Step | Hyp | Ref
| Expression |
1 | | 2reu4 4419 |
. 2
⊢
((∃!𝑎 ∈
𝐴 ∃𝑏 ∈ 𝐵 𝜒 ∧ ∃!𝑏 ∈ 𝐵 ∃𝑎 ∈ 𝐴 𝜒) ↔ (∃𝑎 ∈ 𝐴 ∃𝑏 ∈ 𝐵 𝜒 ∧ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 ∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐵 (𝜒 → (𝑎 = 𝑥 ∧ 𝑏 = 𝑦)))) |
2 | | simpllr 775 |
. . . . . 6
⊢
((((∃𝑎 ∈
𝐴 ∃𝑏 ∈ 𝐵 𝜒 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐵) ∧ ∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐵 (𝜒 → (𝑎 = 𝑥 ∧ 𝑏 = 𝑦))) → 𝑥 ∈ 𝐴) |
3 | | simplr 768 |
. . . . . 6
⊢
((((∃𝑎 ∈
𝐴 ∃𝑏 ∈ 𝐵 𝜒 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐵) ∧ ∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐵 (𝜒 → (𝑎 = 𝑥 ∧ 𝑏 = 𝑦))) → 𝑦 ∈ 𝐵) |
4 | | opelxpi 5561 |
. . . . . 6
⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 〈𝑥, 𝑦〉 ∈ (𝐴 × 𝐵)) |
5 | 2, 3, 4 | syl2anc 587 |
. . . . 5
⊢
((((∃𝑎 ∈
𝐴 ∃𝑏 ∈ 𝐵 𝜒 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐵) ∧ ∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐵 (𝜒 → (𝑎 = 𝑥 ∧ 𝑏 = 𝑦))) → 〈𝑥, 𝑦〉 ∈ (𝐴 × 𝐵)) |
6 | | nfre1 3230 |
. . . . . . . . 9
⊢
Ⅎ𝑎∃𝑎 ∈ 𝐴 ∃𝑏 ∈ 𝐵 𝜒 |
7 | | nfv 1915 |
. . . . . . . . 9
⊢
Ⅎ𝑎 𝑥 ∈ 𝐴 |
8 | 6, 7 | nfan 1900 |
. . . . . . . 8
⊢
Ⅎ𝑎(∃𝑎 ∈ 𝐴 ∃𝑏 ∈ 𝐵 𝜒 ∧ 𝑥 ∈ 𝐴) |
9 | | nfv 1915 |
. . . . . . . 8
⊢
Ⅎ𝑎 𝑦 ∈ 𝐵 |
10 | 8, 9 | nfan 1900 |
. . . . . . 7
⊢
Ⅎ𝑎((∃𝑎 ∈ 𝐴 ∃𝑏 ∈ 𝐵 𝜒 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐵) |
11 | | nfra1 3147 |
. . . . . . 7
⊢
Ⅎ𝑎∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐵 (𝜒 → (𝑎 = 𝑥 ∧ 𝑏 = 𝑦)) |
12 | 10, 11 | nfan 1900 |
. . . . . 6
⊢
Ⅎ𝑎(((∃𝑎 ∈ 𝐴 ∃𝑏 ∈ 𝐵 𝜒 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐵) ∧ ∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐵 (𝜒 → (𝑎 = 𝑥 ∧ 𝑏 = 𝑦))) |
13 | | nfcv 2919 |
. . . . . . 7
⊢
Ⅎ𝑎𝑦 |
14 | | nfsbc1v 3716 |
. . . . . . 7
⊢
Ⅎ𝑎[𝑥 / 𝑎]𝜒 |
15 | 13, 14 | nfsbc 3721 |
. . . . . 6
⊢
Ⅎ𝑎[𝑦 / 𝑏][𝑥 / 𝑎]𝜒 |
16 | | nfcv 2919 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑏𝐴 |
17 | | nfre1 3230 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑏∃𝑏 ∈ 𝐵 𝜒 |
18 | 16, 17 | nfrex 3233 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑏∃𝑎 ∈ 𝐴 ∃𝑏 ∈ 𝐵 𝜒 |
19 | | nfv 1915 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑏 𝑥 ∈ 𝐴 |
20 | 18, 19 | nfan 1900 |
. . . . . . . . . . 11
⊢
Ⅎ𝑏(∃𝑎 ∈ 𝐴 ∃𝑏 ∈ 𝐵 𝜒 ∧ 𝑥 ∈ 𝐴) |
21 | | nfv 1915 |
. . . . . . . . . . 11
⊢
Ⅎ𝑏 𝑦 ∈ 𝐵 |
22 | 20, 21 | nfan 1900 |
. . . . . . . . . 10
⊢
Ⅎ𝑏((∃𝑎 ∈ 𝐴 ∃𝑏 ∈ 𝐵 𝜒 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐵) |
23 | | nfcv 2919 |
. . . . . . . . . . 11
⊢
Ⅎ𝑏𝐴 |
24 | | nfra1 3147 |
. . . . . . . . . . 11
⊢
Ⅎ𝑏∀𝑏 ∈ 𝐵 (𝜒 → (𝑎 = 𝑥 ∧ 𝑏 = 𝑦)) |
25 | 23, 24 | nfral 3154 |
. . . . . . . . . 10
⊢
Ⅎ𝑏∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐵 (𝜒 → (𝑎 = 𝑥 ∧ 𝑏 = 𝑦)) |
26 | 22, 25 | nfan 1900 |
. . . . . . . . 9
⊢
Ⅎ𝑏(((∃𝑎 ∈ 𝐴 ∃𝑏 ∈ 𝐵 𝜒 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐵) ∧ ∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐵 (𝜒 → (𝑎 = 𝑥 ∧ 𝑏 = 𝑦))) |
27 | | nfv 1915 |
. . . . . . . . 9
⊢
Ⅎ𝑏 𝑎 ∈ 𝐴 |
28 | 26, 27 | nfan 1900 |
. . . . . . . 8
⊢
Ⅎ𝑏((((∃𝑎 ∈ 𝐴 ∃𝑏 ∈ 𝐵 𝜒 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐵) ∧ ∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐵 (𝜒 → (𝑎 = 𝑥 ∧ 𝑏 = 𝑦))) ∧ 𝑎 ∈ 𝐴) |
29 | | nfre1 3230 |
. . . . . . . 8
⊢
Ⅎ𝑏∃𝑏 ∈ 𝐵 𝜒 |
30 | 28, 29 | nfan 1900 |
. . . . . . 7
⊢
Ⅎ𝑏(((((∃𝑎 ∈ 𝐴 ∃𝑏 ∈ 𝐵 𝜒 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐵) ∧ ∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐵 (𝜒 → (𝑎 = 𝑥 ∧ 𝑏 = 𝑦))) ∧ 𝑎 ∈ 𝐴) ∧ ∃𝑏 ∈ 𝐵 𝜒) |
31 | | nfsbc1v 3716 |
. . . . . . 7
⊢
Ⅎ𝑏[𝑦 / 𝑏][𝑥 / 𝑎]𝜒 |
32 | | rspa 3135 |
