| Step | Hyp | Ref
| Expression |
| 1 | | 2reu4 4523 |
. 2
⊢
((∃!𝑎 ∈
𝐴 ∃𝑏 ∈ 𝐵 𝜒 ∧ ∃!𝑏 ∈ 𝐵 ∃𝑎 ∈ 𝐴 𝜒) ↔ (∃𝑎 ∈ 𝐴 ∃𝑏 ∈ 𝐵 𝜒 ∧ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 ∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐵 (𝜒 → (𝑎 = 𝑥 ∧ 𝑏 = 𝑦)))) |
| 2 | | simpllr 776 |
. . . . . 6
⊢
((((∃𝑎 ∈
𝐴 ∃𝑏 ∈ 𝐵 𝜒 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐵) ∧ ∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐵 (𝜒 → (𝑎 = 𝑥 ∧ 𝑏 = 𝑦))) → 𝑥 ∈ 𝐴) |
| 3 | | simplr 769 |
. . . . . 6
⊢
((((∃𝑎 ∈
𝐴 ∃𝑏 ∈ 𝐵 𝜒 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐵) ∧ ∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐵 (𝜒 → (𝑎 = 𝑥 ∧ 𝑏 = 𝑦))) → 𝑦 ∈ 𝐵) |
| 4 | | opelxpi 5722 |
. . . . . 6
⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 〈𝑥, 𝑦〉 ∈ (𝐴 × 𝐵)) |
| 5 | 2, 3, 4 | syl2anc 584 |
. . . . 5
⊢
((((∃𝑎 ∈
𝐴 ∃𝑏 ∈ 𝐵 𝜒 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐵) ∧ ∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐵 (𝜒 → (𝑎 = 𝑥 ∧ 𝑏 = 𝑦))) → 〈𝑥, 𝑦〉 ∈ (𝐴 × 𝐵)) |
| 6 | | nfre1 3285 |
. . . . . . . . 9
⊢
Ⅎ𝑎∃𝑎 ∈ 𝐴 ∃𝑏 ∈ 𝐵 𝜒 |
| 7 | | nfv 1914 |
. . . . . . . . 9
⊢
Ⅎ𝑎 𝑥 ∈ 𝐴 |
| 8 | 6, 7 | nfan 1899 |
. . . . . . . 8
⊢
Ⅎ𝑎(∃𝑎 ∈ 𝐴 ∃𝑏 ∈ 𝐵 𝜒 ∧ 𝑥 ∈ 𝐴) |
| 9 | | nfv 1914 |
. . . . . . . 8
⊢
Ⅎ𝑎 𝑦 ∈ 𝐵 |
| 10 | 8, 9 | nfan 1899 |
. . . . . . 7
⊢
Ⅎ𝑎((∃𝑎 ∈ 𝐴 ∃𝑏 ∈ 𝐵 𝜒 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐵) |
| 11 | | nfra1 3284 |
. . . . . . 7
⊢
Ⅎ𝑎∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐵 (𝜒 → (𝑎 = 𝑥 ∧ 𝑏 = 𝑦)) |
| 12 | 10, 11 | nfan 1899 |
. . . . . 6
⊢
Ⅎ𝑎(((∃𝑎 ∈ 𝐴 ∃𝑏 ∈ 𝐵 𝜒 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐵) ∧ ∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐵 (𝜒 → (𝑎 = 𝑥 ∧ 𝑏 = 𝑦))) |
| 13 | | nfcv 2905 |
. . . . . . 7
⊢
Ⅎ𝑎𝑦 |
| 14 | | nfsbc1v 3808 |
. . . . . . 7
⊢
Ⅎ𝑎[𝑥 / 𝑎]𝜒 |
| 15 | 13, 14 | nfsbc 3813 |
. . . . . 6
⊢
Ⅎ𝑎[𝑦 / 𝑏][𝑥 / 𝑎]𝜒 |
| 16 | | nfcv 2905 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑏𝐴 |
| 17 | | nfre1 3285 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑏∃𝑏 ∈ 𝐵 𝜒 |
| 18 | 16, 17 | nfrexw 3313 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑏∃𝑎 ∈ 𝐴 ∃𝑏 ∈ 𝐵 𝜒 |
| 19 | | nfv 1914 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑏 𝑥 ∈ 𝐴 |
| 20 | 18, 19 | nfan 1899 |
. . . . . . . . . . 11
⊢
Ⅎ𝑏(∃𝑎 ∈ 𝐴 ∃𝑏 ∈ 𝐵 𝜒 ∧ 𝑥 ∈ 𝐴) |
| 21 | | nfv 1914 |
. . . . . . . . . . 11
⊢
Ⅎ𝑏 𝑦 ∈ 𝐵 |
| 22 | 20, 21 | nfan 1899 |
. . . . . . . . . 10
⊢
Ⅎ𝑏((∃𝑎 ∈ 𝐴 ∃𝑏 ∈ 𝐵 𝜒 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐵) |
| 23 | | nfcv 2905 |
. . . . . . . . . . 11
⊢
Ⅎ𝑏𝐴 |
| 24 | | nfra1 3284 |
. . . . . . . . . . 11
⊢
Ⅎ𝑏∀𝑏 ∈ 𝐵 (𝜒 → (𝑎 = 𝑥 ∧ 𝑏 = 𝑦)) |
| 25 | 23, 24 | nfral 3374 |
. . . . . . . . . 10
⊢
Ⅎ𝑏∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐵 (𝜒 → (𝑎 = 𝑥 ∧ 𝑏 = 𝑦)) |
| 26 | 22, 25 | nfan 1899 |
. . . . . . . . 9
⊢
Ⅎ𝑏(((∃𝑎 ∈ 𝐴 ∃𝑏 ∈ 𝐵 𝜒 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐵) ∧ ∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐵 (𝜒 → (𝑎 = 𝑥 ∧ 𝑏 = 𝑦))) |
| 27 | | nfv 1914 |
. . . . . . . . 9
⊢
Ⅎ𝑏 𝑎 ∈ 𝐴 |
| 28 | 26, 27 | nfan 1899 |
. . . . . . . 8
⊢
Ⅎ𝑏((((∃𝑎 ∈ 𝐴 ∃𝑏 ∈ 𝐵 𝜒 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐵) ∧ ∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐵 (𝜒 → (𝑎 = 𝑥 ∧ 𝑏 = 𝑦))) ∧ 𝑎 ∈ 𝐴) |
| 29 | | nfre1 3285 |
. . . . . . . 8
⊢
Ⅎ𝑏∃𝑏 ∈ 𝐵 𝜒 |
| 30 | 28, 29 | nfan 1899 |
. . . . . . 7
⊢
Ⅎ𝑏(((((∃𝑎 ∈ 𝐴 ∃𝑏 ∈ 𝐵 𝜒 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐵) ∧ ∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐵 (𝜒 → (𝑎 = 𝑥 ∧ 𝑏 = 𝑦))) ∧ 𝑎 ∈ 𝐴) ∧ ∃𝑏 ∈ 𝐵 𝜒) |
| 31 | | nfsbc1v 3808 |
. . . . . . 7
⊢
Ⅎ𝑏[𝑦 / 𝑏][𝑥 / 𝑎]𝜒 |
