MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dmatscmcl Structured version   Visualization version   GIF version

Theorem dmatscmcl 22446
Description: The multiplication of a diagonal matrix with a scalar is a diagonal matrix. (Contributed by AV, 19-Dec-2019.)
Hypotheses
Ref Expression
dmatscmcl.k 𝐾 = (Base‘𝑅)
dmatscmcl.a 𝐴 = (𝑁 Mat 𝑅)
dmatscmcl.b 𝐵 = (Base‘𝐴)
dmatscmcl.s = ( ·𝑠𝐴)
dmatscmcl.d 𝐷 = (𝑁 DMat 𝑅)
Assertion
Ref Expression
dmatscmcl (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐶𝐾𝑀𝐷)) → (𝐶 𝑀) ∈ 𝐷)

Proof of Theorem dmatscmcl
Dummy variables 𝑖 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simprl 770 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐶𝐾𝑀𝐷)) → 𝐶𝐾)
2 dmatscmcl.a . . . . . . . 8 𝐴 = (𝑁 Mat 𝑅)
3 dmatscmcl.b . . . . . . . 8 𝐵 = (Base‘𝐴)
4 eqid 2736 . . . . . . . 8 (0g𝑅) = (0g𝑅)
5 dmatscmcl.d . . . . . . . 8 𝐷 = (𝑁 DMat 𝑅)
62, 3, 4, 5dmatmat 22437 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑀𝐷𝑀𝐵))
76com12 32 . . . . . 6 (𝑀𝐷 → ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑀𝐵))
87adantl 481 . . . . 5 ((𝐶𝐾𝑀𝐷) → ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑀𝐵))
98impcom 407 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐶𝐾𝑀𝐷)) → 𝑀𝐵)
101, 9jca 511 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐶𝐾𝑀𝐷)) → (𝐶𝐾𝑀𝐵))
11 dmatscmcl.k . . . 4 𝐾 = (Base‘𝑅)
12 dmatscmcl.s . . . 4 = ( ·𝑠𝐴)
1311, 2, 3, 12matvscl 22374 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐶𝐾𝑀𝐵)) → (𝐶 𝑀) ∈ 𝐵)
1410, 13syldan 591 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐶𝐾𝑀𝐷)) → (𝐶 𝑀) ∈ 𝐵)
152, 3, 4, 5dmatel 22436 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑀𝐷 ↔ (𝑀𝐵 ∧ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑀𝑗) = (0g𝑅)))))
1615adantr 480 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝐾) → (𝑀𝐷 ↔ (𝑀𝐵 ∧ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑀𝑗) = (0g𝑅)))))
17 simp-4r 783 . . . . . . . . . . . 12 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝐾) ∧ 𝑀𝐵) ∧ (𝑖𝑁𝑗𝑁)) → 𝑅 ∈ Ring)
18 simpr 484 . . . . . . . . . . . . . 14 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝐾) → 𝐶𝐾)
1918anim1i 615 . . . . . . . . . . . . 13 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝐾) ∧ 𝑀𝐵) → (𝐶𝐾𝑀𝐵))
2019adantr 480 . . . . . . . . . . . 12 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝐾) ∧ 𝑀𝐵) ∧ (𝑖𝑁𝑗𝑁)) → (𝐶𝐾𝑀𝐵))
21 simpr 484 . . . . . . . . . . . 12 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝐾) ∧ 𝑀𝐵) ∧ (𝑖𝑁𝑗𝑁)) → (𝑖𝑁𝑗𝑁))
2217, 20, 213jca 1128 . . . . . . . . . . 11 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝐾) ∧ 𝑀𝐵) ∧ (𝑖𝑁𝑗𝑁)) → (𝑅 ∈ Ring ∧ (𝐶𝐾𝑀𝐵) ∧ (𝑖𝑁𝑗𝑁)))
2322adantr 480 . . . . . . . . . 10 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝐾) ∧ 𝑀𝐵) ∧ (𝑖𝑁𝑗𝑁)) ∧ (𝑖𝑀𝑗) = (0g𝑅)) → (𝑅 ∈ Ring ∧ (𝐶𝐾𝑀𝐵) ∧ (𝑖𝑁𝑗𝑁)))
24 eqid 2736 . . . . . . . . . . 11 (.r𝑅) = (.r𝑅)
252, 3, 11, 12, 24matvscacell 22379 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ (𝐶𝐾𝑀𝐵) ∧ (𝑖𝑁𝑗𝑁)) → (𝑖(𝐶 𝑀)𝑗) = (𝐶(.r𝑅)(𝑖𝑀𝑗)))
2623, 25syl 17 . . . . . . . . 9 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝐾) ∧ 𝑀𝐵) ∧ (𝑖𝑁𝑗𝑁)) ∧ (𝑖𝑀𝑗) = (0g𝑅)) → (𝑖(𝐶 𝑀)𝑗) = (𝐶(.r𝑅)(𝑖𝑀𝑗)))
27 oveq2 7418 . . . . . . . . . 10 ((𝑖𝑀𝑗) = (0g𝑅) → (𝐶(.r𝑅)(𝑖𝑀𝑗)) = (𝐶(.r𝑅)(0g𝑅)))
2827adantl 481 . . . . . . . . 9 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝐾) ∧ 𝑀𝐵) ∧ (𝑖𝑁𝑗𝑁)) ∧ (𝑖𝑀𝑗) = (0g𝑅)) → (𝐶(.r𝑅)(𝑖𝑀𝑗)) = (𝐶(.r𝑅)(0g𝑅)))
2911, 24, 4ringrz 20259 . . . . . . . . . . 11 ((𝑅 ∈ Ring ∧ 𝐶𝐾) → (𝐶(.r𝑅)(0g𝑅)) = (0g𝑅))
