‘𝑗)‘𝑘)) → (𝑒(𝐿‘𝑦)𝑓) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑐‘𝑗)(𝐿‘𝑦)(𝑑‘𝑗))))))) |
| 191 | 190 | ralbidv 3178 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑏 = 𝑓 → (∀𝑑 ∈ ((ℝ ↑m 𝑦) ↑m
ℕ)(X𝑘 ∈ 𝑦 ((𝑒‘𝑘)[,)(𝑏‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑦 (((𝑐‘𝑗)‘𝑘)[,)((𝑑‘𝑗)‘𝑘)) → (𝑒(𝐿‘𝑦)𝑏) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑐‘𝑗)(𝐿‘𝑦)(𝑑‘𝑗))))) ↔ ∀𝑑 ∈ ((ℝ ↑m 𝑦) ↑m
ℕ)(X𝑘 ∈ 𝑦 ((𝑒‘𝑘)[,)(𝑓‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑦 (((𝑐‘𝑗)‘𝑘)[,)((𝑑‘𝑗)‘𝑘)) → (𝑒(𝐿‘𝑦)𝑓) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑐‘𝑗)(𝐿‘𝑦)(𝑑‘𝑗))))))) |
| 192 | 191 | ralbidv 3178 |
. . . . . . . . . . . . . . . 16
⊢ (𝑏 = 𝑓 → (∀𝑐 ∈ ((ℝ ↑m 𝑦) ↑m
ℕ)∀𝑑 ∈
((ℝ ↑m 𝑦) ↑m ℕ)(X𝑘 ∈
𝑦 ((𝑒‘𝑘)[,)(𝑏‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑦 (((𝑐‘𝑗)‘𝑘)[,)((𝑑‘𝑗)‘𝑘)) → (𝑒(𝐿‘𝑦)𝑏) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑐‘𝑗)(𝐿‘𝑦)(𝑑‘𝑗))))) ↔ ∀𝑐 ∈ ((ℝ ↑m 𝑦) ↑m
ℕ)∀𝑑 ∈
((ℝ ↑m 𝑦) ↑m ℕ)(X𝑘 ∈
𝑦 ((𝑒‘𝑘)[,)(𝑓‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑦 (((𝑐‘𝑗)‘𝑘)[,)((𝑑‘𝑗)‘𝑘)) → (𝑒(𝐿‘𝑦)𝑓) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑐‘𝑗)(𝐿‘𝑦)(𝑑‘𝑗))))))) |
| 193 | | fveq1 6905 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑐 = 𝑔 → (𝑐‘𝑗) = (𝑔‘𝑗)) |
| 194 | 193 | fveq1d 6908 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑐 = 𝑔 → ((𝑐‘𝑗)‘𝑘) = ((𝑔‘𝑗)‘𝑘)) |
| 195 | 194 | oveq1d 7446 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑐 = 𝑔 → (((𝑐‘𝑗)‘𝑘)[,)((𝑑‘𝑗)‘𝑘)) = (((𝑔‘𝑗)‘𝑘)[,)((𝑑‘𝑗)‘𝑘))) |
| 196 | 195 | ixpeq2dv 8953 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑐 = 𝑔 → X𝑘 ∈ 𝑦 (((𝑐‘𝑗)‘𝑘)[,)((𝑑‘𝑗)‘𝑘)) = X𝑘 ∈ 𝑦 (((𝑔‘𝑗)‘𝑘)[,)((𝑑‘𝑗)‘𝑘))) |
| 197 | 196 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑐 = 𝑔 ∧ 𝑗 ∈ ℕ) → X𝑘 ∈
𝑦 (((𝑐‘𝑗)‘𝑘)[,)((𝑑‘𝑗)‘𝑘)) = X𝑘 ∈ 𝑦 (((𝑔‘𝑗)‘𝑘)[,)((𝑑‘𝑗)‘𝑘))) |
| 198 | 197 | iuneq2dv 5016 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑐 = 𝑔 → ∪
𝑗 ∈ ℕ X𝑘 ∈
𝑦 (((𝑐‘𝑗)‘𝑘)[,)((𝑑‘𝑗)‘𝑘)) = ∪
𝑗 ∈ ℕ X𝑘 ∈
𝑦 (((𝑔‘𝑗)‘𝑘)[,)((𝑑‘𝑗)‘𝑘))) |
| 199 | 198 | sseq2d 4016 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑐 = 𝑔 → (X𝑘 ∈ 𝑦 ((𝑒‘𝑘)[,)(𝑓‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑦 (((𝑐‘𝑗)‘𝑘)[,)((𝑑‘𝑗)‘𝑘)) ↔ X𝑘 ∈ 𝑦 ((𝑒‘𝑘)[,)(𝑓‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑦 (((𝑔‘𝑗)‘𝑘)[,)((𝑑‘𝑗)‘𝑘)))) |
| 200 | 193 | oveq1d 7446 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑐 = 𝑔 → ((𝑐‘𝑗)(𝐿‘𝑦)(𝑑‘𝑗)) = ((𝑔‘𝑗)(𝐿‘𝑦)(𝑑‘𝑗))) |
| 201 | 200 | mpteq2dv 5244 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑐 = 𝑔 → (𝑗 ∈ ℕ ↦ ((𝑐‘𝑗)(𝐿‘𝑦)(𝑑‘𝑗))) = (𝑗 ∈ ℕ ↦ ((𝑔‘𝑗)(𝐿‘𝑦)(𝑑‘𝑗)))) |
| 202 | 201 | fveq2d 6910 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑐 = 𝑔 →
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑐‘𝑗)(𝐿‘𝑦)(𝑑‘𝑗)))) =
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑔‘𝑗)(𝐿‘𝑦)(𝑑‘𝑗))))) |
| 203 | 202 | breq2d 5155 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑐 = 𝑔 → ((𝑒(𝐿‘𝑦)𝑓) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑐‘𝑗)(𝐿‘𝑦)(𝑑‘𝑗)))) ↔ (𝑒(𝐿‘𝑦)𝑓) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑔‘𝑗)(𝐿‘𝑦)(𝑑‘𝑗)))))) |
| 204 | 199, 203 | imbi12d 344 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑐 = 𝑔 → ((X𝑘 ∈ 𝑦 ((𝑒‘𝑘)[,)(𝑓‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑦 (((𝑐‘𝑗)‘𝑘)[,)((𝑑‘𝑗)‘𝑘)) → (𝑒(𝐿‘𝑦)𝑓) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑐‘𝑗)(𝐿‘𝑦)(𝑑‘𝑗))))) ↔ (X𝑘 ∈ 𝑦 ((𝑒‘𝑘)[,)(𝑓‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑦 (((𝑔‘𝑗)‘𝑘)[,)((𝑑‘𝑗)‘𝑘)) → (𝑒(𝐿‘𝑦)𝑓) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑔‘𝑗)(𝐿‘𝑦)(𝑑‘𝑗))))))) |
| 205 | 204 | ralbidv 3178 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑐 = 𝑔 → (∀𝑑 ∈ ((ℝ ↑m 𝑦) ↑m
ℕ)(X𝑘 ∈ 𝑦 ((𝑒‘𝑘)[,)(𝑓‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑦 (((𝑐‘𝑗)‘𝑘)[,)((𝑑‘𝑗)‘𝑘)) → (𝑒(𝐿‘𝑦)𝑓) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑐‘𝑗)(𝐿‘𝑦)(𝑑‘𝑗))))) ↔ ∀𝑑 ∈ ((ℝ ↑m 𝑦) ↑m
ℕ)(X𝑘 ∈ 𝑦 ((𝑒‘𝑘)[,)(𝑓‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑦 (((𝑔‘𝑗)‘𝑘)[,)((𝑑‘𝑗)‘𝑘)) → (𝑒(𝐿‘𝑦)𝑓) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑔‘𝑗)(𝐿‘𝑦)(𝑑‘𝑗))))))) |
| 206 | | fveq1 6905 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑑 = ℎ → (𝑑‘𝑗) = (ℎ‘𝑗)) |
| 207 | 206 | fveq1d 6908 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑑 = ℎ → ((𝑑‘𝑗)‘𝑘) = ((ℎ‘𝑗)‘𝑘)) |
| 208 | 207 | oveq2d 7447 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑑 = ℎ → (((𝑔‘𝑗)‘𝑘)[,)((𝑑‘𝑗)‘𝑘)) = (((𝑔‘𝑗)‘𝑘)[,)((ℎ‘𝑗)‘𝑘))) |
| 209 | 208 | ixpeq2dv 8953 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑑 = ℎ → X𝑘 ∈ 𝑦 (((𝑔‘𝑗)‘𝑘)[,)((𝑑‘𝑗)‘𝑘)) = X𝑘 ∈ 𝑦 (((𝑔‘𝑗)‘𝑘)[,)((ℎ‘𝑗)‘𝑘))) |
| 210 | 209 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑑 = ℎ ∧ 𝑗 ∈ ℕ) → X𝑘 ∈
𝑦 (((𝑔‘𝑗)‘𝑘)[,)((𝑑‘𝑗)‘𝑘)) = X𝑘 ∈ 𝑦 (((𝑔‘𝑗)‘𝑘)[,)((ℎ‘𝑗)‘𝑘))) |
| 211 | 210 | iuneq2dv 5016 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑑 = ℎ → ∪
𝑗 ∈ ℕ X𝑘 ∈
𝑦 (((𝑔‘𝑗)‘𝑘)[,)((𝑑‘𝑗)‘𝑘)) = ∪
𝑗 ∈ ℕ X𝑘 ∈
𝑦 (((𝑔‘𝑗)‘𝑘)[,)((ℎ‘𝑗)‘𝑘))) |
| 212 | 211 | sseq2d 4016 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑑 = ℎ → (X𝑘 ∈ 𝑦 ((𝑒‘𝑘)[,)(𝑓‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑦 (((𝑔‘𝑗)‘𝑘)[,)((𝑑‘𝑗)‘𝑘)) ↔ X𝑘 ∈ 𝑦 ((𝑒‘𝑘)[,)(𝑓‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑦 (((𝑔‘𝑗)‘𝑘)[,)((ℎ‘𝑗)‘𝑘)))) |
| 213 | 206 | oveq2d 7447 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑑 = ℎ → ((𝑔‘𝑗)(𝐿‘𝑦)(𝑑‘𝑗)) = ((𝑔‘𝑗)(𝐿‘𝑦)(ℎ‘𝑗))) |
| 214 | 213 | mpteq2dv 5244 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑑 = ℎ → (𝑗 ∈ ℕ ↦ ((𝑔‘𝑗)(𝐿‘𝑦)(𝑑‘𝑗))) = (𝑗 ∈ ℕ ↦ ((𝑔‘𝑗)(𝐿‘𝑦)(ℎ‘𝑗)))) |
| 215 | 214 | fveq2d 6910 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑑 = ℎ →
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑔‘𝑗)(𝐿‘𝑦)(𝑑‘𝑗)))) =
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑔‘𝑗)(𝐿‘𝑦)(ℎ‘𝑗))))) |
| 216 | 215 | breq2d 5155 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑑 = ℎ → ((𝑒(𝐿‘𝑦)𝑓) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑔‘𝑗)(𝐿‘𝑦)(𝑑‘𝑗)))) ↔ (𝑒(𝐿‘𝑦)𝑓) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑔‘𝑗)(𝐿‘𝑦)(ℎ‘𝑗)))))) |
| 217 | 212, 216 | imbi12d 344 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑑 = ℎ → ((X𝑘 ∈ 𝑦 ((𝑒‘𝑘)[,)(𝑓‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑦 (((𝑔‘𝑗)‘𝑘)[,)((𝑑‘𝑗)‘𝑘)) → (𝑒(𝐿‘𝑦)𝑓) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑔‘𝑗)(𝐿‘𝑦)(𝑑‘𝑗))))) ↔ (X𝑘 ∈ 𝑦 ((𝑒‘𝑘)[,)(𝑓‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑦 (((𝑔‘𝑗)‘𝑘)[,)((ℎ‘𝑗)‘𝑘)) → (𝑒(𝐿‘𝑦)𝑓) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑔‘𝑗)(𝐿‘𝑦)(ℎ‘𝑗))))))) |
| 218 | 217 | cbvralvw 3237 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(∀𝑑 ∈
((ℝ ↑m 𝑦) ↑m ℕ)(X𝑘 ∈
𝑦 ((𝑒‘𝑘)[,)(𝑓‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑦 (((𝑔‘𝑗)‘𝑘)[,)((𝑑‘𝑗)‘𝑘)) → (𝑒(𝐿‘𝑦)𝑓) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑔‘𝑗)(𝐿‘𝑦)(𝑑‘𝑗))))) ↔ ∀ℎ ∈ ((ℝ ↑m 𝑦) ↑m
ℕ)(X𝑘 ∈ 𝑦 ((𝑒‘𝑘)[,)(𝑓‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑦 (((𝑔‘𝑗)‘𝑘)[,)((ℎ‘𝑗)‘𝑘)) → (𝑒(𝐿‘𝑦)𝑓) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑔‘𝑗)(𝐿‘𝑦)(ℎ‘𝑗)))))) |
| 219 | 218 | a1i 11 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑐 = 𝑔 → (∀𝑑 ∈ ((ℝ ↑m 𝑦) ↑m
ℕ)(X𝑘 ∈ 𝑦 ((𝑒‘𝑘)[,)(𝑓‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑦 (((𝑔‘𝑗)‘𝑘)[,)((𝑑‘𝑗)‘𝑘)) → (𝑒(𝐿‘𝑦)𝑓) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑔‘𝑗)(𝐿‘𝑦)(𝑑‘𝑗))))) ↔ ∀ℎ ∈ ((ℝ ↑m 𝑦) ↑m
ℕ)(X𝑘 ∈ 𝑦 ((𝑒‘𝑘)[,)(𝑓‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑦 (((𝑔‘𝑗)‘𝑘)[,)((ℎ‘𝑗)‘𝑘)) → (𝑒(𝐿‘𝑦)𝑓) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑔‘𝑗)(𝐿‘𝑦)(ℎ‘𝑗))))))) |
| 220 | 205, 219 | bitrd 279 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑐 = 𝑔 → (∀𝑑 ∈ ((ℝ ↑m 𝑦) ↑m
ℕ)(X𝑘 ∈ 𝑦 ((𝑒‘𝑘)[,)(𝑓‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑦 (((𝑐‘𝑗)‘𝑘)[,)((𝑑‘𝑗)‘𝑘)) → (𝑒(𝐿‘𝑦)𝑓) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑐‘𝑗)(𝐿‘𝑦)(𝑑‘𝑗))))) ↔ ∀ℎ ∈ ((ℝ ↑m 𝑦) ↑m
ℕ)(X𝑘 ∈ 𝑦 ((𝑒‘𝑘)[,)(𝑓‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑦 (((𝑔‘𝑗)‘𝑘)[,)((ℎ‘𝑗)‘𝑘)) → (𝑒(𝐿‘𝑦)𝑓) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑔‘𝑗)(𝐿‘𝑦)(ℎ‘𝑗))))))) |
| 221 | 220 | cbvralvw 3237 |
. . . . . . . . . . . . . . . . 17
⊢
(∀𝑐 ∈
((ℝ ↑m 𝑦) ↑m ℕ)∀𝑑 ∈ ((ℝ
↑m 𝑦)
↑m ℕ)(X𝑘 ∈ 𝑦 ((𝑒‘𝑘)[,)(𝑓‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑦 (((𝑐‘𝑗)‘𝑘)[,)((𝑑‘𝑗)‘𝑘)) → (𝑒(𝐿‘𝑦)𝑓) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑐‘𝑗)(𝐿‘𝑦)(𝑑‘𝑗))))) ↔ ∀𝑔 ∈ ((ℝ ↑m 𝑦) ↑m
ℕ)∀ℎ ∈
((ℝ ↑m 𝑦) ↑m ℕ)(X𝑘 ∈
𝑦 ((𝑒‘𝑘)[,)(𝑓‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑦 (((𝑔‘𝑗)‘𝑘)[,)((ℎ‘𝑗)‘𝑘)) → (𝑒(𝐿‘𝑦)𝑓) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑔‘𝑗)(𝐿‘𝑦)(ℎ‘𝑗)))))) |
| 222 | 221 | a1i 11 |
. . . . . . . . . . . . . . . 16
⊢ (𝑏 = 𝑓 → (∀𝑐 ∈ ((ℝ ↑m 𝑦) ↑m
ℕ)∀𝑑 ∈
((ℝ ↑m 𝑦) ↑m ℕ)(X𝑘 ∈
𝑦 ((𝑒‘𝑘)[,)(𝑓‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑦 (((𝑐‘𝑗)‘𝑘)[,)((𝑑‘𝑗)‘𝑘)) → (𝑒(𝐿‘𝑦)𝑓) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑐‘𝑗)(𝐿‘𝑦)(𝑑‘𝑗))))) ↔ ∀𝑔 ∈ ((ℝ ↑m 𝑦) ↑m
ℕ)∀ℎ ∈
((ℝ ↑m 𝑦) ↑m ℕ)(X𝑘 ∈
𝑦 ((𝑒‘𝑘)[,)(𝑓‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑦 (((𝑔‘𝑗)‘𝑘)[,)((ℎ‘𝑗)‘𝑘)) → (𝑒(𝐿‘𝑦)𝑓) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑔‘𝑗)(𝐿‘𝑦)(ℎ‘𝑗))))))) |
| 223 | 192, 222 | bitrd 279 |
. . . . . . . . . . . . . . 15
⊢ (𝑏 = 𝑓 → (∀𝑐 ∈ ((ℝ ↑m 𝑦) ↑m
ℕ)∀𝑑 ∈
((ℝ ↑m 𝑦) ↑m ℕ)(X𝑘 ∈
𝑦 ((𝑒‘𝑘)[,)(𝑏‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑦 (((𝑐‘𝑗)‘𝑘)[,)((𝑑‘𝑗)‘𝑘)) → (𝑒(𝐿‘𝑦)𝑏) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑐‘𝑗)(𝐿‘𝑦)(𝑑‘𝑗))))) ↔ ∀𝑔 ∈ ((ℝ ↑m 𝑦) ↑m
ℕ)∀ℎ ∈
((ℝ ↑m 𝑦) ↑m ℕ)(X𝑘 ∈
𝑦 ((𝑒‘𝑘)[,)(𝑓‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑦 (((𝑔‘𝑗)‘𝑘)[,)((ℎ‘𝑗)‘𝑘)) → (𝑒(𝐿‘𝑦)𝑓) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑔‘𝑗)(𝐿‘𝑦)(ℎ‘𝑗))))))) |
| 224 | 223 | cbvralvw 3237 |
. . . . . . . . . . . . . 14
⊢
(∀𝑏 ∈
(ℝ ↑m 𝑦)∀𝑐 ∈ ((ℝ ↑m 𝑦) ↑m
ℕ)∀𝑑 ∈
((ℝ ↑m 𝑦) ↑m ℕ)(X𝑘 ∈
𝑦 ((𝑒‘𝑘)[,)(𝑏‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑦 (((𝑐‘𝑗)‘𝑘)[,)((𝑑‘𝑗)‘𝑘)) → (𝑒(𝐿‘𝑦)𝑏) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑐‘𝑗)(𝐿‘𝑦)(𝑑‘𝑗))))) ↔ ∀𝑓 ∈ (ℝ ↑m 𝑦)∀𝑔 ∈ ((ℝ ↑m 𝑦) ↑m
ℕ)∀ℎ ∈
((ℝ ↑m 𝑦) ↑m ℕ)(X𝑘 ∈
𝑦 ((𝑒‘𝑘)[,)(𝑓‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑦 (((𝑔‘𝑗)‘𝑘)[,)((ℎ‘𝑗)‘𝑘)) → (𝑒(𝐿‘𝑦)𝑓) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑔‘𝑗)(𝐿‘𝑦)(ℎ‘𝑗)))))) |
| 225 | 224 | a1i 11 |
. . . . . . . . . . . . 13
⊢ (𝑎 = 𝑒 → (∀𝑏 ∈ (ℝ ↑m 𝑦)∀𝑐 ∈ ((ℝ ↑m 𝑦) ↑m
ℕ)∀𝑑 ∈
((ℝ ↑m 𝑦) ↑m ℕ)(X𝑘 ∈
