MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dmatscmcl Structured version   Visualization version   GIF version

Theorem dmatscmcl 20635
Description: The multiplication of a diagonal matrix with a scalar is a diagonal matrix. (Contributed by AV, 19-Dec-2019.)
Hypotheses
Ref Expression
dmatscmcl.k 𝐾 = (Base‘𝑅)
dmatscmcl.a 𝐴 = (𝑁 Mat 𝑅)
dmatscmcl.b 𝐵 = (Base‘𝐴)
dmatscmcl.s = ( ·𝑠𝐴)
dmatscmcl.d 𝐷 = (𝑁 DMat 𝑅)
Assertion
Ref Expression
dmatscmcl (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐶𝐾𝑀𝐷)) → (𝐶 𝑀) ∈ 𝐷)

Proof of Theorem dmatscmcl
Dummy variables 𝑖 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simprl 788 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐶𝐾𝑀𝐷)) → 𝐶𝐾)
2 dmatscmcl.a . . . . . . . 8 𝐴 = (𝑁 Mat 𝑅)
3 dmatscmcl.b . . . . . . . 8 𝐵 = (Base‘𝐴)
4 eqid 2799 . . . . . . . 8 (0g𝑅) = (0g𝑅)
5 dmatscmcl.d . . . . . . . 8 𝐷 = (𝑁 DMat 𝑅)
62, 3, 4, 5dmatmat 20626 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑀𝐷𝑀𝐵))
76com12 32 . . . . . 6 (𝑀𝐷 → ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑀𝐵))
87adantl 474 . . . . 5 ((𝐶𝐾𝑀𝐷) → ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑀𝐵))
98impcom 397 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐶𝐾𝑀𝐷)) → 𝑀𝐵)
101, 9jca 508 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐶𝐾𝑀𝐷)) → (𝐶𝐾𝑀𝐵))
11 dmatscmcl.k . . . 4 𝐾 = (Base‘𝑅)
12 dmatscmcl.s . . . 4 = ( ·𝑠𝐴)
1311, 2, 3, 12matvscl 20562 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐶𝐾𝑀𝐵)) → (𝐶 𝑀) ∈ 𝐵)
1410, 13syldan 586 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐶𝐾𝑀𝐷)) → (𝐶 𝑀) ∈ 𝐵)
152, 3, 4, 5dmatel 20625 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑀𝐷 ↔ (𝑀𝐵 ∧ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑀𝑗) = (0g𝑅)))))
1615adantr 473 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝐾) → (𝑀𝐷 ↔ (𝑀𝐵 ∧ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑀𝑗) = (0g𝑅)))))
17 simp-4r 804 . . . . . . . . . . . 12 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝐾) ∧ 𝑀𝐵) ∧ (𝑖𝑁𝑗𝑁)) → 𝑅 ∈ Ring)
18 simpr 478 . . . . . . . . . . . . . 14 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝐾) → 𝐶𝐾)
1918anim1i 609 . . . . . . . . . . . . 13 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝐾) ∧ 𝑀𝐵) → (𝐶𝐾𝑀𝐵))
2019adantr 473 . . . . . . . . . . . 12 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝐾) ∧ 𝑀𝐵) ∧ (𝑖𝑁𝑗𝑁)) → (𝐶𝐾𝑀𝐵))
21 simpr 478 . . . . . . . . . . . 12 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝐾) ∧ 𝑀𝐵) ∧ (𝑖𝑁𝑗𝑁)) → (𝑖𝑁𝑗𝑁))
2217, 20, 213jca 1159 . . . . . . . . . . 11 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝐾) ∧ 𝑀𝐵) ∧ (𝑖𝑁𝑗𝑁)) → (𝑅 ∈ Ring ∧ (𝐶𝐾𝑀𝐵) ∧ (𝑖𝑁𝑗𝑁)))
2322adantr 473 . . . . . . . . . 10 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝐾) ∧ 𝑀𝐵) ∧ (𝑖𝑁𝑗𝑁)) ∧ (𝑖𝑀𝑗) = (0g𝑅)) → (𝑅 ∈ Ring ∧ (𝐶𝐾𝑀𝐵) ∧ (𝑖𝑁𝑗𝑁)))
24 eqid 2799 . . . . . . . . . . 11 (.r𝑅) = (.r𝑅)
252, 3, 11, 12, 24matvscacell 20567 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ (𝐶𝐾𝑀𝐵) ∧ (𝑖𝑁𝑗𝑁)) → (𝑖(𝐶 𝑀)𝑗) = (𝐶(.r𝑅)(𝑖𝑀𝑗)))