. . . . . . . . . . . 12
⊢
((∀𝑎 ∈
𝐴 ∀𝑏 ∈ 𝐵 (𝜒 → (𝑎 = 𝑥 ∧ 𝑏 = 𝑦)) ∧ 𝑎 ∈ 𝐴) → ∀𝑏 ∈ 𝐵 (𝜒 → (𝑎 = 𝑥 ∧ 𝑏 = 𝑦))) |
33 | 32 | ad5ant23 759 |
. . . . . . . . . . 11
⊢
(((((((∃𝑎
∈ 𝐴 ∃𝑏 ∈ 𝐵 𝜒 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐵) ∧ ∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐵 (𝜒 → (𝑎 = 𝑥 ∧ 𝑏 = 𝑦))) ∧ 𝑎 ∈ 𝐴) ∧ 𝑏 ∈ 𝐵) ∧ 𝜒) → ∀𝑏 ∈ 𝐵 (𝜒 → (𝑎 = 𝑥 ∧ 𝑏 = 𝑦))) |
34 | | simplr 768 |
. . . . . . . . . . 11
⊢
(((((((∃𝑎
∈ 𝐴 ∃𝑏 ∈ 𝐵 𝜒 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐵) ∧ ∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐵 (𝜒 → (𝑎 = 𝑥 ∧ 𝑏 = 𝑦))) ∧ 𝑎 ∈ 𝐴) ∧ 𝑏 ∈ 𝐵) ∧ 𝜒) → 𝑏 ∈ 𝐵) |
35 | | simpr 488 |
. . . . . . . . . . 11
⊢
(((((((∃𝑎
∈ 𝐴 ∃𝑏 ∈ 𝐵 𝜒 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐵) ∧ ∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐵 (𝜒 → (𝑎 = 𝑥 ∧ 𝑏 = 𝑦))) ∧ 𝑎 ∈ 𝐴) ∧ 𝑏 ∈ 𝐵) ∧ 𝜒) → 𝜒) |
36 | | rspa 3135 |
. . . . . . . . . . . 12
⊢
((∀𝑏 ∈
𝐵 (𝜒 → (𝑎 = 𝑥 ∧ 𝑏 = 𝑦)) ∧ 𝑏 ∈ 𝐵) → (𝜒 → (𝑎 = 𝑥 ∧ 𝑏 = 𝑦))) |
37 | 36 | imp 410 |
. . . . . . . . . . 11
⊢
(((∀𝑏 ∈
𝐵 (𝜒 → (𝑎 = 𝑥 ∧ 𝑏 = 𝑦)) ∧ 𝑏 ∈ 𝐵) ∧ 𝜒) → (𝑎 = 𝑥 ∧ 𝑏 = 𝑦)) |
38 | 33, 34, 35, 37 | syl21anc 836 |
. . . . . . . . . 10
⊢
(((((((∃𝑎
∈ 𝐴 ∃𝑏 ∈ 𝐵 𝜒 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐵) ∧ ∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐵 (𝜒 → (𝑎 = 𝑥 ∧ 𝑏 = 𝑦))) ∧ 𝑎 ∈ 𝐴) ∧ 𝑏 ∈ 𝐵) ∧ 𝜒) → (𝑎 = 𝑥 ∧ 𝑏 = 𝑦)) |
39 | 38 | simprd 499 |
. . . . . . . . 9
⊢
(((((((∃𝑎
∈ 𝐴 ∃𝑏 ∈ 𝐵 𝜒 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐵) ∧ ∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐵 (𝜒 → (𝑎 = 𝑥 ∧ 𝑏 = 𝑦))) ∧ 𝑎 ∈ 𝐴) ∧ 𝑏 ∈ 𝐵) ∧ 𝜒) → 𝑏 = 𝑦) |
40 | | rspa 3135 |
. . . . . . . . . . . . 13
⊢
((∀𝑎 ∈
𝐴 ∀𝑏 ∈ 𝐵 (𝜒 → (𝑎 = 𝑥 ∧ 𝑏 = 𝑦)) ∧ 𝑎 ∈ 𝐴) → ∀𝑏 ∈ 𝐵 (𝜒 → (𝑎 = 𝑥 ∧ 𝑏 = 𝑦))) |
41 | 40 | ad5ant23 759 |
. . . . . . . . . . . 12
⊢
(((((((∃𝑎
∈ 𝐴 ∃𝑏 ∈ 𝐵 𝜒 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐵) ∧ ∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐵 (𝜒 → (𝑎 = 𝑥 ∧ 𝑏 = 𝑦))) ∧ 𝑎 ∈ 𝐴) ∧ 𝑏 ∈ 𝐵) ∧ 𝜒) → ∀𝑏 ∈ 𝐵 (𝜒 → (𝑎 = 𝑥 ∧ 𝑏 = 𝑦))) |
42 | | simplr 768 |
. . . . . . . . . . . 12
⊢
(((((((∃𝑎
∈ 𝐴 ∃𝑏 ∈ 𝐵 𝜒 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐵) ∧ ∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐵 (𝜒 → (𝑎 = 𝑥 ∧ 𝑏 = 𝑦))) ∧ 𝑎 ∈ 𝐴) ∧ 𝑏 ∈ 𝐵) ∧ 𝜒) → 𝑏 ∈ 𝐵) |
43 | | simpr 488 |
. . . . . . . . . . . 12
⊢
(((((((∃𝑎
∈ 𝐴 ∃𝑏 ∈ 𝐵 𝜒 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐵) ∧ ∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐵 (𝜒 → (𝑎 = 𝑥 ∧ 𝑏 = 𝑦))) ∧ 𝑎 ∈ 𝐴) ∧ 𝑏 ∈ 𝐵) ∧ 𝜒) → 𝜒) |
44 | | rspa 3135 |
. . . . . . . . . . . . 13
⊢
((∀𝑏 ∈
𝐵 (𝜒 → (𝑎 = 𝑥 ∧ 𝑏 = 𝑦)) ∧ 𝑏 ∈ 𝐵) → (𝜒 → (𝑎 = 𝑥 ∧ 𝑏 = 𝑦))) |
45 | 44 | imp 410 |
. . . . . . . . . . . 12
⊢
(((∀𝑏 ∈
𝐵 (𝜒 → (𝑎 = 𝑥 ∧ 𝑏 = 𝑦)) ∧ 𝑏 ∈ 𝐵) ∧ 𝜒) → (𝑎 = 𝑥 ∧ 𝑏 = 𝑦)) |
46 | 41, 42, 43, 45 | syl21anc 836 |
. . . . . . . . . . 11
⊢
(((((((∃𝑎
∈ 𝐴 ∃𝑏 ∈ 𝐵 𝜒 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐵) ∧ ∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐵 (𝜒 → (𝑎 = 𝑥 ∧ 𝑏 = 𝑦))) ∧ 𝑎 ∈ 𝐴) ∧ 𝑏 ∈ 𝐵) ∧ 𝜒) → (𝑎 = 𝑥 ∧ 𝑏 = 𝑦)) |
47 | 46 | simpld 498 |
. . . . . . . . . 10
⊢
(((((((∃𝑎
∈ 𝐴 ∃𝑏 ∈ 𝐵 𝜒 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐵) ∧ ∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐵 (𝜒 → (𝑎 = 𝑥 ∧ 𝑏 = 𝑦))) ∧ 𝑎 ∈ 𝐴) ∧ 𝑏 ∈ 𝐵) ∧ 𝜒) → 𝑎 = 𝑥) |
48 | | simpr 488 |
. . . . . . . . . 10
⊢
(((((((∃𝑎
∈ 𝐴 ∃𝑏 ∈ 𝐵 𝜒 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐵) ∧ ∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐵 (𝜒 → (𝑎 = 𝑥 ∧ 𝑏 = 𝑦))) ∧ 𝑎 ∈ 𝐴) ∧ 𝑏 ∈ 𝐵) ∧ 𝜒) → 𝜒) |
49 | | sbceq1a 3707 |
. . . . . . . . . . 11
⊢ (𝑎 = 𝑥 → (𝜒 ↔ [𝑥 / 𝑎]𝜒)) |