𝑦 ((𝑒‘𝑘)[,)(𝑏‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑦 (((𝑐‘𝑗)‘𝑘)[,)((𝑑‘𝑗)‘𝑘)) → (𝑒(𝐿‘𝑦)𝑏) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑐‘𝑗)(𝐿‘𝑦)(𝑑‘𝑗))))) ↔ ∀𝑓 ∈ (ℝ ↑m 𝑦)∀𝑔 ∈ ((ℝ ↑m 𝑦) ↑m
ℕ)∀ℎ ∈
((ℝ ↑m 𝑦) ↑m ℕ)(X𝑘 ∈
𝑦 ((𝑒‘𝑘)[,)(𝑓‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑦 (((𝑔‘𝑗)‘𝑘)[,)((ℎ‘𝑗)‘𝑘)) → (𝑒(𝐿‘𝑦)𝑓) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑔‘𝑗)(𝐿‘𝑦)(ℎ‘𝑗))))))) |
| 226 | 185, 225 | bitrd 279 |
. . . . . . . . . . . 12
⊢ (𝑎 = 𝑒 → (∀𝑏 ∈ (ℝ ↑m 𝑦)∀𝑐 ∈ ((ℝ ↑m 𝑦) ↑m
ℕ)∀𝑑 ∈
((ℝ ↑m 𝑦) ↑m ℕ)(X𝑘 ∈
𝑦 ((𝑎‘𝑘)[,)(𝑏‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑦 (((𝑐‘𝑗)‘𝑘)[,)((𝑑‘𝑗)‘𝑘)) → (𝑎(𝐿‘𝑦)𝑏) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑐‘𝑗)(𝐿‘𝑦)(𝑑‘𝑗))))) ↔ ∀𝑓 ∈ (ℝ ↑m 𝑦)∀𝑔 ∈ ((ℝ ↑m 𝑦) ↑m
ℕ)∀ℎ ∈
((ℝ ↑m 𝑦) ↑m ℕ)(X𝑘 ∈
𝑦 ((𝑒‘𝑘)[,)(𝑓‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑦 (((𝑔‘𝑗)‘𝑘)[,)((ℎ‘𝑗)‘𝑘)) → (𝑒(𝐿‘𝑦)𝑓) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑔‘𝑗)(𝐿‘𝑦)(ℎ‘𝑗))))))) |
| 227 | 226 | cbvralvw 3237 |
. . . . . . . . . . 11
⊢
(∀𝑎 ∈
(ℝ ↑m 𝑦)∀𝑏 ∈ (ℝ ↑m 𝑦)∀𝑐 ∈ ((ℝ ↑m 𝑦) ↑m
ℕ)∀𝑑 ∈
((ℝ ↑m 𝑦) ↑m ℕ)(X𝑘 ∈
𝑦 ((𝑎‘𝑘)[,)(𝑏‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑦 (((𝑐‘𝑗)‘𝑘)[,)((𝑑‘𝑗)‘𝑘)) → (𝑎(𝐿‘𝑦)𝑏) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑐‘𝑗)(𝐿‘𝑦)(𝑑‘𝑗))))) ↔ ∀𝑒 ∈ (ℝ ↑m 𝑦)∀𝑓 ∈ (ℝ ↑m 𝑦)∀𝑔 ∈ ((ℝ ↑m 𝑦) ↑m
ℕ)∀ℎ ∈
((ℝ ↑m 𝑦) ↑m ℕ)(X𝑘 ∈
𝑦 ((𝑒‘𝑘)[,)(𝑓‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑦 (((𝑔‘𝑗)‘𝑘)[,)((ℎ‘𝑗)‘𝑘)) → (𝑒(𝐿‘𝑦)𝑓) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑔‘𝑗)(𝐿‘𝑦)(ℎ‘𝑗)))))) |
| 228 | 227 | biimpi 216 |
. . . . . . . . . 10
⊢
(∀𝑎 ∈
(ℝ ↑m 𝑦)∀𝑏 ∈ (ℝ ↑m 𝑦)∀𝑐 ∈ ((ℝ ↑m 𝑦) ↑m
ℕ)∀𝑑 ∈
((ℝ ↑m 𝑦) ↑m ℕ)(X𝑘 ∈
𝑦 ((𝑎‘𝑘)[,)(𝑏‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑦 (((𝑐‘𝑗)‘𝑘)[,)((𝑑‘𝑗)‘𝑘)) → (𝑎(𝐿‘𝑦)𝑏) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑐‘𝑗)(𝐿‘𝑦)(𝑑‘𝑗))))) → ∀𝑒 ∈ (ℝ ↑m 𝑦)∀𝑓 ∈ (ℝ ↑m 𝑦)∀𝑔 ∈ ((ℝ ↑m 𝑦) ↑m
ℕ)∀ℎ ∈
((ℝ ↑m 𝑦) ↑m ℕ)(X𝑘 ∈
𝑦 ((𝑒‘𝑘)[,)(𝑓‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑦 (((𝑔‘𝑗)‘𝑘)[,)((ℎ‘𝑗)‘𝑘)) → (𝑒(𝐿‘𝑦)𝑓) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑔‘𝑗)(𝐿‘𝑦)(ℎ‘𝑗)))))) |
| 229 | 228 | adantl 481 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑦 ⊆ 𝑋 ∧ 𝑧 ∈ (𝑋 ∖ 𝑦))) ∧ ∀𝑎 ∈ (ℝ ↑m 𝑦)∀𝑏 ∈ (ℝ ↑m 𝑦)∀𝑐 ∈ ((ℝ ↑m 𝑦) ↑m
ℕ)∀𝑑 ∈
((ℝ ↑m 𝑦) ↑m ℕ)(X𝑘 ∈
𝑦 ((𝑎‘𝑘)[,)(𝑏‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑦 (((𝑐‘𝑗)‘𝑘)[,)((𝑑‘𝑗)‘𝑘)) → (𝑎(𝐿‘𝑦)𝑏) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑐‘𝑗)(𝐿‘𝑦)(𝑑‘𝑗)))))) → ∀𝑒 ∈ (ℝ ↑m 𝑦)∀𝑓 ∈ (ℝ ↑m 𝑦)∀𝑔 ∈ ((ℝ ↑m 𝑦) ↑m
ℕ)∀ℎ ∈
((ℝ ↑m 𝑦) ↑m ℕ)(X𝑘 ∈
𝑦 ((𝑒‘𝑘)[,)(𝑓‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑦 (((𝑔‘𝑗)‘𝑘)[,)((ℎ‘𝑗)‘𝑘)) → (𝑒(𝐿‘𝑦)𝑓) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑔‘𝑗)(𝐿‘𝑦)(ℎ‘𝑗)))))) |
| 230 | | simplll 775 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝜑 ∧ (𝑦 ⊆ 𝑋 ∧ 𝑧 ∈ (𝑋 ∖ 𝑦))) ∧ 𝑎 ∈ (ℝ ↑m (𝑦 ∪ {𝑧}))) ∧ 𝑦 = ∅) → 𝜑) |
| 231 | | eldifi 4131 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑧 ∈ (𝑋 ∖ 𝑦) → 𝑧 ∈ 𝑋) |
| 232 | 231 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝜑 ∧ 𝑧 ∈ (𝑋 ∖ 𝑦)) → 𝑧 ∈ 𝑋) |
| 233 | 232 | adantrl 716 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝜑 ∧ (𝑦 ⊆ 𝑋 ∧ 𝑧 ∈ (𝑋 ∖ 𝑦))) → 𝑧 ∈ 𝑋) |
| 234 | 233 | ad2antrr 726 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝜑 ∧ (𝑦 ⊆ 𝑋 ∧ 𝑧 ∈ (𝑋 ∖ 𝑦))) ∧ 𝑎 ∈ (ℝ ↑m (𝑦 ∪ {𝑧}))) ∧ 𝑦 = ∅) → 𝑧 ∈ 𝑋) |
| 235 | | simpl 482 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝑎 ∈ (ℝ
↑m (𝑦 ∪
{𝑧})) ∧ 𝑦 = ∅) → 𝑎 ∈ (ℝ
↑m (𝑦 ∪
{𝑧}))) |
| 236 | | uneq1 4161 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑦 = ∅ → (𝑦 ∪ {𝑧}) = (∅ ∪ {𝑧})) |
| 237 | | 0un 4396 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (∅
∪ {𝑧}) = {𝑧} |
| 238 | 237 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑦 = ∅ → (∅ ∪
{𝑧}) = {𝑧}) |
| 239 | 236, 238 | eqtr2d 2778 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑦 = ∅ → {𝑧} = (𝑦 ∪ {𝑧})) |
| 240 | 239 | eqcomd 2743 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑦 = ∅ → (𝑦 ∪ {𝑧}) = {𝑧}) |
| 241 | 240 | oveq2d 7447 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑦 = ∅ → (ℝ
↑m (𝑦 ∪
{𝑧})) = (ℝ
↑m {𝑧})) |
| 242 | 241 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝑎 ∈ (ℝ
↑m (𝑦 ∪
{𝑧})) ∧ 𝑦 = ∅) → (ℝ
↑m (𝑦 ∪
{𝑧})) = (ℝ
↑m {𝑧})) |
| 243 | 235, 242 | eleqtrd 2843 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑎 ∈ (ℝ
↑m (𝑦 ∪
{𝑧})) ∧ 𝑦 = ∅) → 𝑎 ∈ (ℝ
↑m {𝑧})) |
| 244 | 243 | adantll 714 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝜑 ∧ (𝑦 ⊆ 𝑋 ∧ 𝑧 ∈ (𝑋 ∖ 𝑦))) ∧ 𝑎 ∈ (ℝ ↑m (𝑦 ∪ {𝑧}))) ∧ 𝑦 = ∅) → 𝑎 ∈ (ℝ ↑m {𝑧})) |
| 245 | 230, 234,
244 | jca31 514 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝜑 ∧ (𝑦 ⊆ 𝑋 ∧ 𝑧 ∈ (𝑋 ∖ 𝑦))) ∧ 𝑎 ∈ (ℝ ↑m (𝑦 ∪ {𝑧}))) ∧ 𝑦 = ∅) → ((𝜑 ∧ 𝑧 ∈ 𝑋) ∧ 𝑎 ∈ (ℝ ↑m {𝑧}))) |
| 246 | 245 | adantllr 719 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(((((𝜑 ∧ (𝑦 ⊆ 𝑋 ∧ 𝑧 ∈ (𝑋 ∖ 𝑦))) ∧ ∀𝑒 ∈ (ℝ ↑m 𝑦)∀𝑓 ∈ (ℝ ↑m 𝑦)∀𝑔 ∈ ((ℝ ↑m 𝑦) ↑m
ℕ)∀ℎ ∈
((ℝ ↑m 𝑦) ↑m ℕ)(X𝑘 ∈
𝑦 ((𝑒‘𝑘)[,)(𝑓‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑦 (((𝑔‘𝑗)‘𝑘)[,)((ℎ‘𝑗)‘𝑘)) → (𝑒(𝐿‘𝑦)𝑓) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑔‘𝑗)(𝐿‘𝑦)(ℎ‘𝑗)))))) ∧ 𝑎 ∈ (ℝ ↑m (𝑦 ∪ {𝑧}))) ∧ 𝑦 = ∅) → ((𝜑 ∧ 𝑧 ∈ 𝑋) ∧ 𝑎 ∈ (ℝ ↑m {𝑧}))) |
| 247 | 246 | adantlr 715 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
((((((𝜑 ∧ (𝑦 ⊆ 𝑋 ∧ 𝑧 ∈ (𝑋 ∖ 𝑦))) ∧ ∀𝑒 ∈ (ℝ ↑m 𝑦)∀𝑓 ∈ (ℝ ↑m 𝑦)∀𝑔 ∈ ((ℝ ↑m 𝑦) ↑m
ℕ)∀ℎ ∈
((ℝ ↑m 𝑦) ↑m ℕ)(X𝑘 ∈
𝑦 ((𝑒‘𝑘)[,)(𝑓‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑦 (((𝑔‘𝑗)‘𝑘)[,)((ℎ‘𝑗)‘𝑘)) → (𝑒(𝐿‘𝑦)𝑓) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑔‘𝑗)(𝐿‘𝑦)(ℎ‘𝑗)))))) ∧ 𝑎 ∈ (ℝ ↑m (𝑦 ∪ {𝑧}))) ∧ 𝑏 ∈ (ℝ ↑m (𝑦 ∪ {𝑧}))) ∧ 𝑦 = ∅) → ((𝜑 ∧ 𝑧 ∈ 𝑋) ∧ 𝑎 ∈ (ℝ ↑m {𝑧}))) |
| 248 | 247 | adantlr 715 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((((𝜑 ∧ (𝑦 ⊆ 𝑋 ∧ 𝑧 ∈ (𝑋 ∖ 𝑦))) ∧ ∀𝑒 ∈ (ℝ ↑m 𝑦)∀𝑓 ∈ (ℝ ↑m 𝑦)∀𝑔 ∈ ((ℝ ↑m 𝑦) ↑m
ℕ)∀ℎ ∈
((ℝ ↑m 𝑦) ↑m ℕ)(X𝑘 ∈
𝑦 ((𝑒‘𝑘)[,)(𝑓‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑦 (((𝑔‘𝑗)‘𝑘)[,)((ℎ‘𝑗)‘𝑘)) → (𝑒(𝐿‘𝑦)𝑓) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑔‘𝑗)(𝐿‘𝑦)(ℎ‘𝑗)))))) ∧ 𝑎 ∈ (ℝ ↑m (𝑦 ∪ {𝑧}))) ∧ 𝑏 ∈ (ℝ ↑m (𝑦 ∪ {𝑧}))) ∧ 𝑐 ∈ ((ℝ ↑m (𝑦 ∪ {𝑧})) ↑m ℕ)) ∧ 𝑦 = ∅) → ((𝜑 ∧ 𝑧 ∈ 𝑋) ∧ 𝑎 ∈ (ℝ ↑m {𝑧}))) |
| 249 | | simpl 482 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑏 ∈ (ℝ
↑m (𝑦 ∪
{𝑧})) ∧ 𝑦 = ∅) → 𝑏 ∈ (ℝ
↑m (𝑦 ∪
{𝑧}))) |
| 250 | 241 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑏 ∈ (ℝ
↑m (𝑦 ∪
{𝑧})) ∧ 𝑦 = ∅) → (ℝ
↑m (𝑦 ∪
{𝑧})) = (ℝ
↑m {𝑧})) |
| 251 | 249, 250 | eleqtrd 2843 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑏 ∈ (ℝ
↑m (𝑦 ∪
{𝑧})) ∧ 𝑦 = ∅) → 𝑏 ∈ (ℝ
↑m {𝑧})) |
| 252 | 251 | adantlr 715 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝑏 ∈ (ℝ
↑m (𝑦 ∪
{𝑧})) ∧ 𝑐 ∈ ((ℝ
↑m (𝑦 ∪
{𝑧})) ↑m
ℕ)) ∧ 𝑦 =
∅) → 𝑏 ∈
(ℝ ↑m {𝑧})) |
| 253 | 252 | adantlll 718 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((((𝜑 ∧ (𝑦 ⊆ 𝑋 ∧ 𝑧 ∈ (𝑋 ∖ 𝑦))) ∧ ∀𝑒 ∈ (ℝ ↑m 𝑦)∀𝑓 ∈ (ℝ ↑m 𝑦)∀𝑔 ∈ ((ℝ ↑m 𝑦) ↑m
ℕ)∀ℎ ∈
((ℝ ↑m 𝑦) ↑m ℕ)(X𝑘 ∈
𝑦 ((𝑒‘𝑘)[,)(𝑓‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑦 (((𝑔‘𝑗)‘𝑘)[,)((ℎ‘𝑗)‘𝑘)) → (𝑒(𝐿‘𝑦)𝑓) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑔‘𝑗)(𝐿‘𝑦)(ℎ‘𝑗)))))) ∧ 𝑎 ∈ (ℝ ↑m (𝑦 ∪ {𝑧}))) ∧ 𝑏 ∈ (ℝ ↑m (𝑦 ∪ {𝑧}))) ∧ 𝑐 ∈ ((ℝ ↑m (𝑦 ∪ {𝑧})) ↑m ℕ)) ∧ 𝑦 = ∅) → 𝑏 ∈ (ℝ
↑m {𝑧})) |
| 254 | | simpl 482 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑐 ∈ ((ℝ
↑m (𝑦 ∪
{𝑧})) ↑m
ℕ) ∧ 𝑦 = ∅)
→ 𝑐 ∈ ((ℝ
↑m (𝑦 ∪
{𝑧})) ↑m
ℕ)) |
| 255 | 241 | oveq1d 7446 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑦 = ∅ → ((ℝ
↑m (𝑦 ∪
{𝑧})) ↑m
ℕ) = ((ℝ ↑m {𝑧}) ↑m
ℕ)) |
| 256 | 255 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑐 ∈ ((ℝ
↑m (𝑦 ∪
{𝑧})) ↑m
ℕ) ∧ 𝑦 = ∅)
→ ((ℝ ↑m (𝑦 ∪ {𝑧})) ↑m ℕ) = ((ℝ
↑m {𝑧})
↑m ℕ)) |
| 257 | 254, 256 | eleqtrd 2843 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑐 ∈ ((ℝ
↑m (𝑦 ∪
{𝑧})) ↑m
ℕ) ∧ 𝑦 = ∅)
→ 𝑐 ∈ ((ℝ
↑m {𝑧})
↑m ℕ)) |
| 258 | 257 | adantll 714 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((((𝜑 ∧ (𝑦 ⊆ 𝑋 ∧ 𝑧 ∈ (𝑋 ∖ 𝑦))) ∧ ∀𝑒 ∈ (ℝ ↑m 𝑦)∀𝑓 ∈ (ℝ ↑m 𝑦)∀𝑔 ∈ ((ℝ ↑m 𝑦) ↑m
ℕ)∀ℎ ∈
((ℝ ↑m 𝑦) ↑m ℕ)(X𝑘 ∈
𝑦 ((𝑒‘𝑘)[,)(𝑓‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑦 (((𝑔‘𝑗)‘𝑘)[,)((ℎ‘𝑗)‘𝑘)) → (𝑒(𝐿‘𝑦)𝑓) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑔‘𝑗)(𝐿‘𝑦)(ℎ‘𝑗)))))) ∧ 𝑎 ∈ (ℝ ↑m (𝑦 ∪ {𝑧}))) ∧ 𝑏 ∈ (ℝ ↑m (𝑦 ∪ {𝑧}))) ∧ 𝑐 ∈ ((ℝ ↑m (𝑦 ∪ {𝑧})) ↑m ℕ)) ∧ 𝑦 = ∅) → 𝑐 ∈ ((ℝ
↑m {𝑧})
↑m ℕ)) |
| 259 | 248, 253,
258 | jca31 514 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((((𝜑 ∧ (𝑦 ⊆ 𝑋 ∧ 𝑧 ∈ (𝑋 ∖ 𝑦))) ∧ ∀𝑒 ∈ (ℝ ↑m 𝑦)∀𝑓 ∈ (ℝ ↑m 𝑦)∀𝑔 ∈ ((ℝ ↑m 𝑦) ↑m
ℕ)∀ℎ ∈
((ℝ ↑m 𝑦) ↑m ℕ)(X𝑘 ∈
𝑦 ((𝑒‘𝑘)[,)(𝑓‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑦 (((𝑔‘𝑗)‘𝑘)[,)((ℎ‘𝑗)‘𝑘)) → (𝑒(𝐿‘𝑦)𝑓) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑔‘𝑗)(𝐿‘𝑦)(ℎ‘𝑗)))))) ∧ 𝑎 ∈ (ℝ ↑m (𝑦 ∪ {𝑧}))) ∧ 𝑏 ∈ (ℝ ↑m (𝑦 ∪ {𝑧}))) ∧ 𝑐 ∈ ((ℝ ↑m (𝑦 ∪ {𝑧})) ↑m ℕ)) ∧ 𝑦 = ∅) → ((((𝜑 ∧ 𝑧 ∈ 𝑋) ∧ 𝑎 ∈ (ℝ ↑m {𝑧})) ∧ 𝑏 ∈ (ℝ ↑m {𝑧})) ∧ 𝑐 ∈ ((ℝ ↑m {𝑧}) ↑m
ℕ))) |
| 260 | 259 | adantlr 715 |
. . . . . . . . . . . . . . . . . 18
⊢
((((((((𝜑 ∧ (𝑦 ⊆ 𝑋 ∧ 𝑧 ∈ (𝑋 ∖ 𝑦))) ∧ ∀𝑒 ∈ (ℝ ↑m 𝑦)∀𝑓 ∈ (ℝ ↑m 𝑦)∀𝑔 ∈ ((ℝ ↑m 𝑦) ↑m
ℕ)∀ℎ ∈
((ℝ ↑m 𝑦) ↑m ℕ)(X𝑘 ∈
𝑦 ((𝑒‘𝑘)[,)(𝑓‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑦 (((𝑔‘𝑗)‘𝑘)[,)((ℎ‘𝑗)‘𝑘)) → (𝑒(𝐿‘𝑦)𝑓) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑔‘𝑗)(𝐿‘𝑦)(ℎ‘𝑗)))))) ∧ 𝑎 ∈ (ℝ ↑m (𝑦 ∪ {𝑧}))) ∧ 𝑏 ∈ (ℝ ↑m (𝑦 ∪ {𝑧}))) ∧ 𝑐 ∈ ((ℝ ↑m (𝑦 ∪ {𝑧})) ↑m ℕ)) ∧ 𝑑 ∈ ((ℝ
↑m (𝑦 ∪
{𝑧})) ↑m
ℕ)) ∧ 𝑦 =
∅) → ((((𝜑 ∧
𝑧 ∈ 𝑋) ∧ 𝑎 ∈ (ℝ ↑m {𝑧})) ∧ 𝑏 ∈ (ℝ ↑m {𝑧})) ∧ 𝑐 ∈ ((ℝ ↑m {𝑧}) ↑m
ℕ))) |
| 261 | 260 | adantlr 715 |
. . . . . . . . . . . . . . . . 17
⊢
(((((((((𝜑 ∧
(𝑦 ⊆ 𝑋 ∧ 𝑧 ∈ (𝑋 ∖ 𝑦))) ∧ ∀𝑒 ∈ (ℝ ↑m 𝑦)∀𝑓 ∈ (ℝ ↑m 𝑦)∀𝑔 ∈ ((ℝ ↑m 𝑦) ↑m
ℕ)∀ℎ ∈
((ℝ ↑m 𝑦) ↑m ℕ)(X𝑘 ∈
𝑦 ((𝑒‘𝑘)[,)(𝑓‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑦 (((𝑔‘𝑗)‘𝑘)[,)((ℎ‘𝑗)‘𝑘)) → (𝑒(𝐿‘𝑦)𝑓) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑔‘𝑗)(𝐿‘𝑦)(ℎ‘𝑗)))))) ∧ 𝑎 ∈ (ℝ ↑m (𝑦 ∪ {𝑧}))) ∧ 𝑏 ∈ (ℝ ↑m (𝑦 ∪ {𝑧}))) ∧ 𝑐 ∈ ((ℝ ↑m (𝑦 ∪ {𝑧})) ↑m ℕ)) ∧ 𝑑 ∈ ((ℝ
↑m (𝑦 ∪
{𝑧})) ↑m
ℕ)) ∧ X𝑘 ∈ (𝑦 ∪ {𝑧})((𝑎‘𝑘)[,)(𝑏‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ (𝑦 ∪ {𝑧})(((𝑐‘𝑗)‘𝑘)[,)((𝑑‘𝑗)‘𝑘))) ∧ 𝑦 = ∅) → ((((𝜑 ∧ 𝑧 ∈ 𝑋) ∧ 𝑎 ∈ (ℝ ↑m {𝑧})) ∧ 𝑏 ∈ (ℝ ↑m {𝑧})) ∧ 𝑐 ∈ ((ℝ ↑m {𝑧}) ↑m
ℕ))) |
| 262 | | simpl 482 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑑 ∈ ((ℝ
↑m (𝑦 ∪
{𝑧})) ↑m
ℕ) ∧ 𝑦 = ∅)
→ 𝑑 ∈ ((ℝ
↑m (𝑦 ∪
{𝑧})) ↑m
ℕ)) |
| 263 | 255 | adantl 481 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑑 ∈ ((ℝ
↑m (𝑦 ∪
{𝑧})) ↑m
ℕ) ∧ 𝑦 = ∅)
→ ((ℝ ↑m (𝑦 ∪ {𝑧})) ↑m ℕ) = ((ℝ
↑m {𝑧})
↑m ℕ)) |
| 264 | 262, 263 | eleqtrd 2843 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑑 ∈ ((ℝ
