Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  pmtr3ncom Structured version   Visualization version   GIF version

Theorem pmtr3ncom 18582
 Description: Transpositions over sets with at least 3 elements are not commutative, see also the remark in [Rotman] p. 28. (Contributed by AV, 21-Mar-2019.)
Hypothesis
Ref Expression
pmtr3ncom.t 𝑇 = (pmTrsp‘𝐷)
Assertion
Ref Expression
pmtr3ncom ((𝐷𝑉 ∧ 3 ≤ (♯‘𝐷)) → ∃𝑓 ∈ ran 𝑇𝑔 ∈ ran 𝑇(𝑔𝑓) ≠ (𝑓𝑔))
Distinct variable groups:   𝐷,𝑓,𝑔   𝑇,𝑓,𝑔
Allowed substitution hints:   𝑉(𝑓,𝑔)

Proof of Theorem pmtr3ncom
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 hashge3el3dif 13829 . 2 ((𝐷𝑉 ∧ 3 ≤ (♯‘𝐷)) → ∃𝑥𝐷𝑦𝐷𝑧𝐷 (𝑥𝑦𝑥𝑧𝑦𝑧))
2 simprl 769 . . . . . . 7 (((((𝑥𝐷𝑦𝐷) ∧ 𝑧𝐷) ∧ (𝑥𝑦𝑥𝑧𝑦𝑧)) ∧ (𝐷𝑉 ∧ 3 ≤ (♯‘𝐷))) → 𝐷𝑉)
3 prssi 4730 . . . . . . . . 9 ((𝑥𝐷𝑦𝐷) → {𝑥, 𝑦} ⊆ 𝐷)
43adantr 483 . . . . . . . 8 (((𝑥𝐷𝑦𝐷) ∧ 𝑧𝐷) → {𝑥, 𝑦} ⊆ 𝐷)
54ad2antrr 724 . . . . . . 7 (((((𝑥𝐷𝑦𝐷) ∧ 𝑧𝐷) ∧ (𝑥𝑦𝑥𝑧𝑦𝑧)) ∧ (𝐷𝑉 ∧ 3 ≤ (♯‘𝐷))) → {𝑥, 𝑦} ⊆ 𝐷)
6 simplll 773 . . . . . . . . 9 ((((𝑥𝐷𝑦𝐷) ∧ 𝑧𝐷) ∧ (𝑥𝑦𝑥𝑧𝑦𝑧)) → 𝑥𝐷)
7 simplr 767 . . . . . . . . . 10 (((𝑥𝐷𝑦𝐷) ∧ 𝑧𝐷) → 𝑦𝐷)
87adantr 483 . . . . . . . . 9 ((((𝑥𝐷𝑦𝐷) ∧ 𝑧𝐷) ∧ (𝑥𝑦𝑥𝑧𝑦𝑧)) → 𝑦𝐷)
9 simpr1 1190 . . . . . . . . 9 ((((𝑥𝐷𝑦𝐷) ∧ 𝑧𝐷) ∧ (𝑥𝑦𝑥𝑧𝑦𝑧)) → 𝑥𝑦)
10 pr2nelem 9408 . . . . . . . . 9 ((𝑥𝐷𝑦𝐷𝑥𝑦) → {𝑥, 𝑦} ≈ 2o)
116, 8, 9, 10syl3anc 1367 . . . . . . . 8 ((((𝑥𝐷𝑦𝐷) ∧ 𝑧𝐷) ∧ (𝑥𝑦𝑥𝑧𝑦𝑧)) → {𝑥, 𝑦} ≈ 2o)
1211adantr 483 . . . . . . 7 (((((𝑥𝐷𝑦𝐷) ∧ 𝑧𝐷) ∧ (𝑥𝑦𝑥𝑧𝑦𝑧)) ∧ (𝐷𝑉 ∧ 3 ≤ (♯‘𝐷))) → {𝑥, 𝑦} ≈ 2o)
13 pmtr3ncom.t . . . . . . . 8 𝑇 = (pmTrsp‘𝐷)
14 eqid 2820 . . . . . . . 8 ran 𝑇 = ran 𝑇
1513, 14pmtrrn 18564 . . . . . . 7 ((𝐷𝑉 ∧ {𝑥, 𝑦} ⊆ 𝐷 ∧ {𝑥, 𝑦} ≈ 2o) → (𝑇‘{𝑥, 𝑦}) ∈ ran 𝑇)