| 32 | | rspa 3248 |
. . . . . . . . . . . 12
⊢
((∀𝑎 ∈
𝐴 ∀𝑏 ∈ 𝐵 (𝜒 → (𝑎 = 𝑥 ∧ 𝑏 = 𝑦)) ∧ 𝑎 ∈ 𝐴) → ∀𝑏 ∈ 𝐵 (𝜒 → (𝑎 = 𝑥 ∧ 𝑏 = 𝑦))) |
| 33 | 32 | ad5ant23 760 |
. . . . . . . . . . 11
⊢
(((((((∃𝑎
∈ 𝐴 ∃𝑏 ∈ 𝐵 𝜒 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐵) ∧ ∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐵 (𝜒 → (𝑎 = 𝑥 ∧ 𝑏 = 𝑦))) ∧ 𝑎 ∈ 𝐴) ∧ 𝑏 ∈ 𝐵) ∧ 𝜒) → ∀𝑏 ∈ 𝐵 (𝜒 → (𝑎 = 𝑥 ∧ 𝑏 = 𝑦))) |
| 34 | | simplr 769 |
. . . . . . . . . . 11
⊢
(((((((∃𝑎
∈ 𝐴 ∃𝑏 ∈ 𝐵 𝜒 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐵) ∧ ∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐵 (𝜒 → (𝑎 = 𝑥 ∧ 𝑏 = 𝑦))) ∧ 𝑎 ∈ 𝐴) ∧ 𝑏 ∈ 𝐵) ∧ 𝜒) → 𝑏 ∈ 𝐵) |
| 35 | | simpr 484 |
. . . . . . . . . . 11
⊢
(((((((∃𝑎
∈ 𝐴 ∃𝑏 ∈ 𝐵 𝜒 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐵) ∧ ∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐵 (𝜒 → (𝑎 = 𝑥 ∧ 𝑏 = 𝑦))) ∧ 𝑎 ∈ 𝐴) ∧ 𝑏 ∈ 𝐵) ∧ 𝜒) → 𝜒) |
| 36 | | rspa 3248 |
. . . . . . . . . . . 12
⊢
((∀𝑏 ∈
𝐵 (𝜒 → (𝑎 = 𝑥 ∧ 𝑏 = 𝑦)) ∧ 𝑏 ∈ 𝐵) → (𝜒 → (𝑎 = 𝑥 ∧ 𝑏 = 𝑦))) |
| 37 | 36 | imp 406 |
. . . . . . . . . . 11
⊢
(((∀𝑏 ∈
𝐵 (𝜒 → (𝑎 = 𝑥 ∧ 𝑏 = 𝑦)) ∧ 𝑏 ∈ 𝐵) ∧ 𝜒) → (𝑎 = 𝑥 ∧ 𝑏 = 𝑦)) |
| 38 | 33, 34, 35, 37 | syl21anc 838 |
. . . . . . . . . 10
⊢
(((((((∃𝑎
∈ 𝐴 ∃𝑏 ∈ 𝐵 𝜒 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐵) ∧ ∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐵 (𝜒 → (𝑎 = 𝑥 ∧ 𝑏 = 𝑦))) ∧ 𝑎 ∈ 𝐴) ∧ 𝑏 ∈ 𝐵) ∧ 𝜒) → (𝑎 = 𝑥 ∧ 𝑏 = 𝑦)) |
| 39 | 38 | simprd 495 |
. . . . . . . . 9
⊢
(((((((∃𝑎
∈ 𝐴 ∃𝑏 ∈ 𝐵 𝜒 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐵) ∧ ∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐵 (𝜒 → (𝑎 = 𝑥 ∧ 𝑏 = 𝑦))) ∧ 𝑎 ∈ 𝐴) ∧ 𝑏 ∈ 𝐵) ∧ 𝜒) → 𝑏 = 𝑦) |
| 40 | | rspa 3248 |
. . . . . . . . . . . . 13
⊢
((∀𝑎 ∈
𝐴 ∀𝑏 ∈ 𝐵 (𝜒 → (𝑎 = 𝑥 ∧ 𝑏 = 𝑦)) ∧ 𝑎 ∈ 𝐴) → ∀𝑏 ∈ 𝐵 (𝜒 → (𝑎 = 𝑥 ∧ 𝑏 = 𝑦))) |
| 41 | 40 | ad5ant23 760 |
. . . . . . . . . . . 12
⊢
(((((((∃𝑎
∈ 𝐴 ∃𝑏 ∈ 𝐵 𝜒 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐵) ∧ ∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐵 (𝜒 → (𝑎 = 𝑥 ∧ 𝑏 = 𝑦))) ∧ 𝑎 ∈ 𝐴) ∧ 𝑏 ∈ 𝐵) ∧ 𝜒) → ∀𝑏 ∈ 𝐵 (𝜒 → (𝑎 = 𝑥 ∧ 𝑏 = 𝑦))) |
| 42 | | simplr 769 |
. . . . . . . . . . . 12
⊢
(((((((∃𝑎
∈ 𝐴 ∃𝑏 ∈ 𝐵 𝜒 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐵) ∧ ∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐵 (𝜒 → (𝑎 = 𝑥 ∧ 𝑏 = 𝑦))) ∧ 𝑎 ∈ 𝐴) ∧ 𝑏 ∈ 𝐵) ∧ 𝜒) → 𝑏 ∈ 𝐵) |
| 43 | | simpr 484 |
. . . . . . . . . . . 12
⊢
(((((((∃𝑎
∈ 𝐴 ∃𝑏 ∈ 𝐵 𝜒 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐵) ∧ ∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐵 (𝜒 → (𝑎 = 𝑥 ∧ 𝑏 = 𝑦))) ∧ 𝑎 ∈ 𝐴) ∧ 𝑏 ∈ 𝐵) ∧ 𝜒) → 𝜒) |
| 44 | | rspa 3248 |
. . . . . . . . . . . . 13
⊢
((∀𝑏 ∈
𝐵 (𝜒 → (𝑎 = 𝑥 ∧ 𝑏 = 𝑦)) ∧ 𝑏 ∈ 𝐵) → (𝜒 → (𝑎 = 𝑥 ∧ 𝑏 = 𝑦))) |
| 45 | 44 | imp 406 |
. . . . . . . . . . . 12
⊢
(((∀𝑏 ∈
𝐵 (𝜒 → (𝑎 = 𝑥 ∧ 𝑏 = 𝑦)) ∧ 𝑏 ∈ 𝐵) ∧ 𝜒) → (𝑎 = 𝑥 ∧ 𝑏 = 𝑦)) |
| 46 | 41, 42, 43, 45 | syl21anc 838 |
. . . . . . . . . . 11
⊢
(((((((∃𝑎
∈ 𝐴 ∃𝑏 ∈ 𝐵 𝜒 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐵) ∧ ∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐵 (𝜒 → (𝑎 = 𝑥 ∧ 𝑏 = 𝑦))) ∧ 𝑎 ∈ 𝐴) ∧ 𝑏 ∈ 𝐵) ∧ 𝜒) → (𝑎 = 𝑥 ∧ 𝑏 = 𝑦)) |
| 47 | 46 | simpld 494 |
. . . . . . . . . 10
⊢
(((((((∃𝑎
∈ 𝐴 ∃𝑏 ∈ 𝐵 𝜒 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐵) ∧ ∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐵 (𝜒 → (𝑎 = 𝑥 ∧ 𝑏 = 𝑦))) ∧ 𝑎 ∈ 𝐴) ∧ 𝑏 ∈ 𝐵) ∧ 𝜒) → 𝑎 = 𝑥) |
| 48 | | simpr 484 |
. . . . . . . . . 10
⊢
(((((((∃𝑎
∈ 𝐴 ∃𝑏 ∈ 𝐵 𝜒 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐵) ∧ ∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐵 (𝜒 → (𝑎 = 𝑥 ∧ 𝑏 = 𝑦))) ∧ 𝑎 ∈ 𝐴) ∧ 𝑏 ∈ 𝐵) ∧ 𝜒) → 𝜒) |
| 49 | | sbceq1a 3799 |
. . . . . . . . . . 11
⊢ (𝑎 = 𝑥 → (𝜒 ↔ [𝑥 / 𝑎]𝜒)) |