50 | 49 | biimpa 480 |
. . . . . . . . . 10
⊢ ((𝑎 = 𝑥 ∧ 𝜒) → [𝑥 / 𝑎]𝜒) |
51 | 47, 48, 50 | syl2anc 587 |
. . . . . . . . 9
⊢
(((((((∃𝑎
∈ 𝐴 ∃𝑏 ∈ 𝐵 𝜒 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐵) ∧ ∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐵 (𝜒 → (𝑎 = 𝑥 ∧ 𝑏 = 𝑦))) ∧ 𝑎 ∈ 𝐴) ∧ 𝑏 ∈ 𝐵) ∧ 𝜒) → [𝑥 / 𝑎]𝜒) |
52 | | sbceq1a 3707 |
. . . . . . . . . 10
⊢ (𝑏 = 𝑦 → ([𝑥 / 𝑎]𝜒 ↔ [𝑦 / 𝑏][𝑥 / 𝑎]𝜒)) |
53 | 52 | biimpa 480 |
. . . . . . . . 9
⊢ ((𝑏 = 𝑦 ∧ [𝑥 / 𝑎]𝜒) → [𝑦 / 𝑏][𝑥 / 𝑎]𝜒) |
54 | 39, 51, 53 | syl2anc 587 |
. . . . . . . 8
⊢
(((((((∃𝑎
∈ 𝐴 ∃𝑏 ∈ 𝐵 𝜒 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐵) ∧ ∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐵 (𝜒 → (𝑎 = 𝑥 ∧ 𝑏 = 𝑦))) ∧ 𝑎 ∈ 𝐴) ∧ 𝑏 ∈ 𝐵) ∧ 𝜒) → [𝑦 / 𝑏][𝑥 / 𝑎]𝜒) |
55 | 54 | adantllr 718 |
. . . . . . 7
⊢
((((((((∃𝑎
∈ 𝐴 ∃𝑏 ∈ 𝐵 𝜒 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐵) ∧ ∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐵 (𝜒 → (𝑎 = 𝑥 ∧ 𝑏 = 𝑦))) ∧ 𝑎 ∈ 𝐴) ∧ ∃𝑏 ∈ 𝐵 𝜒) ∧ 𝑏 ∈ 𝐵) ∧ 𝜒) → [𝑦 / 𝑏][𝑥 / 𝑎]𝜒) |
56 | | simpr 488 |
. . . . . . 7
⊢
((((((∃𝑎
∈ 𝐴 ∃𝑏 ∈ 𝐵 𝜒 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐵) ∧ ∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐵 (𝜒 → (𝑎 = 𝑥 ∧ 𝑏 = 𝑦))) ∧ 𝑎 ∈ 𝐴) ∧ ∃𝑏 ∈ 𝐵 𝜒) → ∃𝑏 ∈ 𝐵 𝜒) |
57 | 30, 31, 55, 56 | r19.29af2 3253 |
. . . . . 6
⊢
((((((∃𝑎
∈ 𝐴 ∃𝑏 ∈ 𝐵 𝜒 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐵) ∧ ∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐵 (𝜒 → (𝑎 = 𝑥 ∧ 𝑏 = 𝑦))) ∧ 𝑎 ∈ 𝐴) ∧ ∃𝑏 ∈ 𝐵 𝜒) → [𝑦 / 𝑏][𝑥 / 𝑎]𝜒) |
58 | | simplll 774 |
. . . . . 6
⊢
((((∃𝑎 ∈
𝐴 ∃𝑏 ∈ 𝐵 𝜒 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐵) ∧ ∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐵 (𝜒 → (𝑎 = 𝑥 ∧ 𝑏 = 𝑦))) → ∃𝑎 ∈ 𝐴 ∃𝑏 ∈ 𝐵 𝜒) |
59 | 12, 15, 57, 58 | r19.29af2 3253 |
. . . . 5
⊢
((((∃𝑎 ∈
𝐴 ∃𝑏 ∈ 𝐵 𝜒 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐵) ∧ ∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐵 (𝜒 → (𝑎 = 𝑥 ∧ 𝑏 = 𝑦))) → [𝑦 / 𝑏][𝑥 / 𝑎]𝜒) |
60 | | 1st2nd2 7732 |
. . . . . . . . 9
⊢ (𝑝 ∈ (𝐴 × 𝐵) → 𝑝 = 〈(1st ‘𝑝), (2nd ‘𝑝)〉) |
61 | 60 | ad2antlr 726 |
. . . . . . . 8
⊢
((((((∃𝑎
∈ 𝐴 ∃𝑏 ∈ 𝐵 𝜒 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐵) ∧ ∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐵 (𝜒 → (𝑎 = 𝑥 ∧ 𝑏 = 𝑦))) ∧ 𝑝 ∈ (𝐴 × 𝐵)) ∧ 𝜑) → 𝑝 = 〈(1st ‘𝑝), (2nd ‘𝑝)〉) |
62 | | nfre1 3230 |
. . . . . . . . . . . . . . . . . 18
⊢
Ⅎ𝑎∃𝑎 ∈ 𝐴 ∃𝑏 ∈ 𝐵 𝜒 |
63 | | nfv 1915 |
. . . . . . . . . . . . . . . . . 18
⊢
Ⅎ𝑎 𝑥 ∈ 𝐴 |
64 | 62, 63 | nfan 1900 |
. . . . . . . . . . . . . . . . 17
⊢
Ⅎ𝑎(∃𝑎 ∈ 𝐴 ∃𝑏 ∈ 𝐵 𝜒 ∧ 𝑥 ∈ 𝐴) |
65 | | nfv 1915 |
. . . . . . . . . . . . . . . . 17
⊢
Ⅎ𝑎 𝑦 ∈ 𝐵 |
66 | 64, 65 | nfan 1900 |
. . . . . . . . . . . . . . . 16
⊢
Ⅎ𝑎((∃𝑎 ∈ 𝐴 ∃𝑏 ∈ 𝐵 𝜒 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐵) |
67 | | nfra1 3147 |
. . . . . . . . . . . . . . . 16
⊢
Ⅎ𝑎∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐵 (𝜒 → (𝑎 = 𝑥 ∧ 𝑏 = 𝑦)) |
68 | 66, 67 | nfan 1900 |
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑎(((∃𝑎 ∈ 𝐴 ∃𝑏 ∈ 𝐵 𝜒 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐵) ∧ ∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐵 (𝜒 → (𝑎 = 𝑥 ∧ 𝑏 = 𝑦))) |
69 | | nfv 1915 |
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑎 𝑝 ∈ (𝐴 × 𝐵) |
70 | 68, 69 | nfan 1900 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑎((((∃𝑎 ∈ 𝐴 ∃𝑏 ∈ 𝐵 𝜒 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐵) ∧ ∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐵 (𝜒 → (𝑎 = 𝑥 ∧ 𝑏 = 𝑦))) ∧ 𝑝 ∈ (𝐴 × 𝐵)) |
71 | | nfv 1915 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑎𝜑 |