162, 5, 12, 15syl3anc 1367 . . . . . 6 (((((𝑥𝐷𝑦𝐷) ∧ 𝑧𝐷) ∧ (𝑥𝑦𝑥𝑧𝑦𝑧)) ∧ (𝐷𝑉 ∧ 3 ≤ (♯‘𝐷))) → (𝑇‘{𝑥, 𝑦}) ∈ ran 𝑇)
17 prssi 4730 . . . . . . . 8 ((𝑦𝐷𝑧𝐷) → {𝑦, 𝑧} ⊆ 𝐷)
1817ad5ant23 758 . . . . . . 7 (((((𝑥𝐷𝑦𝐷) ∧ 𝑧𝐷) ∧ (𝑥𝑦𝑥𝑧𝑦𝑧)) ∧ (𝐷𝑉 ∧ 3 ≤ (♯‘𝐷))) → {𝑦, 𝑧} ⊆ 𝐷)
19 simplr 767 . . . . . . . . 9 ((((𝑥𝐷𝑦𝐷) ∧ 𝑧𝐷) ∧ (𝑥𝑦𝑥𝑧𝑦𝑧)) → 𝑧𝐷)
20 simpr3 1192 . . . . . . . . 9 ((((𝑥𝐷𝑦𝐷) ∧ 𝑧𝐷) ∧ (𝑥𝑦𝑥𝑧𝑦𝑧)) → 𝑦𝑧)
21 pr2nelem 9408 . . . . . . . . 9 ((𝑦𝐷𝑧𝐷𝑦𝑧) → {𝑦, 𝑧} ≈ 2o)
228, 19, 20, 21syl3anc 1367 . . . . . . . 8 ((((𝑥𝐷𝑦𝐷) ∧ 𝑧𝐷) ∧ (𝑥𝑦𝑥𝑧𝑦𝑧)) → {𝑦, 𝑧} ≈ 2o)
2322adantr 483 . . . . . . 7 (((((𝑥𝐷𝑦𝐷) ∧ 𝑧𝐷) ∧ (𝑥𝑦𝑥𝑧𝑦𝑧)) ∧ (𝐷𝑉 ∧ 3 ≤ (♯‘𝐷))) → {𝑦, 𝑧} ≈ 2o)
2413, 14pmtrrn 18564 . . . . . . 7 ((𝐷𝑉 ∧ {𝑦, 𝑧} ⊆ 𝐷 ∧ {𝑦, 𝑧} ≈ 2o) → (𝑇‘{𝑦, 𝑧}) ∈ ran 𝑇)
252, 18, 23, 24syl3anc 1367 . . . . . 6 (((((𝑥𝐷𝑦𝐷) ∧ 𝑧𝐷) ∧ (𝑥𝑦𝑥𝑧𝑦𝑧)) ∧ (𝐷𝑉 ∧ 3 ≤ (♯‘𝐷))) → (𝑇‘{𝑦, 𝑧}) ∈ ran 𝑇)
26 df-3an 1085 . . . . . . . . 9 ((𝑥𝐷𝑦𝐷𝑧𝐷) ↔ ((𝑥𝐷𝑦𝐷) ∧ 𝑧𝐷))
2726biimpri 230 . . . . . . . 8 (((𝑥𝐷𝑦𝐷) ∧ 𝑧𝐷) → (𝑥𝐷𝑦𝐷𝑧𝐷))
2827ad2antrr 724 . . . . . . 7 (((((𝑥𝐷𝑦𝐷) ∧ 𝑧𝐷) ∧ (𝑥𝑦𝑥𝑧𝑦𝑧)) ∧ (𝐷𝑉 ∧ 3 ≤ (♯‘𝐷))) → (𝑥𝐷𝑦𝐷𝑧𝐷))
29 simplr 767 . . . . . . 7 (((((𝑥𝐷𝑦𝐷) ∧ 𝑧𝐷) ∧ (𝑥𝑦𝑥𝑧𝑦𝑧)) ∧ (𝐷𝑉 ∧ 3 ≤ (♯‘𝐷))) → (𝑥𝑦𝑥𝑧𝑦𝑧))
30 eqid 2820 . . . . . . . 8 (𝑇‘{𝑥, 𝑦}) = (𝑇‘{𝑥, 𝑦})
31 eqid 2820 . . . . . . . 8 (𝑇‘{𝑦, 𝑧}) = (𝑇‘{𝑦, 𝑧})
3213, 30, 31pmtr3ncomlem2 18581 . . . . . . 7 ((𝐷𝑉 ∧ (𝑥𝐷𝑦𝐷𝑧𝐷) ∧ (𝑥𝑦𝑥𝑧𝑦𝑧)) → ((𝑇‘{𝑦, 𝑧}) ∘ (𝑇‘{𝑥, 𝑦})) ≠ ((𝑇‘{𝑥, 𝑦}) ∘ (𝑇‘{𝑦, 𝑧})))
332, 28, 29, 32syl3anc 1367 . . . . . 6 (((((𝑥𝐷𝑦𝐷) ∧ 𝑧𝐷) ∧ (𝑥𝑦𝑥𝑧𝑦𝑧)) ∧ (𝐷𝑉 ∧ 3 ≤ (♯‘𝐷))) → ((𝑇‘{𝑦, 𝑧}) ∘ (𝑇‘{𝑥, 𝑦})) ≠ ((𝑇‘{𝑥, 𝑦}) ∘ (𝑇‘{𝑦, 𝑧})))
34 coeq2 5705 . . . . . . . 8 (𝑓 = (𝑇‘{𝑥, 𝑦}) → (𝑔𝑓) = (𝑔 ∘ (𝑇‘{𝑥, 𝑦})))
35 coeq1 5704 . . . . . . . 8 (𝑓 = (𝑇‘{𝑥, 𝑦}) → (𝑓𝑔) = ((𝑇‘{𝑥, 𝑦}) ∘ 𝑔))
