MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dmatscmcl Structured version   Visualization version   GIF version

Theorem dmatscmcl 22418
Description: The multiplication of a diagonal matrix with a scalar is a diagonal matrix. (Contributed by AV, 19-Dec-2019.)
Hypotheses
Ref Expression
dmatscmcl.k 𝐾 = (Base‘𝑅)
dmatscmcl.a 𝐴 = (𝑁 Mat 𝑅)
dmatscmcl.b 𝐵 = (Base‘𝐴)
dmatscmcl.s = ( ·𝑠𝐴)
dmatscmcl.d 𝐷 = (𝑁 DMat 𝑅)
Assertion
Ref Expression
dmatscmcl (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐶𝐾𝑀𝐷)) → (𝐶 𝑀) ∈ 𝐷)

Proof of Theorem dmatscmcl
Dummy variables 𝑖 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simprl 770 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐶𝐾𝑀𝐷)) → 𝐶𝐾)
2 dmatscmcl.a . . . . . . . 8 𝐴 = (𝑁 Mat 𝑅)
3 dmatscmcl.b . . . . . . . 8 𝐵 = (Base‘𝐴)
4 eqid 2731 . . . . . . . 8 (0g𝑅) = (0g𝑅)
5 dmatscmcl.d . . . . . . . 8 𝐷 = (𝑁 DMat 𝑅)
62, 3, 4, 5dmatmat 22409 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑀𝐷𝑀𝐵))
76com12 32 . . . . . 6 (𝑀𝐷 → ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑀𝐵))
87adantl 481 . . . . 5 ((𝐶𝐾𝑀𝐷) → ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑀𝐵))
98impcom 407 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐶𝐾𝑀𝐷)) → 𝑀𝐵)
101, 9jca 511 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐶𝐾𝑀𝐷)) → (𝐶𝐾𝑀𝐵))
11 dmatscmcl.k . . . 4 𝐾 = (Base‘𝑅)
12 dmatscmcl.s . . . 4 = ( ·𝑠𝐴)
1311, 2, 3, 12matvscl 22346 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐶𝐾𝑀𝐵)) → (𝐶 𝑀) ∈ 𝐵)
1410, 13syldan 591 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐶𝐾𝑀𝐷)) → (𝐶 𝑀) ∈ 𝐵)
152, 3, 4, 5dmatel 22408 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑀𝐷 ↔ (𝑀𝐵 ∧ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑀𝑗) = (0g𝑅)))))
1615adantr 480 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝐾) → (𝑀𝐷 ↔ (𝑀𝐵 ∧ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑀𝑗) = (0g𝑅)))))
17 simp-4r 783 . . . . . . . . . . . 12 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝐾) ∧ 𝑀𝐵) ∧ (𝑖𝑁𝑗𝑁)) → 𝑅 ∈ Ring)
18 simpr 484 . . . . . . . . . . . . . 14 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝐾) → 𝐶𝐾)
1918anim1i 615 . . . . . . . . . . . . 13 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝐾) ∧ 𝑀𝐵) → (𝐶𝐾𝑀𝐵))
2019adantr 480 . . . . . . . . . . . 12 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝐾) ∧ 𝑀𝐵) ∧ (𝑖𝑁𝑗𝑁)) → (𝐶𝐾𝑀𝐵))
21 simpr 484 . . . . . . . . . . . 12 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝐾) ∧ 𝑀𝐵) ∧ (𝑖𝑁𝑗𝑁)) → (𝑖𝑁𝑗𝑁))
2217, 20, 213jca 1128 . . . . . . . . . . 11 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝐾) ∧ 𝑀𝐵) ∧ (𝑖𝑁𝑗𝑁)) → (𝑅 ∈ Ring ∧ (𝐶𝐾𝑀𝐵) ∧ (𝑖𝑁𝑗𝑁)))
2322adantr 480 . . . . . . . . . 10 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝐾) ∧ 𝑀𝐵) ∧ (𝑖𝑁𝑗𝑁)) ∧ (𝑖𝑀𝑗) = (0g𝑅)) → (𝑅 ∈ Ring ∧ (𝐶𝐾𝑀𝐵) ∧ (𝑖𝑁𝑗𝑁)))
24 eqid 2731 . . . . . . . . . . 11 (.r𝑅) = (.r𝑅)
252, 3, 11, 12, 24matvscacell 22351 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ (𝐶𝐾𝑀𝐵) ∧ (𝑖𝑁𝑗𝑁)) → (𝑖(𝐶 𝑀)𝑗) = (𝐶(.r𝑅)(𝑖𝑀𝑗)))
2623, 25syl 17 . . . . . . . . 9 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝐾) ∧ 𝑀𝐵) ∧ (𝑖𝑁𝑗𝑁)) ∧ (𝑖𝑀𝑗) = (0g𝑅)) → (𝑖(𝐶 𝑀)𝑗) = (𝐶(.r𝑅)(𝑖𝑀𝑗)))
27 oveq2 7354 . . . . . . . . . 10 ((𝑖𝑀𝑗) = (0g𝑅) → (𝐶(.r𝑅)(𝑖𝑀𝑗)) = (𝐶(.r𝑅)(0g𝑅)))
2827adantl 481 . . . . . . . . 9 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝐾) ∧ 𝑀𝐵) ∧ (𝑖𝑁𝑗𝑁)) ∧ (𝑖𝑀𝑗) = (0g𝑅)) → (𝐶(.r𝑅)(𝑖𝑀𝑗)) = (𝐶(.r𝑅)(0g𝑅)))