| 50 | 49 | biimpa 476 |
. . . . . . . . . 10
⊢ ((𝑎 = 𝑥 ∧ 𝜒) → [𝑥 / 𝑎]𝜒) |
| 51 | 47, 48, 50 | syl2anc 584 |
. . . . . . . . 9
⊢
(((((((∃𝑎
∈ 𝐴 ∃𝑏 ∈ 𝐵 𝜒 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐵) ∧ ∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐵 (𝜒 → (𝑎 = 𝑥 ∧ 𝑏 = 𝑦))) ∧ 𝑎 ∈ 𝐴) ∧ 𝑏 ∈ 𝐵) ∧ 𝜒) → [𝑥 / 𝑎]𝜒) |
| 52 | | sbceq1a 3799 |
. . . . . . . . . 10
⊢ (𝑏 = 𝑦 → ([𝑥 / 𝑎]𝜒 ↔ [𝑦 / 𝑏][𝑥 / 𝑎]𝜒)) |
| 53 | 52 | biimpa 476 |
. . . . . . . . 9
⊢ ((𝑏 = 𝑦 ∧ [𝑥 / 𝑎]𝜒) → [𝑦 / 𝑏][𝑥 / 𝑎]𝜒) |
| 54 | 39, 51, 53 | syl2anc 584 |
. . . . . . . 8
⊢
(((((((∃𝑎
∈ 𝐴 ∃𝑏 ∈ 𝐵 𝜒 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐵) ∧ ∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐵 (𝜒 → (𝑎 = 𝑥 ∧ 𝑏 = 𝑦))) ∧ 𝑎 ∈ 𝐴) ∧ 𝑏 ∈ 𝐵) ∧ 𝜒) → [𝑦 / 𝑏][𝑥 / 𝑎]𝜒) |
| 55 | 54 | adantllr 719 |
. . . . . . 7
⊢
((((((((∃𝑎
∈ 𝐴 ∃𝑏 ∈ 𝐵 𝜒 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐵) ∧ ∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐵 (𝜒 → (𝑎 = 𝑥 ∧ 𝑏 = 𝑦))) ∧ 𝑎 ∈ 𝐴) ∧ ∃𝑏 ∈ 𝐵 𝜒) ∧ 𝑏 ∈ 𝐵) ∧ 𝜒) → [𝑦 / 𝑏][𝑥 / 𝑎]𝜒) |
| 56 | | simpr 484 |
. . . . . . 7
⊢
((((((∃𝑎
∈ 𝐴 ∃𝑏 ∈ 𝐵 𝜒 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐵) ∧ ∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐵 (𝜒 → (𝑎 = 𝑥 ∧ 𝑏 = 𝑦))) ∧ 𝑎 ∈ 𝐴) ∧ ∃𝑏 ∈ 𝐵 𝜒) → ∃𝑏 ∈ 𝐵 𝜒) |
| 57 | 30, 31, 55, 56 | r19.29af2 3267 |
. . . . . 6
⊢
((((((∃𝑎
∈ 𝐴 ∃𝑏 ∈ 𝐵 𝜒 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐵) ∧ ∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐵 (𝜒 → (𝑎 = 𝑥 ∧ 𝑏 = 𝑦))) ∧ 𝑎 ∈ 𝐴) ∧ ∃𝑏 ∈ 𝐵 𝜒) → [𝑦 / 𝑏][𝑥 / 𝑎]𝜒) |
| 58 | | simplll 775 |
. . . . . 6
⊢
((((∃𝑎 ∈
𝐴 ∃𝑏 ∈ 𝐵 𝜒 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐵) ∧ ∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐵 (𝜒 → (𝑎 = 𝑥 ∧ 𝑏 = 𝑦))) → ∃𝑎 ∈ 𝐴 ∃𝑏 ∈ 𝐵 𝜒) |
| 59 | 12, 15, 57, 58 | r19.29af2 3267 |
. . . . 5
⊢
((((∃𝑎 ∈
𝐴 ∃𝑏 ∈ 𝐵 𝜒 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐵) ∧ ∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐵 (𝜒 → (𝑎 = 𝑥 ∧ 𝑏 = 𝑦))) → [𝑦 / 𝑏][𝑥 / 𝑎]𝜒) |
| 60 | | 1st2nd2 8053 |
. . . . . . . . 9
⊢ (𝑝 ∈ (𝐴 × 𝐵) → 𝑝 = 〈(1st ‘𝑝), (2nd ‘𝑝)〉) |
| 61 | 60 | ad2antlr 727 |
. . . . . . . 8
⊢
((((((∃𝑎
∈ 𝐴 ∃𝑏 ∈ 𝐵 𝜒 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐵) ∧ ∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐵 (𝜒 → (𝑎 = 𝑥 ∧ 𝑏 = 𝑦))) ∧ 𝑝 ∈ (𝐴 × 𝐵)) ∧ 𝜑) → 𝑝 = 〈(1st ‘𝑝), (2nd ‘𝑝)〉) |
| 62 | | nfre1 3285 |
. . . . . . . . . . . . . . . . . 18
⊢
Ⅎ𝑎∃𝑎 ∈ 𝐴 ∃𝑏 ∈ 𝐵 𝜒 |
| 63 | | nfv 1914 |
. . . . . . . . . . . . . . . . . 18
⊢
Ⅎ𝑎 𝑥 ∈ 𝐴 |
| 64 | 62, 63 | nfan 1899 |
. . . . . . . . . . . . . . . . 17
⊢
Ⅎ𝑎(∃𝑎 ∈ 𝐴 ∃𝑏 ∈ 𝐵 𝜒 ∧ 𝑥 ∈ 𝐴) |
| 65 | | nfv 1914 |
. . . . . . . . . . . . . . . . 17
⊢
Ⅎ𝑎 𝑦 ∈ 𝐵 |
| 66 | 64, 65 | nfan 1899 |
. . . . . . . . . . . . . . . 16
⊢
Ⅎ𝑎((∃𝑎 ∈ 𝐴 ∃𝑏 ∈ 𝐵 𝜒 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐵) |
| 67 | | nfra1 3284 |
. . . . . . . . . . . . . . . 16
⊢
Ⅎ𝑎∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐵 (𝜒 → (𝑎 = 𝑥 ∧ 𝑏 = 𝑦)) |
| 68 | 66, 67 | nfan 1899 |
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑎(((∃𝑎 ∈ 𝐴 ∃𝑏 ∈ 𝐵 𝜒 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐵) ∧ ∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐵 (𝜒 → (𝑎 = 𝑥 ∧ 𝑏 = 𝑦))) |
| 69 | | nfv 1914 |
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑎 𝑝 ∈ (𝐴 × 𝐵) |
| 70 | 68, 69 | nfan 1899 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑎((((∃𝑎 ∈ 𝐴 ∃𝑏 ∈ 𝐵 𝜒 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐵) ∧ ∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐵 (𝜒 → (𝑎 = 𝑥 ∧ 𝑏 = 𝑦))) ∧ 𝑝 ∈ (𝐴 × 𝐵)) |
| 71 | | nfv 1914 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑎𝜑 |
