MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pmtr3ncom Structured version   Visualization version   GIF version

Theorem pmtr3ncom 19517
Description: Transpositions over sets with at least 3 elements are not commutative, see also the remark in [Rotman] p. 28. (Contributed by AV, 21-Mar-2019.)
Hypothesis
Ref Expression
pmtr3ncom.t 𝑇 = (pmTrsp‘𝐷)
Assertion
Ref Expression
pmtr3ncom ((𝐷𝑉 ∧ 3 ≤ (♯‘𝐷)) → ∃𝑓 ∈ ran 𝑇𝑔 ∈ ran 𝑇(𝑔𝑓) ≠ (𝑓𝑔))
Distinct variable groups:   𝐷,𝑓,𝑔   𝑇,𝑓,𝑔
Allowed substitution hints:   𝑉(𝑓,𝑔)

Proof of Theorem pmtr3ncom
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 hashge3el3dif 14532 . 2 ((𝐷𝑉 ∧ 3 ≤ (♯‘𝐷)) → ∃𝑥𝐷𝑦𝐷𝑧𝐷 (𝑥𝑦𝑥𝑧𝑦𝑧))
2 simprl 771 . . . . . . 7 (((((𝑥𝐷𝑦𝐷) ∧ 𝑧𝐷) ∧ (𝑥𝑦𝑥𝑧𝑦𝑧)) ∧ (𝐷𝑉 ∧ 3 ≤ (♯‘𝐷))) → 𝐷𝑉)
3 prssi 4829 . . . . . . . . 9 ((𝑥𝐷𝑦𝐷) → {𝑥, 𝑦} ⊆ 𝐷)
43adantr 480 . . . . . . . 8 (((𝑥𝐷𝑦𝐷) ∧ 𝑧𝐷) → {𝑥, 𝑦} ⊆ 𝐷)
54ad2antrr 726 . . . . . . 7 (((((𝑥𝐷𝑦𝐷) ∧ 𝑧𝐷) ∧ (𝑥𝑦𝑥𝑧𝑦𝑧)) ∧ (𝐷𝑉 ∧ 3 ≤ (♯‘𝐷))) → {𝑥, 𝑦} ⊆ 𝐷)
6 simplll 775 . . . . . . . . 9 ((((𝑥𝐷𝑦𝐷) ∧ 𝑧𝐷) ∧ (𝑥𝑦𝑥𝑧𝑦𝑧)) → 𝑥𝐷)
7 simplr 769 . . . . . . . . . 10 (((𝑥𝐷𝑦𝐷) ∧ 𝑧𝐷) → 𝑦𝐷)
87adantr 480 . . . . . . . . 9 ((((𝑥𝐷𝑦𝐷) ∧ 𝑧𝐷) ∧ (𝑥𝑦𝑥𝑧𝑦𝑧)) → 𝑦𝐷)
9 simpr1 1195 . . . . . . . . 9 ((((𝑥𝐷𝑦𝐷) ∧ 𝑧𝐷) ∧ (𝑥𝑦𝑥𝑧𝑦𝑧)) → 𝑥𝑦)
10 enpr2 10049 . . . . . . . . 9 ((𝑥𝐷𝑦𝐷𝑥𝑦) → {𝑥, 𝑦} ≈ 2o)
116, 8, 9, 10syl3anc 1372 . . . . . . . 8 ((((𝑥𝐷𝑦𝐷) ∧ 𝑧𝐷) ∧ (𝑥𝑦𝑥𝑧𝑦𝑧)) → {𝑥, 𝑦} ≈ 2o)
1211adantr 480 . . . . . . 7 (((((𝑥𝐷𝑦𝐷) ∧ 𝑧𝐷) ∧ (𝑥𝑦𝑥𝑧𝑦𝑧)) ∧ (𝐷𝑉 ∧ 3 ≤ (♯‘𝐷))) → {𝑥, 𝑦} ≈ 2o)
13 pmtr3ncom.t . . . . . . . 8 𝑇 = (pmTrsp‘𝐷)
14 eqid 2737 . . . . . . . 8 ran 𝑇 = ran 𝑇
1513, 14pmtrrn 19499 . . . . . . 7 ((𝐷𝑉 ∧ {𝑥, 𝑦} ⊆ 𝐷 ∧ {𝑥, 𝑦} ≈ 2o) → (𝑇‘{𝑥, 𝑦}) ∈ ran 𝑇)