72 | 70, 71 | nfan 1900 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑎(((((∃𝑎 ∈ 𝐴 ∃𝑏 ∈ 𝐵 𝜒 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐵) ∧ ∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐵 (𝜒 → (𝑎 = 𝑥 ∧ 𝑏 = 𝑦))) ∧ 𝑝 ∈ (𝐴 × 𝐵)) ∧ 𝜑) |
73 | | nfcv 2919 |
. . . . . . . . . . . . . . . . . . 19
⊢
Ⅎ𝑏𝐴 |
74 | | nfre1 3230 |
. . . . . . . . . . . . . . . . . . 19
⊢
Ⅎ𝑏∃𝑏 ∈ 𝐵 𝜒 |
75 | 73, 74 | nfrex 3233 |
. . . . . . . . . . . . . . . . . 18
⊢
Ⅎ𝑏∃𝑎 ∈ 𝐴 ∃𝑏 ∈ 𝐵 𝜒 |
76 | | nfv 1915 |
. . . . . . . . . . . . . . . . . 18
⊢
Ⅎ𝑏 𝑥 ∈ 𝐴 |
77 | 75, 76 | nfan 1900 |
. . . . . . . . . . . . . . . . 17
⊢
Ⅎ𝑏(∃𝑎 ∈ 𝐴 ∃𝑏 ∈ 𝐵 𝜒 ∧ 𝑥 ∈ 𝐴) |
78 | | nfv 1915 |
. . . . . . . . . . . . . . . . 17
⊢
Ⅎ𝑏 𝑦 ∈ 𝐵 |
79 | 77, 78 | nfan 1900 |
. . . . . . . . . . . . . . . 16
⊢
Ⅎ𝑏((∃𝑎 ∈ 𝐴 ∃𝑏 ∈ 𝐵 𝜒 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐵) |
80 | | nfcv 2919 |
. . . . . . . . . . . . . . . . 17
⊢
Ⅎ𝑏𝐴 |
81 | | nfra1 3147 |
. . . . . . . . . . . . . . . . 17
⊢
Ⅎ𝑏∀𝑏 ∈ 𝐵 (𝜒 → (𝑎 = 𝑥 ∧ 𝑏 = 𝑦)) |
82 | 80, 81 | nfral 3154 |
. . . . . . . . . . . . . . . 16
⊢
Ⅎ𝑏∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐵 (𝜒 → (𝑎 = 𝑥 ∧ 𝑏 = 𝑦)) |
83 | 79, 82 | nfan 1900 |
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑏(((∃𝑎 ∈ 𝐴 ∃𝑏 ∈ 𝐵 𝜒 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐵) ∧ ∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐵 (𝜒 → (𝑎 = 𝑥 ∧ 𝑏 = 𝑦))) |
84 | | nfv 1915 |
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑏 𝑝 ∈ (𝐴 × 𝐵) |
85 | 83, 84 | nfan 1900 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑏((((∃𝑎 ∈ 𝐴 ∃𝑏 ∈ 𝐵 𝜒 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐵) ∧ ∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐵 (𝜒 → (𝑎 = 𝑥 ∧ 𝑏 = 𝑦))) ∧ 𝑝 ∈ (𝐴 × 𝐵)) |
86 | | nfv 1915 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑏𝜑 |
87 | 85, 86 | nfan 1900 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑏(((((∃𝑎 ∈ 𝐴 ∃𝑏 ∈ 𝐵 𝜒 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐵) ∧ ∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐵 (𝜒 → (𝑎 = 𝑥 ∧ 𝑏 = 𝑦))) ∧ 𝑝 ∈ (𝐴 × 𝐵)) ∧ 𝜑) |
88 | | nfv 1915 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑎(𝜑 → ((1st
‘𝑝) = 𝑥 ∧ (2nd
‘𝑝) = 𝑦)) |
89 | | nfv 1915 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑏(𝜑 → ((1st
‘𝑝) = 𝑥 ∧ (2nd
‘𝑝) = 𝑦)) |
90 | | xp1st 7725 |
. . . . . . . . . . . . . 14
⊢ (𝑝 ∈ (𝐴 × 𝐵) → (1st ‘𝑝) ∈ 𝐴) |
91 | 90 | ad2antlr 726 |
. . . . . . . . . . . . 13
⊢
((((((∃𝑎
∈ 𝐴 ∃𝑏 ∈ 𝐵 𝜒 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐵) ∧ ∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐵 (𝜒 → (𝑎 = 𝑥 ∧ 𝑏 = 𝑦))) ∧ 𝑝 ∈ (𝐴 × 𝐵)) ∧ 𝜑) → (1st ‘𝑝) ∈ 𝐴) |
92 | | xp2nd 7726 |
. . . . . . . . . . . . . 14
⊢ (𝑝 ∈ (𝐴 × 𝐵) → (2nd ‘𝑝) ∈ 𝐵) |
93 | 92 | ad2antlr 726 |
. . . . . . . . . . . . 13
⊢
((((((∃𝑎
∈ 𝐴 ∃𝑏 ∈ 𝐵 𝜒 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐵) ∧ ∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐵 (𝜒 → (𝑎 = 𝑥 ∧ 𝑏 = 𝑦))) ∧ 𝑝 ∈ (𝐴 × 𝐵)) ∧ 𝜑) → (2nd ‘𝑝) ∈ 𝐵) |
94 | | eqcom 2765 |
. . . . . . . . . . . . . . . . 17
⊢
((1st ‘𝑝) = 𝑎 ↔ 𝑎 = (1st ‘𝑝)) |
95 | | eqcom 2765 |
. . . . . . . . . . . . . . . . 17
⊢
((2nd ‘𝑝) = 𝑏 ↔ 𝑏 = (2nd ‘𝑝)) |
96 | | eqopi 7729 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑝 ∈ (𝐴 × 𝐵) ∧ ((1st ‘𝑝) = 𝑎 ∧ (2nd ‘𝑝) = 𝑏)) → 𝑝 = 〈𝑎, 𝑏〉) |
97 | | opsbc2ie.a |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑝 = 〈𝑎, 𝑏〉 → (𝜑 ↔ 𝜒)) |
98 | 96, 97 | syl 17 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑝 ∈ (𝐴 × 𝐵) ∧ ((1st ‘𝑝) = 𝑎 ∧ (2nd ‘𝑝) = 𝑏)) → (𝜑 ↔ 𝜒)) |