↑m (𝑦 ∪
{𝑧})) ↑m
ℕ) ∧ 𝑦 = ∅)
→ 𝑑 ∈ ((ℝ
↑m {𝑧})
↑m ℕ)) |
| 265 | 264 | adantlr 715 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑑 ∈ ((ℝ
↑m (𝑦 ∪
{𝑧})) ↑m
ℕ) ∧ X𝑘 ∈ (𝑦 ∪ {𝑧})((𝑎‘𝑘)[,)(𝑏‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ (𝑦 ∪ {𝑧})(((𝑐‘𝑗)‘𝑘)[,)((𝑑‘𝑗)‘𝑘))) ∧ 𝑦 = ∅) → 𝑑 ∈ ((ℝ ↑m {𝑧}) ↑m
ℕ)) |
| 266 | 265 | adantlll 718 |
. . . . . . . . . . . . . . . . 17
⊢
(((((((((𝜑 ∧
(𝑦 ⊆ 𝑋 ∧ 𝑧 ∈ (𝑋 ∖ 𝑦))) ∧ ∀𝑒 ∈ (ℝ ↑m 𝑦)∀𝑓 ∈ (ℝ ↑m 𝑦)∀𝑔 ∈ ((ℝ ↑m 𝑦) ↑m
ℕ)∀ℎ ∈
((ℝ ↑m 𝑦) ↑m ℕ)(X𝑘 ∈
𝑦 ((𝑒‘𝑘)[,)(𝑓‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑦 (((𝑔‘𝑗)‘𝑘)[,)((ℎ‘𝑗)‘𝑘)) → (𝑒(𝐿‘𝑦)𝑓) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑔‘𝑗)(𝐿‘𝑦)(ℎ‘𝑗)))))) ∧ 𝑎 ∈ (ℝ ↑m (𝑦 ∪ {𝑧}))) ∧ 𝑏 ∈ (ℝ ↑m (𝑦 ∪ {𝑧}))) ∧ 𝑐 ∈ ((ℝ ↑m (𝑦 ∪ {𝑧})) ↑m ℕ)) ∧ 𝑑 ∈ ((ℝ
↑m (𝑦 ∪
{𝑧})) ↑m
ℕ)) ∧ X𝑘 ∈ (𝑦 ∪ {𝑧})((𝑎‘𝑘)[,)(𝑏‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ (𝑦 ∪ {𝑧})(((𝑐‘𝑗)‘𝑘)[,)((𝑑‘𝑗)‘𝑘))) ∧ 𝑦 = ∅) → 𝑑 ∈ ((ℝ ↑m {𝑧}) ↑m
ℕ)) |
| 267 | | simpl 482 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((X𝑘 ∈
(𝑦 ∪ {𝑧})((𝑎‘𝑘)[,)(𝑏‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ (𝑦 ∪ {𝑧})(((𝑐‘𝑗)‘𝑘)[,)((𝑑‘𝑗)‘𝑘)) ∧ 𝑦 = ∅) → X𝑘 ∈
(𝑦 ∪ {𝑧})((𝑎‘𝑘)[,)(𝑏‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ (𝑦 ∪ {𝑧})(((𝑐‘𝑗)‘𝑘)[,)((𝑑‘𝑗)‘𝑘))) |
| 268 | 239 | ixpeq1d 8949 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑦 = ∅ → X𝑘 ∈
{𝑧} ((𝑎‘𝑘)[,)(𝑏‘𝑘)) = X𝑘 ∈ (𝑦 ∪ {𝑧})((𝑎‘𝑘)[,)(𝑏‘𝑘))) |
| 269 | 268 | adantl 481 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((X𝑘 ∈
(𝑦 ∪ {𝑧})((𝑎‘𝑘)[,)(𝑏‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ (𝑦 ∪ {𝑧})(((𝑐‘𝑗)‘𝑘)[,)((𝑑‘𝑗)‘𝑘)) ∧ 𝑦 = ∅) → X𝑘 ∈
{𝑧} ((𝑎‘𝑘)[,)(𝑏‘𝑘)) = X𝑘 ∈ (𝑦 ∪ {𝑧})((𝑎‘𝑘)[,)(𝑏‘𝑘))) |
| 270 | 239 | ixpeq1d 8949 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑦 = ∅ → X𝑘 ∈
{𝑧} (((𝑐‘𝑖)‘𝑘)[,)((𝑑‘𝑖)‘𝑘)) = X𝑘 ∈ (𝑦 ∪ {𝑧})(((𝑐‘𝑖)‘𝑘)[,)((𝑑‘𝑖)‘𝑘))) |
| 271 | 270 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑦 = ∅ ∧ 𝑖 ∈ ℕ) → X𝑘 ∈
{𝑧} (((𝑐‘𝑖)‘𝑘)[,)((𝑑‘𝑖)‘𝑘)) = X𝑘 ∈ (𝑦 ∪ {𝑧})(((𝑐‘𝑖)‘𝑘)[,)((𝑑‘𝑖)‘𝑘))) |
| 272 | 271 | iuneq2dv 5016 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑦 = ∅ → ∪ 𝑖 ∈ ℕ X𝑘 ∈ {𝑧} (((𝑐‘𝑖)‘𝑘)[,)((𝑑‘𝑖)‘𝑘)) = ∪
𝑖 ∈ ℕ X𝑘 ∈
(𝑦 ∪ {𝑧})(((𝑐‘𝑖)‘𝑘)[,)((𝑑‘𝑖)‘𝑘))) |
| 273 | | fveq2 6906 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑖 = 𝑗 → (𝑐‘𝑖) = (𝑐‘𝑗)) |
| 274 | 273 | fveq1d 6908 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑖 = 𝑗 → ((𝑐‘𝑖)‘𝑘) = ((𝑐‘𝑗)‘𝑘)) |
| 275 | | fveq2 6906 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑖 = 𝑗 → (𝑑‘𝑖) = (𝑑‘𝑗)) |
| 276 | 275 | fveq1d 6908 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑖 = 𝑗 → ((𝑑‘𝑖)‘𝑘) = ((𝑑‘𝑗)‘𝑘)) |
| 277 | 274, 276 | oveq12d 7449 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑖 = 𝑗 → (((𝑐‘𝑖)‘𝑘)[,)((𝑑‘𝑖)‘𝑘)) = (((𝑐‘𝑗)‘𝑘)[,)((𝑑‘𝑗)‘𝑘))) |
| 278 | 277 | ixpeq2dv 8953 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑖 = 𝑗 → X𝑘 ∈ (𝑦 ∪ {𝑧})(((𝑐‘𝑖)‘𝑘)[,)((𝑑‘𝑖)‘𝑘)) = X𝑘 ∈ (𝑦 ∪ {𝑧})(((𝑐‘𝑗)‘𝑘)[,)((𝑑‘𝑗)‘𝑘))) |
| 279 | 278 | cbviunv 5040 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ∪ 𝑖 ∈ ℕ X𝑘 ∈ (𝑦 ∪ {𝑧})(((𝑐‘𝑖)‘𝑘)[,)((𝑑‘𝑖)‘𝑘)) = ∪
𝑗 ∈ ℕ X𝑘 ∈
(𝑦 ∪ {𝑧})(((𝑐‘𝑗)‘𝑘)[,)((𝑑‘𝑗)‘𝑘)) |
| 280 | 279 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑦 = ∅ → ∪ 𝑖 ∈ ℕ X𝑘 ∈ (𝑦 ∪ {𝑧})(((𝑐‘𝑖)‘𝑘)[,)((𝑑‘𝑖)‘𝑘)) = ∪
𝑗 ∈ ℕ X𝑘 ∈
(𝑦 ∪ {𝑧})(((𝑐‘𝑗)‘𝑘)[,)((𝑑‘𝑗)‘𝑘))) |
| 281 | 272, 280 | eqtrd 2777 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑦 = ∅ → ∪ 𝑖 ∈ ℕ X𝑘 ∈ {𝑧} (((𝑐‘𝑖)‘𝑘)[,)((𝑑‘𝑖)‘𝑘)) = ∪
𝑗 ∈ ℕ X𝑘 ∈
(𝑦 ∪ {𝑧})(((𝑐‘𝑗)‘𝑘)[,)((𝑑‘𝑗)‘𝑘))) |
| 282 | 281 | adantl 481 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((X𝑘 ∈
(𝑦 ∪ {𝑧})((𝑎‘𝑘)[,)(𝑏‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ (𝑦 ∪ {𝑧})(((𝑐‘𝑗)‘𝑘)[,)((𝑑‘𝑗)‘𝑘)) ∧ 𝑦 = ∅) → ∪ 𝑖 ∈ ℕ X𝑘 ∈ {𝑧} (((𝑐‘𝑖)‘𝑘)[,)((𝑑‘𝑖)‘𝑘)) = ∪
𝑗 ∈ ℕ X𝑘 ∈
(𝑦 ∪ {𝑧})(((𝑐‘𝑗)‘𝑘)[,)((𝑑‘𝑗)‘𝑘))) |
| 283 | 269, 282 | sseq12d 4017 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((X𝑘 ∈
(𝑦 ∪ {𝑧})((𝑎‘𝑘)[,)(𝑏‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ (𝑦 ∪ {𝑧})(((𝑐‘𝑗)‘𝑘)[,)((𝑑‘𝑗)‘𝑘)) ∧ 𝑦 = ∅) → (X𝑘 ∈
{𝑧} ((𝑎‘𝑘)[,)(𝑏‘𝑘)) ⊆ ∪ 𝑖 ∈ ℕ X𝑘 ∈ {𝑧} (((𝑐‘𝑖)‘𝑘)[,)((𝑑‘𝑖)‘𝑘)) ↔ X𝑘 ∈ (𝑦 ∪ {𝑧})((𝑎‘𝑘)[,)(𝑏‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ (𝑦 ∪ {𝑧})(((𝑐‘𝑗)‘𝑘)[,)((𝑑‘𝑗)‘𝑘)))) |
| 284 | 267, 283 | mpbird 257 |
. . . . . . . . . . . . . . . . . 18
⊢ ((X𝑘 ∈
(𝑦 ∪ {𝑧})((𝑎‘𝑘)[,)(𝑏‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ (𝑦 ∪ {𝑧})(((𝑐‘𝑗)‘𝑘)[,)((𝑑‘𝑗)‘𝑘)) ∧ 𝑦 = ∅) → X𝑘 ∈
{𝑧} ((𝑎‘𝑘)[,)(𝑏‘𝑘)) ⊆ ∪ 𝑖 ∈ ℕ X𝑘 ∈ {𝑧} (((𝑐‘𝑖)‘𝑘)[,)((𝑑‘𝑖)‘𝑘))) |
| 285 | 284 | adantll 714 |
. . . . . . . . . . . . . . . . 17
⊢
(((((((((𝜑 ∧
(𝑦 ⊆ 𝑋 ∧ 𝑧 ∈ (𝑋 ∖ 𝑦))) ∧ ∀𝑒 ∈ (ℝ ↑m 𝑦)∀𝑓 ∈ (ℝ ↑m 𝑦)∀𝑔 ∈ ((ℝ ↑m 𝑦) ↑m
ℕ)∀ℎ ∈
((ℝ ↑m 𝑦) ↑m ℕ)(X𝑘 ∈
𝑦 ((𝑒‘𝑘)[,)(𝑓‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑦 (((𝑔‘𝑗)‘𝑘)[,)((ℎ‘𝑗)‘𝑘)) → (𝑒(𝐿‘𝑦)𝑓) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑔‘𝑗)(𝐿‘𝑦)(ℎ‘𝑗)))))) ∧ 𝑎 ∈ (ℝ ↑m (𝑦 ∪ {𝑧}))) ∧ 𝑏 ∈ (ℝ ↑m (𝑦 ∪ {𝑧}))) ∧ 𝑐 ∈ ((ℝ ↑m (𝑦 ∪ {𝑧})) ↑m ℕ)) ∧ 𝑑 ∈ ((ℝ
↑m (𝑦 ∪
{𝑧})) ↑m
ℕ)) ∧ X𝑘 ∈ (𝑦 ∪ {𝑧})((𝑎‘𝑘)[,)(𝑏‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ (𝑦 ∪ {𝑧})(((𝑐‘𝑗)‘𝑘)[,)((𝑑‘𝑗)‘𝑘))) ∧ 𝑦 = ∅) → X𝑘 ∈
{𝑧} ((𝑎‘𝑘)[,)(𝑏‘𝑘)) ⊆ ∪ 𝑖 ∈ ℕ X𝑘 ∈ {𝑧} (((𝑐‘𝑖)‘𝑘)[,)((𝑑‘𝑖)‘𝑘))) |
| 286 | 261, 266,
285 | jca31 514 |
. . . . . . . . . . . . . . . 16
⊢
(((((((((𝜑 ∧
(𝑦 ⊆ 𝑋 ∧ 𝑧 ∈ (𝑋 ∖ 𝑦))) ∧ ∀𝑒 ∈ (ℝ ↑m 𝑦)∀𝑓 ∈ (ℝ ↑m 𝑦)∀𝑔 ∈ ((ℝ ↑m 𝑦) ↑m
ℕ)∀ℎ ∈
((ℝ ↑m 𝑦) ↑m ℕ)(X𝑘 ∈
𝑦 ((𝑒‘𝑘)[,)(𝑓‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑦 (((𝑔‘𝑗)‘𝑘)[,)((ℎ‘𝑗)‘𝑘)) → (𝑒(𝐿‘𝑦)𝑓) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑔‘𝑗)(𝐿‘𝑦)(ℎ‘𝑗)))))) ∧ 𝑎 ∈ (ℝ ↑m (𝑦 ∪ {𝑧}))) ∧ 𝑏 ∈ (ℝ ↑m (𝑦 ∪ {𝑧}))) ∧ 𝑐 ∈ ((ℝ ↑m (𝑦 ∪ {𝑧})) ↑m ℕ)) ∧ 𝑑 ∈ ((ℝ
↑m (𝑦 ∪
{𝑧})) ↑m
ℕ)) ∧ X𝑘 ∈ (𝑦 ∪ {𝑧})((𝑎‘𝑘)[,)(𝑏‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ (𝑦 ∪ {𝑧})(((𝑐‘𝑗)‘𝑘)[,)((𝑑‘𝑗)‘𝑘))) ∧ 𝑦 = ∅) → ((((((𝜑 ∧ 𝑧 ∈ 𝑋) ∧ 𝑎 ∈ (ℝ ↑m {𝑧})) ∧ 𝑏 ∈ (ℝ ↑m {𝑧})) ∧ 𝑐 ∈ ((ℝ ↑m {𝑧}) ↑m ℕ))
∧ 𝑑 ∈ ((ℝ
↑m {𝑧})
↑m ℕ)) ∧ X𝑘 ∈ {𝑧} ((𝑎‘𝑘)[,)(𝑏‘𝑘)) ⊆ ∪ 𝑖 ∈ ℕ X𝑘 ∈ {𝑧} (((𝑐‘𝑖)‘𝑘)[,)((𝑑‘𝑖)‘𝑘)))) |
| 287 | | simpr 484 |
. . . . . . . . . . . . . . . 16
⊢
(((((((((𝜑 ∧
(𝑦 ⊆ 𝑋 ∧ 𝑧 ∈ (𝑋 ∖ 𝑦))) ∧ ∀𝑒 ∈ (ℝ ↑m 𝑦)∀𝑓 ∈ (ℝ ↑m 𝑦)∀𝑔 ∈ ((ℝ ↑m 𝑦) ↑m
ℕ)∀ℎ ∈
((ℝ ↑m 𝑦) ↑m ℕ)(X𝑘 ∈
𝑦 ((𝑒‘𝑘)[,)(𝑓‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑦 (((𝑔‘𝑗)‘𝑘)[,)((ℎ‘𝑗)‘𝑘)) → (𝑒(𝐿‘𝑦)𝑓) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑔‘𝑗)(𝐿‘𝑦)(ℎ‘𝑗)))))) ∧ 𝑎 ∈ (ℝ ↑m (𝑦 ∪ {𝑧}))) ∧ 𝑏 ∈ (ℝ ↑m (𝑦 ∪ {𝑧}))) ∧ 𝑐 ∈ ((ℝ ↑m (𝑦 ∪ {𝑧})) ↑m ℕ)) ∧ 𝑑 ∈ ((ℝ
↑m (𝑦 ∪
{𝑧})) ↑m
ℕ)) ∧ X𝑘 ∈ (𝑦 ∪ {𝑧})((𝑎‘𝑘)[,)(𝑏‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ (𝑦 ∪ {𝑧})(((𝑐‘𝑗)‘𝑘)[,)((𝑑‘𝑗)‘𝑘))) ∧ 𝑦 = ∅) → 𝑦 = ∅) |
| 288 | | fveq1 6905 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑎 = 𝑢 → (𝑎‘𝑘) = (𝑢‘𝑘)) |
| 289 | 288 | oveq1d 7446 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑎 = 𝑢 → ((𝑎‘𝑘)[,)(𝑏‘𝑘)) = ((𝑢‘𝑘)[,)(𝑏‘𝑘))) |
| 290 | 289 | fveq2d 6910 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑎 = 𝑢 → (vol‘((𝑎‘𝑘)[,)(𝑏‘𝑘))) = (vol‘((𝑢‘𝑘)[,)(𝑏‘𝑘)))) |
| 291 | 290 | prodeq2ad 45607 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑎 = 𝑢 → ∏𝑘 ∈ 𝑥 (vol‘((𝑎‘𝑘)[,)(𝑏‘𝑘))) = ∏𝑘 ∈ 𝑥 (vol‘((𝑢‘𝑘)[,)(𝑏‘𝑘)))) |
| 292 | 291 | ifeq2d 4546 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑎 = 𝑢 → if(𝑥 = ∅, 0, ∏𝑘 ∈ 𝑥 (vol‘((𝑎‘𝑘)[,)(𝑏‘𝑘)))) = if(𝑥 = ∅, 0, ∏𝑘 ∈ 𝑥 (vol‘((𝑢‘𝑘)[,)(𝑏‘𝑘))))) |
| 293 | | fveq2 6906 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑘 = 𝑙 → (𝑢‘𝑘) = (𝑢‘𝑙)) |
| 294 | | fveq2 6906 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑘 = 𝑙 → (𝑏‘𝑘) = (𝑏‘𝑙)) |
| 295 | 293, 294 | oveq12d 7449 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑘 = 𝑙 → ((𝑢‘𝑘)[,)(𝑏‘𝑘)) = ((𝑢‘𝑙)[,)(𝑏‘𝑙))) |
| 296 | 295 | fveq2d 6910 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑘 = 𝑙 → (vol‘((𝑢‘𝑘)[,)(𝑏‘𝑘))) = (vol‘((𝑢‘𝑙)[,)(𝑏‘𝑙)))) |
| 297 | 296 | cbvprodv 15950 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
∏𝑘 ∈
𝑥 (vol‘((𝑢‘𝑘)[,)(𝑏‘𝑘))) = ∏𝑙 ∈ 𝑥 (vol‘((𝑢‘𝑙)[,)(𝑏‘𝑙))) |
| 298 | 297 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑏 = 𝑣 → ∏𝑘 ∈ 𝑥 (vol‘((𝑢‘𝑘)[,)(𝑏‘𝑘))) = ∏𝑙 ∈ 𝑥 (vol‘((𝑢‘𝑙)[,)(𝑏‘𝑙)))) |
| 299 | | fveq1 6905 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑏 = 𝑣 → (𝑏‘𝑙) = (𝑣‘𝑙)) |
| 300 | 299 | oveq2d 7447 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑏 = 𝑣 → ((𝑢‘𝑙)[,)(𝑏‘𝑙)) = ((𝑢‘𝑙)[,)(𝑣‘𝑙))) |
| 301 | 300 | fveq2d 6910 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑏 = 𝑣 → (vol‘((𝑢‘𝑙)[,)(𝑏‘𝑙))) = (vol‘((𝑢‘𝑙)[,)(𝑣‘𝑙)))) |
| 302 | 301 | prodeq2ad 45607 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑏 = 𝑣 → ∏𝑙 ∈ 𝑥 (vol‘((𝑢‘𝑙)[,)(𝑏‘𝑙))) = ∏𝑙 ∈ 𝑥 (vol‘((𝑢‘𝑙)[,)(𝑣‘𝑙)))) |
| 303 | 298, 302 | eqtrd 2777 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑏 = 𝑣 → ∏𝑘 ∈ 𝑥 (vol‘((𝑢‘𝑘)[,)(𝑏‘𝑘))) = ∏𝑙 ∈ 𝑥 (vol‘((𝑢‘𝑙)[,)(𝑣‘𝑙)))) |
| 304 | 303 | ifeq2d 4546 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑏 = 𝑣 → if(𝑥 = ∅, 0, ∏𝑘 ∈ 𝑥 (vol‘((𝑢‘𝑘)[,)(𝑏‘𝑘)))) = if(𝑥 = ∅, 0, ∏𝑙 ∈ 𝑥 (vol‘((𝑢‘𝑙)[,)(𝑣‘𝑙))))) |
| 305 | 292, 304 | cbvmpov 7528 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑎 ∈ (ℝ
↑m 𝑥),
𝑏 ∈ (ℝ
↑m 𝑥)
↦ if(𝑥 = ∅, 0,
∏𝑘 ∈ 𝑥 (vol‘((𝑎‘𝑘)[,)(𝑏‘𝑘))))) = (𝑢 ∈ (ℝ ↑m 𝑥), 𝑣 ∈ (ℝ ↑m 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑙 ∈ 𝑥 (vol‘((𝑢‘𝑙)[,)(𝑣‘𝑙))))) |
| 306 | 305 | mpteq2i 5247 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑥 ∈ Fin ↦ (𝑎 ∈ (ℝ
↑m 𝑥),
𝑏 ∈ (ℝ
↑m 𝑥)
↦ if(𝑥 = ∅, 0,
∏𝑘 ∈ 𝑥 (vol‘((𝑎‘𝑘)[,)(𝑏‘𝑘)))))) = (𝑥 ∈ Fin ↦ (𝑢 ∈ (ℝ ↑m 𝑥), 𝑣 ∈ (ℝ ↑m 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑙 ∈ 𝑥 (vol‘((𝑢‘𝑙)[,)(𝑣‘𝑙)))))) |
| 307 | 126, 306 | eqtri 2765 |
. . . . . . . . . . . . . . . . . . 19
⊢ 𝐿 = (𝑥 ∈ Fin ↦ (𝑢 ∈ (ℝ ↑m 𝑥), 𝑣 ∈ (ℝ ↑m 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑙 ∈ 𝑥 (vol‘((𝑢‘𝑙)[,)(𝑣‘𝑙)))))) |
| 308 | | simp-6r 788 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((((𝜑 ∧ 𝑧 ∈ 𝑋) ∧ 𝑎 ∈ (ℝ ↑m {𝑧})) ∧ 𝑏 ∈ (ℝ ↑m {𝑧})) ∧ 𝑐 ∈ ((ℝ ↑m {𝑧}) ↑m ℕ))
∧ 𝑑 ∈ ((ℝ
↑m {𝑧})
↑m ℕ)) ∧ X𝑘 ∈ {𝑧} ((𝑎‘𝑘)[,)(𝑏‘𝑘)) ⊆ ∪ 𝑖 ∈ ℕ X𝑘 ∈ {𝑧} (((𝑐‘𝑖)‘𝑘)[,)((𝑑‘𝑖)‘𝑘))) → 𝑧 ∈ 𝑋) |
| 309 | | eqid 2737 |
. . . . . . . . . . . . . . . . . . 19
⊢ {𝑧} = {𝑧} |
| 310 | | elmapi 8889 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑎 ∈ (ℝ
↑m {𝑧})
→ 𝑎:{𝑧}⟶ℝ) |
| 311 | 310 | ad2antlr 727 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ 𝑧 ∈ 𝑋) ∧ 𝑎 ∈ (ℝ ↑m {𝑧})) ∧ 𝑏 ∈ (ℝ ↑m {𝑧})) → 𝑎:{𝑧}⟶ℝ) |
| 312 | 311 | ad3antrrr 730 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((((𝜑 ∧ 𝑧 ∈ 𝑋) ∧ 𝑎 ∈ (ℝ ↑m {𝑧})) ∧ 𝑏 ∈ (ℝ ↑m {𝑧})) ∧ 𝑐 ∈ ((ℝ ↑m {𝑧}) ↑m ℕ))
