MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dmatscmcl Structured version   Visualization version   GIF version

Theorem dmatscmcl 21648
Description: The multiplication of a diagonal matrix with a scalar is a diagonal matrix. (Contributed by AV, 19-Dec-2019.)
Hypotheses
Ref Expression
dmatscmcl.k 𝐾 = (Base‘𝑅)
dmatscmcl.a 𝐴 = (𝑁 Mat 𝑅)
dmatscmcl.b 𝐵 = (Base‘𝐴)
dmatscmcl.s = ( ·𝑠𝐴)
dmatscmcl.d 𝐷 = (𝑁 DMat 𝑅)
Assertion
Ref Expression
dmatscmcl (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐶𝐾𝑀𝐷)) → (𝐶 𝑀) ∈ 𝐷)

Proof of Theorem dmatscmcl
Dummy variables 𝑖 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simprl 768 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐶𝐾𝑀𝐷)) → 𝐶𝐾)
2 dmatscmcl.a . . . . . . . 8 𝐴 = (𝑁 Mat 𝑅)
3 dmatscmcl.b . . . . . . . 8 𝐵 = (Base‘𝐴)
4 eqid 2740 . . . . . . . 8 (0g𝑅) = (0g𝑅)
5 dmatscmcl.d . . . . . . . 8 𝐷 = (𝑁 DMat 𝑅)
62, 3, 4, 5dmatmat 21639 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑀𝐷𝑀𝐵))
76com12 32 . . . . . 6 (𝑀𝐷 → ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑀𝐵))
87adantl 482 . . . . 5 ((𝐶𝐾𝑀𝐷) → ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑀𝐵))
98impcom 408 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐶𝐾𝑀𝐷)) → 𝑀𝐵)
101, 9jca 512 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐶𝐾𝑀𝐷)) → (𝐶𝐾𝑀𝐵))
11 dmatscmcl.k . . . 4 𝐾 = (Base‘𝑅)
12 dmatscmcl.s . . . 4 = ( ·𝑠𝐴)
1311, 2, 3, 12matvscl 21576 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐶𝐾𝑀𝐵)) → (𝐶 𝑀) ∈ 𝐵)
1410, 13syldan 591 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐶𝐾𝑀𝐷)) → (𝐶 𝑀) ∈ 𝐵)
152, 3, 4, 5dmatel 21638 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑀𝐷 ↔ (𝑀𝐵 ∧ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑀𝑗) = (0g𝑅)))))
1615adantr 481 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝐾) → (𝑀𝐷 ↔ (𝑀𝐵 ∧ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑀𝑗) = (0g𝑅)))))
17 simp-4r 781 . . . . . . . . . . . 12 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝐾) ∧ 𝑀𝐵) ∧ (𝑖𝑁𝑗𝑁)) → 𝑅 ∈ Ring)
18 simpr 485 . . . . . . . . . . . . . 14 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝐾) → 𝐶𝐾)
1918anim1i 615 . . . . . . . . . . . . 13 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝐾) ∧ 𝑀𝐵) → (𝐶𝐾𝑀𝐵))
2019adantr 481 . . . . . . . . . . . 12 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝐾) ∧ 𝑀𝐵) ∧ (𝑖𝑁𝑗𝑁)) → (𝐶𝐾𝑀𝐵))
21 simpr 485 . . . . . . . . . . . 12 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝐾) ∧ 𝑀𝐵) ∧ (𝑖𝑁𝑗𝑁)) → (𝑖𝑁𝑗𝑁))
2217, 20, 213jca 1127 . . . . . . . . . . 11 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝐾) ∧ 𝑀𝐵) ∧ (𝑖𝑁𝑗𝑁)) → (𝑅 ∈ Ring ∧ (𝐶𝐾𝑀𝐵) ∧ (𝑖𝑁𝑗𝑁)))