2911, 24, 4ringrz 20212 . . . . . . . . . . 11 ((𝑅 ∈ Ring ∧ 𝐶𝐾) → (𝐶(.r𝑅)(0g𝑅)) = (0g𝑅))
3029ad5ant23 759 . . . . . . . . . 10 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝐾) ∧ 𝑀𝐵) ∧ (𝑖𝑁𝑗𝑁)) → (𝐶(.r𝑅)(0g𝑅)) = (0g𝑅))
3130adantr 480 . . . . . . . . 9 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝐾) ∧ 𝑀𝐵) ∧ (𝑖𝑁𝑗𝑁)) ∧ (𝑖𝑀𝑗) = (0g𝑅)) → (𝐶(.r𝑅)(0g𝑅)) = (0g𝑅))
3226, 28, 313eqtrd 2770 . . . . . . . 8 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝐾) ∧ 𝑀𝐵) ∧ (𝑖𝑁𝑗𝑁)) ∧ (𝑖𝑀𝑗) = (0g𝑅)) → (𝑖(𝐶 𝑀)𝑗) = (0g𝑅))
3332ex 412 . . . . . . 7 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝐾) ∧ 𝑀𝐵) ∧ (𝑖𝑁𝑗𝑁)) → ((𝑖𝑀𝑗) = (0g𝑅) → (𝑖(𝐶 𝑀)𝑗) = (0g𝑅)))
3433imim2d 57 . . . . . 6 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝐾) ∧ 𝑀𝐵) ∧ (𝑖𝑁𝑗𝑁)) → ((𝑖𝑗 → (𝑖𝑀𝑗) = (0g𝑅)) → (𝑖𝑗 → (𝑖(𝐶 𝑀)𝑗) = (0g𝑅))))
3534ralimdvva 3179 . . . . 5 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝐾) ∧ 𝑀𝐵) → (∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑀𝑗) = (0g𝑅)) → ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖(𝐶 𝑀)𝑗) = (0g𝑅))))
3635expimpd 453 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝐾) → ((𝑀𝐵 ∧ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑀𝑗) = (0g𝑅))) → ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖(𝐶 𝑀)𝑗) = (0g𝑅))))
3716, 36sylbid 240 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝐾) → (𝑀𝐷 → ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖(𝐶 𝑀)𝑗) = (0g𝑅))))
3837impr 454 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐶𝐾𝑀𝐷)) → ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖(𝐶 𝑀)𝑗) = (0g𝑅)))
392, 3, 4, 5dmatel 22408 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → ((𝐶 𝑀) ∈ 𝐷 ↔ ((𝐶 𝑀) ∈ 𝐵 ∧ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖(𝐶 𝑀)𝑗) = (0g𝑅)))))
4039adantr 480 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐶𝐾𝑀𝐷)) → ((𝐶 𝑀) ∈ 𝐷 ↔ ((𝐶 𝑀) ∈ 𝐵 ∧ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖(𝐶 𝑀)𝑗) = (0g𝑅)))))
4114, 38, 40mpbir2and 713 1 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐶𝐾𝑀𝐷)) → (𝐶 𝑀) ∈ 𝐷)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111  wne 2928  wral 3047  cfv 6481  (class class class)co 7346  Fincfn 8869  Basecbs 17120  .rcmulr 17162   ·𝑠 cvsca 17165  0gc0g 17343  Ringcrg 20151   Mat cmat 22322   DMat cdmat 22403
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-tp 4578  df-op 4580  df-ot 4582  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-of 7610  df-om 7797  df-1st 7921  df-2nd 7922  df-supp 8091  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-er 8622  df-map 8752  df-ixp 8822  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-fsupp 9246  df-sup 9326  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-2 12188  df-3 12189  df-4 12190  df-5 12191  df-6 12192  df-7 12193  df-8 12194  df-9 12195  df-n0 12382  df-z 12469  df-dec 12589  df-uz 12733  df-fz 13408  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-hom 17185  df-cco 17186  df-0g 17345  df-prds 17351  df-pws 17353  df-mgm 18548  df-sgrp 18627  df-mnd 18643  df-grp 18849  df-minusg 18850  df-sbg 18851  df-subg 19036  df-cmn 19694  df-abl 19695  df-mgp 20059  df-rng 20071  df-ur 20100  df-ring 20153  df-subrg 20485  df-lmod 20795  df-lss 20865  df-sra 21107  df-rgmod 21108  df-dsmm 21669  df-frlm 21684  df-mat 22323  df-dmat 22405
This theorem is referenced by:  scmatscmiddistr  22423
  Copyright terms: Public domain W3C validator