∧ 𝑑 ∈ ((ℝ
↑m {𝑧})
↑m ℕ)) ∧ X𝑘 ∈ {𝑧} ((𝑎‘𝑘)[,)(𝑏‘𝑘)) ⊆ ∪ 𝑖 ∈ ℕ X𝑘 ∈ {𝑧} (((𝑐‘𝑖)‘𝑘)[,)((𝑑‘𝑖)‘𝑘))) → 𝑎:{𝑧}⟶ℝ) |
| 313 | | elmapi 8889 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑏 ∈ (ℝ
↑m {𝑧})
→ 𝑏:{𝑧}⟶ℝ) |
| 314 | 313 | adantl 481 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ 𝑧 ∈ 𝑋) ∧ 𝑎 ∈ (ℝ ↑m {𝑧})) ∧ 𝑏 ∈ (ℝ ↑m {𝑧})) → 𝑏:{𝑧}⟶ℝ) |
| 315 | 314 | ad3antrrr 730 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((((𝜑 ∧ 𝑧 ∈ 𝑋) ∧ 𝑎 ∈ (ℝ ↑m {𝑧})) ∧ 𝑏 ∈ (ℝ ↑m {𝑧})) ∧ 𝑐 ∈ ((ℝ ↑m {𝑧}) ↑m ℕ))
∧ 𝑑 ∈ ((ℝ
↑m {𝑧})
↑m ℕ)) ∧ X𝑘 ∈ {𝑧} ((𝑎‘𝑘)[,)(𝑏‘𝑘)) ⊆ ∪ 𝑖 ∈ ℕ X𝑘 ∈ {𝑧} (((𝑐‘𝑖)‘𝑘)[,)((𝑑‘𝑖)‘𝑘))) → 𝑏:{𝑧}⟶ℝ) |
| 316 | | elmapi 8889 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑐 ∈ ((ℝ
↑m {𝑧})
↑m ℕ) → 𝑐:ℕ⟶(ℝ ↑m
{𝑧})) |
| 317 | 316 | adantl 481 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((𝜑 ∧ 𝑧 ∈ 𝑋) ∧ 𝑎 ∈ (ℝ ↑m {𝑧})) ∧ 𝑏 ∈ (ℝ ↑m {𝑧})) ∧ 𝑐 ∈ ((ℝ ↑m {𝑧}) ↑m ℕ))
→ 𝑐:ℕ⟶(ℝ ↑m
{𝑧})) |
| 318 | 317 | ad2antrr 726 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((((𝜑 ∧ 𝑧 ∈ 𝑋) ∧ 𝑎 ∈ (ℝ ↑m {𝑧})) ∧ 𝑏 ∈ (ℝ ↑m {𝑧})) ∧ 𝑐 ∈ ((ℝ ↑m {𝑧}) ↑m ℕ))
∧ 𝑑 ∈ ((ℝ
↑m {𝑧})
↑m ℕ)) ∧ X𝑘 ∈ {𝑧} ((𝑎‘𝑘)[,)(𝑏‘𝑘)) ⊆ ∪ 𝑖 ∈ ℕ X𝑘 ∈ {𝑧} (((𝑐‘𝑖)‘𝑘)[,)((𝑑‘𝑖)‘𝑘))) → 𝑐:ℕ⟶(ℝ ↑m
{𝑧})) |
| 319 | | elmapi 8889 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑑 ∈ ((ℝ
↑m {𝑧})
↑m ℕ) → 𝑑:ℕ⟶(ℝ ↑m
{𝑧})) |
| 320 | 319 | ad2antlr 727 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((((𝜑 ∧ 𝑧 ∈ 𝑋) ∧ 𝑎 ∈ (ℝ ↑m {𝑧})) ∧ 𝑏 ∈ (ℝ ↑m {𝑧})) ∧ 𝑐 ∈ ((ℝ ↑m {𝑧}) ↑m ℕ))
∧ 𝑑 ∈ ((ℝ
↑m {𝑧})
↑m ℕ)) ∧ X𝑘 ∈ {𝑧} ((𝑎‘𝑘)[,)(𝑏‘𝑘)) ⊆ ∪ 𝑖 ∈ ℕ X𝑘 ∈ {𝑧} (((𝑐‘𝑖)‘𝑘)[,)((𝑑‘𝑖)‘𝑘))) → 𝑑:ℕ⟶(ℝ ↑m
{𝑧})) |
| 321 | | id 22 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (X𝑘 ∈
{𝑧} ((𝑎‘𝑘)[,)(𝑏‘𝑘)) ⊆ ∪ 𝑖 ∈ ℕ X𝑘 ∈ {𝑧} (((𝑐‘𝑖)‘𝑘)[,)((𝑑‘𝑖)‘𝑘)) → X𝑘 ∈ {𝑧} ((𝑎‘𝑘)[,)(𝑏‘𝑘)) ⊆ ∪ 𝑖 ∈ ℕ X𝑘 ∈ {𝑧} (((𝑐‘𝑖)‘𝑘)[,)((𝑑‘𝑖)‘𝑘))) |
| 322 | | fveq2 6906 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑘 = 𝑙 → (𝑎‘𝑘) = (𝑎‘𝑙)) |
| 323 | 322, 294 | oveq12d 7449 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑘 = 𝑙 → ((𝑎‘𝑘)[,)(𝑏‘𝑘)) = ((𝑎‘𝑙)[,)(𝑏‘𝑙))) |
| 324 | | eqcom 2744 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑘 = 𝑙 ↔ 𝑙 = 𝑘) |
| 325 | 324 | imbi1i 349 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝑘 = 𝑙 → ((𝑎‘𝑘)[,)(𝑏‘𝑘)) = ((𝑎‘𝑙)[,)(𝑏‘𝑙))) ↔ (𝑙 = 𝑘 → ((𝑎‘𝑘)[,)(𝑏‘𝑘)) = ((𝑎‘𝑙)[,)(𝑏‘𝑙)))) |
| 326 | | eqcom 2744 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (((𝑎‘𝑘)[,)(𝑏‘𝑘)) = ((𝑎‘𝑙)[,)(𝑏‘𝑙)) ↔ ((𝑎‘𝑙)[,)(𝑏‘𝑙)) = ((𝑎‘𝑘)[,)(𝑏‘𝑘))) |
| 327 | 326 | imbi2i 336 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝑙 = 𝑘 → ((𝑎‘𝑘)[,)(𝑏‘𝑘)) = ((𝑎‘𝑙)[,)(𝑏‘𝑙))) ↔ (𝑙 = 𝑘 → ((𝑎‘𝑙)[,)(𝑏‘𝑙)) = ((𝑎‘𝑘)[,)(𝑏‘𝑘)))) |
| 328 | 325, 327 | bitri 275 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑘 = 𝑙 → ((𝑎‘𝑘)[,)(𝑏‘𝑘)) = ((𝑎‘𝑙)[,)(𝑏‘𝑙))) ↔ (𝑙 = 𝑘 → ((𝑎‘𝑙)[,)(𝑏‘𝑙)) = ((𝑎‘𝑘)[,)(𝑏‘𝑘)))) |
| 329 | 323, 328 | mpbi 230 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑙 = 𝑘 → ((𝑎‘𝑙)[,)(𝑏‘𝑙)) = ((𝑎‘𝑘)[,)(𝑏‘𝑘))) |
| 330 | 329 | cbvixpv 8955 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ X𝑙 ∈
{𝑧} ((𝑎‘𝑙)[,)(𝑏‘𝑙)) = X𝑘 ∈ {𝑧} ((𝑎‘𝑘)[,)(𝑏‘𝑘)) |
| 331 | 330 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (X𝑘 ∈
{𝑧} ((𝑎‘𝑘)[,)(𝑏‘𝑘)) ⊆ ∪ 𝑖 ∈ ℕ X𝑘 ∈ {𝑧} (((𝑐‘𝑖)‘𝑘)[,)((𝑑‘𝑖)‘𝑘)) → X𝑙 ∈ {𝑧} ((𝑎‘𝑙)[,)(𝑏‘𝑙)) = X𝑘 ∈ {𝑧} ((𝑎‘𝑘)[,)(𝑏‘𝑘))) |
| 332 | 277 | ixpeq2dv 8953 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑖 = 𝑗 → X𝑘 ∈ {𝑧} (((𝑐‘𝑖)‘𝑘)[,)((𝑑‘𝑖)‘𝑘)) = X𝑘 ∈ {𝑧} (((𝑐‘𝑗)‘𝑘)[,)((𝑑‘𝑗)‘𝑘))) |
| 333 | 332 | cbviunv 5040 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ∪ 𝑖 ∈ ℕ X𝑘 ∈ {𝑧} (((𝑐‘𝑖)‘𝑘)[,)((𝑑‘𝑖)‘𝑘)) = ∪
𝑗 ∈ ℕ X𝑘 ∈
{𝑧} (((𝑐‘𝑗)‘𝑘)[,)((𝑑‘𝑗)‘𝑘)) |
| 334 | | fveq2 6906 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑘 = 𝑙 → ((𝑐‘𝑗)‘𝑘) = ((𝑐‘𝑗)‘𝑙)) |
| 335 | | fveq2 6906 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑘 = 𝑙 → ((𝑑‘𝑗)‘𝑘) = ((𝑑‘𝑗)‘𝑙)) |
| 336 | 334, 335 | oveq12d 7449 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑘 = 𝑙 → (((𝑐‘𝑗)‘𝑘)[,)((𝑑‘𝑗)‘𝑘)) = (((𝑐‘𝑗)‘𝑙)[,)((𝑑‘𝑗)‘𝑙))) |
| 337 | 336 | cbvixpv 8955 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ X𝑘 ∈
{𝑧} (((𝑐‘𝑗)‘𝑘)[,)((𝑑‘𝑗)‘𝑘)) = X𝑙 ∈ {𝑧} (((𝑐‘𝑗)‘𝑙)[,)((𝑑‘𝑗)‘𝑙)) |
| 338 | 337 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑗 ∈ ℕ → X𝑘 ∈
{𝑧} (((𝑐‘𝑗)‘𝑘)[,)((𝑑‘𝑗)‘𝑘)) = X𝑙 ∈ {𝑧} (((𝑐‘𝑗)‘𝑙)[,)((𝑑‘𝑗)‘𝑙))) |
| 339 | 338 | iuneq2i 5013 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ∪ 𝑗 ∈ ℕ X𝑘 ∈ {𝑧} (((𝑐‘𝑗)‘𝑘)[,)((𝑑‘𝑗)‘𝑘)) = ∪
𝑗 ∈ ℕ X𝑙 ∈
{𝑧} (((𝑐‘𝑗)‘𝑙)[,)((𝑑‘𝑗)‘𝑙)) |
| 340 | 333, 339 | eqtr2i 2766 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ∪ 𝑗 ∈ ℕ X𝑙 ∈ {𝑧} (((𝑐‘𝑗)‘𝑙)[,)((𝑑‘𝑗)‘𝑙)) = ∪
𝑖 ∈ ℕ X𝑘 ∈
{𝑧} (((𝑐‘𝑖)‘𝑘)[,)((𝑑‘𝑖)‘𝑘)) |
| 341 | 340 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (X𝑘 ∈
{𝑧} ((𝑎‘𝑘)[,)(𝑏‘𝑘)) ⊆ ∪ 𝑖 ∈ ℕ X𝑘 ∈ {𝑧} (((𝑐‘𝑖)‘𝑘)[,)((𝑑‘𝑖)‘𝑘)) → ∪
𝑗 ∈ ℕ X𝑙 ∈
{𝑧} (((𝑐‘𝑗)‘𝑙)[,)((𝑑‘𝑗)‘𝑙)) = ∪
𝑖 ∈ ℕ X𝑘 ∈
{𝑧} (((𝑐‘𝑖)‘𝑘)[,)((𝑑‘𝑖)‘𝑘))) |
| 342 | 331, 341 | sseq12d 4017 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (X𝑘 ∈
{𝑧} ((𝑎‘𝑘)[,)(𝑏‘𝑘)) ⊆ ∪ 𝑖 ∈ ℕ X𝑘 ∈ {𝑧} (((𝑐‘𝑖)‘𝑘)[,)((𝑑‘𝑖)‘𝑘)) → (X𝑙 ∈ {𝑧} ((𝑎‘𝑙)[,)(𝑏‘𝑙)) ⊆ ∪ 𝑗 ∈ ℕ X𝑙 ∈ {𝑧} (((𝑐‘𝑗)‘𝑙)[,)((𝑑‘𝑗)‘𝑙)) ↔ X𝑘 ∈ {𝑧} ((𝑎‘𝑘)[,)(𝑏‘𝑘)) ⊆ ∪ 𝑖 ∈ ℕ X𝑘 ∈ {𝑧} (((𝑐‘𝑖)‘𝑘)[,)((𝑑‘𝑖)‘𝑘)))) |
| 343 | 321, 342 | mpbird 257 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (X𝑘 ∈
{𝑧} ((𝑎‘𝑘)[,)(𝑏‘𝑘)) ⊆ ∪ 𝑖 ∈ ℕ X𝑘 ∈ {𝑧} (((𝑐‘𝑖)‘𝑘)[,)((𝑑‘𝑖)‘𝑘)) → X𝑙 ∈ {𝑧} ((𝑎‘𝑙)[,)(𝑏‘𝑙)) ⊆ ∪ 𝑗 ∈ ℕ X𝑙 ∈ {𝑧} (((𝑐‘𝑗)‘𝑙)[,)((𝑑‘𝑗)‘𝑙))) |
| 344 | 343 | adantl 481 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((((𝜑 ∧ 𝑧 ∈ 𝑋) ∧ 𝑎 ∈ (ℝ ↑m {𝑧})) ∧ 𝑏 ∈ (ℝ ↑m {𝑧})) ∧ 𝑐 ∈ ((ℝ ↑m {𝑧}) ↑m ℕ))
∧ 𝑑 ∈ ((ℝ
↑m {𝑧})
↑m ℕ)) ∧ X𝑘 ∈ {𝑧} ((𝑎‘𝑘)[,)(𝑏‘𝑘)) ⊆ ∪ 𝑖 ∈ ℕ X𝑘 ∈ {𝑧} (((𝑐‘𝑖)‘𝑘)[,)((𝑑‘𝑖)‘𝑘))) → X𝑙 ∈ {𝑧} ((𝑎‘𝑙)[,)(𝑏‘𝑙)) ⊆ ∪ 𝑗 ∈ ℕ X𝑙 ∈ {𝑧} (((𝑐‘𝑗)‘𝑙)[,)((𝑑‘𝑗)‘𝑙))) |
| 345 | 307, 308,
309, 312, 315, 318, 320, 344 | hoidmv1le 46609 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((((𝜑 ∧ 𝑧 ∈ 𝑋) ∧ 𝑎 ∈ (ℝ ↑m {𝑧})) ∧ 𝑏 ∈ (ℝ ↑m {𝑧})) ∧ 𝑐 ∈ ((ℝ ↑m {𝑧}) ↑m ℕ))
∧ 𝑑 ∈ ((ℝ
↑m {𝑧})
↑m ℕ)) ∧ X𝑘 ∈ {𝑧} ((𝑎‘𝑘)[,)(𝑏‘𝑘)) ⊆ ∪ 𝑖 ∈ ℕ X𝑘 ∈ {𝑧} (((𝑐‘𝑖)‘𝑘)[,)((𝑑‘𝑖)‘𝑘))) → (𝑎(𝐿‘{𝑧})𝑏) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑐‘𝑗)(𝐿‘{𝑧})(𝑑‘𝑗))))) |
| 346 | 345 | adantr 480 |
. . . . . . . . . . . . . . . . 17
⊢
((((((((𝜑 ∧ 𝑧 ∈ 𝑋) ∧ 𝑎 ∈ (ℝ ↑m {𝑧})) ∧ 𝑏 ∈ (ℝ ↑m {𝑧})) ∧ 𝑐 ∈ ((ℝ ↑m {𝑧}) ↑m ℕ))
∧ 𝑑 ∈ ((ℝ
↑m {𝑧})
↑m ℕ)) ∧ X𝑘 ∈ {𝑧} ((𝑎‘𝑘)[,)(𝑏‘𝑘)) ⊆ ∪ 𝑖 ∈ ℕ X𝑘 ∈ {𝑧} (((𝑐‘𝑖)‘𝑘)[,)((𝑑‘𝑖)‘𝑘))) ∧ 𝑦 = ∅) → (𝑎(𝐿‘{𝑧})𝑏) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑐‘𝑗)(𝐿‘{𝑧})(𝑑‘𝑗))))) |
| 347 | 236, 238 | eqtrd 2777 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑦 = ∅ → (𝑦 ∪ {𝑧}) = {𝑧}) |
| 348 | 347 | fveq2d 6910 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑦 = ∅ → (𝐿‘(𝑦 ∪ {𝑧})) = (𝐿‘{𝑧})) |
| 349 | 348 | oveqd 7448 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑦 = ∅ → (𝑎(𝐿‘(𝑦 ∪ {𝑧}))𝑏) = (𝑎(𝐿‘{𝑧})𝑏)) |
| 350 | 349 | adantl 481 |
. . . . . . . . . . . . . . . . . 18
⊢
((((((((𝜑 ∧ 𝑧 ∈ 𝑋) ∧ 𝑎 ∈ (ℝ ↑m {𝑧})) ∧ 𝑏 ∈ (ℝ ↑m {𝑧})) ∧ 𝑐 ∈ ((ℝ ↑m {𝑧}) ↑m ℕ))
∧ 𝑑 ∈ ((ℝ
↑m {𝑧})
↑m ℕ)) ∧ X𝑘 ∈ {𝑧} ((𝑎‘𝑘)[,)(𝑏‘𝑘)) ⊆ ∪ 𝑖 ∈ ℕ X𝑘 ∈ {𝑧} (((𝑐‘𝑖)‘𝑘)[,)((𝑑‘𝑖)‘𝑘))) ∧ 𝑦 = ∅) → (𝑎(𝐿‘(𝑦 ∪ {𝑧}))𝑏) = (𝑎(𝐿‘{𝑧})𝑏)) |
| 351 | 348 | oveqd 7448 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑦 = ∅ → ((𝑐‘𝑗)(𝐿‘(𝑦 ∪ {𝑧}))(𝑑‘𝑗)) = ((𝑐‘𝑗)(𝐿‘{𝑧})(𝑑‘𝑗))) |
| 352 | 351 | mpteq2dv 5244 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑦 = ∅ → (𝑗 ∈ ℕ ↦ ((𝑐‘𝑗)(𝐿‘(𝑦 ∪ {𝑧}))(𝑑‘𝑗))) = (𝑗 ∈ ℕ ↦ ((𝑐‘𝑗)(𝐿‘{𝑧})(𝑑‘𝑗)))) |
| 353 | 352 | fveq2d 6910 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑦 = ∅ →
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑐‘𝑗)(𝐿‘(𝑦 ∪ {𝑧}))(𝑑‘𝑗)))) =
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑐‘𝑗)(𝐿‘{𝑧})(𝑑‘𝑗))))) |
| 354 | 353 | adantl 481 |
. . . . . . . . . . . . . . . . . 18
⊢
((((((((𝜑 ∧ 𝑧 ∈ 𝑋) ∧ 𝑎 ∈ (ℝ ↑m {𝑧})) ∧ 𝑏 ∈ (ℝ ↑m {𝑧})) ∧ 𝑐 ∈ ((ℝ ↑m {𝑧}) ↑m ℕ))
∧ 𝑑 ∈ ((ℝ
↑m {𝑧})
↑m ℕ)) ∧ X𝑘 ∈ {𝑧} ((𝑎‘𝑘)[,)(𝑏‘𝑘)) ⊆ ∪ 𝑖 ∈ ℕ X𝑘 ∈ {𝑧} (((𝑐‘𝑖)‘𝑘)[,)((𝑑‘𝑖)‘𝑘))) ∧ 𝑦 = ∅) →
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑐‘𝑗)(𝐿‘(𝑦 ∪ {𝑧}))(𝑑‘𝑗)))) =
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑐‘𝑗)(𝐿‘{𝑧})(𝑑‘𝑗))))) |
| 355 | 350, 354 | breq12d 5156 |
. . . . . . . . . . . . . . . . 17
⊢
((((((((𝜑 ∧ 𝑧 ∈ 𝑋) ∧ 𝑎 ∈ (ℝ ↑m {𝑧})) ∧ 𝑏 ∈ (ℝ ↑m {𝑧})) ∧ 𝑐 ∈ ((ℝ ↑m {𝑧}) ↑m ℕ))
∧ 𝑑 ∈ ((ℝ
↑m {𝑧})
↑m ℕ)) ∧ X𝑘 ∈ {𝑧} ((𝑎‘𝑘)[,)(𝑏‘𝑘)) ⊆ ∪ 𝑖 ∈ ℕ X𝑘 ∈ {𝑧} (((𝑐‘𝑖)‘𝑘)[,)((𝑑‘𝑖)‘𝑘))) ∧ 𝑦 = ∅) → ((𝑎(𝐿‘(𝑦 ∪ {𝑧}))𝑏) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑐‘𝑗)(𝐿‘(𝑦 ∪ {𝑧}))(𝑑‘𝑗)))) ↔ (𝑎(𝐿‘{𝑧})𝑏) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑐‘𝑗)(𝐿‘{𝑧})(𝑑‘𝑗)))))) |
| 356 | 346, 355 | mpbird 257 |
. . . . . . . . . . . . . . . 16
⊢
((((((((𝜑 ∧ 𝑧 ∈ 𝑋) ∧ 𝑎 ∈ (ℝ ↑m {𝑧})) ∧ 𝑏 ∈ (ℝ ↑m {𝑧})) ∧ 𝑐 ∈ ((ℝ ↑m {𝑧}) ↑m ℕ))
∧ 𝑑 ∈ ((ℝ
↑m {𝑧})
↑m ℕ)) ∧ X𝑘 ∈ {𝑧} ((𝑎‘𝑘)[,)(𝑏‘𝑘)) ⊆ ∪ 𝑖 ∈ ℕ X𝑘 ∈ {𝑧} (((𝑐‘𝑖)‘𝑘)[,)((𝑑‘𝑖)‘𝑘))) ∧ 𝑦 = ∅) → (𝑎(𝐿‘(𝑦 ∪ {𝑧}))𝑏) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑐‘𝑗)(𝐿‘(𝑦 ∪ {𝑧}))(𝑑‘𝑗))))) |
| 357 | 286, 287,
356 | syl2anc 584 |
. . . . . . . . . . . . . . 15
⊢
(((((((((𝜑 ∧
(𝑦 ⊆ 𝑋 ∧ 𝑧 ∈ (𝑋 ∖ 𝑦))) ∧ ∀𝑒 ∈ (ℝ ↑m 𝑦)∀𝑓 ∈ (ℝ ↑m 𝑦)∀𝑔 ∈ ((ℝ ↑m 𝑦) ↑m
ℕ)∀ℎ ∈
((ℝ ↑m 𝑦) ↑m ℕ)(X𝑘 ∈
𝑦 ((𝑒‘𝑘)[,)(𝑓‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑦 (((𝑔‘𝑗)‘𝑘)[,)((ℎ‘𝑗)‘𝑘)) → (𝑒(𝐿‘𝑦)𝑓) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑔‘𝑗)(𝐿‘𝑦)(ℎ‘𝑗)))))) ∧ 𝑎 ∈ (ℝ ↑m (𝑦 ∪ {𝑧}))) ∧ 𝑏 ∈ (ℝ ↑m (𝑦 ∪ {𝑧}))) ∧ 𝑐 ∈ ((ℝ ↑m (𝑦 ∪ {𝑧})) ↑m ℕ)) ∧ 𝑑 ∈ ((ℝ
↑m (𝑦 ∪
{𝑧})) ↑m
ℕ)) ∧ X𝑘 ∈ (𝑦 ∪ {𝑧})((𝑎‘𝑘)[,)(𝑏‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ (𝑦 ∪ {𝑧})(((𝑐‘𝑗)‘𝑘)[,)((𝑑‘𝑗)‘𝑘))) ∧ 𝑦 = ∅) → (𝑎(𝐿‘(𝑦 ∪ {𝑧}))𝑏) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑐‘𝑗)(𝐿‘(𝑦 ∪ {𝑧}))(𝑑‘𝑗))))) |
| 358 | 17 | ad8antr 740 |
. . . . . . . . . . . . . . . . 17
⊢
(((((((((𝜑 ∧
(𝑦 ⊆ 𝑋 ∧ 𝑧 ∈ (𝑋 ∖ 𝑦))) ∧ ∀𝑒 ∈ (ℝ ↑m 𝑦)∀𝑓 ∈ (ℝ ↑m 𝑦)∀𝑔 ∈ ((ℝ ↑m 𝑦) ↑m
ℕ)∀ℎ ∈
((ℝ ↑m 𝑦) ↑m ℕ)(X𝑘 ∈
𝑦 ((𝑒‘𝑘)[,)(𝑓‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑦 (((𝑔‘𝑗)‘𝑘)[,)((ℎ‘𝑗)‘𝑘)) → (𝑒(𝐿‘𝑦)𝑓) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑔‘𝑗)(𝐿‘𝑦)(ℎ‘𝑗)))))) ∧ 𝑎 ∈ (ℝ ↑m (𝑦 ∪ {𝑧}))) ∧ 𝑏 ∈ (ℝ ↑m (𝑦 ∪ {𝑧}))) ∧ 𝑐 ∈ ((ℝ ↑m (𝑦 ∪ {𝑧})) ↑m ℕ)) ∧ 𝑑 ∈ ((ℝ
↑m (𝑦 ∪
{𝑧})) ↑m
ℕ)) ∧ X𝑘 ∈ (𝑦 ∪ {𝑧})((𝑎‘𝑘)[,)(𝑏‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ (𝑦 ∪ {𝑧})(((𝑐‘𝑗)‘𝑘)[,)((𝑑‘𝑗)‘𝑘))) ∧ ¬ 𝑦 = ∅) → 𝑋 ∈ Fin) |
| 359 | | simplrl 777 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ (𝑦 ⊆ 𝑋 ∧ 𝑧 ∈ (𝑋 ∖ 𝑦))) ∧ ∀𝑒 ∈ (ℝ ↑m 𝑦)∀𝑓 ∈ (ℝ ↑m 𝑦)∀𝑔 ∈ ((ℝ ↑m 𝑦) ↑m
ℕ)∀ℎ ∈