| 72 | 70, 71 | nfan 1899 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑎(((((∃𝑎 ∈ 𝐴 ∃𝑏 ∈ 𝐵 𝜒 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐵) ∧ ∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐵 (𝜒 → (𝑎 = 𝑥 ∧ 𝑏 = 𝑦))) ∧ 𝑝 ∈ (𝐴 × 𝐵)) ∧ 𝜑) |
| 73 | | nfcv 2905 |
. . . . . . . . . . . . . . . . . . 19
⊢
Ⅎ𝑏𝐴 |
| 74 | | nfre1 3285 |
. . . . . . . . . . . . . . . . . . 19
⊢
Ⅎ𝑏∃𝑏 ∈ 𝐵 𝜒 |
| 75 | 73, 74 | nfrexw 3313 |
. . . . . . . . . . . . . . . . . 18
⊢
Ⅎ𝑏∃𝑎 ∈ 𝐴 ∃𝑏 ∈ 𝐵 𝜒 |
| 76 | | nfv 1914 |
. . . . . . . . . . . . . . . . . 18
⊢
Ⅎ𝑏 𝑥 ∈ 𝐴 |
| 77 | 75, 76 | nfan 1899 |
. . . . . . . . . . . . . . . . 17
⊢
Ⅎ𝑏(∃𝑎 ∈ 𝐴 ∃𝑏 ∈ 𝐵 𝜒 ∧ 𝑥 ∈ 𝐴) |
| 78 | | nfv 1914 |
. . . . . . . . . . . . . . . . 17
⊢
Ⅎ𝑏 𝑦 ∈ 𝐵 |
| 79 | 77, 78 | nfan 1899 |
. . . . . . . . . . . . . . . 16
⊢
Ⅎ𝑏((∃𝑎 ∈ 𝐴 ∃𝑏 ∈ 𝐵 𝜒 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐵) |
| 80 | | nfcv 2905 |
. . . . . . . . . . . . . . . . 17
⊢
Ⅎ𝑏𝐴 |
| 81 | | nfra1 3284 |
. . . . . . . . . . . . . . . . 17
⊢
Ⅎ𝑏∀𝑏 ∈ 𝐵 (𝜒 → (𝑎 = 𝑥 ∧ 𝑏 = 𝑦)) |
| 82 | 80, 81 | nfral 3374 |
. . . . . . . . . . . . . . . 16
⊢
Ⅎ𝑏∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐵 (𝜒 → (𝑎 = 𝑥 ∧ 𝑏 = 𝑦)) |
| 83 | 79, 82 | nfan 1899 |
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑏(((∃𝑎 ∈ 𝐴 ∃𝑏 ∈ 𝐵 𝜒 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐵) ∧ ∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐵 (𝜒 → (𝑎 = 𝑥 ∧ 𝑏 = 𝑦))) |
| 84 | | nfv 1914 |
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑏 𝑝 ∈ (𝐴 × 𝐵) |
| 85 | 83, 84 | nfan 1899 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑏((((∃𝑎 ∈ 𝐴 ∃𝑏 ∈ 𝐵 𝜒 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐵) ∧ ∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐵 (𝜒 → (𝑎 = 𝑥 ∧ 𝑏 = 𝑦))) ∧ 𝑝 ∈ (𝐴 × 𝐵)) |
| 86 | | nfv 1914 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑏𝜑 |
| 87 | 85, 86 | nfan 1899 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑏(((((∃𝑎 ∈ 𝐴 ∃𝑏 ∈ 𝐵 𝜒 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐵) ∧ ∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐵 (𝜒 → (𝑎 = 𝑥 ∧ 𝑏 = 𝑦))) ∧ 𝑝 ∈ (𝐴 × 𝐵)) ∧ 𝜑) |
| 88 | | nfv 1914 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑎(𝜑 → ((1st
‘𝑝) = 𝑥 ∧ (2nd
‘𝑝) = 𝑦)) |
| 89 | | nfv 1914 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑏(𝜑 → ((1st
‘𝑝) = 𝑥 ∧ (2nd
‘𝑝) = 𝑦)) |
| 90 | | xp1st 8046 |
. . . . . . . . . . . . . 14
⊢ (𝑝 ∈ (𝐴 × 𝐵) → (1st ‘𝑝) ∈ 𝐴) |
| 91 | 90 | ad2antlr 727 |
. . . . . . . . . . . . 13
⊢
((((((∃𝑎
∈ 𝐴 ∃𝑏 ∈ 𝐵 𝜒 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐵) ∧ ∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐵 (𝜒 → (𝑎 = 𝑥 ∧ 𝑏 = 𝑦))) ∧ 𝑝 ∈ (𝐴 × 𝐵)) ∧ 𝜑) → (1st ‘𝑝) ∈ 𝐴) |
| 92 | | xp2nd 8047 |
. . . . . . . . . . . . . 14
⊢ (𝑝 ∈ (𝐴 × 𝐵) → (2nd ‘𝑝) ∈ 𝐵) |
| 93 | 92 | ad2antlr 727 |
. . . . . . . . . . . . 13
⊢
((((((∃𝑎
∈ 𝐴 ∃𝑏 ∈ 𝐵 𝜒 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐵) ∧ ∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐵 (𝜒 → (𝑎 = 𝑥 ∧ 𝑏 = 𝑦))) ∧ 𝑝 ∈ (𝐴 × 𝐵)) ∧ 𝜑) → (2nd ‘𝑝) ∈ 𝐵) |
| 94 | | eqcom 2744 |
. . . . . . . . . . . . . . . . 17
⊢
((1st ‘𝑝) = 𝑎 ↔ 𝑎 = (1st ‘𝑝)) |
| 95 | | eqcom 2744 |
. . . . . . . . . . . . . . . . 17
⊢
((2nd ‘𝑝) = 𝑏 ↔ 𝑏 = (2nd ‘𝑝)) |
| 96 | | eqopi 8050 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑝 ∈ (𝐴 × 𝐵) ∧ ((1st ‘𝑝) = 𝑎 ∧ (2nd ‘𝑝) = 𝑏)) → 𝑝 = 〈𝑎, 𝑏〉) |
| 97 | | opsbc2ie.a |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑝 = 〈𝑎, 𝑏〉 → (𝜑 ↔ 𝜒)) |
| 98 | 96, 97 | syl 17 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑝 ∈ (𝐴 × 𝐵) ∧ ((1st ‘𝑝) = 𝑎 ∧ (2nd ‘𝑝) = 𝑏)) → (𝜑 ↔ 𝜒)) |