2322adantr 481 . . . . . . . . . 10 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝐾) ∧ 𝑀𝐵) ∧ (𝑖𝑁𝑗𝑁)) ∧ (𝑖𝑀𝑗) = (0g𝑅)) → (𝑅 ∈ Ring ∧ (𝐶𝐾𝑀𝐵) ∧ (𝑖𝑁𝑗𝑁)))
24 eqid 2740 . . . . . . . . . . 11 (.r𝑅) = (.r𝑅)
252, 3, 11, 12, 24matvscacell 21581 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ (𝐶𝐾𝑀𝐵) ∧ (𝑖𝑁𝑗𝑁)) → (𝑖(𝐶 𝑀)𝑗) = (𝐶(.r𝑅)(𝑖𝑀𝑗)))
2623, 25syl 17 . . . . . . . . 9 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝐾) ∧ 𝑀𝐵) ∧ (𝑖𝑁𝑗𝑁)) ∧ (𝑖𝑀𝑗) = (0g𝑅)) → (𝑖(𝐶 𝑀)𝑗) = (𝐶(.r𝑅)(𝑖𝑀𝑗)))
27 oveq2 7277 . . . . . . . . . 10 ((𝑖𝑀𝑗) = (0g𝑅) → (𝐶(.r𝑅)(𝑖𝑀𝑗)) = (𝐶(.r𝑅)(0g𝑅)))
2827adantl 482 . . . . . . . . 9 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝐾) ∧ 𝑀𝐵) ∧ (𝑖𝑁𝑗𝑁)) ∧ (𝑖𝑀𝑗) = (0g𝑅)) → (𝐶(.r𝑅)(𝑖𝑀𝑗)) = (𝐶(.r𝑅)(0g𝑅)))
2911, 24, 4ringrz 19823 . . . . . . . . . . 11 ((𝑅 ∈ Ring ∧ 𝐶𝐾) → (𝐶(.r𝑅)(0g𝑅)) = (0g𝑅))
3029ad5ant23 757 . . . . . . . . . 10 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝐾) ∧ 𝑀𝐵) ∧ (𝑖𝑁𝑗𝑁)) → (𝐶(.r𝑅)(0g𝑅)) = (0g𝑅))
3130adantr 481 . . . . . . . . 9 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝐾) ∧ 𝑀𝐵) ∧ (𝑖𝑁𝑗𝑁)) ∧ (𝑖𝑀𝑗) = (0g𝑅)) → (𝐶(.r𝑅)(0g𝑅)) = (0g𝑅))
3226, 28, 313eqtrd 2784 . . . . . . . 8 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝐾) ∧ 𝑀𝐵) ∧ (𝑖𝑁𝑗𝑁)) ∧ (𝑖𝑀𝑗) = (0g𝑅)) → (𝑖(𝐶 𝑀)𝑗) = (0g𝑅))
3332ex 413 . . . . . . 7 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝐾) ∧ 𝑀𝐵) ∧ (𝑖𝑁𝑗𝑁)) → ((𝑖𝑀𝑗) = (0g𝑅) → (𝑖(𝐶 𝑀)𝑗) = (0g𝑅)))
3433imim2d 57 . . . . . 6 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝐾) ∧ 𝑀𝐵) ∧ (𝑖𝑁𝑗𝑁)) → ((𝑖𝑗 → (𝑖𝑀𝑗) = (0g𝑅)) → (𝑖𝑗 → (𝑖(𝐶 𝑀)𝑗) = (0g𝑅))))
3534ralimdvva 3107 . . . . 5 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝐾) ∧ 𝑀𝐵) → (∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑀𝑗) = (0g𝑅)) → ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖(𝐶 𝑀)𝑗) = (0g𝑅))))
3635expimpd 454 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝐾) → ((𝑀𝐵 ∧ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑀𝑗) = (0g𝑅))) → ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖(𝐶 𝑀)𝑗) = (0g𝑅))))
3716, 36sylbid 239 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝐾) → (𝑀𝐷 → ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖(𝐶 𝑀)𝑗) = (0g𝑅))))
3837impr 455 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐶𝐾𝑀𝐷)) → ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖(𝐶 𝑀)𝑗) = (0g𝑅)))
392, 3, 4, 5dmatel 21638 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → ((𝐶 𝑀) ∈ 𝐷 ↔ ((𝐶 𝑀) ∈ 𝐵 ∧ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖(𝐶 𝑀)𝑗) = (0g𝑅)))))
4039adantr 481 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐶𝐾𝑀𝐷)) → ((𝐶 𝑀) ∈ 𝐷 ↔ ((𝐶 𝑀) ∈ 𝐵 ∧ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖(𝐶 𝑀)𝑗) = (0g𝑅)))))