((ℝ ↑m 𝑦) ↑m ℕ)(X𝑘 ∈
𝑦 ((𝑒‘𝑘)[,)(𝑓‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑦 (((𝑔‘𝑗)‘𝑘)[,)((ℎ‘𝑗)‘𝑘)) → (𝑒(𝐿‘𝑦)𝑓) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑔‘𝑗)(𝐿‘𝑦)(ℎ‘𝑗)))))) → 𝑦 ⊆ 𝑋) |
| 360 | 359 | ad5ant12 756 |
. . . . . . . . . . . . . . . . . 18
⊢
((((((𝜑 ∧ (𝑦 ⊆ 𝑋 ∧ 𝑧 ∈ (𝑋 ∖ 𝑦))) ∧ ∀𝑒 ∈ (ℝ ↑m 𝑦)∀𝑓 ∈ (ℝ ↑m 𝑦)∀𝑔 ∈ ((ℝ ↑m 𝑦) ↑m
ℕ)∀ℎ ∈
((ℝ ↑m 𝑦) ↑m ℕ)(X𝑘 ∈
𝑦 ((𝑒‘𝑘)[,)(𝑓‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑦 (((𝑔‘𝑗)‘𝑘)[,)((ℎ‘𝑗)‘𝑘)) → (𝑒(𝐿‘𝑦)𝑓) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑔‘𝑗)(𝐿‘𝑦)(ℎ‘𝑗)))))) ∧ 𝑎 ∈ (ℝ ↑m (𝑦 ∪ {𝑧}))) ∧ 𝑏 ∈ (ℝ ↑m (𝑦 ∪ {𝑧}))) ∧ 𝑐 ∈ ((ℝ ↑m (𝑦 ∪ {𝑧})) ↑m ℕ)) → 𝑦 ⊆ 𝑋) |
| 361 | 360 | ad5ant12 756 |
. . . . . . . . . . . . . . . . 17
⊢
(((((((((𝜑 ∧
(𝑦 ⊆ 𝑋 ∧ 𝑧 ∈ (𝑋 ∖ 𝑦))) ∧ ∀𝑒 ∈ (ℝ ↑m 𝑦)∀𝑓 ∈ (ℝ ↑m 𝑦)∀𝑔 ∈ ((ℝ ↑m 𝑦) ↑m
ℕ)∀ℎ ∈
((ℝ ↑m 𝑦) ↑m ℕ)(X𝑘 ∈
𝑦 ((𝑒‘𝑘)[,)(𝑓‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑦 (((𝑔‘𝑗)‘𝑘)[,)((ℎ‘𝑗)‘𝑘)) → (𝑒(𝐿‘𝑦)𝑓) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑔‘𝑗)(𝐿‘𝑦)(ℎ‘𝑗)))))) ∧ 𝑎 ∈ (ℝ ↑m (𝑦 ∪ {𝑧}))) ∧ 𝑏 ∈ (ℝ ↑m (𝑦 ∪ {𝑧}))) ∧ 𝑐 ∈ ((ℝ ↑m (𝑦 ∪ {𝑧})) ↑m ℕ)) ∧ 𝑑 ∈ ((ℝ
↑m (𝑦 ∪
{𝑧})) ↑m
ℕ)) ∧ X𝑘 ∈ (𝑦 ∪ {𝑧})((𝑎‘𝑘)[,)(𝑏‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ (𝑦 ∪ {𝑧})(((𝑐‘𝑗)‘𝑘)[,)((𝑑‘𝑗)‘𝑘))) ∧ ¬ 𝑦 = ∅) → 𝑦 ⊆ 𝑋) |
| 362 | | simplrr 778 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ (𝑦 ⊆ 𝑋 ∧ 𝑧 ∈ (𝑋 ∖ 𝑦))) ∧ ∀𝑒 ∈ (ℝ ↑m 𝑦)∀𝑓 ∈ (ℝ ↑m 𝑦)∀𝑔 ∈ ((ℝ ↑m 𝑦) ↑m
ℕ)∀ℎ ∈
((ℝ ↑m 𝑦) ↑m ℕ)(X𝑘 ∈
𝑦 ((𝑒‘𝑘)[,)(𝑓‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑦 (((𝑔‘𝑗)‘𝑘)[,)((ℎ‘𝑗)‘𝑘)) → (𝑒(𝐿‘𝑦)𝑓) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑔‘𝑗)(𝐿‘𝑦)(ℎ‘𝑗)))))) → 𝑧 ∈ (𝑋 ∖ 𝑦)) |
| 363 | 362 | ad5ant12 756 |
. . . . . . . . . . . . . . . . . 18
⊢
((((((𝜑 ∧ (𝑦 ⊆ 𝑋 ∧ 𝑧 ∈ (𝑋 ∖ 𝑦))) ∧ ∀𝑒 ∈ (ℝ ↑m 𝑦)∀𝑓 ∈ (ℝ ↑m 𝑦)∀𝑔 ∈ ((ℝ ↑m 𝑦) ↑m
ℕ)∀ℎ ∈
((ℝ ↑m 𝑦) ↑m ℕ)(X𝑘 ∈
𝑦 ((𝑒‘𝑘)[,)(𝑓‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑦 (((𝑔‘𝑗)‘𝑘)[,)((ℎ‘𝑗)‘𝑘)) → (𝑒(𝐿‘𝑦)𝑓) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑔‘𝑗)(𝐿‘𝑦)(ℎ‘𝑗)))))) ∧ 𝑎 ∈ (ℝ ↑m (𝑦 ∪ {𝑧}))) ∧ 𝑏 ∈ (ℝ ↑m (𝑦 ∪ {𝑧}))) ∧ 𝑐 ∈ ((ℝ ↑m (𝑦 ∪ {𝑧})) ↑m ℕ)) → 𝑧 ∈ (𝑋 ∖ 𝑦)) |
| 364 | 363 | ad5ant12 756 |
. . . . . . . . . . . . . . . . 17
⊢
(((((((((𝜑 ∧
(𝑦 ⊆ 𝑋 ∧ 𝑧 ∈ (𝑋 ∖ 𝑦))) ∧ ∀𝑒 ∈ (ℝ ↑m 𝑦)∀𝑓 ∈ (ℝ ↑m 𝑦)∀𝑔 ∈ ((ℝ ↑m 𝑦) ↑m
ℕ)∀ℎ ∈
((ℝ ↑m 𝑦) ↑m ℕ)(X𝑘 ∈
𝑦 ((𝑒‘𝑘)[,)(𝑓‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑦 (((𝑔‘𝑗)‘𝑘)[,)((ℎ‘𝑗)‘𝑘)) → (𝑒(𝐿‘𝑦)𝑓) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑔‘𝑗)(𝐿‘𝑦)(ℎ‘𝑗)))))) ∧ 𝑎 ∈ (ℝ ↑m (𝑦 ∪ {𝑧}))) ∧ 𝑏 ∈ (ℝ ↑m (𝑦 ∪ {𝑧}))) ∧ 𝑐 ∈ ((ℝ ↑m (𝑦 ∪ {𝑧})) ↑m ℕ)) ∧ 𝑑 ∈ ((ℝ
↑m (𝑦 ∪
{𝑧})) ↑m
ℕ)) ∧ X𝑘 ∈ (𝑦 ∪ {𝑧})((𝑎‘𝑘)[,)(𝑏‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ (𝑦 ∪ {𝑧})(((𝑐‘𝑗)‘𝑘)[,)((𝑑‘𝑗)‘𝑘))) ∧ ¬ 𝑦 = ∅) → 𝑧 ∈ (𝑋 ∖ 𝑦)) |
| 365 | | eqid 2737 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦 ∪ {𝑧}) = (𝑦 ∪ {𝑧}) |
| 366 | | elmapi 8889 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑎 ∈ (ℝ
↑m (𝑦 ∪
{𝑧})) → 𝑎:(𝑦 ∪ {𝑧})⟶ℝ) |
| 367 | 366 | adantr 480 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑎 ∈ (ℝ
↑m (𝑦 ∪
{𝑧})) ∧ 𝑏 ∈ (ℝ
↑m (𝑦 ∪
{𝑧}))) → 𝑎:(𝑦 ∪ {𝑧})⟶ℝ) |
| 368 | 367 | ad4ant23 753 |
. . . . . . . . . . . . . . . . . 18
⊢
((((((𝜑 ∧ (𝑦 ⊆ 𝑋 ∧ 𝑧 ∈ (𝑋 ∖ 𝑦))) ∧ ∀𝑒 ∈ (ℝ ↑m 𝑦)∀𝑓 ∈ (ℝ ↑m 𝑦)∀𝑔 ∈ ((ℝ ↑m 𝑦) ↑m
ℕ)∀ℎ ∈
((ℝ ↑m 𝑦) ↑m ℕ)(X𝑘 ∈
𝑦 ((𝑒‘𝑘)[,)(𝑓‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑦 (((𝑔‘𝑗)‘𝑘)[,)((ℎ‘𝑗)‘𝑘)) → (𝑒(𝐿‘𝑦)𝑓) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑔‘𝑗)(𝐿‘𝑦)(ℎ‘𝑗)))))) ∧ 𝑎 ∈ (ℝ ↑m (𝑦 ∪ {𝑧}))) ∧ 𝑏 ∈ (ℝ ↑m (𝑦 ∪ {𝑧}))) ∧ 𝑐 ∈ ((ℝ ↑m (𝑦 ∪ {𝑧})) ↑m ℕ)) → 𝑎:(𝑦 ∪ {𝑧})⟶ℝ) |
| 369 | 368 | ad3antrrr 730 |
. . . . . . . . . . . . . . . . 17
⊢
(((((((((𝜑 ∧
(𝑦 ⊆ 𝑋 ∧ 𝑧 ∈ (𝑋 ∖ 𝑦))) ∧ ∀𝑒 ∈ (ℝ ↑m 𝑦)∀𝑓 ∈ (ℝ ↑m 𝑦)∀𝑔 ∈ ((ℝ ↑m 𝑦) ↑m
ℕ)∀ℎ ∈
((ℝ ↑m 𝑦) ↑m ℕ)(X𝑘 ∈
𝑦 ((𝑒‘𝑘)[,)(𝑓‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑦 (((𝑔‘𝑗)‘𝑘)[,)((ℎ‘𝑗)‘𝑘)) → (𝑒(𝐿‘𝑦)𝑓) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑔‘𝑗)(𝐿‘𝑦)(ℎ‘𝑗)))))) ∧ 𝑎 ∈ (ℝ ↑m (𝑦 ∪ {𝑧}))) ∧ 𝑏 ∈ (ℝ ↑m (𝑦 ∪ {𝑧}))) ∧ 𝑐 ∈ ((ℝ ↑m (𝑦 ∪ {𝑧})) ↑m ℕ)) ∧ 𝑑 ∈ ((ℝ
↑m (𝑦 ∪
{𝑧})) ↑m
ℕ)) ∧ X𝑘 ∈ (𝑦 ∪ {𝑧})((𝑎‘𝑘)[,)(𝑏‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ (𝑦 ∪ {𝑧})(((𝑐‘𝑗)‘𝑘)[,)((𝑑‘𝑗)‘𝑘))) ∧ ¬ 𝑦 = ∅) → 𝑎:(𝑦 ∪ {𝑧})⟶ℝ) |
| 370 | | elmapi 8889 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑏 ∈ (ℝ
↑m (𝑦 ∪
{𝑧})) → 𝑏:(𝑦 ∪ {𝑧})⟶ℝ) |
| 371 | 370 | adantl 481 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑎 ∈ (ℝ
↑m (𝑦 ∪
{𝑧})) ∧ 𝑏 ∈ (ℝ
↑m (𝑦 ∪
{𝑧}))) → 𝑏:(𝑦 ∪ {𝑧})⟶ℝ) |
| 372 | 371 | ad4ant23 753 |
. . . . . . . . . . . . . . . . . 18
⊢
((((((𝜑 ∧ (𝑦 ⊆ 𝑋 ∧ 𝑧 ∈ (𝑋 ∖ 𝑦))) ∧ ∀𝑒 ∈ (ℝ ↑m 𝑦)∀𝑓 ∈ (ℝ ↑m 𝑦)∀𝑔 ∈ ((ℝ ↑m 𝑦) ↑m
ℕ)∀ℎ ∈
((ℝ ↑m 𝑦) ↑m ℕ)(X𝑘 ∈
𝑦 ((𝑒‘𝑘)[,)(𝑓‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑦 (((𝑔‘𝑗)‘𝑘)[,)((ℎ‘𝑗)‘𝑘)) → (𝑒(𝐿‘𝑦)𝑓) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑔‘𝑗)(𝐿‘𝑦)(ℎ‘𝑗)))))) ∧ 𝑎 ∈ (ℝ ↑m (𝑦 ∪ {𝑧}))) ∧ 𝑏 ∈ (ℝ ↑m (𝑦 ∪ {𝑧}))) ∧ 𝑐 ∈ ((ℝ ↑m (𝑦 ∪ {𝑧})) ↑m ℕ)) → 𝑏:(𝑦 ∪ {𝑧})⟶ℝ) |
| 373 | 372 | ad3antrrr 730 |
. . . . . . . . . . . . . . . . 17
⊢
(((((((((𝜑 ∧
(𝑦 ⊆ 𝑋 ∧ 𝑧 ∈ (𝑋 ∖ 𝑦))) ∧ ∀𝑒 ∈ (ℝ ↑m 𝑦)∀𝑓 ∈ (ℝ ↑m 𝑦)∀𝑔 ∈ ((ℝ ↑m 𝑦) ↑m
ℕ)∀ℎ ∈
((ℝ ↑m 𝑦) ↑m ℕ)(X𝑘 ∈
𝑦 ((𝑒‘𝑘)[,)(𝑓‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑦 (((𝑔‘𝑗)‘𝑘)[,)((ℎ‘𝑗)‘𝑘)) → (𝑒(𝐿‘𝑦)𝑓) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑔‘𝑗)(𝐿‘𝑦)(ℎ‘𝑗)))))) ∧ 𝑎 ∈ (ℝ ↑m (𝑦 ∪ {𝑧}))) ∧ 𝑏 ∈ (ℝ ↑m (𝑦 ∪ {𝑧}))) ∧ 𝑐 ∈ ((ℝ ↑m (𝑦 ∪ {𝑧})) ↑m ℕ)) ∧ 𝑑 ∈ ((ℝ
↑m (𝑦 ∪
{𝑧})) ↑m
ℕ)) ∧ X𝑘 ∈ (𝑦 ∪ {𝑧})((𝑎‘𝑘)[,)(𝑏‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ (𝑦 ∪ {𝑧})(((𝑐‘𝑗)‘𝑘)[,)((𝑑‘𝑗)‘𝑘))) ∧ ¬ 𝑦 = ∅) → 𝑏:(𝑦 ∪ {𝑧})⟶ℝ) |
| 374 | | elmapi 8889 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑐 ∈ ((ℝ
↑m (𝑦 ∪
{𝑧})) ↑m
ℕ) → 𝑐:ℕ⟶(ℝ ↑m
(𝑦 ∪ {𝑧}))) |
| 375 | 374 | adantl 481 |
. . . . . . . . . . . . . . . . . 18
⊢
((((((𝜑 ∧ (𝑦 ⊆ 𝑋 ∧ 𝑧 ∈ (𝑋 ∖ 𝑦))) ∧ ∀𝑒 ∈ (ℝ ↑m 𝑦)∀𝑓 ∈ (ℝ ↑m 𝑦)∀𝑔 ∈ ((ℝ ↑m 𝑦) ↑m
ℕ)∀ℎ ∈
((ℝ ↑m 𝑦) ↑m ℕ)(X𝑘 ∈
𝑦 ((𝑒‘𝑘)[,)(𝑓‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑦 (((𝑔‘𝑗)‘𝑘)[,)((ℎ‘𝑗)‘𝑘)) → (𝑒(𝐿‘𝑦)𝑓) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑔‘𝑗)(𝐿‘𝑦)(ℎ‘𝑗)))))) ∧ 𝑎 ∈ (ℝ ↑m (𝑦 ∪ {𝑧}))) ∧ 𝑏 ∈ (ℝ ↑m (𝑦 ∪ {𝑧}))) ∧ 𝑐 ∈ ((ℝ ↑m (𝑦 ∪ {𝑧})) ↑m ℕ)) → 𝑐:ℕ⟶(ℝ
↑m (𝑦 ∪
{𝑧}))) |
| 376 | 375 | ad3antrrr 730 |
. . . . . . . . . . . . . . . . 17
⊢
(((((((((𝜑 ∧
(𝑦 ⊆ 𝑋 ∧ 𝑧 ∈ (𝑋 ∖ 𝑦))) ∧ ∀𝑒 ∈ (ℝ ↑m 𝑦)∀𝑓 ∈ (ℝ ↑m 𝑦)∀𝑔 ∈ ((ℝ ↑m 𝑦) ↑m
ℕ)∀ℎ ∈
((ℝ ↑m 𝑦) ↑m ℕ)(X𝑘 ∈
𝑦 ((𝑒‘𝑘)[,)(𝑓‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑦 (((𝑔‘𝑗)‘𝑘)[,)((ℎ‘𝑗)‘𝑘)) → (𝑒(𝐿‘𝑦)𝑓) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑔‘𝑗)(𝐿‘𝑦)(ℎ‘𝑗)))))) ∧ 𝑎 ∈ (ℝ ↑m (𝑦 ∪ {𝑧}))) ∧ 𝑏 ∈ (ℝ ↑m (𝑦 ∪ {𝑧}))) ∧ 𝑐 ∈ ((ℝ ↑m (𝑦 ∪ {𝑧})) ↑m ℕ)) ∧ 𝑑 ∈ ((ℝ
↑m (𝑦 ∪
{𝑧})) ↑m
ℕ)) ∧ X𝑘 ∈ (𝑦 ∪ {𝑧})((𝑎‘𝑘)[,)(𝑏‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ (𝑦 ∪ {𝑧})(((𝑐‘𝑗)‘𝑘)[,)((𝑑‘𝑗)‘𝑘))) ∧ ¬ 𝑦 = ∅) → 𝑐:ℕ⟶(ℝ ↑m
(𝑦 ∪ {𝑧}))) |
| 377 | | elmapi 8889 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑑 ∈ ((ℝ
↑m (𝑦 ∪
{𝑧})) ↑m
ℕ) → 𝑑:ℕ⟶(ℝ ↑m
(𝑦 ∪ {𝑧}))) |
| 378 | 377 | ad2antrr 726 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑑 ∈ ((ℝ
↑m (𝑦 ∪
{𝑧})) ↑m
ℕ) ∧ X𝑘 ∈ (𝑦 ∪ {𝑧})((𝑎‘𝑘)[,)(𝑏‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ (𝑦 ∪ {𝑧})(((𝑐‘𝑗)‘𝑘)[,)((𝑑‘𝑗)‘𝑘))) ∧ ¬ 𝑦 = ∅) → 𝑑:ℕ⟶(ℝ ↑m
(𝑦 ∪ {𝑧}))) |
| 379 | 378 | adantlll 718 |
. . . . . . . . . . . . . . . . 17
⊢
(((((((((𝜑 ∧
(𝑦 ⊆ 𝑋 ∧ 𝑧 ∈ (𝑋 ∖ 𝑦))) ∧ ∀𝑒 ∈ (ℝ ↑m 𝑦)∀𝑓 ∈ (ℝ ↑m 𝑦)∀𝑔 ∈ ((ℝ ↑m 𝑦) ↑m
ℕ)∀ℎ ∈
((ℝ ↑m 𝑦) ↑m ℕ)(X𝑘 ∈
𝑦 ((𝑒‘𝑘)[,)(𝑓‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑦 (((𝑔‘𝑗)‘𝑘)[,)((ℎ‘𝑗)‘𝑘)) → (𝑒(𝐿‘𝑦)𝑓) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑔‘𝑗)(𝐿‘𝑦)(ℎ‘𝑗)))))) ∧ 𝑎 ∈ (ℝ ↑m (𝑦 ∪ {𝑧}))) ∧ 𝑏 ∈ (ℝ ↑m (𝑦 ∪ {𝑧}))) ∧ 𝑐 ∈ ((ℝ ↑m (𝑦 ∪ {𝑧})) ↑m ℕ)) ∧ 𝑑 ∈ ((ℝ
↑m (𝑦 ∪
{𝑧})) ↑m
ℕ)) ∧ X𝑘 ∈ (𝑦 ∪ {𝑧})((𝑎‘𝑘)[,)(𝑏‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ (𝑦 ∪ {𝑧})(((𝑐‘𝑗)‘𝑘)[,)((𝑑‘𝑗)‘𝑘))) ∧ ¬ 𝑦 = ∅) → 𝑑:ℕ⟶(ℝ ↑m
(𝑦 ∪ {𝑧}))) |
| 380 | | fveq2 6906 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑘 = 𝑙 → (𝑒‘𝑘) = (𝑒‘𝑙)) |
| 381 | | fveq2 6906 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑘 = 𝑙 → (𝑓‘𝑘) = (𝑓‘𝑙)) |
| 382 | 380, 381 | oveq12d 7449 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑘 = 𝑙 → ((𝑒‘𝑘)[,)(𝑓‘𝑘)) = ((𝑒‘𝑙)[,)(𝑓‘𝑙))) |
| 383 | 382 | cbvixpv 8955 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ X𝑘 ∈
𝑦 ((𝑒‘𝑘)[,)(𝑓‘𝑘)) = X𝑙 ∈ 𝑦 ((𝑒‘𝑙)[,)(𝑓‘𝑙)) |
| 384 | 383 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (ℎ = 𝑜 → X𝑘 ∈ 𝑦 ((𝑒‘𝑘)[,)(𝑓‘𝑘)) = X𝑙 ∈ 𝑦 ((𝑒‘𝑙)[,)(𝑓‘𝑙))) |
| 385 | | fveq2 6906 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝑗 = 𝑖 → (𝑔‘𝑗) = (𝑔‘𝑖)) |
| 386 | 385 | fveq1d 6908 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑗 = 𝑖 → ((𝑔‘𝑗)‘𝑘) = ((𝑔‘𝑖)‘𝑘)) |
| 387 | | fveq2 6906 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝑗 = 𝑖 → (ℎ‘𝑗) = (ℎ‘𝑖)) |
| 388 | 387 | fveq1d 6908 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑗 = 𝑖 → ((ℎ‘𝑗)‘𝑘) = ((ℎ‘𝑖)‘𝑘)) |
| 389 | 386, 388 | oveq12d 7449 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑗 = 𝑖 → (((𝑔‘𝑗)‘𝑘)[,)((ℎ‘𝑗)‘𝑘)) = (((𝑔‘𝑖)‘𝑘)[,)((ℎ‘𝑖)‘𝑘))) |
| 390 | 389 | ixpeq2dv 8953 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑗 = 𝑖 → X𝑘 ∈ 𝑦 (((𝑔‘𝑗)‘𝑘)[,)((ℎ‘𝑗)‘𝑘)) = X𝑘 ∈ 𝑦 (((𝑔‘𝑖)‘𝑘)[,)((ℎ‘𝑖)‘𝑘))) |
| 391 | 390 | cbviunv 5040 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑦 (((𝑔‘𝑗)‘𝑘)[,)((ℎ‘𝑗)‘𝑘)) = ∪
𝑖 ∈ ℕ X𝑘 ∈
𝑦 (((𝑔‘𝑖)‘𝑘)[,)((ℎ‘𝑖)‘𝑘)) |
| 392 | 391 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (ℎ = 𝑜 → ∪
𝑗 ∈ ℕ X𝑘 ∈
𝑦 (((𝑔‘𝑗)‘𝑘)[,)((ℎ‘𝑗)‘𝑘)) = ∪
𝑖 ∈ ℕ X𝑘 ∈
𝑦 (((𝑔‘𝑖)‘𝑘)[,)((ℎ‘𝑖)‘𝑘))) |
| 393 | | fveq2 6906 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (𝑘 = 𝑙 → ((𝑔‘𝑖)‘𝑘) = ((𝑔‘𝑖)‘𝑙)) |
| 394 | | fveq2 6906 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (𝑘 = 𝑙 → ((ℎ‘𝑖)‘𝑘) = ((ℎ‘𝑖)‘𝑙)) |
| 395 | 393, 394 | oveq12d 7449 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝑘 = 𝑙 → (((𝑔‘𝑖)‘𝑘)[,)((ℎ‘𝑖)‘𝑘)) = (((𝑔‘𝑖)‘𝑙)[,)((ℎ‘𝑖)‘𝑙))) |
| 396 | 395 | cbvixpv 8955 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ X𝑘 ∈
𝑦 (((𝑔‘𝑖)‘𝑘)[,)((ℎ‘𝑖)‘𝑘)) = X𝑙 ∈ 𝑦 (((𝑔‘𝑖)‘𝑙)[,)((ℎ‘𝑖)‘𝑙)) |
| 397 | 396 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (ℎ = 𝑜 → X𝑘 ∈ 𝑦 (((𝑔‘𝑖)‘𝑘)[,)((ℎ‘𝑖)‘𝑘)) = X𝑙 ∈ 𝑦 (((𝑔‘𝑖)‘𝑙)[,)((ℎ‘𝑖)‘𝑙))) |
| 398 | | fveq1 6905 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (ℎ = 𝑜 → (ℎ‘𝑖) = (𝑜‘𝑖)) |
| 399 | 398 | fveq1d 6908 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (ℎ = 𝑜 → ((ℎ‘𝑖)‘𝑙) = ((𝑜‘𝑖)‘𝑙)) |
| 400 | 399 | oveq2d 7447 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (ℎ = 𝑜 → (((𝑔‘𝑖)‘𝑙)[,)((ℎ‘𝑖)‘𝑙)) = (((𝑔‘𝑖)‘𝑙)[,)((𝑜‘𝑖)‘𝑙))) |