| 99 | 98 | bicomd 223 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑝 ∈ (𝐴 × 𝐵) ∧ ((1st ‘𝑝) = 𝑎 ∧ (2nd ‘𝑝) = 𝑏)) → (𝜒 ↔ 𝜑)) |
| 100 | 99 | ancoms 458 |
. . . . . . . . . . . . . . . . . 18
⊢
((((1st ‘𝑝) = 𝑎 ∧ (2nd ‘𝑝) = 𝑏) ∧ 𝑝 ∈ (𝐴 × 𝐵)) → (𝜒 ↔ 𝜑)) |
| 101 | 100 | ex 412 |
. . . . . . . . . . . . . . . . 17
⊢
(((1st ‘𝑝) = 𝑎 ∧ (2nd ‘𝑝) = 𝑏) → (𝑝 ∈ (𝐴 × 𝐵) → (𝜒 ↔ 𝜑))) |
| 102 | 94, 95, 101 | syl2anbr 599 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑎 = (1st ‘𝑝) ∧ 𝑏 = (2nd ‘𝑝)) → (𝑝 ∈ (𝐴 × 𝐵) → (𝜒 ↔ 𝜑))) |
| 103 | 102 | impcom 407 |
. . . . . . . . . . . . . . 15
⊢ ((𝑝 ∈ (𝐴 × 𝐵) ∧ (𝑎 = (1st ‘𝑝) ∧ 𝑏 = (2nd ‘𝑝))) → (𝜒 ↔ 𝜑)) |
| 104 | 103 | ad4ant24 754 |
. . . . . . . . . . . . . 14
⊢
(((((((∃𝑎
∈ 𝐴 ∃𝑏 ∈ 𝐵 𝜒 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐵) ∧ ∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐵 (𝜒 → (𝑎 = 𝑥 ∧ 𝑏 = 𝑦))) ∧ 𝑝 ∈ (𝐴 × 𝐵)) ∧ 𝜑) ∧ (𝑎 = (1st ‘𝑝) ∧ 𝑏 = (2nd ‘𝑝))) → (𝜒 ↔ 𝜑)) |
| 105 | | simpl 482 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑎 = (1st ‘𝑝) ∧ 𝑏 = (2nd ‘𝑝)) → 𝑎 = (1st ‘𝑝)) |
| 106 | 105 | eqeq1d 2739 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑎 = (1st ‘𝑝) ∧ 𝑏 = (2nd ‘𝑝)) → (𝑎 = 𝑥 ↔ (1st ‘𝑝) = 𝑥)) |
| 107 | | simpr 484 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑎 = (1st ‘𝑝) ∧ 𝑏 = (2nd ‘𝑝)) → 𝑏 = (2nd ‘𝑝)) |
| 108 | 107 | eqeq1d 2739 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑎 = (1st ‘𝑝) ∧ 𝑏 = (2nd ‘𝑝)) → (𝑏 = 𝑦 ↔ (2nd ‘𝑝) = 𝑦)) |
| 109 | 106, 108 | anbi12d 632 |
. . . . . . . . . . . . . . 15
⊢ ((𝑎 = (1st ‘𝑝) ∧ 𝑏 = (2nd ‘𝑝)) → ((𝑎 = 𝑥 ∧ 𝑏 = 𝑦) ↔ ((1st ‘𝑝) = 𝑥 ∧ (2nd ‘𝑝) = 𝑦))) |
| 110 | 109 | adantl 481 |
. . . . . . . . . . . . . 14
⊢
(((((((∃𝑎
∈ 𝐴 ∃𝑏 ∈ 𝐵 𝜒 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐵) ∧ ∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐵 (𝜒 → (𝑎 = 𝑥 ∧ 𝑏 = 𝑦))) ∧ 𝑝 ∈ (𝐴 × 𝐵)) ∧ 𝜑) ∧ (𝑎 = (1st ‘𝑝) ∧ 𝑏 = (2nd ‘𝑝))) → ((𝑎 = 𝑥 ∧ 𝑏 = 𝑦) ↔ ((1st ‘𝑝) = 𝑥 ∧ (2nd ‘𝑝) = 𝑦))) |
| 111 | 104, 110 | imbi12d 344 |
. . . . . . . . . . . . 13
⊢
(((((((∃𝑎
∈ 𝐴 ∃𝑏 ∈ 𝐵 𝜒 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐵) ∧ ∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐵 (𝜒 → (𝑎 = 𝑥 ∧ 𝑏 = 𝑦))) ∧ 𝑝 ∈ (𝐴 × 𝐵)) ∧ 𝜑) ∧ (𝑎 = (1st ‘𝑝) ∧ 𝑏 = (2nd ‘𝑝))) → ((𝜒 → (𝑎 = 𝑥 ∧ 𝑏 = 𝑦)) ↔ (𝜑 → ((1st ‘𝑝) = 𝑥 ∧ (2nd ‘𝑝) = 𝑦)))) |
| 112 | | simpllr 776 |
. . . . . . . . . . . . 13
⊢
((((((∃𝑎
∈ 𝐴 ∃𝑏 ∈ 𝐵 𝜒 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐵) ∧ ∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐵 (𝜒 → (𝑎 = 𝑥 ∧ 𝑏 = 𝑦))) ∧ 𝑝 ∈ (𝐴 × 𝐵)) ∧ 𝜑) → ∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐵 (𝜒 → (𝑎 = 𝑥 ∧ 𝑏 = 𝑦))) |
| 113 | 72, 87, 88, 89, 91, 93, 111, 112 | rspc2daf 32485 |
. . . . . . . . . . . 12
⊢
((((((∃𝑎
∈ 𝐴 ∃𝑏 ∈ 𝐵 𝜒 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐵) ∧ ∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐵 (𝜒 → (𝑎 = 𝑥 ∧ 𝑏 = 𝑦))) ∧ 𝑝 ∈ (𝐴 × 𝐵)) ∧ 𝜑) → (𝜑 → ((1st ‘𝑝) = 𝑥 ∧ (2nd ‘𝑝) = 𝑦))) |
| 114 | 113 | com12 32 |
. . . . . . . . . . 11
⊢ (𝜑 → ((((((∃𝑎 ∈ 𝐴 ∃𝑏 ∈ 𝐵 𝜒 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐵) ∧ ∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐵 (𝜒 → (𝑎 = 𝑥 ∧ 𝑏 = 𝑦))) ∧ 𝑝 ∈ (𝐴 × 𝐵)) ∧ 𝜑) → ((1st ‘𝑝) = 𝑥 ∧ (2nd ‘𝑝) = 𝑦))) |
| 115 | 114 | anabsi7 671 |
. . . . . . . . . 10
⊢
((((((∃𝑎
∈ 𝐴 ∃𝑏 ∈ 𝐵 𝜒 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐵) ∧ ∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐵 (𝜒 → (𝑎 = 𝑥 ∧ 𝑏 = 𝑦))) ∧ 𝑝 ∈ (𝐴 × 𝐵)) ∧ 𝜑) → ((1st ‘𝑝) = 𝑥 ∧ (2nd ‘𝑝) = 𝑦)) |
| 116 | 115 | simpld 494 |
. . . . . . . . 9
⊢
((((((∃𝑎