162, 5, 12, 15syl3anc 1372 . . . . . 6 (((((𝑥𝐷𝑦𝐷) ∧ 𝑧𝐷) ∧ (𝑥𝑦𝑥𝑧𝑦𝑧)) ∧ (𝐷𝑉 ∧ 3 ≤ (♯‘𝐷))) → (𝑇‘{𝑥, 𝑦}) ∈ ran 𝑇)
17 prssi 4829 . . . . . . . 8 ((𝑦𝐷𝑧𝐷) → {𝑦, 𝑧} ⊆ 𝐷)
1817ad5ant23 760 . . . . . . 7 (((((𝑥𝐷𝑦𝐷) ∧ 𝑧𝐷) ∧ (𝑥𝑦𝑥𝑧𝑦𝑧)) ∧ (𝐷𝑉 ∧ 3 ≤ (♯‘𝐷))) → {𝑦, 𝑧} ⊆ 𝐷)
19 simplr 769 . . . . . . . . 9 ((((𝑥𝐷𝑦𝐷) ∧ 𝑧𝐷) ∧ (𝑥𝑦𝑥𝑧𝑦𝑧)) → 𝑧𝐷)
20 simpr3 1197 . . . . . . . . 9 ((((𝑥𝐷𝑦𝐷) ∧ 𝑧𝐷) ∧ (𝑥𝑦𝑥𝑧𝑦𝑧)) → 𝑦𝑧)
21 enpr2 10049 . . . . . . . . 9 ((𝑦𝐷𝑧𝐷𝑦𝑧) → {𝑦, 𝑧} ≈ 2o)
228, 19, 20, 21syl3anc 1372 . . . . . . . 8 ((((𝑥𝐷𝑦𝐷) ∧ 𝑧𝐷) ∧ (𝑥𝑦𝑥𝑧𝑦𝑧)) → {𝑦, 𝑧} ≈ 2o)
2322adantr 480 . . . . . . 7 (((((𝑥𝐷𝑦𝐷) ∧ 𝑧𝐷) ∧ (𝑥𝑦𝑥𝑧𝑦𝑧)) ∧ (𝐷𝑉 ∧ 3 ≤ (♯‘𝐷))) → {𝑦, 𝑧} ≈ 2o)
2413, 14pmtrrn 19499 . . . . . . 7 ((𝐷𝑉 ∧ {𝑦, 𝑧} ⊆ 𝐷 ∧ {𝑦, 𝑧} ≈ 2o) → (𝑇‘{𝑦, 𝑧}) ∈ ran 𝑇)
252, 18, 23, 24syl3anc 1372 . . . . . 6 (((((𝑥𝐷𝑦𝐷) ∧ 𝑧𝐷) ∧ (𝑥𝑦𝑥𝑧𝑦𝑧)) ∧ (𝐷𝑉 ∧ 3 ≤ (♯‘𝐷))) → (𝑇‘{𝑦, 𝑧}) ∈ ran 𝑇)
26 df-3an 1089 . . . . . . . . 9 ((𝑥𝐷𝑦𝐷𝑧𝐷) ↔ ((𝑥𝐷𝑦𝐷) ∧ 𝑧𝐷))
2726biimpri 228 . . . . . . . 8 (((𝑥𝐷𝑦𝐷) ∧ 𝑧𝐷) → (𝑥𝐷𝑦𝐷𝑧𝐷))
2827ad2antrr 726 . . . . . . 7 (((((𝑥𝐷𝑦𝐷) ∧ 𝑧𝐷) ∧ (𝑥𝑦𝑥𝑧𝑦𝑧)) ∧ (𝐷𝑉 ∧ 3 ≤ (♯‘𝐷))) → (𝑥𝐷𝑦𝐷𝑧𝐷))
29 simplr 769 . . . . . . 7 (((((𝑥𝐷𝑦𝐷) ∧ 𝑧𝐷) ∧ (𝑥𝑦𝑥𝑧𝑦𝑧)) ∧ (𝐷𝑉 ∧ 3 ≤ (♯‘𝐷))) → (𝑥𝑦𝑥𝑧𝑦𝑧))
30 eqid 2737 . . . . . . . 8 (𝑇‘{𝑥, 𝑦}) = (𝑇‘{𝑥, 𝑦})
31 eqid 2737 . . . . . . . 8 (𝑇‘{𝑦, 𝑧}) = (𝑇‘{𝑦, 𝑧})
3213, 30, 31pmtr3ncomlem2 19516 . . . . . . 7 ((𝐷𝑉 ∧ (𝑥𝐷𝑦𝐷𝑧𝐷) ∧ (𝑥𝑦𝑥𝑧𝑦𝑧)) → ((𝑇‘{𝑦, 𝑧}) ∘ (𝑇‘{𝑥, 𝑦})) ≠ ((𝑇‘{𝑥, 𝑦}) ∘ (𝑇‘{𝑦, 𝑧})))
332, 28, 29, 32syl3anc 1372 . . . . . 6 (((((𝑥𝐷𝑦𝐷) ∧ 𝑧𝐷) ∧ (𝑥𝑦𝑥𝑧𝑦𝑧)) ∧ (𝐷𝑉 ∧ 3 ≤ (♯‘𝐷))) → ((𝑇‘{𝑦, 𝑧}) ∘ (𝑇‘{𝑥, 𝑦})) ≠ ((𝑇‘{𝑥, 𝑦}) ∘ (𝑇‘{𝑦, 𝑧})))
34 coeq2 5876 . . . . . . . 8 (𝑓 = (𝑇‘{𝑥, 𝑦}) → (𝑔𝑓) = (𝑔 ∘ (𝑇‘{𝑥, 𝑦})))