3634, 35neeq12d 3067 . . . . . . 7 (𝑓 = (𝑇‘{𝑥, 𝑦}) → ((𝑔𝑓) ≠ (𝑓𝑔) ↔ (𝑔 ∘ (𝑇‘{𝑥, 𝑦})) ≠ ((𝑇‘{𝑥, 𝑦}) ∘ 𝑔)))
37 coeq1 5704 . . . . . . . 8 (𝑔 = (𝑇‘{𝑦, 𝑧}) → (𝑔 ∘ (𝑇‘{𝑥, 𝑦})) = ((𝑇‘{𝑦, 𝑧}) ∘ (𝑇‘{𝑥, 𝑦})))
38 coeq2 5705 . . . . . . . 8 (𝑔 = (𝑇‘{𝑦, 𝑧}) → ((𝑇‘{𝑥, 𝑦}) ∘ 𝑔) = ((𝑇‘{𝑥, 𝑦}) ∘ (𝑇‘{𝑦, 𝑧})))
3937, 38neeq12d 3067 . . . . . . 7 (𝑔 = (𝑇‘{𝑦, 𝑧}) → ((𝑔 ∘ (𝑇‘{𝑥, 𝑦})) ≠ ((𝑇‘{𝑥, 𝑦}) ∘ 𝑔) ↔ ((𝑇‘{𝑦, 𝑧}) ∘ (𝑇‘{𝑥, 𝑦})) ≠ ((𝑇‘{𝑥, 𝑦}) ∘ (𝑇‘{𝑦, 𝑧}))))
4036, 39rspc2ev 3614 . . . . . 6 (((𝑇‘{𝑥, 𝑦}) ∈ ran 𝑇 ∧ (𝑇‘{𝑦, 𝑧}) ∈ ran 𝑇 ∧ ((𝑇‘{𝑦, 𝑧}) ∘ (𝑇‘{𝑥, 𝑦})) ≠ ((𝑇‘{𝑥, 𝑦}) ∘ (𝑇‘{𝑦, 𝑧}))) → ∃𝑓 ∈ ran 𝑇𝑔 ∈ ran 𝑇(𝑔𝑓) ≠ (𝑓𝑔))
4116, 25, 33, 40syl3anc 1367 . . . . 5 (((((𝑥𝐷𝑦𝐷) ∧ 𝑧𝐷) ∧ (𝑥𝑦𝑥𝑧𝑦𝑧)) ∧ (𝐷𝑉 ∧ 3 ≤ (♯‘𝐷))) → ∃𝑓 ∈ ran 𝑇𝑔 ∈ ran 𝑇(𝑔𝑓) ≠ (𝑓𝑔))
4241exp31 422 . . . 4 (((𝑥𝐷𝑦𝐷) ∧ 𝑧𝐷) → ((𝑥𝑦𝑥𝑧𝑦𝑧) → ((𝐷𝑉 ∧ 3 ≤ (♯‘𝐷)) → ∃𝑓 ∈ ran 𝑇𝑔 ∈ ran 𝑇(𝑔𝑓) ≠ (𝑓𝑔))))
4342rexlimdva 3271 . . 3 ((𝑥𝐷𝑦𝐷) → (∃𝑧𝐷 (𝑥𝑦𝑥𝑧𝑦𝑧) → ((𝐷𝑉 ∧ 3 ≤ (♯‘𝐷)) → ∃𝑓 ∈ ran 𝑇𝑔 ∈ ran 𝑇(𝑔𝑓) ≠ (𝑓𝑔))))
4443rexlimivv 3279 . 2 (∃𝑥𝐷𝑦𝐷𝑧𝐷 (𝑥𝑦𝑥𝑧𝑦𝑧) → ((𝐷𝑉 ∧ 3 ≤ (♯‘𝐷)) → ∃𝑓 ∈ ran 𝑇𝑔 ∈ ran 𝑇(𝑔𝑓) ≠ (𝑓𝑔)))
451, 44mpcom 38 1 ((𝐷𝑉 ∧ 3 ≤ (♯‘𝐷)) → ∃𝑓 ∈ ran 𝑇𝑔 ∈ ran 𝑇(𝑔𝑓) ≠ (𝑓𝑔))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 398   ∧ w3a 1083   = wceq 1537   ∈ wcel 2114   ≠ wne 3006  ∃wrex 3126   ⊆ wss 3913  {cpr 4545   class class class wbr 5042  ran crn 5532   ∘ ccom 5535  ‘cfv 6331  2oc2o 8074   ≈ cen 8484   ≤ cle 10654  3c3 11672  ♯chash 13675  pmTrspcpmtr 18548 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2792  ax-rep 5166  ax-sep 5179  ax-nul 5186  ax-pow 5242  ax-pr 5306  ax-un 7439  ax-cnex 10571  ax-resscn 10572  ax-1cn 10573  ax-icn 10574  ax-addcl 10575  ax-addrcl 10576  ax-mulcl 10577  ax-mulrcl 