99 | 98 | bicomd 226 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑝 ∈ (𝐴 × 𝐵) ∧ ((1st ‘𝑝) = 𝑎 ∧ (2nd ‘𝑝) = 𝑏)) → (𝜒 ↔ 𝜑)) |
100 | 99 | ancoms 462 |
. . . . . . . . . . . . . . . . . 18
⊢
((((1st ‘𝑝) = 𝑎 ∧ (2nd ‘𝑝) = 𝑏) ∧ 𝑝 ∈ (𝐴 × 𝐵)) → (𝜒 ↔ 𝜑)) |
101 | 100 | ex 416 |
. . . . . . . . . . . . . . . . 17
⊢
(((1st ‘𝑝) = 𝑎 ∧ (2nd ‘𝑝) = 𝑏) → (𝑝 ∈ (𝐴 × 𝐵) → (𝜒 ↔ 𝜑))) |
102 | 94, 95, 101 | syl2anbr 601 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑎 = (1st ‘𝑝) ∧ 𝑏 = (2nd ‘𝑝)) → (𝑝 ∈ (𝐴 × 𝐵) → (𝜒 ↔ 𝜑))) |
103 | 102 | impcom 411 |
. . . . . . . . . . . . . . 15
⊢ ((𝑝 ∈ (𝐴 × 𝐵) ∧ (𝑎 = (1st ‘𝑝) ∧ 𝑏 = (2nd ‘𝑝))) → (𝜒 ↔ 𝜑)) |
104 | 103 | ad4ant24 753 |
. . . . . . . . . . . . . 14
⊢
(((((((∃𝑎
∈ 𝐴 ∃𝑏 ∈ 𝐵 𝜒 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐵) ∧ ∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐵 (𝜒 → (𝑎 = 𝑥 ∧ 𝑏 = 𝑦))) ∧ 𝑝 ∈ (𝐴 × 𝐵)) ∧ 𝜑) ∧ (𝑎 = (1st ‘𝑝) ∧ 𝑏 = (2nd ‘𝑝))) → (𝜒 ↔ 𝜑)) |
105 | | simpl 486 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑎 = (1st ‘𝑝) ∧ 𝑏 = (2nd ‘𝑝)) → 𝑎 = (1st ‘𝑝)) |
106 | 105 | eqeq1d 2760 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑎 = (1st ‘𝑝) ∧ 𝑏 = (2nd ‘𝑝)) → (𝑎 = 𝑥 ↔ (1st ‘𝑝) = 𝑥)) |
107 | | simpr 488 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑎 = (1st ‘𝑝) ∧ 𝑏 = (2nd ‘𝑝)) → 𝑏 = (2nd ‘𝑝)) |
108 | 107 | eqeq1d 2760 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑎 = (1st ‘𝑝) ∧ 𝑏 = (2nd ‘𝑝)) → (𝑏 = 𝑦 ↔ (2nd ‘𝑝) = 𝑦)) |
109 | 106, 108 | anbi12d 633 |
. . . . . . . . . . . . . . 15
⊢ ((𝑎 = (1st ‘𝑝) ∧ 𝑏 = (2nd ‘𝑝)) → ((𝑎 = 𝑥 ∧ 𝑏 = 𝑦) ↔ ((1st ‘𝑝) = 𝑥 ∧ (2nd ‘𝑝) = 𝑦))) |
110 | 109 | adantl 485 |
. . . . . . . . . . . . . 14
⊢
(((((((∃𝑎
∈ 𝐴 ∃𝑏 ∈ 𝐵 𝜒 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐵) ∧ ∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐵 (𝜒 → (𝑎 = 𝑥 ∧ 𝑏 = 𝑦))) ∧ 𝑝 ∈ (𝐴 × 𝐵)) ∧ 𝜑) ∧ (𝑎 = (1st ‘𝑝) ∧ 𝑏 = (2nd ‘𝑝))) → ((𝑎 = 𝑥 ∧ 𝑏 = 𝑦) ↔ ((1st ‘𝑝) = 𝑥 ∧ (2nd ‘𝑝) = 𝑦))) |
111 | 104, 110 | imbi12d 348 |
. . . . . . . . . . . . 13
⊢
(((((((∃𝑎
∈ 𝐴 ∃𝑏 ∈ 𝐵 𝜒 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐵) ∧ ∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐵 (𝜒 → (𝑎 = 𝑥 ∧ 𝑏 = 𝑦))) ∧ 𝑝 ∈ (𝐴 × 𝐵)) ∧ 𝜑) ∧ (𝑎 = (1st ‘𝑝) ∧ 𝑏 = (2nd ‘𝑝))) → ((𝜒 → (𝑎 = 𝑥 ∧ 𝑏 = 𝑦)) ↔ (𝜑 → ((1st ‘𝑝) = 𝑥 ∧ (2nd ‘𝑝) = 𝑦)))) |
112 | | simpllr 775 |
. . . . . . . . . . . . 13
⊢
((((((∃𝑎
∈ 𝐴 ∃𝑏 ∈ 𝐵 𝜒 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐵) ∧ ∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐵 (𝜒 → (𝑎 = 𝑥 ∧ 𝑏 = 𝑦))) ∧ 𝑝 ∈ (𝐴 × 𝐵)) ∧ 𝜑) → ∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐵 (𝜒 → (𝑎 = 𝑥 ∧ 𝑏 = 𝑦))) |
113 | 72, 87, 88, 89, 91, 93, 111, 112 | rspc2daf 30337 |
. . . . . . . . . . . 12
⊢
((((((∃𝑎
∈ 𝐴 ∃𝑏 ∈ 𝐵 𝜒 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐵) ∧ ∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐵 (𝜒 → (𝑎 = 𝑥 ∧ 𝑏 = 𝑦))) ∧ 𝑝 ∈ (𝐴 × 𝐵)) ∧ 𝜑) → (𝜑 → ((1st ‘𝑝) = 𝑥 ∧ (2nd ‘𝑝) = 𝑦))) |
114 | 113 | com12 32 |
. . . . . . . . . . 11
⊢ (𝜑 → ((((((∃𝑎 ∈ 𝐴 ∃𝑏 ∈ 𝐵 𝜒 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐵) ∧ ∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐵 (𝜒 → (𝑎 = 𝑥 ∧ 𝑏 = 𝑦))) ∧ 𝑝 ∈ (𝐴 × 𝐵)) ∧ 𝜑) → ((1st ‘𝑝) = 𝑥 ∧ (2nd ‘𝑝) = 𝑦))) |
115 | 114 | anabsi7 670 |
. . . . . . . . . 10
⊢
((((((∃𝑎
∈ 𝐴 ∃𝑏 ∈ 𝐵 𝜒 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐵) ∧ ∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐵 (𝜒 → (𝑎 = 𝑥 ∧ 𝑏 = 𝑦))) ∧ 𝑝 ∈ (𝐴 × 𝐵)) ∧ 𝜑) → ((1st ‘𝑝) = 𝑥 ∧ (2nd ‘𝑝) = 𝑦)) |
116 | 115 | simpld 498 |
. . . . . . . . 9
⊢
((((((∃𝑎