| 401 | 400 | ixpeq2dv 8953 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (ℎ = 𝑜 → X𝑙 ∈ 𝑦 (((𝑔‘𝑖)‘𝑙)[,)((ℎ‘𝑖)‘𝑙)) = X𝑙 ∈ 𝑦 (((𝑔‘𝑖)‘𝑙)[,)((𝑜‘𝑖)‘𝑙))) |
| 402 | 397, 401 | eqtrd 2777 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (ℎ = 𝑜 → X𝑘 ∈ 𝑦 (((𝑔‘𝑖)‘𝑘)[,)((ℎ‘𝑖)‘𝑘)) = X𝑙 ∈ 𝑦 (((𝑔‘𝑖)‘𝑙)[,)((𝑜‘𝑖)‘𝑙))) |
| 403 | 402 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((ℎ = 𝑜 ∧ 𝑖 ∈ ℕ) → X𝑘 ∈
𝑦 (((𝑔‘𝑖)‘𝑘)[,)((ℎ‘𝑖)‘𝑘)) = X𝑙 ∈ 𝑦 (((𝑔‘𝑖)‘𝑙)[,)((𝑜‘𝑖)‘𝑙))) |
| 404 | 403 | iuneq2dv 5016 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (ℎ = 𝑜 → ∪
𝑖 ∈ ℕ X𝑘 ∈
𝑦 (((𝑔‘𝑖)‘𝑘)[,)((ℎ‘𝑖)‘𝑘)) = ∪
𝑖 ∈ ℕ X𝑙 ∈
𝑦 (((𝑔‘𝑖)‘𝑙)[,)((𝑜‘𝑖)‘𝑙))) |
| 405 | 392, 404 | eqtrd 2777 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (ℎ = 𝑜 → ∪
𝑗 ∈ ℕ X𝑘 ∈
𝑦 (((𝑔‘𝑗)‘𝑘)[,)((ℎ‘𝑗)‘𝑘)) = ∪
𝑖 ∈ ℕ X𝑙 ∈
𝑦 (((𝑔‘𝑖)‘𝑙)[,)((𝑜‘𝑖)‘𝑙))) |
| 406 | 384, 405 | sseq12d 4017 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (ℎ = 𝑜 → (X𝑘 ∈ 𝑦 ((𝑒‘𝑘)[,)(𝑓‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑦 (((𝑔‘𝑗)‘𝑘)[,)((ℎ‘𝑗)‘𝑘)) ↔ X𝑙 ∈ 𝑦 ((𝑒‘𝑙)[,)(𝑓‘𝑙)) ⊆ ∪ 𝑖 ∈ ℕ X𝑙 ∈ 𝑦 (((𝑔‘𝑖)‘𝑙)[,)((𝑜‘𝑖)‘𝑙)))) |
| 407 | 385, 387 | oveq12d 7449 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑗 = 𝑖 → ((𝑔‘𝑗)(𝐿‘𝑦)(ℎ‘𝑗)) = ((𝑔‘𝑖)(𝐿‘𝑦)(ℎ‘𝑖))) |
| 408 | 407 | cbvmptv 5255 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑗 ∈ ℕ ↦ ((𝑔‘𝑗)(𝐿‘𝑦)(ℎ‘𝑗))) = (𝑖 ∈ ℕ ↦ ((𝑔‘𝑖)(𝐿‘𝑦)(ℎ‘𝑖))) |
| 409 | 408 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (ℎ = 𝑜 → (𝑗 ∈ ℕ ↦ ((𝑔‘𝑗)(𝐿‘𝑦)(ℎ‘𝑗))) = (𝑖 ∈ ℕ ↦ ((𝑔‘𝑖)(𝐿‘𝑦)(ℎ‘𝑖)))) |
| 410 | 398 | oveq2d 7447 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (ℎ = 𝑜 → ((𝑔‘𝑖)(𝐿‘𝑦)(ℎ‘𝑖)) = ((𝑔‘𝑖)(𝐿‘𝑦)(𝑜‘𝑖))) |
| 411 | 410 | mpteq2dv 5244 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (ℎ = 𝑜 → (𝑖 ∈ ℕ ↦ ((𝑔‘𝑖)(𝐿‘𝑦)(ℎ‘𝑖))) = (𝑖 ∈ ℕ ↦ ((𝑔‘𝑖)(𝐿‘𝑦)(𝑜‘𝑖)))) |
| 412 | 409, 411 | eqtrd 2777 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (ℎ = 𝑜 → (𝑗 ∈ ℕ ↦ ((𝑔‘𝑗)(𝐿‘𝑦)(ℎ‘𝑗))) = (𝑖 ∈ ℕ ↦ ((𝑔‘𝑖)(𝐿‘𝑦)(𝑜‘𝑖)))) |
| 413 | 412 | fveq2d 6910 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (ℎ = 𝑜 →
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑔‘𝑗)(𝐿‘𝑦)(ℎ‘𝑗)))) =
(Σ^‘(𝑖 ∈ ℕ ↦ ((𝑔‘𝑖)(𝐿‘𝑦)(𝑜‘𝑖))))) |
| 414 | 413 | breq2d 5155 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (ℎ = 𝑜 → ((𝑒(𝐿‘𝑦)𝑓) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑔‘𝑗)(𝐿‘𝑦)(ℎ‘𝑗)))) ↔ (𝑒(𝐿‘𝑦)𝑓) ≤
(Σ^‘(𝑖 ∈ ℕ ↦ ((𝑔‘𝑖)(𝐿‘𝑦)(𝑜‘𝑖)))))) |
| 415 | 406, 414 | imbi12d 344 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (ℎ = 𝑜 → ((X𝑘 ∈ 𝑦 ((𝑒‘𝑘)[,)(𝑓‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑦 (((𝑔‘𝑗)‘𝑘)[,)((ℎ‘𝑗)‘𝑘)) → (𝑒(𝐿‘𝑦)𝑓) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑔‘𝑗)(𝐿‘𝑦)(ℎ‘𝑗))))) ↔ (X𝑙 ∈ 𝑦 ((𝑒‘𝑙)[,)(𝑓‘𝑙)) ⊆ ∪ 𝑖 ∈ ℕ X𝑙 ∈ 𝑦 (((𝑔‘𝑖)‘𝑙)[,)((𝑜‘𝑖)‘𝑙)) → (𝑒(𝐿‘𝑦)𝑓) ≤
(Σ^‘(𝑖 ∈ ℕ ↦ ((𝑔‘𝑖)(𝐿‘𝑦)(𝑜‘𝑖))))))) |
| 416 | 415 | cbvralvw 3237 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
(∀ℎ ∈
((ℝ ↑m 𝑦) ↑m ℕ)(X𝑘 ∈
𝑦 ((𝑒‘𝑘)[,)(𝑓‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑦 (((𝑔‘𝑗)‘𝑘)[,)((ℎ‘𝑗)‘𝑘)) → (𝑒(𝐿‘𝑦)𝑓) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑔‘𝑗)(𝐿‘𝑦)(ℎ‘𝑗))))) ↔ ∀𝑜 ∈ ((ℝ ↑m 𝑦) ↑m
ℕ)(X𝑙 ∈ 𝑦 ((𝑒‘𝑙)[,)(𝑓‘𝑙)) ⊆ ∪ 𝑖 ∈ ℕ X𝑙 ∈ 𝑦 (((𝑔‘𝑖)‘𝑙)[,)((𝑜‘𝑖)‘𝑙)) → (𝑒(𝐿‘𝑦)𝑓) ≤
(Σ^‘(𝑖 ∈ ℕ ↦ ((𝑔‘𝑖)(𝐿‘𝑦)(𝑜‘𝑖)))))) |
| 417 | 416 | ralbii 3093 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(∀𝑔 ∈
((ℝ ↑m 𝑦) ↑m ℕ)∀ℎ ∈ ((ℝ
↑m 𝑦)
↑m ℕ)(X𝑘 ∈ 𝑦 ((𝑒‘𝑘)[,)(𝑓‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑦 (((𝑔‘𝑗)‘𝑘)[,)((ℎ‘𝑗)‘𝑘)) → (𝑒(𝐿‘𝑦)𝑓) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑔‘𝑗)(𝐿‘𝑦)(ℎ‘𝑗))))) ↔ ∀𝑔 ∈ ((ℝ ↑m 𝑦) ↑m
ℕ)∀𝑜 ∈
((ℝ ↑m 𝑦) ↑m ℕ)(X𝑙 ∈
𝑦 ((𝑒‘𝑙)[,)(𝑓‘𝑙)) ⊆ ∪ 𝑖 ∈ ℕ X𝑙 ∈ 𝑦 (((𝑔‘𝑖)‘𝑙)[,)((𝑜‘𝑖)‘𝑙)) → (𝑒(𝐿‘𝑦)𝑓) ≤
(Σ^‘(𝑖 ∈ ℕ ↦ ((𝑔‘𝑖)(𝐿‘𝑦)(𝑜‘𝑖)))))) |
| 418 | 417 | ralbii 3093 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(∀𝑓 ∈
(ℝ ↑m 𝑦)∀𝑔 ∈ ((ℝ ↑m 𝑦) ↑m
ℕ)∀ℎ ∈
((ℝ ↑m 𝑦) ↑m ℕ)(X𝑘 ∈
𝑦 ((𝑒‘𝑘)[,)(𝑓‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑦 (((𝑔‘𝑗)‘𝑘)[,)((ℎ‘𝑗)‘𝑘)) → (𝑒(𝐿‘𝑦)𝑓) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑔‘𝑗)(𝐿‘𝑦)(ℎ‘𝑗))))) ↔ ∀𝑓 ∈ (ℝ ↑m 𝑦)∀𝑔 ∈ ((ℝ ↑m 𝑦) ↑m
ℕ)∀𝑜 ∈
((ℝ ↑m 𝑦) ↑m ℕ)(X𝑙 ∈
𝑦 ((𝑒‘𝑙)[,)(𝑓‘𝑙)) ⊆ ∪ 𝑖 ∈ ℕ X𝑙 ∈ 𝑦 (((𝑔‘𝑖)‘𝑙)[,)((𝑜‘𝑖)‘𝑙)) → (𝑒(𝐿‘𝑦)𝑓) ≤
(Σ^‘(𝑖 ∈ ℕ ↦ ((𝑔‘𝑖)(𝐿‘𝑦)(𝑜‘𝑖)))))) |
| 419 | 418 | ralbii 3093 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(∀𝑒 ∈
(ℝ ↑m 𝑦)∀𝑓 ∈ (ℝ ↑m 𝑦)∀𝑔 ∈ ((ℝ ↑m 𝑦) ↑m
ℕ)∀ℎ ∈
((ℝ ↑m 𝑦) ↑m ℕ)(X𝑘 ∈
𝑦 ((𝑒‘𝑘)[,)(𝑓‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑦 (((𝑔‘𝑗)‘𝑘)[,)((ℎ‘𝑗)‘𝑘)) → (𝑒(𝐿‘𝑦)𝑓) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑔‘𝑗)(𝐿‘𝑦)(ℎ‘𝑗))))) ↔ ∀𝑒 ∈ (ℝ ↑m 𝑦)∀𝑓 ∈ (ℝ ↑m 𝑦)∀𝑔 ∈ ((ℝ ↑m 𝑦) ↑m
ℕ)∀𝑜 ∈
((ℝ ↑m 𝑦) ↑m ℕ)(X𝑙 ∈
𝑦 ((𝑒‘𝑙)[,)(𝑓‘𝑙)) ⊆ ∪ 𝑖 ∈ ℕ X𝑙 ∈ 𝑦 (((𝑔‘𝑖)‘𝑙)[,)((𝑜‘𝑖)‘𝑙)) → (𝑒(𝐿‘𝑦)𝑓) ≤
(Σ^‘(𝑖 ∈ ℕ ↦ ((𝑔‘𝑖)(𝐿‘𝑦)(𝑜‘𝑖)))))) |
| 420 | 419 | biimpi 216 |
. . . . . . . . . . . . . . . . . . 19
⊢
(∀𝑒 ∈
(ℝ ↑m 𝑦)∀𝑓 ∈ (ℝ ↑m 𝑦)∀𝑔 ∈ ((ℝ ↑m 𝑦) ↑m
ℕ)∀ℎ ∈
((ℝ ↑m 𝑦) ↑m ℕ)(X𝑘 ∈
𝑦 ((𝑒‘𝑘)[,)(𝑓‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑦 (((𝑔‘𝑗)‘𝑘)[,)((ℎ‘𝑗)‘𝑘)) → (𝑒(𝐿‘𝑦)𝑓) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑔‘𝑗)(𝐿‘𝑦)(ℎ‘𝑗))))) → ∀𝑒 ∈ (ℝ ↑m 𝑦)∀𝑓 ∈ (ℝ ↑m 𝑦)∀𝑔 ∈ ((ℝ ↑m 𝑦) ↑m
ℕ)∀𝑜 ∈
((ℝ ↑m 𝑦) ↑m ℕ)(X𝑙 ∈
𝑦 ((𝑒‘𝑙)[,)(𝑓‘𝑙)) ⊆ ∪ 𝑖 ∈ ℕ X𝑙 ∈ 𝑦 (((𝑔‘𝑖)‘𝑙)[,)((𝑜‘𝑖)‘𝑙)) → (𝑒(𝐿‘𝑦)𝑓) ≤
(Σ^‘(𝑖 ∈ ℕ ↦ ((𝑔‘𝑖)(𝐿‘𝑦)(𝑜‘𝑖)))))) |
| 421 | 420 | adantl 481 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ (𝑦 ⊆ 𝑋 ∧ 𝑧 ∈ (𝑋 ∖ 𝑦))) ∧ ∀𝑒 ∈ (ℝ ↑m 𝑦)∀𝑓 ∈ (ℝ ↑m 𝑦)∀𝑔 ∈ ((ℝ ↑m 𝑦) ↑m
ℕ)∀ℎ ∈
((ℝ ↑m 𝑦) ↑m ℕ)(X𝑘 ∈
𝑦 ((𝑒‘𝑘)[,)(𝑓‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑦 (((𝑔‘𝑗)‘𝑘)[,)((ℎ‘𝑗)‘𝑘)) → (𝑒(𝐿‘𝑦)𝑓) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑔‘𝑗)(𝐿‘𝑦)(ℎ‘𝑗)))))) → ∀𝑒 ∈ (ℝ ↑m 𝑦)∀𝑓 ∈ (ℝ ↑m 𝑦)∀𝑔 ∈ ((ℝ ↑m 𝑦) ↑m
ℕ)∀𝑜 ∈
((ℝ ↑m 𝑦) ↑m ℕ)(X𝑙 ∈
𝑦 ((𝑒‘𝑙)[,)(𝑓‘𝑙)) ⊆ ∪ 𝑖 ∈ ℕ X𝑙 ∈ 𝑦 (((𝑔‘𝑖)‘𝑙)[,)((𝑜‘𝑖)‘𝑙)) → (𝑒(𝐿‘𝑦)𝑓) ≤
(Σ^‘(𝑖 ∈ ℕ ↦ ((𝑔‘𝑖)(𝐿‘𝑦)(𝑜‘𝑖)))))) |
| 422 | 421 | ad6antr 736 |
. . . . . . . . . . . . . . . . 17
⊢
(((((((((𝜑 ∧
(𝑦 ⊆ 𝑋 ∧ 𝑧 ∈ (𝑋 ∖ 𝑦))) ∧ ∀𝑒 ∈ (ℝ ↑m 𝑦)∀𝑓 ∈ (ℝ ↑m 𝑦)∀𝑔 ∈ ((ℝ ↑m 𝑦) ↑m
ℕ)∀ℎ ∈
((ℝ ↑m 𝑦) ↑m ℕ)(X𝑘 ∈
𝑦 ((𝑒‘𝑘)[,)(𝑓‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑦 (((𝑔‘𝑗)‘𝑘)[,)((ℎ‘𝑗)‘𝑘)) → (𝑒(𝐿‘𝑦)𝑓) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑔‘𝑗)(𝐿‘𝑦)(ℎ‘𝑗)))))) ∧ 𝑎 ∈ (ℝ ↑m (𝑦 ∪ {𝑧}))) ∧ 𝑏 ∈ (ℝ ↑m (𝑦 ∪ {𝑧}))) ∧ 𝑐 ∈ ((ℝ ↑m (𝑦 ∪ {𝑧})) ↑m ℕ)) ∧ 𝑑 ∈ ((ℝ
↑m (𝑦 ∪
{𝑧})) ↑m
ℕ)) ∧ X𝑘 ∈ (𝑦 ∪ {𝑧})((𝑎‘𝑘)[,)(𝑏‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ (𝑦 ∪ {𝑧})(((𝑐‘𝑗)‘𝑘)[,)((𝑑‘𝑗)‘𝑘))) ∧ ¬ 𝑦 = ∅) → ∀𝑒 ∈ (ℝ ↑m 𝑦)∀𝑓 ∈ (ℝ ↑m 𝑦)∀𝑔 ∈ ((ℝ ↑m 𝑦) ↑m
ℕ)∀𝑜 ∈
((ℝ ↑m 𝑦) ↑m ℕ)(X𝑙 ∈
𝑦 ((𝑒‘𝑙)[,)(𝑓‘𝑙)) ⊆ ∪ 𝑖 ∈ ℕ X𝑙 ∈ 𝑦 (((𝑔‘𝑖)‘𝑙)[,)((𝑜‘𝑖)‘𝑙)) → (𝑒(𝐿‘𝑦)𝑓) ≤
(Σ^‘(𝑖 ∈ ℕ ↦ ((𝑔‘𝑖)(𝐿‘𝑦)(𝑜‘𝑖)))))) |
| 423 | 323 | cbvixpv 8955 |
. . . . . . . . . . . . . . . . . . . 20
⊢ X𝑘 ∈
(𝑦 ∪ {𝑧})((𝑎‘𝑘)[,)(𝑏‘𝑘)) = X𝑙 ∈ (𝑦 ∪ {𝑧})((𝑎‘𝑙)[,)(𝑏‘𝑙)) |
| 424 | 336 | cbvixpv 8955 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ X𝑘 ∈
(𝑦 ∪ {𝑧})(((𝑐‘𝑗)‘𝑘)[,)((𝑑‘𝑗)‘𝑘)) = X𝑙 ∈ (𝑦 ∪ {𝑧})(((𝑐‘𝑗)‘𝑙)[,)((𝑑‘𝑗)‘𝑙)) |
| 425 | 424 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑗 = 𝑖 → X𝑘 ∈ (𝑦 ∪ {𝑧})(((𝑐‘𝑗)‘𝑘)[,)((𝑑‘𝑗)‘𝑘)) = X𝑙 ∈ (𝑦 ∪ {𝑧})(((𝑐‘𝑗)‘𝑙)[,)((𝑑‘𝑗)‘𝑙))) |
| 426 | | fveq2 6906 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑗 = 𝑖 → (𝑐‘𝑗) = (𝑐‘𝑖)) |
| 427 | 426 | fveq1d 6908 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑗 = 𝑖 → ((𝑐‘𝑗)‘𝑙) = ((𝑐‘𝑖)‘𝑙)) |
| 428 | | fveq2 6906 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑗 = 𝑖 → (𝑑‘𝑗) = (𝑑‘𝑖)) |
| 429 | 428 | fveq1d 6908 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑗 = 𝑖 → ((𝑑‘𝑗)‘𝑙) = ((𝑑‘𝑖)‘𝑙)) |
| 430 | 427, 429 | oveq12d 7449 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑗 = 𝑖 → (((𝑐‘𝑗)‘𝑙)[,)((𝑑‘𝑗)‘𝑙)) = (((𝑐‘𝑖)‘𝑙)[,)((𝑑‘𝑖)‘𝑙))) |
| 431 | 430 | ixpeq2dv 8953 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑗 = 𝑖 → X𝑙 ∈ (𝑦 ∪ {𝑧})(((𝑐‘𝑗)‘𝑙)[,)((𝑑‘𝑗)‘𝑙)) = X𝑙 ∈ (𝑦 ∪ {𝑧})(((𝑐‘𝑖)‘𝑙)[,)((𝑑‘𝑖)‘𝑙))) |
| 432 | 425, 431 | eqtrd 2777 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑗 = 𝑖 → X𝑘 ∈ (𝑦 ∪ {𝑧})(((𝑐‘𝑗)‘𝑘)[,)((𝑑‘𝑗)‘𝑘)) = X𝑙 ∈ (𝑦 ∪ {𝑧})(((𝑐‘𝑖)‘𝑙)[,)((𝑑‘𝑖)‘𝑙))) |
| 433 | 432 | cbviunv 5040 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ∪ 𝑗 ∈ ℕ X𝑘 ∈ (𝑦 ∪ {𝑧})(((𝑐‘𝑗)‘𝑘)[,)((𝑑‘𝑗)‘𝑘)) = ∪
𝑖 ∈ ℕ X𝑙 ∈
(𝑦 ∪ {𝑧})(((𝑐‘𝑖)‘𝑙)[,)((𝑑‘𝑖)‘𝑙)) |
| 434 | 423, 433 | sseq12i 4014 |
. . . . . . . . . . . . . . . . . . 19
⊢ (X𝑘 ∈
(𝑦 ∪ {𝑧})((𝑎‘𝑘)[,)(𝑏‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ (𝑦 ∪ {𝑧})(((𝑐‘𝑗)‘𝑘)[,)((𝑑‘𝑗)‘𝑘)) ↔ X𝑙 ∈ (𝑦 ∪ {𝑧})((𝑎‘𝑙)[,)(𝑏‘𝑙)) ⊆ ∪ 𝑖 ∈ ℕ X𝑙 ∈ (𝑦 ∪ {𝑧})(((𝑐‘𝑖)‘𝑙)[,)((𝑑‘𝑖)‘𝑙))) |
| 435 | 434 | biimpi 216 |
. . . . . . . . . . . . . . . . . 18
⊢ (X𝑘 ∈
(𝑦 ∪ {𝑧})((𝑎‘𝑘)[,)(𝑏‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ (𝑦 ∪ {𝑧})(((𝑐‘𝑗)‘𝑘)[,)((𝑑‘𝑗)‘𝑘)) → X𝑙 ∈ (𝑦 ∪ {𝑧})((𝑎‘𝑙)[,)(𝑏‘𝑙)) ⊆ ∪ 𝑖 ∈ ℕ X𝑙 ∈ (𝑦 ∪ {𝑧})(((𝑐‘𝑖)‘𝑙)[,)((𝑑‘𝑖)‘𝑙))) |
| 436 | 435 | ad2antlr 727 |
. . . . . . . . . . . . . . . . 17
⊢
(((((((((𝜑 ∧
(𝑦 ⊆ 𝑋 ∧ 𝑧 ∈ (𝑋 ∖ 𝑦))) ∧ ∀𝑒 ∈ (ℝ ↑m 𝑦)∀𝑓 ∈ (ℝ ↑m 𝑦)∀𝑔 ∈ ((ℝ ↑m 𝑦) ↑m
ℕ)∀ℎ ∈
((ℝ ↑m 𝑦) ↑m ℕ)(X𝑘 ∈
𝑦 ((𝑒‘𝑘)[,)(𝑓‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑦 (((𝑔‘𝑗)‘𝑘)[,)((ℎ‘𝑗)‘𝑘)) → (𝑒(𝐿‘𝑦)𝑓) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑔‘𝑗)(𝐿‘𝑦)(ℎ‘𝑗)))))) ∧ 𝑎 ∈ (ℝ ↑m (𝑦 ∪ {𝑧}))) ∧ 𝑏 ∈ (ℝ ↑m (𝑦 ∪ {𝑧}))) ∧ 𝑐 ∈ ((ℝ ↑m (𝑦 ∪ {𝑧})) ↑m ℕ)) ∧ 𝑑 ∈ ((ℝ
↑m (𝑦 ∪
{𝑧})) ↑m
ℕ)) ∧ X𝑘 ∈ (𝑦 ∪ {𝑧})((𝑎‘𝑘)[,)(𝑏‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ (𝑦 ∪ {𝑧})(((𝑐‘𝑗)‘𝑘)[,)((𝑑‘𝑗)‘𝑘))) ∧ ¬ 𝑦 = ∅) → X𝑙 ∈
(𝑦 ∪ {𝑧})((𝑎‘𝑙)[,)(𝑏‘𝑙)) ⊆ ∪ 𝑖 ∈ ℕ X𝑙 ∈ (𝑦 ∪ {𝑧})(((𝑐‘𝑖)‘𝑙)[,)((𝑑‘𝑖)‘𝑙))) |
| 437 | | neqne 2948 |
. . . . . . . . . . . . . . . . . 18
⊢ (¬
𝑦 = ∅ → 𝑦 ≠ ∅) |
| 438 | 437 | adantl 481 |
. . . . . . . . . . . . . . . . 17
⊢
(((((((((𝜑 ∧
(𝑦 ⊆ 𝑋 ∧ 𝑧 ∈ (𝑋 ∖ 𝑦))) ∧ ∀𝑒 ∈ (ℝ ↑m 𝑦)∀𝑓 ∈ (ℝ ↑m 𝑦)∀𝑔 ∈ ((ℝ ↑m 𝑦) ↑m
ℕ)∀ℎ ∈
((ℝ ↑m 𝑦) ↑m ℕ)(X𝑘 ∈
𝑦 ((𝑒‘𝑘)[,)(𝑓‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑦 (((𝑔‘𝑗)‘𝑘)[,)((ℎ‘𝑗)‘𝑘)) → (𝑒(𝐿‘𝑦)𝑓) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑔‘𝑗)(𝐿‘𝑦)(ℎ‘𝑗)))))) ∧ 𝑎 ∈ (ℝ ↑m (𝑦 ∪ {𝑧}))) ∧ 𝑏 ∈ (ℝ ↑m (𝑦 ∪ {𝑧}))) ∧ 𝑐 ∈ ((ℝ ↑m (𝑦 ∪ {𝑧})) ↑m ℕ)) ∧ 𝑑 ∈ ((ℝ
↑m (𝑦 ∪
{𝑧})) ↑m
ℕ)) ∧ X𝑘 ∈ (𝑦 ∪ {𝑧})((𝑎‘𝑘)[,)(𝑏‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ (𝑦 ∪ {𝑧})(((𝑐‘𝑗)‘𝑘)[,)((𝑑‘𝑗)‘𝑘))) ∧ ¬ 𝑦 = ∅) → 𝑦 ≠ ∅) |
| 439 | 307, 358,
361, 364, 365, 369, 373, 376, 379, 422, 436, 438 | hoidmvlelem5 46614 |
. . . . . . . . . . . . . . . 16
⊢
(((((((((𝜑 ∧
(𝑦 ⊆ 𝑋 ∧ 𝑧 ∈ (𝑋 ∖ 𝑦))) ∧ ∀𝑒 ∈ (ℝ ↑m 𝑦)∀𝑓 ∈ (ℝ ↑m 𝑦)∀𝑔 ∈ ((ℝ ↑m 𝑦) ↑m
ℕ)∀ℎ ∈
((ℝ ↑m 𝑦) ↑m ℕ)(X𝑘 ∈