2623, 25syl 17 . . . . . . . . 9 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝐾) ∧ 𝑀𝐵) ∧ (𝑖𝑁𝑗𝑁)) ∧ (𝑖𝑀𝑗) = (0g𝑅)) → (𝑖(𝐶 𝑀)𝑗) = (𝐶(.r𝑅)(𝑖𝑀𝑗)))
27 oveq2 6886 . . . . . . . . . 10 ((𝑖𝑀𝑗) = (0g𝑅) → (𝐶(.r𝑅)(𝑖𝑀𝑗)) = (𝐶(.r𝑅)(0g𝑅)))
2827adantl 474 . . . . . . . . 9 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝐾) ∧ 𝑀𝐵) ∧ (𝑖𝑁𝑗𝑁)) ∧ (𝑖𝑀𝑗) = (0g𝑅)) → (𝐶(.r𝑅)(𝑖𝑀𝑗)) = (𝐶(.r𝑅)(0g𝑅)))
29 simpr 478 . . . . . . . . . . . . . 14 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑅 ∈ Ring)
3029anim1i 609 . . . . . . . . . . . . 13 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝐾) → (𝑅 ∈ Ring ∧ 𝐶𝐾))
3130adantr 473 . . . . . . . . . . . 12 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝐾) ∧ 𝑀𝐵) → (𝑅 ∈ Ring ∧ 𝐶𝐾))
3211, 24, 4ringrz 18904 . . . . . . . . . . . 12 ((𝑅 ∈ Ring ∧ 𝐶𝐾) → (𝐶(.r𝑅)(0g𝑅)) = (0g𝑅))
3331, 32syl 17 . . . . . . . . . . 11 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝐾) ∧ 𝑀𝐵) → (𝐶(.r𝑅)(0g𝑅)) = (0g𝑅))
3433adantr 473 . . . . . . . . . 10 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝐾) ∧ 𝑀𝐵) ∧ (𝑖𝑁𝑗𝑁)) → (𝐶(.r𝑅)(0g𝑅)) = (0g𝑅))
3534adantr 473 . . . . . . . . 9 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝐾) ∧ 𝑀𝐵) ∧ (𝑖𝑁𝑗𝑁)) ∧ (𝑖𝑀𝑗) = (0g𝑅)) → (𝐶(.r𝑅)(0g𝑅)) = (0g𝑅))
3626, 28, 353eqtrd 2837 . . . . . . . 8 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝐾) ∧ 𝑀𝐵) ∧ (𝑖𝑁𝑗𝑁)) ∧ (𝑖𝑀𝑗) = (0g𝑅)) → (𝑖(𝐶 𝑀)𝑗) = (0g𝑅))
3736ex 402 . . . . . . 7 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝐾) ∧ 𝑀𝐵) ∧ (𝑖𝑁𝑗𝑁)) → ((𝑖𝑀𝑗) = (0g𝑅) → (𝑖(𝐶 𝑀)𝑗) = (0g𝑅)))
3837imim2d 57 . . . . . 6 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝐾) ∧ 𝑀𝐵) ∧ (𝑖𝑁𝑗𝑁)) → ((𝑖𝑗 → (𝑖𝑀𝑗) = (0g𝑅)) → (𝑖𝑗 → (𝑖(𝐶 𝑀)𝑗) = (0g𝑅))))
3938ralimdvva 3145 . . . . 5 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝐾) ∧ 𝑀𝐵) → (∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑀𝑗) = (0g𝑅)) → ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖(𝐶 𝑀)𝑗) = (0g𝑅))))
4039expimpd 446 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝐾) → ((𝑀𝐵 ∧ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑀𝑗) = (0g𝑅))) → ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖(𝐶 𝑀)𝑗) = (0g𝑅))))
4116, 40sylbid 232 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝐾) → (𝑀𝐷 → ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖(𝐶 𝑀)𝑗) = (0g𝑅))))
4241impr 447 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐶𝐾𝑀𝐷)) → ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖(𝐶 𝑀)𝑗) = (0g𝑅)))
432, 3, 4, 5dmatel 20625 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → ((𝐶 𝑀) ∈ 𝐷 ↔ ((𝐶 𝑀) ∈ 𝐵 ∧ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖(𝐶 𝑀)𝑗) = (0g𝑅)))))
4443adantr 473 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐶𝐾𝑀𝐷)) → ((𝐶 𝑀) ∈ 𝐷 ↔ ((𝐶 𝑀) ∈ 𝐵 ∧ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖(𝐶 𝑀)𝑗) = (0g𝑅)))))