∈ 𝐴 ∃𝑏 ∈ 𝐵 𝜒 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐵) ∧ ∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐵 (𝜒 → (𝑎 = 𝑥 ∧ 𝑏 = 𝑦))) ∧ 𝑝 ∈ (𝐴 × 𝐵)) ∧ 𝜑) → (1st ‘𝑝) = 𝑥) |
117 | | nfre1 3230 |
. . . . . . . . . . . . . . . . . 18
⊢
Ⅎ𝑎∃𝑎 ∈ 𝐴 ∃𝑏 ∈ 𝐵 𝜒 |
118 | | nfv 1915 |
. . . . . . . . . . . . . . . . . 18
⊢
Ⅎ𝑎 𝑥 ∈ 𝐴 |
119 | 117, 118 | nfan 1900 |
. . . . . . . . . . . . . . . . 17
⊢
Ⅎ𝑎(∃𝑎 ∈ 𝐴 ∃𝑏 ∈ 𝐵 𝜒 ∧ 𝑥 ∈ 𝐴) |
120 | | nfv 1915 |
. . . . . . . . . . . . . . . . 17
⊢
Ⅎ𝑎 𝑦 ∈ 𝐵 |
121 | 119, 120 | nfan 1900 |
. . . . . . . . . . . . . . . 16
⊢
Ⅎ𝑎((∃𝑎 ∈ 𝐴 ∃𝑏 ∈ 𝐵 𝜒 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐵) |
122 | | nfra1 3147 |
. . . . . . . . . . . . . . . 16
⊢
Ⅎ𝑎∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐵 (𝜒 → (𝑎 = 𝑥 ∧ 𝑏 = 𝑦)) |
123 | 121, 122 | nfan 1900 |
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑎(((∃𝑎 ∈ 𝐴 ∃𝑏 ∈ 𝐵 𝜒 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐵) ∧ ∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐵 (𝜒 → (𝑎 = 𝑥 ∧ 𝑏 = 𝑦))) |
124 | | nfv 1915 |
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑎 𝑝 ∈ (𝐴 × 𝐵) |
125 | 123, 124 | nfan 1900 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑎((((∃𝑎 ∈ 𝐴 ∃𝑏 ∈ 𝐵 𝜒 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐵) ∧ ∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐵 (𝜒 → (𝑎 = 𝑥 ∧ 𝑏 = 𝑦))) ∧ 𝑝 ∈ (𝐴 × 𝐵)) |
126 | | nfv 1915 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑎𝜑 |
127 | 125, 126 | nfan 1900 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑎(((((∃𝑎 ∈ 𝐴 ∃𝑏 ∈ 𝐵 𝜒 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐵) ∧ ∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐵 (𝜒 → (𝑎 = 𝑥 ∧ 𝑏 = 𝑦))) ∧ 𝑝 ∈ (𝐴 × 𝐵)) ∧ 𝜑) |
128 | | nfcv 2919 |
. . . . . . . . . . . . . . . . . . 19
⊢
Ⅎ𝑏𝐴 |
129 | | nfre1 3230 |
. . . . . . . . . . . . . . . . . . 19
⊢
Ⅎ𝑏∃𝑏 ∈ 𝐵 𝜒 |
130 | 128, 129 | nfrex 3233 |
. . . . . . . . . . . . . . . . . 18
⊢
Ⅎ𝑏∃𝑎 ∈ 𝐴 ∃𝑏 ∈ 𝐵 𝜒 |
131 | | nfv 1915 |
. . . . . . . . . . . . . . . . . 18
⊢
Ⅎ𝑏 𝑥 ∈ 𝐴 |
132 | 130, 131 | nfan 1900 |
. . . . . . . . . . . . . . . . 17
⊢
Ⅎ𝑏(∃𝑎 ∈ 𝐴 ∃𝑏 ∈ 𝐵 𝜒 ∧ 𝑥 ∈ 𝐴) |
133 | | nfv 1915 |
. . . . . . . . . . . . . . . . 17
⊢
Ⅎ𝑏 𝑦 ∈ 𝐵 |
134 | 132, 133 | nfan 1900 |
. . . . . . . . . . . . . . . 16
⊢
Ⅎ𝑏((∃𝑎 ∈ 𝐴 ∃𝑏 ∈ 𝐵 𝜒 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐵) |
135 | | nfcv 2919 |
. . . . . . . . . . . . . . . . 17
⊢
Ⅎ𝑏𝐴 |
136 | | nfra1 3147 |
. . . . . . . . . . . . . . . . 17
⊢
Ⅎ𝑏∀𝑏 ∈ 𝐵 (𝜒 → (𝑎 = 𝑥 ∧ 𝑏 = 𝑦)) |
137 | 135, 136 | nfral 3154 |
. . . . . . . . . . . . . . . 16
⊢
Ⅎ𝑏∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐵 (𝜒 → (𝑎 = 𝑥 ∧ 𝑏 = 𝑦)) |
138 | 134, 137 | nfan 1900 |
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑏(((∃𝑎 ∈ 𝐴 ∃𝑏 ∈ 𝐵 𝜒 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐵) ∧ ∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐵 (𝜒 → (𝑎 = 𝑥 ∧ 𝑏 = 𝑦))) |
139 | | nfv 1915 |
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑏 𝑝 ∈ (𝐴 × 𝐵) |
140 | 138, 139 | nfan 1900 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑏((((∃𝑎 ∈ 𝐴 ∃𝑏 ∈ 𝐵 𝜒 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐵) ∧ ∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐵 (𝜒 → (𝑎 = 𝑥 ∧ 𝑏 = 𝑦))) ∧ 𝑝 ∈ (𝐴 × 𝐵)) |
141 | | nfv 1915 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑏𝜑 |
142 | 140, 141 | nfan 1900 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑏(((((∃𝑎 ∈ 𝐴 ∃𝑏 ∈ 𝐵 𝜒 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐵) ∧ ∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐵 (𝜒 → (𝑎 = 𝑥 ∧ 𝑏 = 𝑦))) ∧ 𝑝 ∈ (𝐴 × 𝐵)) ∧ 𝜑) |