∈ 𝐴 ∃𝑏 ∈ 𝐵 𝜒 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐵) ∧ ∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐵 (𝜒 → (𝑎 = 𝑥 ∧ 𝑏 = 𝑦))) ∧ 𝑝 ∈ (𝐴 × 𝐵)) ∧ 𝜑) → (1st ‘𝑝) = 𝑥) |
| 117 | | nfre1 3285 |
. . . . . . . . . . . . . . . . . 18
⊢
Ⅎ𝑎∃𝑎 ∈ 𝐴 ∃𝑏 ∈ 𝐵 𝜒 |
| 118 | | nfv 1914 |
. . . . . . . . . . . . . . . . . 18
⊢
Ⅎ𝑎 𝑥 ∈ 𝐴 |
| 119 | 117, 118 | nfan 1899 |
. . . . . . . . . . . . . . . . 17
⊢
Ⅎ𝑎(∃𝑎 ∈ 𝐴 ∃𝑏 ∈ 𝐵 𝜒 ∧ 𝑥 ∈ 𝐴) |
| 120 | | nfv 1914 |
. . . . . . . . . . . . . . . . 17
⊢
Ⅎ𝑎 𝑦 ∈ 𝐵 |
| 121 | 119, 120 | nfan 1899 |
. . . . . . . . . . . . . . . 16
⊢
Ⅎ𝑎((∃𝑎 ∈ 𝐴 ∃𝑏 ∈ 𝐵 𝜒 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐵) |
| 122 | | nfra1 3284 |
. . . . . . . . . . . . . . . 16
⊢
Ⅎ𝑎∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐵 (𝜒 → (𝑎 = 𝑥 ∧ 𝑏 = 𝑦)) |
| 123 | 121, 122 | nfan 1899 |
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑎(((∃𝑎 ∈ 𝐴 ∃𝑏 ∈ 𝐵 𝜒 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐵) ∧ ∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐵 (𝜒 → (𝑎 = 𝑥 ∧ 𝑏 = 𝑦))) |
| 124 | | nfv 1914 |
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑎 𝑝 ∈ (𝐴 × 𝐵) |
| 125 | 123, 124 | nfan 1899 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑎((((∃𝑎 ∈ 𝐴 ∃𝑏 ∈ 𝐵 𝜒 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐵) ∧ ∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐵 (𝜒 → (𝑎 = 𝑥 ∧ 𝑏 = 𝑦))) ∧ 𝑝 ∈ (𝐴 × 𝐵)) |
| 126 | | nfv 1914 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑎𝜑 |
| 127 | 125, 126 | nfan 1899 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑎(((((∃𝑎 ∈ 𝐴 ∃𝑏 ∈ 𝐵 𝜒 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐵) ∧ ∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐵 (𝜒 → (𝑎 = 𝑥 ∧ 𝑏 = 𝑦))) ∧ 𝑝 ∈ (𝐴 × 𝐵)) ∧ 𝜑) |
| 128 | | nfcv 2905 |
. . . . . . . . . . . . . . . . . . 19
⊢
Ⅎ𝑏𝐴 |
| 129 | | nfre1 3285 |
. . . . . . . . . . . . . . . . . . 19
⊢
Ⅎ𝑏∃𝑏 ∈ 𝐵 𝜒 |
| 130 | 128, 129 | nfrexw 3313 |
. . . . . . . . . . . . . . . . . 18
⊢
Ⅎ𝑏∃𝑎 ∈ 𝐴 ∃𝑏 ∈ 𝐵 𝜒 |
| 131 | | nfv 1914 |
. . . . . . . . . . . . . . . . . 18
⊢
Ⅎ𝑏 𝑥 ∈ 𝐴 |
| 132 | 130, 131 | nfan 1899 |
. . . . . . . . . . . . . . . . 17
⊢
Ⅎ𝑏(∃𝑎 ∈ 𝐴 ∃𝑏 ∈ 𝐵 𝜒 ∧ 𝑥 ∈ 𝐴) |
| 133 | | nfv 1914 |
. . . . . . . . . . . . . . . . 17
⊢
Ⅎ𝑏 𝑦 ∈ 𝐵 |
| 134 | 132, 133 | nfan 1899 |
. . . . . . . . . . . . . . . 16
⊢
Ⅎ𝑏((∃𝑎 ∈ 𝐴 ∃𝑏 ∈ 𝐵 𝜒 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐵) |
| 135 | | nfcv 2905 |
. . . . . . . . . . . . . . . . 17
⊢
Ⅎ𝑏𝐴 |
| 136 | | nfra1 3284 |
. . . . . . . . . . . . . . . . 17
⊢
Ⅎ𝑏∀𝑏 ∈ 𝐵 (𝜒 → (𝑎 = 𝑥 ∧ 𝑏 = 𝑦)) |
| 137 | 135, 136 | nfral 3374 |
. . . . . . . . . . . . . . . 16
⊢
Ⅎ𝑏∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐵 (𝜒 → (𝑎 = 𝑥 ∧ 𝑏 = 𝑦)) |
| 138 | 134, 137 | nfan 1899 |
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑏(((∃𝑎 ∈ 𝐴 ∃𝑏 ∈ 𝐵 𝜒 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐵) ∧ ∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐵 (𝜒 → (𝑎 = 𝑥 ∧ 𝑏 = 𝑦))) |
| 139 | | nfv 1914 |
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑏 𝑝 ∈ (𝐴 × 𝐵) |
| 140 | 138, 139 | nfan 1899 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑏((((∃𝑎 ∈ 𝐴 ∃𝑏 ∈ 𝐵 𝜒 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐵) ∧ ∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐵 (𝜒 → (𝑎 = 𝑥 ∧ 𝑏 = 𝑦))) ∧ 𝑝 ∈ (𝐴 × 𝐵)) |
| 141 | | nfv 1914 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑏𝜑 |
| 142 | 140, 141 | nfan 1899 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑏(((((∃𝑎 ∈ 𝐴 ∃𝑏 ∈ 𝐵 𝜒 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐵) ∧ ∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐵 (𝜒 → (𝑎 = 𝑥 ∧ 𝑏 = 𝑦))) ∧ 𝑝 ∈ (𝐴 × 𝐵)) ∧ 𝜑) |