𝑦 ((𝑒‘𝑘)[,)(𝑓‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑦 (((𝑔‘𝑗)‘𝑘)[,)((ℎ‘𝑗)‘𝑘)) → (𝑒(𝐿‘𝑦)𝑓) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑔‘𝑗)(𝐿‘𝑦)(ℎ‘𝑗)))))) ∧ 𝑎 ∈ (ℝ ↑m (𝑦 ∪ {𝑧}))) ∧ 𝑏 ∈ (ℝ ↑m (𝑦 ∪ {𝑧}))) ∧ 𝑐 ∈ ((ℝ ↑m (𝑦 ∪ {𝑧})) ↑m ℕ)) ∧ 𝑑 ∈ ((ℝ
↑m (𝑦 ∪
{𝑧})) ↑m
ℕ)) ∧ X𝑘 ∈ (𝑦 ∪ {𝑧})((𝑎‘𝑘)[,)(𝑏‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ (𝑦 ∪ {𝑧})(((𝑐‘𝑗)‘𝑘)[,)((𝑑‘𝑗)‘𝑘))) ∧ ¬ 𝑦 = ∅) → (𝑎(𝐿‘(𝑦 ∪ {𝑧}))𝑏) ≤
(Σ^‘(𝑖 ∈ ℕ ↦ ((𝑐‘𝑖)(𝐿‘(𝑦 ∪ {𝑧}))(𝑑‘𝑖))))) |
| 440 | 273, 275 | oveq12d 7449 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑖 = 𝑗 → ((𝑐‘𝑖)(𝐿‘(𝑦 ∪ {𝑧}))(𝑑‘𝑖)) = ((𝑐‘𝑗)(𝐿‘(𝑦 ∪ {𝑧}))(𝑑‘𝑗))) |
| 441 | 440 | cbvmptv 5255 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑖 ∈ ℕ ↦ ((𝑐‘𝑖)(𝐿‘(𝑦 ∪ {𝑧}))(𝑑‘𝑖))) = (𝑗 ∈ ℕ ↦ ((𝑐‘𝑗)(𝐿‘(𝑦 ∪ {𝑧}))(𝑑‘𝑗))) |
| 442 | 441 | fveq2i 6909 |
. . . . . . . . . . . . . . . . 17
⊢
(Σ^‘(𝑖 ∈ ℕ ↦ ((𝑐‘𝑖)(𝐿‘(𝑦 ∪ {𝑧}))(𝑑‘𝑖)))) =
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑐‘𝑗)(𝐿‘(𝑦 ∪ {𝑧}))(𝑑‘𝑗)))) |
| 443 | 442 | breq2i 5151 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑎(𝐿‘(𝑦 ∪ {𝑧}))𝑏) ≤
(Σ^‘(𝑖 ∈ ℕ ↦ ((𝑐‘𝑖)(𝐿‘(𝑦 ∪ {𝑧}))(𝑑‘𝑖)))) ↔ (𝑎(𝐿‘(𝑦 ∪ {𝑧}))𝑏) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑐‘𝑗)(𝐿‘(𝑦 ∪ {𝑧}))(𝑑‘𝑗))))) |
| 444 | 439, 443 | sylib 218 |
. . . . . . . . . . . . . . 15
⊢
(((((((((𝜑 ∧
(𝑦 ⊆ 𝑋 ∧ 𝑧 ∈ (𝑋 ∖ 𝑦))) ∧ ∀𝑒 ∈ (ℝ ↑m 𝑦)∀𝑓 ∈ (ℝ ↑m 𝑦)∀𝑔 ∈ ((ℝ ↑m 𝑦) ↑m
ℕ)∀ℎ ∈
((ℝ ↑m 𝑦) ↑m ℕ)(X𝑘 ∈
𝑦 ((𝑒‘𝑘)[,)(𝑓‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑦 (((𝑔‘𝑗)‘𝑘)[,)((ℎ‘𝑗)‘𝑘)) → (𝑒(𝐿‘𝑦)𝑓) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑔‘𝑗)(𝐿‘𝑦)(ℎ‘𝑗)))))) ∧ 𝑎 ∈ (ℝ ↑m (𝑦 ∪ {𝑧}))) ∧ 𝑏 ∈ (ℝ ↑m (𝑦 ∪ {𝑧}))) ∧ 𝑐 ∈ ((ℝ ↑m (𝑦 ∪ {𝑧})) ↑m ℕ)) ∧ 𝑑 ∈ ((ℝ
↑m (𝑦 ∪
{𝑧})) ↑m
ℕ)) ∧ X𝑘 ∈ (𝑦 ∪ {𝑧})((𝑎‘𝑘)[,)(𝑏‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ (𝑦 ∪ {𝑧})(((𝑐‘𝑗)‘𝑘)[,)((𝑑‘𝑗)‘𝑘))) ∧ ¬ 𝑦 = ∅) → (𝑎(𝐿‘(𝑦 ∪ {𝑧}))𝑏) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑐‘𝑗)(𝐿‘(𝑦 ∪ {𝑧}))(𝑑‘𝑗))))) |
| 445 | 357, 444 | pm2.61dan 813 |
. . . . . . . . . . . . . 14
⊢
((((((((𝜑 ∧ (𝑦 ⊆ 𝑋 ∧ 𝑧 ∈ (𝑋 ∖ 𝑦))) ∧ ∀𝑒 ∈ (ℝ ↑m 𝑦)∀𝑓 ∈ (ℝ ↑m 𝑦)∀𝑔 ∈ ((ℝ ↑m 𝑦) ↑m
ℕ)∀ℎ ∈
((ℝ ↑m 𝑦) ↑m ℕ)(X𝑘 ∈
𝑦 ((𝑒‘𝑘)[,)(𝑓‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑦 (((𝑔‘𝑗)‘𝑘)[,)((ℎ‘𝑗)‘𝑘)) → (𝑒(𝐿‘𝑦)𝑓) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑔‘𝑗)(𝐿‘𝑦)(ℎ‘𝑗)))))) ∧ 𝑎 ∈ (ℝ ↑m (𝑦 ∪ {𝑧}))) ∧ 𝑏 ∈ (ℝ ↑m (𝑦 ∪ {𝑧}))) ∧ 𝑐 ∈ ((ℝ ↑m (𝑦 ∪ {𝑧})) ↑m ℕ)) ∧ 𝑑 ∈ ((ℝ
↑m (𝑦 ∪
{𝑧})) ↑m
ℕ)) ∧ X𝑘 ∈ (𝑦 ∪ {𝑧})((𝑎‘𝑘)[,)(𝑏‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ (𝑦 ∪ {𝑧})(((𝑐‘𝑗)‘𝑘)[,)((𝑑‘𝑗)‘𝑘))) → (𝑎(𝐿‘(𝑦 ∪ {𝑧}))𝑏) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑐‘𝑗)(𝐿‘(𝑦 ∪ {𝑧}))(𝑑‘𝑗))))) |
| 446 | 445 | ex 412 |
. . . . . . . . . . . . 13
⊢
(((((((𝜑 ∧ (𝑦 ⊆ 𝑋 ∧ 𝑧 ∈ (𝑋 ∖ 𝑦))) ∧ ∀𝑒 ∈ (ℝ ↑m 𝑦)∀𝑓 ∈ (ℝ ↑m 𝑦)∀𝑔 ∈ ((ℝ ↑m 𝑦) ↑m
ℕ)∀ℎ ∈
((ℝ ↑m 𝑦) ↑m ℕ)(X𝑘 ∈
𝑦 ((𝑒‘𝑘)[,)(𝑓‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑦 (((𝑔‘𝑗)‘𝑘)[,)((ℎ‘𝑗)‘𝑘)) → (𝑒(𝐿‘𝑦)𝑓) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑔‘𝑗)(𝐿‘𝑦)(ℎ‘𝑗)))))) ∧ 𝑎 ∈ (ℝ ↑m (𝑦 ∪ {𝑧}))) ∧ 𝑏 ∈ (ℝ ↑m (𝑦 ∪ {𝑧}))) ∧ 𝑐 ∈ ((ℝ ↑m (𝑦 ∪ {𝑧})) ↑m ℕ)) ∧ 𝑑 ∈ ((ℝ
↑m (𝑦 ∪
{𝑧})) ↑m
ℕ)) → (X𝑘 ∈ (𝑦 ∪ {𝑧})((𝑎‘𝑘)[,)(𝑏‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ (𝑦 ∪ {𝑧})(((𝑐‘𝑗)‘𝑘)[,)((𝑑‘𝑗)‘𝑘)) → (𝑎(𝐿‘(𝑦 ∪ {𝑧}))𝑏) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑐‘𝑗)(𝐿‘(𝑦 ∪ {𝑧}))(𝑑‘𝑗)))))) |
| 447 | 446 | ralrimiva 3146 |
. . . . . . . . . . . 12
⊢
((((((𝜑 ∧ (𝑦 ⊆ 𝑋 ∧ 𝑧 ∈ (𝑋 ∖ 𝑦))) ∧ ∀𝑒 ∈ (ℝ ↑m 𝑦)∀𝑓 ∈ (ℝ ↑m 𝑦)∀𝑔 ∈ ((ℝ ↑m 𝑦) ↑m
ℕ)∀ℎ ∈
((ℝ ↑m 𝑦) ↑m ℕ)(X𝑘 ∈
𝑦 ((𝑒‘𝑘)[,)(𝑓‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑦 (((𝑔‘𝑗)‘𝑘)[,)((ℎ‘𝑗)‘𝑘)) → (𝑒(𝐿‘𝑦)𝑓) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑔‘𝑗)(𝐿‘𝑦)(ℎ‘𝑗)))))) ∧ 𝑎 ∈ (ℝ ↑m (𝑦 ∪ {𝑧}))) ∧ 𝑏 ∈ (ℝ ↑m (𝑦 ∪ {𝑧}))) ∧ 𝑐 ∈ ((ℝ ↑m (𝑦 ∪ {𝑧})) ↑m ℕ)) →
∀𝑑 ∈ ((ℝ
↑m (𝑦 ∪
{𝑧})) ↑m
ℕ)(X𝑘 ∈ (𝑦 ∪ {𝑧})((𝑎‘𝑘)[,)(𝑏‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ (𝑦 ∪ {𝑧})(((𝑐‘𝑗)‘𝑘)[,)((𝑑‘𝑗)‘𝑘)) → (𝑎(𝐿‘(𝑦 ∪ {𝑧}))𝑏) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑐‘𝑗)(𝐿‘(𝑦 ∪ {𝑧}))(𝑑‘𝑗)))))) |
| 448 | 447 | ralrimiva 3146 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ (𝑦 ⊆ 𝑋 ∧ 𝑧 ∈ (𝑋 ∖ 𝑦))) ∧ ∀𝑒 ∈ (ℝ ↑m 𝑦)∀𝑓 ∈ (ℝ ↑m 𝑦)∀𝑔 ∈ ((ℝ ↑m 𝑦) ↑m
ℕ)∀ℎ ∈
((ℝ ↑m 𝑦) ↑m ℕ)(X𝑘 ∈
𝑦 ((𝑒‘𝑘)[,)(𝑓‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑦 (((𝑔‘𝑗)‘𝑘)[,)((ℎ‘𝑗)‘𝑘)) → (𝑒(𝐿‘𝑦)𝑓) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑔‘𝑗)(𝐿‘𝑦)(ℎ‘𝑗)))))) ∧ 𝑎 ∈ (ℝ ↑m (𝑦 ∪ {𝑧}))) ∧ 𝑏 ∈ (ℝ ↑m (𝑦 ∪ {𝑧}))) → ∀𝑐 ∈ ((ℝ ↑m (𝑦 ∪ {𝑧})) ↑m ℕ)∀𝑑 ∈ ((ℝ
↑m (𝑦 ∪
{𝑧})) ↑m
ℕ)(X𝑘 ∈ (𝑦 ∪ {𝑧})((𝑎‘𝑘)[,)(𝑏‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ (𝑦 ∪ {𝑧})(((𝑐‘𝑗)‘𝑘)[,)((𝑑‘𝑗)‘𝑘)) → (𝑎(𝐿‘(𝑦 ∪ {𝑧}))𝑏) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑐‘𝑗)(𝐿‘(𝑦 ∪ {𝑧}))(𝑑‘𝑗)))))) |
| 449 | 448 | ralrimiva 3146 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ (𝑦 ⊆ 𝑋 ∧ 𝑧 ∈ (𝑋 ∖ 𝑦))) ∧ ∀𝑒 ∈ (ℝ ↑m 𝑦)∀𝑓 ∈ (ℝ ↑m 𝑦)∀𝑔 ∈ ((ℝ ↑m 𝑦) ↑m
ℕ)∀ℎ ∈
((ℝ ↑m 𝑦) ↑m ℕ)(X𝑘 ∈
𝑦 ((𝑒‘𝑘)[,)(𝑓‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑦 (((𝑔‘𝑗)‘𝑘)[,)((ℎ‘𝑗)‘𝑘)) → (𝑒(𝐿‘𝑦)𝑓) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑔‘𝑗)(𝐿‘𝑦)(ℎ‘𝑗)))))) ∧ 𝑎 ∈ (ℝ ↑m (𝑦 ∪ {𝑧}))) → ∀𝑏 ∈ (ℝ ↑m (𝑦 ∪ {𝑧}))∀𝑐 ∈ ((ℝ ↑m (𝑦 ∪ {𝑧})) ↑m ℕ)∀𝑑 ∈ ((ℝ
↑m (𝑦 ∪
{𝑧})) ↑m
ℕ)(X𝑘 ∈ (𝑦 ∪ {𝑧})((𝑎‘𝑘)[,)(𝑏‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ (𝑦 ∪ {𝑧})(((𝑐‘𝑗)‘𝑘)[,)((𝑑‘𝑗)‘𝑘)) → (𝑎(𝐿‘(𝑦 ∪ {𝑧}))𝑏) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑐‘𝑗)(𝐿‘(𝑦 ∪ {𝑧}))(𝑑‘𝑗)))))) |
| 450 | 449 | ralrimiva 3146 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑦 ⊆ 𝑋 ∧ 𝑧 ∈ (𝑋 ∖ 𝑦))) ∧ ∀𝑒 ∈ (ℝ ↑m 𝑦)∀𝑓 ∈ (ℝ ↑m 𝑦)∀𝑔 ∈ ((ℝ ↑m 𝑦) ↑m
ℕ)∀ℎ ∈
((ℝ ↑m 𝑦) ↑m ℕ)(X𝑘 ∈
𝑦 ((𝑒‘𝑘)[,)(𝑓‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑦 (((𝑔‘𝑗)‘𝑘)[,)((ℎ‘𝑗)‘𝑘)) → (𝑒(𝐿‘𝑦)𝑓) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑔‘𝑗)(𝐿‘𝑦)(ℎ‘𝑗)))))) → ∀𝑎 ∈ (ℝ ↑m (𝑦 ∪ {𝑧}))∀𝑏 ∈ (ℝ ↑m (𝑦 ∪ {𝑧}))∀𝑐 ∈ ((ℝ ↑m (𝑦 ∪ {𝑧})) ↑m ℕ)∀𝑑 ∈ ((ℝ
↑m (𝑦 ∪
{𝑧})) ↑m
ℕ)(X𝑘 ∈ (𝑦 ∪ {𝑧})((𝑎‘𝑘)[,)(𝑏‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ (𝑦 ∪ {𝑧})(((𝑐‘𝑗)‘𝑘)[,)((𝑑‘𝑗)‘𝑘)) → (𝑎(𝐿‘(𝑦 ∪ {𝑧}))𝑏) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑐‘𝑗)(𝐿‘(𝑦 ∪ {𝑧}))(𝑑‘𝑗)))))) |
| 451 | 177, 229,
450 | syl2anc 584 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑦 ⊆ 𝑋 ∧ 𝑧 ∈ (𝑋 ∖ 𝑦))) ∧ ∀𝑎 ∈ (ℝ ↑m 𝑦)∀𝑏 ∈ (ℝ ↑m 𝑦)∀𝑐 ∈ ((ℝ ↑m 𝑦) ↑m
ℕ)∀𝑑 ∈
((ℝ ↑m 𝑦) ↑m ℕ)(X𝑘 ∈
𝑦 ((𝑎‘𝑘)[,)(𝑏‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑦 (((𝑐‘𝑗)‘𝑘)[,)((𝑑‘𝑗)‘𝑘)) → (𝑎(𝐿‘𝑦)𝑏) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑐‘𝑗)(𝐿‘𝑦)(𝑑‘𝑗)))))) → ∀𝑎 ∈ (ℝ ↑m (𝑦 ∪ {𝑧}))∀𝑏 ∈ (ℝ ↑m (𝑦 ∪ {𝑧}))∀𝑐 ∈ ((ℝ ↑m (𝑦 ∪ {𝑧})) ↑m ℕ)∀𝑑 ∈ ((ℝ
↑m (𝑦 ∪
{𝑧})) ↑m
ℕ)(X𝑘 ∈ (𝑦 ∪ {𝑧})((𝑎‘𝑘)[,)(𝑏‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ (𝑦 ∪ {𝑧})(((𝑐‘𝑗)‘𝑘)[,)((𝑑‘𝑗)‘𝑘)) → (𝑎(𝐿‘(𝑦 ∪ {𝑧}))𝑏) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑐‘𝑗)(𝐿‘(𝑦 ∪ {𝑧}))(𝑑‘𝑗)))))) |
| 452 | 451 | ex 412 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑦 ⊆ 𝑋 ∧ 𝑧 ∈ (𝑋 ∖ 𝑦))) → (∀𝑎 ∈ (ℝ ↑m 𝑦)∀𝑏 ∈ (ℝ ↑m 𝑦)∀𝑐 ∈ ((ℝ ↑m 𝑦) ↑m
ℕ)∀𝑑 ∈
((ℝ ↑m 𝑦) ↑m ℕ)(X𝑘 ∈
𝑦 ((𝑎‘𝑘)[,)(𝑏‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑦 (((𝑐‘𝑗)‘𝑘)[,)((𝑑‘𝑗)‘𝑘)) → (𝑎(𝐿‘𝑦)𝑏) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑐‘𝑗)(𝐿‘𝑦)(𝑑‘𝑗))))) → ∀𝑎 ∈ (ℝ ↑m (𝑦 ∪ {𝑧}))∀𝑏 ∈ (ℝ ↑m (𝑦 ∪ {𝑧}))∀𝑐 ∈ ((ℝ ↑m (𝑦 ∪ {𝑧})) ↑m ℕ)∀𝑑 ∈ ((ℝ
↑m (𝑦 ∪
{𝑧})) ↑m
ℕ)(X𝑘 ∈ (𝑦 ∪ {𝑧})((𝑎‘𝑘)[,)(𝑏‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ (𝑦 ∪ {𝑧})(((𝑐‘𝑗)‘𝑘)[,)((𝑑‘𝑗)‘𝑘)) → (𝑎(𝐿‘(𝑦 ∪ {𝑧}))𝑏) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑐‘𝑗)(𝐿‘(𝑦 ∪ {𝑧}))(𝑑‘𝑗))))))) |
| 453 | 50, 75, 100, 125, 176, 452, 17 | findcard2d 9206 |
. . . . . 6
⊢ (𝜑 → ∀𝑎 ∈ (ℝ ↑m 𝑋)∀𝑏 ∈ (ℝ ↑m 𝑋)∀𝑐 ∈ ((ℝ ↑m 𝑋) ↑m
ℕ)∀𝑑 ∈
((ℝ ↑m 𝑋) ↑m ℕ)(X𝑘 ∈
𝑋 ((𝑎‘𝑘)[,)(𝑏‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (((𝑐‘𝑗)‘𝑘)[,)((𝑑‘𝑗)‘𝑘)) → (𝑎(𝐿‘𝑋)𝑏) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑐‘𝑗)(𝐿‘𝑋)(𝑑‘𝑗)))))) |
| 454 | | fveq1 6905 |
. . . . . . . . . . . . . 14
⊢ (𝑎 = 𝐴 → (𝑎‘𝑘) = (𝐴‘𝑘)) |
| 455 | 454 | oveq1d 7446 |
. . . . . . . . . . . . 13
⊢ (𝑎 = 𝐴 → ((𝑎‘𝑘)[,)(𝑏‘𝑘)) = ((𝐴‘𝑘)[,)(𝑏‘𝑘))) |
| 456 | 455 | ixpeq2dv 8953 |
. . . . . . . . . . . 12
⊢ (𝑎 = 𝐴 → X𝑘 ∈ 𝑋 ((𝑎‘𝑘)[,)(𝑏‘𝑘)) = X𝑘 ∈ 𝑋 ((𝐴‘𝑘)[,)(𝑏‘𝑘))) |
| 457 | 456 | sseq1d 4015 |
. . . . . . . . . . 11
⊢ (𝑎 = 𝐴 → (X𝑘 ∈ 𝑋 ((𝑎‘𝑘)[,)(𝑏‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (((𝑐‘𝑗)‘𝑘)[,)((𝑑‘𝑗)‘𝑘)) ↔ X𝑘 ∈ 𝑋 ((𝐴‘𝑘)[,)(𝑏‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (((𝑐‘𝑗)‘𝑘)[,)((𝑑‘𝑗)‘𝑘)))) |
| 458 | | oveq1 7438 |
. . . . . . . . . . . 12
⊢ (𝑎 = 𝐴 → (𝑎(𝐿‘𝑋)𝑏) = (𝐴(𝐿‘𝑋)𝑏)) |
| 459 | 458 | breq1d 5153 |
. . . . . . . . . . 11
⊢ (𝑎 = 𝐴 → ((𝑎(𝐿‘𝑋)𝑏) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑐‘𝑗)(𝐿‘𝑋)(𝑑‘𝑗)))) ↔ (𝐴(𝐿‘𝑋)𝑏) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑐‘𝑗)(𝐿‘𝑋)(𝑑‘𝑗)))))) |
| 460 | 457, 459 | imbi12d 344 |
. . . . . . . . . 10
⊢ (𝑎 = 𝐴 → ((X𝑘 ∈ 𝑋 ((𝑎‘𝑘)[,)(𝑏‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (((𝑐‘𝑗)‘𝑘)[,)((𝑑‘𝑗)‘𝑘)) → (𝑎(𝐿‘𝑋)𝑏) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑐‘𝑗)(𝐿‘𝑋)(𝑑‘𝑗))))) ↔ (X𝑘 ∈ 𝑋 ((𝐴‘𝑘)[,)(𝑏‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (((𝑐‘𝑗)‘𝑘)[,)((𝑑‘𝑗)‘𝑘)) → (𝐴(𝐿‘𝑋)𝑏) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑐‘𝑗)(𝐿‘𝑋)(𝑑‘𝑗))))))) |
| 461 | 460 | ralbidv 3178 |
. . . . . . . . 9
⊢ (𝑎 = 𝐴 → (∀𝑑 ∈ ((ℝ ↑m 𝑋) ↑m
ℕ)(X𝑘 ∈ 𝑋 ((𝑎‘𝑘)[,)(𝑏‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (((𝑐‘𝑗)‘𝑘)[,)((𝑑‘𝑗)‘𝑘)) → (𝑎(𝐿‘𝑋)𝑏) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑐‘𝑗)(𝐿‘𝑋)(𝑑‘𝑗))))) ↔ ∀𝑑 ∈ ((ℝ ↑m 𝑋) ↑m
ℕ)(X𝑘 ∈ 𝑋 ((𝐴‘𝑘)[,)(𝑏‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (((𝑐‘𝑗)‘𝑘)[,)((𝑑‘𝑗)‘𝑘)) → (𝐴(𝐿‘𝑋)𝑏) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑐‘𝑗)(𝐿‘𝑋)(𝑑‘𝑗))))))) |
| 462 | 461 | ralbidv 3178 |
. . . . . . . 8
⊢ (𝑎 = 𝐴 → (∀𝑐 ∈ ((ℝ ↑m 𝑋) ↑m
ℕ)∀𝑑 ∈
((ℝ ↑m 𝑋) ↑m ℕ)(X𝑘 ∈
𝑋 ((𝑎‘𝑘)[,)(𝑏‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (((𝑐‘𝑗)‘𝑘)[,)((𝑑‘𝑗)‘𝑘)) → (𝑎(𝐿‘𝑋)𝑏) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑐‘𝑗)(𝐿‘𝑋)(𝑑‘𝑗))))) ↔ ∀𝑐 ∈ ((ℝ ↑m 𝑋) ↑m
ℕ)∀𝑑 ∈
((ℝ ↑m 𝑋) ↑m ℕ)(X𝑘 ∈
𝑋 ((𝐴‘𝑘)[,)(𝑏‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (((𝑐‘𝑗)‘𝑘)[,)((𝑑‘𝑗)‘𝑘)) → (𝐴(𝐿‘𝑋)𝑏) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑐‘𝑗)(𝐿‘𝑋)(𝑑‘𝑗))))))) |
| 463 | 462 | ralbidv 3178 |
. . . . . . 7
⊢ (𝑎 = 𝐴 → (∀𝑏 ∈ (ℝ ↑m 𝑋)∀𝑐 ∈ ((ℝ ↑m 𝑋) ↑m
ℕ)∀𝑑 ∈
((ℝ ↑m 𝑋) ↑m ℕ)(X𝑘 ∈
𝑋 ((𝑎‘𝑘)[,)(𝑏‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (((𝑐‘𝑗)‘𝑘)[,)((𝑑‘𝑗)‘𝑘)) → (𝑎(𝐿‘𝑋)𝑏) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑐‘𝑗)(𝐿‘𝑋)(𝑑‘𝑗))))) ↔ ∀𝑏 ∈ (ℝ ↑m 𝑋)∀𝑐 ∈ ((ℝ ↑m 𝑋) ↑m