3029ad5ant23 759 . . . . . . . . . 10 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝐾) ∧ 𝑀𝐵) ∧ (𝑖𝑁𝑗𝑁)) → (𝐶(.r𝑅)(0g𝑅)) = (0g𝑅))
3130adantr 480 . . . . . . . . 9 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝐾) ∧ 𝑀𝐵) ∧ (𝑖𝑁𝑗𝑁)) ∧ (𝑖𝑀𝑗) = (0g𝑅)) → (𝐶(.r𝑅)(0g𝑅)) = (0g𝑅))
3226, 28, 313eqtrd 2775 . . . . . . . 8 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝐾) ∧ 𝑀𝐵) ∧ (𝑖𝑁𝑗𝑁)) ∧ (𝑖𝑀𝑗) = (0g𝑅)) → (𝑖(𝐶 𝑀)𝑗) = (0g𝑅))
3332ex 412 . . . . . . 7 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝐾) ∧ 𝑀𝐵) ∧ (𝑖𝑁𝑗𝑁)) → ((𝑖𝑀𝑗) = (0g𝑅) → (𝑖(𝐶 𝑀)𝑗) = (0g𝑅)))
3433imim2d 57 . . . . . 6 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝐾) ∧ 𝑀𝐵) ∧ (𝑖𝑁𝑗𝑁)) → ((𝑖𝑗 → (𝑖𝑀𝑗) = (0g𝑅)) → (𝑖𝑗 → (𝑖(𝐶 𝑀)𝑗) = (0g𝑅))))
3534ralimdvva 3192 . . . . 5 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝐾) ∧ 𝑀𝐵) → (∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑀𝑗) = (0g𝑅)) → ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖(𝐶 𝑀)𝑗) = (0g𝑅))))
3635expimpd 453 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝐾) → ((𝑀𝐵 ∧ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑀𝑗) = (0g𝑅))) → ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖(𝐶 𝑀)𝑗) = (0g𝑅))))
3716, 36sylbid 240 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝐾) → (𝑀𝐷 → ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖(𝐶 𝑀)𝑗) = (0g𝑅))))
3837impr 454 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐶𝐾𝑀𝐷)) → ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖(𝐶 𝑀)𝑗) = (0g𝑅)))
392, 3, 4, 5dmatel 22436 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → ((𝐶 𝑀) ∈ 𝐷 ↔ ((𝐶 𝑀) ∈ 𝐵 ∧ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖(𝐶 𝑀)𝑗) = (0g𝑅)))))
4039adantr 480 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐶𝐾𝑀𝐷)) → ((𝐶 𝑀) ∈ 𝐷 ↔ ((𝐶 𝑀) ∈ 𝐵 ∧ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖(𝐶 𝑀)𝑗) = (0g𝑅)))))
4114, 38, 40mpbir2and 713 1 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐶𝐾𝑀𝐷)) → (𝐶 𝑀) ∈ 𝐷)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2933  wral 3052  cfv 6536  (class class class)co 7410  Fincfn 8964  Basecbs 17233  .rcmulr 17277   ·𝑠 cvsca 17280  0gc0g 17458  Ringcrg 20198   Mat cmat 22350   DMat cdmat 22431
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-ot 4615  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-of 7676  df-om 7867  df-1st 7993  df-2nd 7994  df-supp 8165  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-er 8724  df-map 8847  df-ixp 8917  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-fsupp 9379  df-sup 9459  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-5 12311  df-6 12312  df-7 12313  df-8 12314  df-9 12315  df-n0 12507  df-z 12594  df-dec 12714  df-uz 12858  df-fz 13530  df-struct 17171  df-sets 17188  df-slot 17206  df-ndx 17218  df-base 17234  df-ress 17257  df-plusg 17289  df-mulr 17290  df-sca 17292  df-vsca 17293  df-ip 17294  df-tset 17295  df-ple 17296  df-ds 17298  df-hom 17300  df-cco 17301  df-0g 17460  df-prds 17466  df-pws 17468  df-mgm 18623  df-sgrp 18702  df-mnd 18718  df-grp 18924  df-minusg 18925  df-sbg 18926  df-subg 19111  df-cmn 19768  df-abl 19769  df-mgp 20106  df-rng 20118  df-ur 20147  df-ring 20200  df-subrg 20535  df-lmod 20824  df-lss 20894  df-sra 21136  df-rgmod 21137  df-dsmm 21697  df-frlm 21712  df-mat 22351  df-dmat 22433
This theorem is referenced by:  scmatscmiddistr  22451
  Copyright terms: Public domain W3C validator