143 | | nfv 1915 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑎(𝜑 → ((1st
‘𝑝) = 𝑥 ∧ (2nd
‘𝑝) = 𝑦)) |
144 | | nfv 1915 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑏(𝜑 → ((1st
‘𝑝) = 𝑥 ∧ (2nd
‘𝑝) = 𝑦)) |
145 | | xp1st 7725 |
. . . . . . . . . . . . . 14
⊢ (𝑝 ∈ (𝐴 × 𝐵) → (1st ‘𝑝) ∈ 𝐴) |
146 | 145 | ad2antlr 726 |
. . . . . . . . . . . . 13
⊢
((((((∃𝑎
∈ 𝐴 ∃𝑏 ∈ 𝐵 𝜒 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐵) ∧ ∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐵 (𝜒 → (𝑎 = 𝑥 ∧ 𝑏 = 𝑦))) ∧ 𝑝 ∈ (𝐴 × 𝐵)) ∧ 𝜑) → (1st ‘𝑝) ∈ 𝐴) |
147 | | xp2nd 7726 |
. . . . . . . . . . . . . 14
⊢ (𝑝 ∈ (𝐴 × 𝐵) → (2nd ‘𝑝) ∈ 𝐵) |
148 | 147 | ad2antlr 726 |
. . . . . . . . . . . . 13
⊢
((((((∃𝑎
∈ 𝐴 ∃𝑏 ∈ 𝐵 𝜒 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐵) ∧ ∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐵 (𝜒 → (𝑎 = 𝑥 ∧ 𝑏 = 𝑦))) ∧ 𝑝 ∈ (𝐴 × 𝐵)) ∧ 𝜑) → (2nd ‘𝑝) ∈ 𝐵) |
149 | | eqcom 2765 |
. . . . . . . . . . . . . . . . 17
⊢
((1st ‘𝑝) = 𝑎 ↔ 𝑎 = (1st ‘𝑝)) |
150 | | eqcom 2765 |
. . . . . . . . . . . . . . . . 17
⊢
((2nd ‘𝑝) = 𝑏 ↔ 𝑏 = (2nd ‘𝑝)) |
151 | | eqopi 7729 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑝 ∈ (𝐴 × 𝐵) ∧ ((1st ‘𝑝) = 𝑎 ∧ (2nd ‘𝑝) = 𝑏)) → 𝑝 = 〈𝑎, 𝑏〉) |
152 | 151, 97 | syl 17 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑝 ∈ (𝐴 × 𝐵) ∧ ((1st ‘𝑝) = 𝑎 ∧ (2nd ‘𝑝) = 𝑏)) → (𝜑 ↔ 𝜒)) |
153 | 152 | bicomd 226 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑝 ∈ (𝐴 × 𝐵) ∧ ((1st ‘𝑝) = 𝑎 ∧ (2nd ‘𝑝) = 𝑏)) → (𝜒 ↔ 𝜑)) |
154 | 153 | ancoms 462 |
. . . . . . . . . . . . . . . . . 18
⊢
((((1st ‘𝑝) = 𝑎 ∧ (2nd ‘𝑝) = 𝑏) ∧ 𝑝 ∈ (𝐴 × 𝐵)) → (𝜒 ↔ 𝜑)) |
155 | 154 | ex 416 |
. . . . . . . . . . . . . . . . 17
⊢
(((1st ‘𝑝) = 𝑎 ∧ (2nd ‘𝑝) = 𝑏) → (𝑝 ∈ (𝐴 × 𝐵) → (𝜒 ↔ 𝜑))) |
156 | 149, 150,
155 | syl2anbr 601 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑎 = (1st ‘𝑝) ∧ 𝑏 = (2nd ‘𝑝)) → (𝑝 ∈ (𝐴 × 𝐵) → (𝜒 ↔ 𝜑))) |
157 | 156 | impcom 411 |
. . . . . . . . . . . . . . 15
⊢ ((𝑝 ∈ (𝐴 × 𝐵) ∧ (𝑎 = (1st ‘𝑝) ∧ 𝑏 = (2nd ‘𝑝))) → (𝜒 ↔ 𝜑)) |
158 | 157 | ad4ant24 753 |
. . . . . . . . . . . . . 14
⊢
(((((((∃𝑎
∈ 𝐴 ∃𝑏 ∈ 𝐵 𝜒 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐵) ∧ ∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐵 (𝜒 → (𝑎 = 𝑥 ∧ 𝑏 = 𝑦))) ∧ 𝑝 ∈ (𝐴 × 𝐵)) ∧ 𝜑) ∧ (𝑎 = (1st ‘𝑝) ∧ 𝑏 = (2nd ‘𝑝))) → (𝜒 ↔ 𝜑)) |
159 | | simpl 486 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑎 = (1st ‘𝑝) ∧ 𝑏 = (2nd ‘𝑝)) → 𝑎 = (1st ‘𝑝)) |
160 | 159 | eqeq1d 2760 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑎 = (1st ‘𝑝) ∧ 𝑏 = (2nd ‘𝑝)) → (𝑎 = 𝑥 ↔ (1st ‘𝑝) = 𝑥)) |
161 | | simpr 488 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑎 = (1st ‘𝑝) ∧ 𝑏 = (2nd ‘𝑝)) → 𝑏 = (2nd ‘𝑝)) |
162 | 161 | eqeq1d 2760 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑎 = (1st ‘𝑝) ∧ 𝑏 = (2nd ‘𝑝)) → (𝑏 = 𝑦 ↔ (2nd ‘𝑝) = 𝑦)) |
163 | 160, 162 | anbi12d 633 |
. . . . . . . . . . . . . . 15
⊢ ((𝑎 = (1st ‘𝑝) ∧ 𝑏 = (2nd ‘𝑝)) → ((𝑎 = 𝑥 ∧ 𝑏 = 𝑦) ↔ ((1st ‘𝑝) = 𝑥 ∧ (2nd ‘𝑝) = 𝑦))) |
164 | 163 | adantl 485 |
. . . . . . . . . . . . . 14
⊢
(((((((∃𝑎
∈ 𝐴 ∃𝑏 ∈ 𝐵 𝜒 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐵) ∧ ∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐵 (𝜒 → (𝑎 = 𝑥 ∧ 𝑏 = 𝑦))) ∧ 𝑝 ∈ (𝐴 × 𝐵)) ∧ 𝜑) ∧ (𝑎 = (1st ‘𝑝) ∧ 𝑏 = (2nd ‘𝑝))) → ((𝑎 = 𝑥 ∧ 𝑏 = 𝑦) ↔ ((1st ‘𝑝) = 𝑥 ∧ (2nd ‘𝑝) = 𝑦))) |
165 | 158, 164 | imbi12d 348 |
. . . . . . . . . . . . 13
⊢
(((((((∃𝑎
∈ 𝐴 ∃𝑏 ∈ 𝐵 𝜒 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐵) ∧ ∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐵 (𝜒 → (𝑎 = 𝑥 ∧ 𝑏 = 𝑦))) ∧ 𝑝 ∈ (𝐴 × 𝐵)) ∧ 𝜑) ∧ (𝑎 = (1st ‘𝑝) ∧ 𝑏 = (2nd ‘𝑝))) → ((𝜒 → (𝑎 = 𝑥 ∧ 𝑏 = 𝑦)) ↔ (𝜑 → ((1st ‘𝑝) = 𝑥 ∧ (2nd ‘𝑝) = 𝑦)))) |