ℕ)∀𝑑 ∈
((ℝ ↑m 𝑋) ↑m ℕ)(X𝑘 ∈
𝑋 ((𝐴‘𝑘)[,)(𝑏‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (((𝑐‘𝑗)‘𝑘)[,)((𝑑‘𝑗)‘𝑘)) → (𝐴(𝐿‘𝑋)𝑏) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑐‘𝑗)(𝐿‘𝑋)(𝑑‘𝑗))))))) |
| 464 | 463 | rspcva 3620 |
. . . . . 6
⊢ ((𝐴 ∈ (ℝ
↑m 𝑋) ∧
∀𝑎 ∈ (ℝ
↑m 𝑋)∀𝑏 ∈ (ℝ ↑m 𝑋)∀𝑐 ∈ ((ℝ ↑m 𝑋) ↑m
ℕ)∀𝑑 ∈
((ℝ ↑m 𝑋) ↑m ℕ)(X𝑘 ∈
𝑋 ((𝑎‘𝑘)[,)(𝑏‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (((𝑐‘𝑗)‘𝑘)[,)((𝑑‘𝑗)‘𝑘)) → (𝑎(𝐿‘𝑋)𝑏) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑐‘𝑗)(𝐿‘𝑋)(𝑑‘𝑗)))))) → ∀𝑏 ∈ (ℝ ↑m 𝑋)∀𝑐 ∈ ((ℝ ↑m 𝑋) ↑m
ℕ)∀𝑑 ∈
((ℝ ↑m 𝑋) ↑m ℕ)(X𝑘 ∈
𝑋 ((𝐴‘𝑘)[,)(𝑏‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (((𝑐‘𝑗)‘𝑘)[,)((𝑑‘𝑗)‘𝑘)) → (𝐴(𝐿‘𝑋)𝑏) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑐‘𝑗)(𝐿‘𝑋)(𝑑‘𝑗)))))) |
| 465 | 25, 453, 464 | syl2anc 584 |
. . . . 5
⊢ (𝜑 → ∀𝑏 ∈ (ℝ ↑m 𝑋)∀𝑐 ∈ ((ℝ ↑m 𝑋) ↑m
ℕ)∀𝑑 ∈
((ℝ ↑m 𝑋) ↑m ℕ)(X𝑘 ∈
𝑋 ((𝐴‘𝑘)[,)(𝑏‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (((𝑐‘𝑗)‘𝑘)[,)((𝑑‘𝑗)‘𝑘)) → (𝐴(𝐿‘𝑋)𝑏) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑐‘𝑗)(𝐿‘𝑋)(𝑑‘𝑗)))))) |
| 466 | | fveq1 6905 |
. . . . . . . . . . . 12
⊢ (𝑏 = 𝐵 → (𝑏‘𝑘) = (𝐵‘𝑘)) |
| 467 | 466 | oveq2d 7447 |
. . . . . . . . . . 11
⊢ (𝑏 = 𝐵 → ((𝐴‘𝑘)[,)(𝑏‘𝑘)) = ((𝐴‘𝑘)[,)(𝐵‘𝑘))) |
| 468 | 467 | ixpeq2dv 8953 |
. . . . . . . . . 10
⊢ (𝑏 = 𝐵 → X𝑘 ∈ 𝑋 ((𝐴‘𝑘)[,)(𝑏‘𝑘)) = X𝑘 ∈ 𝑋 ((𝐴‘𝑘)[,)(𝐵‘𝑘))) |
| 469 | 468 | sseq1d 4015 |
. . . . . . . . 9
⊢ (𝑏 = 𝐵 → (X𝑘 ∈ 𝑋 ((𝐴‘𝑘)[,)(𝑏‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (((𝑐‘𝑗)‘𝑘)[,)((𝑑‘𝑗)‘𝑘)) ↔ X𝑘 ∈ 𝑋 ((𝐴‘𝑘)[,)(𝐵‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (((𝑐‘𝑗)‘𝑘)[,)((𝑑‘𝑗)‘𝑘)))) |
| 470 | | oveq2 7439 |
. . . . . . . . . 10
⊢ (𝑏 = 𝐵 → (𝐴(𝐿‘𝑋)𝑏) = (𝐴(𝐿‘𝑋)𝐵)) |
| 471 | 470 | breq1d 5153 |
. . . . . . . . 9
⊢ (𝑏 = 𝐵 → ((𝐴(𝐿‘𝑋)𝑏) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑐‘𝑗)(𝐿‘𝑋)(𝑑‘𝑗)))) ↔ (𝐴(𝐿‘𝑋)𝐵) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑐‘𝑗)(𝐿‘𝑋)(𝑑‘𝑗)))))) |
| 472 | 469, 471 | imbi12d 344 |
. . . . . . . 8
⊢ (𝑏 = 𝐵 → ((X𝑘 ∈ 𝑋 ((𝐴‘𝑘)[,)(𝑏‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (((𝑐‘𝑗)‘𝑘)[,)((𝑑‘𝑗)‘𝑘)) → (𝐴(𝐿‘𝑋)𝑏) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑐‘𝑗)(𝐿‘𝑋)(𝑑‘𝑗))))) ↔ (X𝑘 ∈ 𝑋 ((𝐴‘𝑘)[,)(𝐵‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (((𝑐‘𝑗)‘𝑘)[,)((𝑑‘𝑗)‘𝑘)) → (𝐴(𝐿‘𝑋)𝐵) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑐‘𝑗)(𝐿‘𝑋)(𝑑‘𝑗))))))) |
| 473 | 472 | ralbidv 3178 |
. . . . . . 7
⊢ (𝑏 = 𝐵 → (∀𝑑 ∈ ((ℝ ↑m 𝑋) ↑m
ℕ)(X𝑘 ∈ 𝑋 ((𝐴‘𝑘)[,)(𝑏‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (((𝑐‘𝑗)‘𝑘)[,)((𝑑‘𝑗)‘𝑘)) → (𝐴(𝐿‘𝑋)𝑏) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑐‘𝑗)(𝐿‘𝑋)(𝑑‘𝑗))))) ↔ ∀𝑑 ∈ ((ℝ ↑m 𝑋) ↑m
ℕ)(X𝑘 ∈ 𝑋 ((𝐴‘𝑘)[,)(𝐵‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (((𝑐‘𝑗)‘𝑘)[,)((𝑑‘𝑗)‘𝑘)) → (𝐴(𝐿‘𝑋)𝐵) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑐‘𝑗)(𝐿‘𝑋)(𝑑‘𝑗))))))) |
| 474 | 473 | ralbidv 3178 |
. . . . . 6
⊢ (𝑏 = 𝐵 → (∀𝑐 ∈ ((ℝ ↑m 𝑋) ↑m
ℕ)∀𝑑 ∈
((ℝ ↑m 𝑋) ↑m ℕ)(X𝑘 ∈
𝑋 ((𝐴‘𝑘)[,)(𝑏‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (((𝑐‘𝑗)‘𝑘)[,)((𝑑‘𝑗)‘𝑘)) → (𝐴(𝐿‘𝑋)𝑏) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑐‘𝑗)(𝐿‘𝑋)(𝑑‘𝑗))))) ↔ ∀𝑐 ∈ ((ℝ ↑m 𝑋) ↑m
ℕ)∀𝑑 ∈
((ℝ ↑m 𝑋) ↑m ℕ)(X𝑘 ∈
𝑋 ((𝐴‘𝑘)[,)(𝐵‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (((𝑐‘𝑗)‘𝑘)[,)((𝑑‘𝑗)‘𝑘)) → (𝐴(𝐿‘𝑋)𝐵) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑐‘𝑗)(𝐿‘𝑋)(𝑑‘𝑗))))))) |
| 475 | 474 | rspcva 3620 |
. . . . 5
⊢ ((𝐵 ∈ (ℝ
↑m 𝑋) ∧
∀𝑏 ∈ (ℝ
↑m 𝑋)∀𝑐 ∈ ((ℝ ↑m 𝑋) ↑m
ℕ)∀𝑑 ∈
((ℝ ↑m 𝑋) ↑m ℕ)(X𝑘 ∈
𝑋 ((𝐴‘𝑘)[,)(𝑏‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (((𝑐‘𝑗)‘𝑘)[,)((𝑑‘𝑗)‘𝑘)) → (𝐴(𝐿‘𝑋)𝑏) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑐‘𝑗)(𝐿‘𝑋)(𝑑‘𝑗)))))) → ∀𝑐 ∈ ((ℝ ↑m 𝑋) ↑m
ℕ)∀𝑑 ∈
((ℝ ↑m 𝑋) ↑m ℕ)(X𝑘 ∈
𝑋 ((𝐴‘𝑘)[,)(𝐵‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (((𝑐‘𝑗)‘𝑘)[,)((𝑑‘𝑗)‘𝑘)) → (𝐴(𝐿‘𝑋)𝐵) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑐‘𝑗)(𝐿‘𝑋)(𝑑‘𝑗)))))) |
| 476 | 21, 465, 475 | syl2anc 584 |
. . . 4
⊢ (𝜑 → ∀𝑐 ∈ ((ℝ ↑m 𝑋) ↑m
ℕ)∀𝑑 ∈
((ℝ ↑m 𝑋) ↑m ℕ)(X𝑘 ∈
𝑋 ((𝐴‘𝑘)[,)(𝐵‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (((𝑐‘𝑗)‘𝑘)[,)((𝑑‘𝑗)‘𝑘)) → (𝐴(𝐿‘𝑋)𝐵) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑐‘𝑗)(𝐿‘𝑋)(𝑑‘𝑗)))))) |
| 477 | | fveq1 6905 |
. . . . . . . . . . . . 13
⊢ (𝑐 = 𝐶 → (𝑐‘𝑗) = (𝐶‘𝑗)) |
| 478 | 477 | fveq1d 6908 |
. . . . . . . . . . . 12
⊢ (𝑐 = 𝐶 → ((𝑐‘𝑗)‘𝑘) = ((𝐶‘𝑗)‘𝑘)) |
| 479 | 478 | oveq1d 7446 |
. . . . . . . . . . 11
⊢ (𝑐 = 𝐶 → (((𝑐‘𝑗)‘𝑘)[,)((𝑑‘𝑗)‘𝑘)) = (((𝐶‘𝑗)‘𝑘)[,)((𝑑‘𝑗)‘𝑘))) |
| 480 | 479 | ixpeq2dv 8953 |
. . . . . . . . . 10
⊢ (𝑐 = 𝐶 → X𝑘 ∈ 𝑋 (((𝑐‘𝑗)‘𝑘)[,)((𝑑‘𝑗)‘𝑘)) = X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝑑‘𝑗)‘𝑘))) |
| 481 | 480 | adantr 480 |
. . . . . . . . 9
⊢ ((𝑐 = 𝐶 ∧ 𝑗 ∈ ℕ) → X𝑘 ∈
𝑋 (((𝑐‘𝑗)‘𝑘)[,)((𝑑‘𝑗)‘𝑘)) = X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝑑‘𝑗)‘𝑘))) |
| 482 | 481 | iuneq2dv 5016 |
. . . . . . . 8
⊢ (𝑐 = 𝐶 → ∪
𝑗 ∈ ℕ X𝑘 ∈
𝑋 (((𝑐‘𝑗)‘𝑘)[,)((𝑑‘𝑗)‘𝑘)) = ∪
𝑗 ∈ ℕ X𝑘 ∈
𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝑑‘𝑗)‘𝑘))) |
| 483 | 482 | sseq2d 4016 |
. . . . . . 7
⊢ (𝑐 = 𝐶 → (X𝑘 ∈ 𝑋 ((𝐴‘𝑘)[,)(𝐵‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (((𝑐‘𝑗)‘𝑘)[,)((𝑑‘𝑗)‘𝑘)) ↔ X𝑘 ∈ 𝑋 ((𝐴‘𝑘)[,)(𝐵‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝑑‘𝑗)‘𝑘)))) |
| 484 | 477 | oveq1d 7446 |
. . . . . . . . . 10
⊢ (𝑐 = 𝐶 → ((𝑐‘𝑗)(𝐿‘𝑋)(𝑑‘𝑗)) = ((𝐶‘𝑗)(𝐿‘𝑋)(𝑑‘𝑗))) |
| 485 | 484 | mpteq2dv 5244 |
. . . . . . . . 9
⊢ (𝑐 = 𝐶 → (𝑗 ∈ ℕ ↦ ((𝑐‘𝑗)(𝐿‘𝑋)(𝑑‘𝑗))) = (𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑋)(𝑑‘𝑗)))) |
| 486 | 485 | fveq2d 6910 |
. . . . . . . 8
⊢ (𝑐 = 𝐶 →
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑐‘𝑗)(𝐿‘𝑋)(𝑑‘𝑗)))) =
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑋)(𝑑‘𝑗))))) |
| 487 | 486 | breq2d 5155 |
. . . . . . 7
⊢ (𝑐 = 𝐶 → ((𝐴(𝐿‘𝑋)𝐵) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑐‘𝑗)(𝐿‘𝑋)(𝑑‘𝑗)))) ↔ (𝐴(𝐿‘𝑋)𝐵) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑋)(𝑑‘𝑗)))))) |
| 488 | 483, 487 | imbi12d 344 |
. . . . . 6
⊢ (𝑐 = 𝐶 → ((X𝑘 ∈ 𝑋 ((𝐴‘𝑘)[,)(𝐵‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (((𝑐‘𝑗)‘𝑘)[,)((𝑑‘𝑗)‘𝑘)) → (𝐴(𝐿‘𝑋)𝐵) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑐‘𝑗)(𝐿‘𝑋)(𝑑‘𝑗))))) ↔ (X𝑘 ∈ 𝑋 ((𝐴‘𝑘)[,)(𝐵‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝑑‘𝑗)‘𝑘)) → (𝐴(𝐿‘𝑋)𝐵) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑋)(𝑑‘𝑗))))))) |
| 489 | 488 | ralbidv 3178 |
. . . . 5
⊢ (𝑐 = 𝐶 → (∀𝑑 ∈ ((ℝ ↑m 𝑋) ↑m
ℕ)(X𝑘 ∈ 𝑋 ((𝐴‘𝑘)[,)(𝐵‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (((𝑐‘𝑗)‘𝑘)[,)((𝑑‘𝑗)‘𝑘)) → (𝐴(𝐿‘𝑋)𝐵) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑐‘𝑗)(𝐿‘𝑋)(𝑑‘𝑗))))) ↔ ∀𝑑 ∈ ((ℝ ↑m 𝑋) ↑m
ℕ)(X𝑘 ∈ 𝑋 ((𝐴‘𝑘)[,)(𝐵‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝑑‘𝑗)‘𝑘)) → (𝐴(𝐿‘𝑋)𝐵) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑋)(𝑑‘𝑗))))))) |
| 490 | 489 | rspcva 3620 |
. . . 4
⊢ ((𝐶 ∈ ((ℝ
↑m 𝑋)
↑m ℕ) ∧ ∀𝑐 ∈ ((ℝ ↑m 𝑋) ↑m
ℕ)∀𝑑 ∈
((ℝ ↑m 𝑋) ↑m ℕ)(X𝑘 ∈
𝑋 ((𝐴‘𝑘)[,)(𝐵‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (((𝑐‘𝑗)‘𝑘)[,)((𝑑‘𝑗)‘𝑘)) → (𝐴(𝐿‘𝑋)𝐵) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑐‘𝑗)(𝐿‘𝑋)(𝑑‘𝑗)))))) → ∀𝑑 ∈ ((ℝ ↑m 𝑋) ↑m
ℕ)(X𝑘 ∈ 𝑋 ((𝐴‘𝑘)[,)(𝐵‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝑑‘𝑗)‘𝑘)) → (𝐴(𝐿‘𝑋)𝐵) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑋)(𝑑‘𝑗)))))) |
| 491 | 13, 476, 490 | syl2anc 584 |
. . 3
⊢ (𝜑 → ∀𝑑 ∈ ((ℝ ↑m 𝑋) ↑m
ℕ)(X𝑘 ∈ 𝑋 ((𝐴‘𝑘)[,)(𝐵‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝑑‘𝑗)‘𝑘)) → (𝐴(𝐿‘𝑋)𝐵) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑋)(𝑑‘𝑗)))))) |
| 492 | | fveq1 6905 |
. . . . . . . . . . 11
⊢ (𝑑 = 𝐷 → (𝑑‘𝑗) = (𝐷‘𝑗)) |
| 493 | 492 | fveq1d 6908 |
. . . . . . . . . 10
⊢ (𝑑 = 𝐷 → ((𝑑‘𝑗)‘𝑘) = ((𝐷‘𝑗)‘𝑘)) |
| 494 | 493 | oveq2d 7447 |
. . . . . . . . 9
⊢ (𝑑 = 𝐷 → (((𝐶‘𝑗)‘𝑘)[,)((𝑑‘𝑗)‘𝑘)) = (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) |
| 495 | 494 | ixpeq2dv 8953 |
. . . . . . . 8
⊢ (𝑑 = 𝐷 → X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝑑‘𝑗)‘𝑘)) = X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) |
| 496 | 495 | adantr 480 |
. . . . . . 7
⊢ ((𝑑 = 𝐷 ∧ 𝑗 ∈ ℕ) → X𝑘 ∈
𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝑑‘𝑗)‘𝑘)) = X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) |
| 497 | 496 | iuneq2dv 5016 |
. . . . . 6
⊢ (𝑑 = 𝐷 → ∪
𝑗 ∈ ℕ X𝑘 ∈
𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝑑‘𝑗)‘𝑘)) = ∪
𝑗 ∈ ℕ X𝑘 ∈
𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) |
| 498 | 497 | sseq2d 4016 |
. . . . 5
⊢ (𝑑 = 𝐷 → (X𝑘 ∈ 𝑋 ((𝐴‘𝑘)[,)(𝐵‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝑑‘𝑗)‘𝑘)) ↔ X𝑘 ∈ 𝑋 ((𝐴‘𝑘)[,)(𝐵‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘)))) |
| 499 | 492 | oveq2d 7447 |
. . . . . . . 8
⊢ (𝑑 = 𝐷 → ((𝐶‘𝑗)(𝐿‘𝑋)(𝑑‘𝑗)) = ((𝐶‘𝑗)(𝐿‘𝑋)(𝐷‘𝑗))) |
| 500 | 499 | mpteq2dv 5244 |
. . . . . . 7
⊢ (𝑑 = 𝐷 → (𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑋)(𝑑‘𝑗))) = (𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑋)(𝐷‘𝑗)))) |
| 501 | 500 | fveq2d 6910 |
. . . . . 6
⊢ (𝑑 = 𝐷 →
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑋)(𝑑‘𝑗)))) =
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑋)(𝐷‘𝑗))))) |
| 502 | 501 | breq2d 5155 |
. . . . 5
⊢ (𝑑 = 𝐷 → ((𝐴(𝐿‘𝑋)𝐵) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑋)(𝑑‘𝑗)))) ↔ (𝐴(𝐿‘𝑋)𝐵) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑋)(𝐷‘𝑗)))))) |
| 503 | 498, 502 | imbi12d 344 |
. . . 4
⊢ (𝑑 = 𝐷 → ((X𝑘 ∈ 𝑋 ((𝐴‘𝑘)[,)(𝐵‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝑑‘𝑗)‘𝑘)) → (𝐴(𝐿‘𝑋)𝐵) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑋)(𝑑‘𝑗))))) ↔ (X𝑘 ∈ 𝑋 ((𝐴‘𝑘)[,)(𝐵‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘)) → (𝐴(𝐿‘𝑋)𝐵) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑋)(𝐷‘𝑗))))))) |
| 504 | 503 | rspcva 3620 |
. . 3
⊢ ((𝐷 ∈ ((ℝ
↑m 𝑋)
↑m ℕ) ∧ ∀𝑑 ∈ ((ℝ ↑m 𝑋) ↑m
ℕ)(X𝑘 ∈ 𝑋 ((𝐴‘𝑘)[,)(𝐵‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝑑‘𝑗)‘𝑘)) → (𝐴(𝐿‘𝑋)𝐵) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑋)(𝑑‘𝑗)))))) → (X𝑘 ∈ 𝑋 ((𝐴‘𝑘)[,)(𝐵‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘)) → (𝐴(𝐿‘𝑋)𝐵) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑋)(𝐷‘𝑗)))))) |
| 505 | 9, 491, 504 | syl2anc 584 |
. 2
⊢ (𝜑 → (X𝑘 ∈
𝑋 ((𝐴‘𝑘)[,)(𝐵‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘)) → (𝐴(𝐿‘𝑋)𝐵) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑋)(𝐷‘𝑗)))))) |
| 506 | 1, 505 | mpd 15 |
1
⊢ (𝜑 → (𝐴(𝐿‘𝑋)𝐵) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑋)(𝐷‘𝑗))))) |