| 143 | | nfv 1914 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑎(𝜑 → ((1st
‘𝑝) = 𝑥 ∧ (2nd
‘𝑝) = 𝑦)) |
| 144 | | nfv 1914 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑏(𝜑 → ((1st
‘𝑝) = 𝑥 ∧ (2nd
‘𝑝) = 𝑦)) |
| 145 | | xp1st 8046 |
. . . . . . . . . . . . . 14
⊢ (𝑝 ∈ (𝐴 × 𝐵) → (1st ‘𝑝) ∈ 𝐴) |
| 146 | 145 | ad2antlr 727 |
. . . . . . . . . . . . 13
⊢
((((((∃𝑎
∈ 𝐴 ∃𝑏 ∈ 𝐵 𝜒 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐵) ∧ ∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐵 (𝜒 → (𝑎 = 𝑥 ∧ 𝑏 = 𝑦))) ∧ 𝑝 ∈ (𝐴 × 𝐵)) ∧ 𝜑) → (1st ‘𝑝) ∈ 𝐴) |
| 147 | | xp2nd 8047 |
. . . . . . . . . . . . . 14
⊢ (𝑝 ∈ (𝐴 × 𝐵) → (2nd ‘𝑝) ∈ 𝐵) |
| 148 | 147 | ad2antlr 727 |
. . . . . . . . . . . . 13
⊢
((((((∃𝑎
∈ 𝐴 ∃𝑏 ∈ 𝐵 𝜒 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐵) ∧ ∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐵 (𝜒 → (𝑎 = 𝑥 ∧ 𝑏 = 𝑦))) ∧ 𝑝 ∈ (𝐴 × 𝐵)) ∧ 𝜑) → (2nd ‘𝑝) ∈ 𝐵) |
| 149 | | eqcom 2744 |
. . . . . . . . . . . . . . . . 17
⊢
((1st ‘𝑝) = 𝑎 ↔ 𝑎 = (1st ‘𝑝)) |
| 150 | | eqcom 2744 |
. . . . . . . . . . . . . . . . 17
⊢
((2nd ‘𝑝) = 𝑏 ↔ 𝑏 = (2nd ‘𝑝)) |
| 151 | | eqopi 8050 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑝 ∈ (𝐴 × 𝐵) ∧ ((1st ‘𝑝) = 𝑎 ∧ (2nd ‘𝑝) = 𝑏)) → 𝑝 = 〈𝑎, 𝑏〉) |
| 152 | 151, 97 | syl 17 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑝 ∈ (𝐴 × 𝐵) ∧ ((1st ‘𝑝) = 𝑎 ∧ (2nd ‘𝑝) = 𝑏)) → (𝜑 ↔ 𝜒)) |
| 153 | 152 | bicomd 223 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑝 ∈ (𝐴 × 𝐵) ∧ ((1st ‘𝑝) = 𝑎 ∧ (2nd ‘𝑝) = 𝑏)) → (𝜒 ↔ 𝜑)) |
| 154 | 153 | ancoms 458 |
. . . . . . . . . . . . . . . . . 18
⊢
((((1st ‘𝑝) = 𝑎 ∧ (2nd ‘𝑝) = 𝑏) ∧ 𝑝 ∈ (𝐴 × 𝐵)) → (𝜒 ↔ 𝜑)) |
| 155 | 154 | ex 412 |
. . . . . . . . . . . . . . . . 17
⊢
(((1st ‘𝑝) = 𝑎 ∧ (2nd ‘𝑝) = 𝑏) → (𝑝 ∈ (𝐴 × 𝐵) → (𝜒 ↔ 𝜑))) |
| 156 | 149, 150,
155 | syl2anbr 599 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑎 = (1st ‘𝑝) ∧ 𝑏 = (2nd ‘𝑝)) → (𝑝 ∈ (𝐴 × 𝐵) → (𝜒 ↔ 𝜑))) |
| 157 | 156 | impcom 407 |
. . . . . . . . . . . . . . 15
⊢ ((𝑝 ∈ (𝐴 × 𝐵) ∧ (𝑎 = (1st ‘𝑝) ∧ 𝑏 = (2nd ‘𝑝))) → (𝜒 ↔ 𝜑)) |
| 158 | 157 | ad4ant24 754 |
. . . . . . . . . . . . . 14
⊢
(((((((∃𝑎
∈ 𝐴 ∃𝑏 ∈ 𝐵 𝜒 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐵) ∧ ∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐵 (𝜒 → (𝑎 = 𝑥 ∧ 𝑏 = 𝑦))) ∧ 𝑝 ∈ (𝐴 × 𝐵)) ∧ 𝜑) ∧ (𝑎 = (1st ‘𝑝) ∧ 𝑏 = (2nd ‘𝑝))) → (𝜒 ↔ 𝜑)) |
| 159 | | simpl 482 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑎 = (1st ‘𝑝) ∧ 𝑏 = (2nd ‘𝑝)) → 𝑎 = (1st ‘𝑝)) |
| 160 | 159 | eqeq1d 2739 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑎 = (1st ‘𝑝) ∧ 𝑏 = (2nd ‘𝑝)) → (𝑎 = 𝑥 ↔ (1st ‘𝑝) = 𝑥)) |
| 161 | | simpr 484 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑎 = (1st ‘𝑝) ∧ 𝑏 = (2nd ‘𝑝)) → 𝑏 = (2nd ‘𝑝)) |
| 162 | 161 | eqeq1d 2739 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑎 = (1st ‘𝑝) ∧ 𝑏 = (2nd ‘𝑝)) → (𝑏 = 𝑦 ↔ (2nd ‘𝑝) = 𝑦)) |
| 163 | 160, 162 | anbi12d 632 |
. . . . . . . . . . . . . . 15
⊢ ((𝑎 = (1st ‘𝑝) ∧ 𝑏 = (2nd ‘𝑝)) → ((𝑎 = 𝑥 ∧ 𝑏 = 𝑦) ↔ ((1st ‘𝑝) = 𝑥 ∧ (2nd ‘𝑝) = 𝑦))) |
| 164 | 163 | adantl 481 |
. . . . . . . . . . . . . 14
⊢
(((((((∃𝑎
∈ 𝐴 ∃𝑏 ∈ 𝐵 𝜒 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐵) ∧ ∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐵 (𝜒 → (𝑎 = 𝑥 ∧ 𝑏 = 𝑦))) ∧ 𝑝 ∈ (𝐴 × 𝐵)) ∧ 𝜑) ∧ (𝑎 = (1st ‘𝑝) ∧ 𝑏 = (2nd ‘𝑝))) → ((𝑎 = 𝑥 ∧ 𝑏 = 𝑦) ↔ ((1st ‘𝑝) = 𝑥 ∧ (2nd ‘𝑝) = 𝑦))) |
| 165 | 158, 164 | imbi12d 344 |
. . . . . . . . . . . . 13
⊢
(((((((∃𝑎