10578  ax-mulcom 10579  ax-addass 10580  ax-mulass 10581  ax-distr 10582  ax-i2m1 10583  ax-1ne0 10584  ax-1rid 10585  ax-rnegex 10586  ax-rrecex 10587  ax-cnre 10588  ax-pre-lttri 10589  ax-pre-lttrn 10590  ax-pre-ltadd 10591  ax-pre-mulgt0 10592 This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2799  df-cleq 2813  df-clel 2891  df-nfc 2959  df-ne 3007  df-nel 3111  df-ral 3130  df-rex 3131  df-reu 3132  df-rmo 3133  df-rab 3134  df-v 3475  df-sbc 3753  df-csb 3861  df-dif 3916  df-un 3918  df-in 3920  df-ss 3930  df-pss 3932  df-nul 4270  df-if 4444  df-pw 4517  df-sn 4544  df-pr 4546  df-tp 4548  df-op 4550  df-uni 4815  df-int 4853  df-iun 4897  df-br 5043  df-opab 5105  df-mpt 5123  df-tr 5149  df-id 5436  df-eprel 5441  df-po 5450  df-so 5451  df-fr 5490  df-we 5492  df-xp 5537  df-rel 5538  df-cnv 5539  df-co 5540  df-dm 5541  df-rn 5542  df-res 5543  df-ima 5544  df-pred 6124  df-ord 6170  df-on 6171  df-lim 6172  df-suc 6173  df-iota 6290  df-fun 6333  df-fn 6334  df-f 6335  df-f1 6336  df-fo 6337  df-f1o 6338  df-fv 6339  df-riota 7091  df-ov 7136  df-oprab 7137  df-mpo 7138  df-om 7559  df-1st 7667  df-2nd 7668  df-wrecs 7925  df-recs 7986  df-rdg 8024  df-1o 8080  df-2o 8081  df-oadd 8084  df-er 8267  df-en 8488  df-dom 8489  df-sdom 8490  df-fin 8491  df-dju 9308  df-card 9346  df-pnf 10655  df-mnf 10656  df-xr 10657  df-ltxr 10658  df-le 10659  df-sub 10850  df-neg 10851  df-nn 11617  df-2 11679  df-3 11680  df-n0 11877  df-xnn0 11947  df-z 11961  df-uz 12223  df-fz 12877  df-hash 13676  df-pmtr 18549 This theorem is referenced by:  pgrpgt2nabl  44559
 Copyright terms: Public domain W3C validator