35 coeq1 5875 . . . . . . . 8 (𝑓 = (𝑇‘{𝑥, 𝑦}) → (𝑓𝑔) = ((𝑇‘{𝑥, 𝑦}) ∘ 𝑔))
3634, 35neeq12d 3002 . . . . . . 7 (𝑓 = (𝑇‘{𝑥, 𝑦}) → ((𝑔𝑓) ≠ (𝑓𝑔) ↔ (𝑔 ∘ (𝑇‘{𝑥, 𝑦})) ≠ ((𝑇‘{𝑥, 𝑦}) ∘ 𝑔)))
37 coeq1 5875 . . . . . . . 8 (𝑔 = (𝑇‘{𝑦, 𝑧}) → (𝑔 ∘ (𝑇‘{𝑥, 𝑦})) = ((𝑇‘{𝑦, 𝑧}) ∘ (𝑇‘{𝑥, 𝑦})))
38 coeq2 5876 . . . . . . . 8 (𝑔 = (𝑇‘{𝑦, 𝑧}) → ((𝑇‘{𝑥, 𝑦}) ∘ 𝑔) = ((𝑇‘{𝑥, 𝑦}) ∘ (𝑇‘{𝑦, 𝑧})))
3937, 38neeq12d 3002 . . . . . . 7 (𝑔 = (𝑇‘{𝑦, 𝑧}) → ((𝑔 ∘ (𝑇‘{𝑥, 𝑦})) ≠ ((𝑇‘{𝑥, 𝑦}) ∘ 𝑔) ↔ ((𝑇‘{𝑦, 𝑧}) ∘ (𝑇‘{𝑥, 𝑦})) ≠ ((𝑇‘{𝑥, 𝑦}) ∘ (𝑇‘{𝑦, 𝑧}))))
4036, 39rspc2ev 3638 . . . . . 6 (((𝑇‘{𝑥, 𝑦}) ∈ ran 𝑇 ∧ (𝑇‘{𝑦, 𝑧}) ∈ ran 𝑇 ∧ ((𝑇‘{𝑦, 𝑧}) ∘ (𝑇‘{𝑥, 𝑦})) ≠ ((𝑇‘{𝑥, 𝑦}) ∘ (𝑇‘{𝑦, 𝑧}))) → ∃𝑓 ∈ ran 𝑇𝑔 ∈ ran 𝑇(𝑔𝑓) ≠ (𝑓𝑔))
4116, 25, 33, 40syl3anc 1372 . . . . 5 (((((𝑥𝐷𝑦𝐷) ∧ 𝑧𝐷) ∧ (𝑥𝑦𝑥𝑧𝑦𝑧)) ∧ (𝐷𝑉 ∧ 3 ≤ (♯‘𝐷))) → ∃𝑓 ∈ ran 𝑇𝑔 ∈ ran 𝑇(𝑔𝑓) ≠ (𝑓𝑔))
4241exp31 419 . . . 4 (((𝑥𝐷𝑦𝐷) ∧ 𝑧𝐷) → ((𝑥𝑦𝑥𝑧𝑦𝑧) → ((𝐷𝑉 ∧ 3 ≤ (♯‘𝐷)) → ∃𝑓 ∈ ran 𝑇𝑔 ∈ ran 𝑇(𝑔𝑓) ≠ (𝑓𝑔))))
4342rexlimdva 3155 . . 3 ((𝑥𝐷𝑦𝐷) → (∃𝑧𝐷 (𝑥𝑦𝑥𝑧𝑦𝑧) → ((𝐷𝑉 ∧ 3 ≤ (♯‘𝐷)) → ∃𝑓 ∈ ran 𝑇𝑔 ∈ ran 𝑇(𝑔𝑓) ≠ (𝑓𝑔))))
4443rexlimivv 3201 . 2 (∃𝑥𝐷𝑦𝐷𝑧𝐷 (𝑥𝑦𝑥𝑧𝑦𝑧) → ((𝐷𝑉 ∧ 3 ≤ (♯‘𝐷)) → ∃𝑓 ∈ ran 𝑇𝑔 ∈ ran 𝑇(𝑔𝑓) ≠ (𝑓𝑔)))
451, 44mpcom 38 1 ((𝐷𝑉 ∧ 3 ≤ (♯‘𝐷)) → ∃𝑓 ∈ ran 𝑇𝑔 ∈ ran 𝑇(𝑔𝑓) ≠ (𝑓𝑔))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1539  wcel 2108  wne 2940  wrex 3070  wss 3966  {cpr 4636   class class class wbr 5151  ran crn 5694  ccom 5697  cfv 6569  2oc2o 8508  cen 8990  cle 11303  3c3 12329  chash 14375  pmTrspcpmtr 19483