4514, 42, 44mpbir2and 705 1 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐶𝐾𝑀𝐷)) → (𝐶 𝑀) ∈ 𝐷)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 385  w3a 1108   = wceq 1653  wcel 2157  wne 2971  wral 3089  cfv 6101  (class class class)co 6878  Fincfn 8195  Basecbs 16184  .rcmulr 16268   ·𝑠 cvsca 16271  0gc0g 16415  Ringcrg 18863   Mat cmat 20538   DMat cdmat 20620
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2377  ax-ext 2777  ax-rep 4964  ax-sep 4975  ax-nul 4983  ax-pow 5035  ax-pr 5097  ax-un 7183  ax-cnex 10280  ax-resscn 10281  ax-1cn 10282  ax-icn 10283  ax-addcl 10284  ax-addrcl 10285  ax-mulcl 10286  ax-mulrcl 10287  ax-mulcom 10288  ax-addass 10289  ax-mulass 10290  ax-distr 10291  ax-i2m1 10292  ax-1ne0 10293  ax-1rid 10294  ax-rnegex 10295  ax-rrecex 10296  ax-cnre 10297  ax-pre-lttri 10298  ax-pre-lttrn 10299  ax-pre-ltadd 10300  ax-pre-mulgt0 10301
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3or 1109  df-3an 1110  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2591  df-eu 2609  df-clab 2786  df-cleq 2792  df-clel 2795  df-nfc 2930  df-ne 2972  df-nel 3075  df-ral 3094  df-rex 3095  df-reu 3096  df-rmo 3097  df-rab 3098  df-v 3387  df-sbc 3634  df-csb 3729  df-dif 3772  df-un 3774  df-in 3776  df-ss 3783  df-pss 3785  df-nul 4116  df-if 4278  df-pw 4351  df-sn 4369  df-pr 4371  df-tp 4373  df-op 4375  df-ot 4377  df-uni 4629  df-int 4668  df-iun 4712  df-br 4844  df-opab 4906  df-mpt 4923  df-tr 4946  df-id 5220  df-eprel 5225  df-po 5233  df-so 5234  df-fr 5271  df-we 5273  df-xp 5318  df-rel 5319  df-cnv 5320  df-co 5321  df-dm 5322  df-rn 5323  df-res 5324  df-ima 5325  df-pred 5898  df-ord 5944  df-on 5945  df-lim 5946  df-suc 5947  df-iota 6064  df-fun 6103  df-fn 6104  df-f 6105  df-f1 6106  df-fo 6107  df-f1o 6108  df-fv 6109  df-riota 6839  df-ov 6881  df-oprab 6882  df-mpt2 6883  df-of 7131  df-om 7300  df-1st 7401  df-2nd 7402  df-supp 7533  df-wrecs 7645  df-recs 7707  df-rdg 7745  df-1o 7799  df-oadd 7803  df-er 7982  df-map 8097  df-ixp 8149  df-en 8196  df-dom 8197  df-sdom 8198  df-fin 8199  df-fsupp 8518  df-sup 8590  df-pnf 10365  df-mnf 10366  df-xr 10367  df-ltxr 10368  df-le 10369  df-sub 10558  df-neg 10559  df-nn 11313  df-2 11376  df-3 11377  df-4 11378  df-5 11379  df-6 11380  df-7 11381  df-8 11382  df-9 11383  df-n0 11581  df-z 11667  df-dec 11784  df-uz 11931  df-fz 12581  df-struct 16186  df-ndx 16187  df-slot 16188  df-base 16190  df-sets 16191  df-ress 16192  df-plusg 16280  df-mulr 16281  df-sca 16283  df-vsca 16284  df-ip 16285  df-tset 16286  df-ple 16287  df-ds 16289  df-hom 16291  df-cco 16292  df-0g 16417  df-prds 16423  df-pws 16425  df-mgm 17557  df-sgrp 17599  df-mnd 17610  df-grp 17741  df-minusg 17742  df-sbg 17743  df-subg 17904  df-mgp 18806  df-ur 18818  df-ring 18865  df-subrg 19096  df-lmod 19183  df-lss 19251  df-sra 19495  df-rgmod 19496  df-dsmm 20401  df-frlm 20416  df-mat 20539  df-dmat 20622
This theorem is referenced by:  scmatscmiddistr  20640
  Copyright terms: Public domain W3C validator