166 | | simpllr 775 |
. . . . . . . . . . . . 13
⊢
((((((∃𝑎
∈ 𝐴 ∃𝑏 ∈ 𝐵 𝜒 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐵) ∧ ∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐵 (𝜒 → (𝑎 = 𝑥 ∧ 𝑏 = 𝑦))) ∧ 𝑝 ∈ (𝐴 × 𝐵)) ∧ 𝜑) → ∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐵 (𝜒 → (𝑎 = 𝑥 ∧ 𝑏 = 𝑦))) |
167 | 127, 142,
143, 144, 146, 148, 165, 166 | rspc2daf 30337 |
. . . . . . . . . . . 12
⊢
((((((∃𝑎
∈ 𝐴 ∃𝑏 ∈ 𝐵 𝜒 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐵) ∧ ∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐵 (𝜒 → (𝑎 = 𝑥 ∧ 𝑏 = 𝑦))) ∧ 𝑝 ∈ (𝐴 × 𝐵)) ∧ 𝜑) → (𝜑 → ((1st ‘𝑝) = 𝑥 ∧ (2nd ‘𝑝) = 𝑦))) |
168 | 167 | com12 32 |
. . . . . . . . . . 11
⊢ (𝜑 → ((((((∃𝑎 ∈ 𝐴 ∃𝑏 ∈ 𝐵 𝜒 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐵) ∧ ∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐵 (𝜒 → (𝑎 = 𝑥 ∧ 𝑏 = 𝑦))) ∧ 𝑝 ∈ (𝐴 × 𝐵)) ∧ 𝜑) → ((1st ‘𝑝) = 𝑥 ∧ (2nd ‘𝑝) = 𝑦))) |
169 | 168 | anabsi7 670 |
. . . . . . . . . 10
⊢
((((((∃𝑎
∈ 𝐴 ∃𝑏 ∈ 𝐵 𝜒 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐵) ∧ ∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐵 (𝜒 → (𝑎 = 𝑥 ∧ 𝑏 = 𝑦))) ∧ 𝑝 ∈ (𝐴 × 𝐵)) ∧ 𝜑) → ((1st ‘𝑝) = 𝑥 ∧ (2nd ‘𝑝) = 𝑦)) |
170 | 169 | simprd 499 |
. . . . . . . . 9
⊢
((((((∃𝑎
∈ 𝐴 ∃𝑏 ∈ 𝐵 𝜒 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐵) ∧ ∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐵 (𝜒 → (𝑎 = 𝑥 ∧ 𝑏 = 𝑦))) ∧ 𝑝 ∈ (𝐴 × 𝐵)) ∧ 𝜑) → (2nd ‘𝑝) = 𝑦) |
171 | 116, 170 | opeq12d 4771 |
. . . . . . . 8
⊢
((((((∃𝑎
∈ 𝐴 ∃𝑏 ∈ 𝐵 𝜒 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐵) ∧ ∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐵 (𝜒 → (𝑎 = 𝑥 ∧ 𝑏 = 𝑦))) ∧ 𝑝 ∈ (𝐴 × 𝐵)) ∧ 𝜑) → 〈(1st ‘𝑝), (2nd ‘𝑝)〉 = 〈𝑥, 𝑦〉) |
172 | 61, 171 | eqtrd 2793 |
. . . . . . 7
⊢
((((((∃𝑎
∈ 𝐴 ∃𝑏 ∈ 𝐵 𝜒 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐵) ∧ ∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐵 (𝜒 → (𝑎 = 𝑥 ∧ 𝑏 = 𝑦))) ∧ 𝑝 ∈ (𝐴 × 𝐵)) ∧ 𝜑) → 𝑝 = 〈𝑥, 𝑦〉) |
173 | 172 | ex 416 |
. . . . . 6
⊢
(((((∃𝑎 ∈
𝐴 ∃𝑏 ∈ 𝐵 𝜒 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐵) ∧ ∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐵 (𝜒 → (𝑎 = 𝑥 ∧ 𝑏 = 𝑦))) ∧ 𝑝 ∈ (𝐴 × 𝐵)) → (𝜑 → 𝑝 = 〈𝑥, 𝑦〉)) |
174 | 173 | ralrimiva 3113 |
. . . . 5
⊢
((((∃𝑎 ∈
𝐴 ∃𝑏 ∈ 𝐵 𝜒 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐵) ∧ ∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐵 (𝜒 → (𝑎 = 𝑥 ∧ 𝑏 = 𝑦))) → ∀𝑝 ∈ (𝐴 × 𝐵)(𝜑 → 𝑝 = 〈𝑥, 𝑦〉)) |
175 | 5, 59, 174 | 3jca 1125 |
. . . 4
⊢
((((∃𝑎 ∈
𝐴 ∃𝑏 ∈ 𝐵 𝜒 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐵) ∧ ∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐵 (𝜒 → (𝑎 = 𝑥 ∧ 𝑏 = 𝑦))) → (〈𝑥, 𝑦〉 ∈ (𝐴 × 𝐵) ∧ [𝑦 / 𝑏][𝑥 / 𝑎]𝜒 ∧ ∀𝑝 ∈ (𝐴 × 𝐵)(𝜑 → 𝑝 = 〈𝑥, 𝑦〉))) |
176 | 97 | opsbc2ie 30345 |
. . . . 5
⊢ (𝑝 = 〈𝑥, 𝑦〉 → (𝜑 ↔ [𝑦 / 𝑏][𝑥 / 𝑎]𝜒)) |
177 | 176 | eqreu 3643 |
. . . 4
⊢
((〈𝑥, 𝑦〉 ∈ (𝐴 × 𝐵) ∧ [𝑦 / 𝑏][𝑥 / 𝑎]𝜒 ∧ ∀𝑝 ∈ (𝐴 × 𝐵)(𝜑 → 𝑝 = 〈𝑥, 𝑦〉)) → ∃!𝑝 ∈ (𝐴 × 𝐵)𝜑) |
178 | 175, 177 | syl 17 |
. . 3
⊢
((((∃𝑎 ∈
𝐴 ∃𝑏 ∈ 𝐵 𝜒 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐵) ∧ ∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐵 (𝜒 → (𝑎 = 𝑥 ∧ 𝑏 = 𝑦))) → ∃!𝑝 ∈ (𝐴 × 𝐵)𝜑) |
179 | 178 | r19.29ffa 30343 |
. 2
⊢
((∃𝑎 ∈
𝐴 ∃𝑏 ∈ 𝐵 𝜒 ∧ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 ∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐵 (𝜒 → (𝑎 = 𝑥 ∧ 𝑏 = 𝑦))) → ∃!𝑝 ∈ (𝐴 × 𝐵)𝜑) |
180 | 1, 179 | sylbi 220 |
1
⊢
((∃!𝑎 ∈
𝐴 ∃𝑏 ∈ 𝐵 𝜒 ∧ ∃!𝑏 ∈ 𝐵 ∃𝑎 ∈ 𝐴 𝜒) → ∃!𝑝 ∈ (𝐴 × 𝐵)𝜑) |