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5288  ax-sep 5305  ax-nul 5315  ax-pow 5374  ax-pr 5441  ax-un 7761  ax-cnex 11218  ax-resscn 11219  ax-1cn 11220  ax-icn 11221  ax-addcl 11222  ax-addrcl 11223  ax-mulcl 11224  ax-mulrcl 11225  ax-mulcom 11226  ax-addass 11227  ax-mulass 11228  ax-distr 11229  ax-i2m1 11230  ax-1ne0 11231  ax-1rid 11232  ax-rnegex 11233  ax-rrecex 11234  ax-cnre 11235  ax-pre-lttri 11236  ax-pre-lttrn 11237  ax-pre-ltadd 11238  ax-pre-mulgt0 11239
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3483  df-sbc 3795  df-csb 3912  df-dif 3969  df-un 3971  df-in 3973  df-ss 3983  df-pss 3986  df-nul 4343  df-if 4535  df-pw 4610  df-sn 4635  df-pr 4637  df-tp 4639  df-op 4641  df-uni 4916  df-int 4955  df-iun 5001  df-br 5152  df-opab 5214  df-mpt 5235  df-tr 5269  df-id 5587  df-eprel 5593  df-po 5601  df-so 5602  df-fr 5645  df-we 5647  df-xp 5699  df-rel 5700  df-cnv 5701  df-co 5702  df-dm 5703  df-rn 5704  df-res 5705  df-ima 5706  df-pred 6329  df-ord 6395  df-on 6396  df-lim 6397  df-suc 6398  df-iota 6522  df-fun 6571  df-fn 6572  df-f 6573  df-f1 6574  df-fo 6575  df-f1o 6576  df-fv 6577  df-riota 7395  df-ov 7441  df-oprab 7442  df-mpo 7443  df-om 7895  df-1st 8022  df-2nd 8023  df-frecs 8314  df-wrecs 8345  df-recs 8419  df-rdg 8458  df-1o 8514  df-2o 8515  df-oadd 8518  df-er 8753  df-en 8994  df-dom 8995  df-sdom 8996  df-fin 8997  df-dju 9948  df-card 9986  df-pnf 11304  df-mnf 11305  df-xr 11306  df-ltxr 11307  df-le 11308  df-sub 11501  df-neg 11502  df-nn 12274  df-2 12336  df-3 12337  df-n0 12534  df-xnn0 12607  df-z 12621  df-uz 12886  df-fz 13554  df-hash 14376  df-pmtr 19484
This theorem is referenced by:  pgrpgt2nabl  48249
  Copyright terms: Public domain W3C validator