4114, 38, 40mpbir2and 710 1 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐶𝐾𝑀𝐷)) → (𝐶 𝑀) ∈ 𝐷)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1542  wcel 2110  wne 2945  wral 3066  cfv 6431  (class class class)co 7269  Fincfn 8714  Basecbs 16908  .rcmulr 16959   ·𝑠 cvsca 16962  0gc0g 17146  Ringcrg 19779   Mat cmat 21550   DMat cdmat 21633
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-rep 5214  ax-sep 5227  ax-nul 5234  ax-pow 5292  ax-pr 5356  ax-un 7580  ax-cnex 10926  ax-resscn 10927  ax-1cn 10928  ax-icn 10929  ax-addcl 10930  ax-addrcl 10931  ax-mulcl 10932  ax-mulrcl 10933  ax-mulcom 10934  ax-addass 10935  ax-mulass 10936  ax-distr 10937  ax-i2m1 10938  ax-1ne0 10939  ax-1rid 10940  ax-rnegex 10941  ax-rrecex 10942  ax-cnre 10943  ax-pre-lttri 10944  ax-pre-lttrn 10945  ax-pre-ltadd 10946  ax-pre-mulgt0 10947
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-nel 3052  df-ral 3071  df-rex 3072  df-reu 3073  df-rmo 3074  df-rab 3075  df-v 3433  df-sbc 3721  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-ot 4576  df-uni 4846  df-iun 4932  df-br 5080  df-opab 5142  df-mpt 5163  df-tr 5197  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6200  df-ord 6267  df-on 6268  df-lim 6269  df-suc 6270  df-iota 6389  df-fun 6433  df-fn 6434  df-f 6435  df-f1 6436  df-fo 6437  df-f1o 6438  df-fv 6439  df-riota 7226  df-ov 7272  df-oprab 7273  df-mpo 7274  df-of 7525  df-om 7705  df-1st 7822  df-2nd 7823  df-supp 7967  df-frecs 8086  df-wrecs 8117  df-recs 8191  df-rdg 8230  df-1o 8286  df-er 8479  df-map 8598  df-ixp 8667  df-en 8715  df-dom 8716  df-sdom 8717  df-fin 8718  df-fsupp 9105  df-sup 9177  df-pnf 11010  df-mnf 11011  df-xr 11012  df-ltxr 11013  df-le 11014  df-sub 11205  df-neg 11206  df-nn 11972  df-2 12034  df-3 12035  df-4 12036  df-5 12037  df-6 12038  df-7 12039  df-8 12040  df-9 12041  df-n0 12232  df-z 12318  df-dec 12435  df-uz 12580  df-fz 13237  df-struct 16844  df-sets 16861  df-slot 16879  df-ndx 16891  df-base 16909  df-ress 16938  df-plusg 16971  df-mulr 16972  df-sca 16974  df-vsca 16975  df-ip 16976  df-tset 16977  df-ple 16978  df-ds 16980  df-hom 16982  df-cco 16983  df-0g 17148  df-prds 17154  df-pws 17156  df-mgm 18322  df-sgrp 18371  df-mnd 18382  df-grp 18576  df-minusg 18577  df-sbg 18578  df-subg 18748  df-mgp 19717  df-ur 19734  df-ring 19781  df-subrg 20018  df-lmod 20121  df-lss 20190  df-sra 20430  df-rgmod 20431  df-dsmm 20935  df-frlm 20950  df-mat 21551  df-dmat 21635
This theorem is referenced by:  scmatscmiddistr  21653
  Copyright terms: Public domain W3C validator