∈ 𝐴 ∃𝑏 ∈ 𝐵 𝜒 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐵) ∧ ∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐵 (𝜒 → (𝑎 = 𝑥 ∧ 𝑏 = 𝑦))) ∧ 𝑝 ∈ (𝐴 × 𝐵)) ∧ 𝜑) ∧ (𝑎 = (1st ‘𝑝) ∧ 𝑏 = (2nd ‘𝑝))) → ((𝜒 → (𝑎 = 𝑥 ∧ 𝑏 = 𝑦)) ↔ (𝜑 → ((1st ‘𝑝) = 𝑥 ∧ (2nd ‘𝑝) = 𝑦)))) |
| 166 | | simpllr 776 |
. . . . . . . . . . . . 13
⊢
((((((∃𝑎
∈ 𝐴 ∃𝑏 ∈ 𝐵 𝜒 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐵) ∧ ∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐵 (𝜒 → (𝑎 = 𝑥 ∧ 𝑏 = 𝑦))) ∧ 𝑝 ∈ (𝐴 × 𝐵)) ∧ 𝜑) → ∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐵 (𝜒 → (𝑎 = 𝑥 ∧ 𝑏 = 𝑦))) |
| 167 | 127, 142,
143, 144, 146, 148, 165, 166 | rspc2daf 32485 |
. . . . . . . . . . . 12
⊢
((((((∃𝑎
∈ 𝐴 ∃𝑏 ∈ 𝐵 𝜒 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐵) ∧ ∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐵 (𝜒 → (𝑎 = 𝑥 ∧ 𝑏 = 𝑦))) ∧ 𝑝 ∈ (𝐴 × 𝐵)) ∧ 𝜑) → (𝜑 → ((1st ‘𝑝) = 𝑥 ∧ (2nd ‘𝑝) = 𝑦))) |
| 168 | 167 | com12 32 |
. . . . . . . . . . 11
⊢ (𝜑 → ((((((∃𝑎 ∈ 𝐴 ∃𝑏 ∈ 𝐵 𝜒 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐵) ∧ ∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐵 (𝜒 → (𝑎 = 𝑥 ∧ 𝑏 = 𝑦))) ∧ 𝑝 ∈ (𝐴 × 𝐵)) ∧ 𝜑) → ((1st ‘𝑝) = 𝑥 ∧ (2nd ‘𝑝) = 𝑦))) |
| 169 | 168 | anabsi7 671 |
. . . . . . . . . 10
⊢
((((((∃𝑎
∈ 𝐴 ∃𝑏 ∈ 𝐵 𝜒 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐵) ∧ ∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐵 (𝜒 → (𝑎 = 𝑥 ∧ 𝑏 = 𝑦))) ∧ 𝑝 ∈ (𝐴 × 𝐵)) ∧ 𝜑) → ((1st ‘𝑝) = 𝑥 ∧ (2nd ‘𝑝) = 𝑦)) |
| 170 | 169 | simprd 495 |
. . . . . . . . 9
⊢
((((((∃𝑎
∈ 𝐴 ∃𝑏 ∈ 𝐵 𝜒 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐵) ∧ ∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐵 (𝜒 → (𝑎 = 𝑥 ∧ 𝑏 = 𝑦))) ∧ 𝑝 ∈ (𝐴 × 𝐵)) ∧ 𝜑) → (2nd ‘𝑝) = 𝑦) |
| 171 | 116, 170 | opeq12d 4881 |
. . . . . . . 8
⊢
((((((∃𝑎
∈ 𝐴 ∃𝑏 ∈ 𝐵 𝜒 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐵) ∧ ∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐵 (𝜒 → (𝑎 = 𝑥 ∧ 𝑏 = 𝑦))) ∧ 𝑝 ∈ (𝐴 × 𝐵)) ∧ 𝜑) → 〈(1st ‘𝑝), (2nd ‘𝑝)〉 = 〈𝑥, 𝑦〉) |
| 172 | 61, 171 | eqtrd 2777 |
. . . . . . 7
⊢
((((((∃𝑎
∈ 𝐴 ∃𝑏 ∈ 𝐵 𝜒 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐵) ∧ ∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐵 (𝜒 → (𝑎 = 𝑥 ∧ 𝑏 = 𝑦))) ∧ 𝑝 ∈ (𝐴 × 𝐵)) ∧ 𝜑) → 𝑝 = 〈𝑥, 𝑦〉) |
| 173 | 172 | ex 412 |
. . . . . 6
⊢
(((((∃𝑎 ∈
𝐴 ∃𝑏 ∈ 𝐵 𝜒 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐵) ∧ ∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐵 (𝜒 → (𝑎 = 𝑥 ∧ 𝑏 = 𝑦))) ∧ 𝑝 ∈ (𝐴 × 𝐵)) → (𝜑 → 𝑝 = 〈𝑥, 𝑦〉)) |
| 174 | 173 | ralrimiva 3146 |
. . . . 5
⊢
((((∃𝑎 ∈
𝐴 ∃𝑏 ∈ 𝐵 𝜒 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐵) ∧ ∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐵 (𝜒 → (𝑎 = 𝑥 ∧ 𝑏 = 𝑦))) → ∀𝑝 ∈ (𝐴 × 𝐵)(𝜑 → 𝑝 = 〈𝑥, 𝑦〉)) |
| 175 | 5, 59, 174 | 3jca 1129 |
. . . 4
⊢
((((∃𝑎 ∈
𝐴 ∃𝑏 ∈ 𝐵 𝜒 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐵) ∧ ∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐵 (𝜒 → (𝑎 = 𝑥 ∧ 𝑏 = 𝑦))) → (〈𝑥, 𝑦〉 ∈ (𝐴 × 𝐵) ∧ [𝑦 / 𝑏][𝑥 / 𝑎]𝜒 ∧ ∀𝑝 ∈ (𝐴 × 𝐵)(𝜑 → 𝑝 = 〈𝑥, 𝑦〉))) |
| 176 | 97 | opsbc2ie 32495 |
. . . . 5
⊢ (𝑝 = 〈𝑥, 𝑦〉 → (𝜑 ↔ [𝑦 / 𝑏][𝑥 / 𝑎]𝜒)) |
| 177 | 176 | eqreu 3735 |
. . . 4
⊢
((〈𝑥, 𝑦〉 ∈ (𝐴 × 𝐵) ∧ [𝑦 / 𝑏][𝑥 / 𝑎]𝜒 ∧ ∀𝑝 ∈ (𝐴 × 𝐵)(𝜑 → 𝑝 = 〈𝑥, 𝑦〉)) → ∃!𝑝 ∈ (𝐴 × 𝐵)𝜑) |
| 178 | 175, 177 | syl 17 |
. . 3
⊢
((((∃𝑎 ∈
𝐴 ∃𝑏 ∈ 𝐵 𝜒 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐵) ∧ ∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐵 (𝜒 → (𝑎 = 𝑥 ∧ 𝑏 = 𝑦))) → ∃!𝑝 ∈ (𝐴 × 𝐵)𝜑) |
| 179 | 178 | r19.29ffa 32490 |
. 2
⊢
((∃𝑎 ∈
𝐴 ∃𝑏 ∈ 𝐵 𝜒 ∧ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 ∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐵 (𝜒 → (𝑎 = 𝑥 ∧ 𝑏 = 𝑦))) → ∃!𝑝 ∈ (𝐴 × 𝐵)𝜑) |
| 180 | 1, 179 | sylbi 217 |
1
⊢
((∃!𝑎 ∈
𝐴 ∃𝑏 ∈ 𝐵 𝜒 ∧ ∃!𝑏 ∈ 𝐵 ∃𝑎 ∈ 𝐴 𝜒) → ∃!𝑝 ∈ (𝐴 × 𝐵)𝜑) |