MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pmtr3ncom Structured version   Visualization version   GIF version

Theorem pmtr3ncom 19411
Description: Transpositions over sets with at least 3 elements are not commutative, see also the remark in [Rotman] p. 28. (Contributed by AV, 21-Mar-2019.)
Hypothesis
Ref Expression
pmtr3ncom.t 𝑇 = (pmTrsp‘𝐷)
Assertion
Ref Expression
pmtr3ncom ((𝐷𝑉 ∧ 3 ≤ (♯‘𝐷)) → ∃𝑓 ∈ ran 𝑇𝑔 ∈ ran 𝑇(𝑔𝑓) ≠ (𝑓𝑔))
Distinct variable groups:   𝐷,𝑓,𝑔   𝑇,𝑓,𝑔
Allowed substitution hints:   𝑉(𝑓,𝑔)

Proof of Theorem pmtr3ncom
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 hashge3el3dif 14458 . 2 ((𝐷𝑉 ∧ 3 ≤ (♯‘𝐷)) → ∃𝑥𝐷𝑦𝐷𝑧𝐷 (𝑥𝑦𝑥𝑧𝑦𝑧))
2 simprl 770 . . . . . . 7 (((((𝑥𝐷𝑦𝐷) ∧ 𝑧𝐷) ∧ (𝑥𝑦𝑥𝑧𝑦𝑧)) ∧ (𝐷𝑉 ∧ 3 ≤ (♯‘𝐷))) → 𝐷𝑉)
3 prssi 4787 . . . . . . . . 9 ((𝑥𝐷𝑦𝐷) → {𝑥, 𝑦} ⊆ 𝐷)
43adantr 480 . . . . . . . 8 (((𝑥𝐷𝑦𝐷) ∧ 𝑧𝐷) → {𝑥, 𝑦} ⊆ 𝐷)
54ad2antrr 726 . . . . . . 7 (((((𝑥𝐷𝑦𝐷) ∧ 𝑧𝐷) ∧ (𝑥𝑦𝑥𝑧𝑦𝑧)) ∧ (𝐷𝑉 ∧ 3 ≤ (♯‘𝐷))) → {𝑥, 𝑦} ⊆ 𝐷)
6 simplll 774 . . . . . . . . 9 ((((𝑥𝐷𝑦𝐷) ∧ 𝑧𝐷) ∧ (𝑥𝑦𝑥𝑧𝑦𝑧)) → 𝑥𝐷)
7 simplr 768 . . . . . . . . . 10 (((𝑥𝐷𝑦𝐷) ∧ 𝑧𝐷) → 𝑦𝐷)
87adantr 480 . . . . . . . . 9 ((((𝑥𝐷𝑦𝐷) ∧ 𝑧𝐷) ∧ (𝑥𝑦𝑥𝑧𝑦𝑧)) → 𝑦𝐷)
9 simpr1 1195 . . . . . . . . 9 ((((𝑥𝐷𝑦𝐷) ∧ 𝑧𝐷) ∧ (𝑥𝑦𝑥𝑧𝑦𝑧)) → 𝑥𝑦)
10 enpr2 9961 . . . . . . . . 9 ((𝑥𝐷𝑦𝐷𝑥𝑦) → {𝑥, 𝑦} ≈ 2o)
116, 8, 9, 10syl3anc 1373 . . . . . . . 8 ((((𝑥𝐷𝑦𝐷) ∧ 𝑧𝐷) ∧ (𝑥𝑦𝑥𝑧𝑦𝑧)) → {𝑥, 𝑦} ≈ 2o)
1211adantr 480 . . . . . . 7 (((((𝑥𝐷𝑦𝐷) ∧ 𝑧𝐷) ∧ (𝑥𝑦𝑥𝑧𝑦𝑧)) ∧ (𝐷𝑉 ∧ 3 ≤ (♯‘𝐷))) → {𝑥, 𝑦} ≈ 2o)
13 pmtr3ncom.t . . . . . . . 8 𝑇 = (pmTrsp‘𝐷)
14 eqid 2730 . . . . . . . 8 ran 𝑇 = ran 𝑇
1513, 14pmtrrn 19393 . . . . . . 7 ((𝐷𝑉 ∧ {𝑥, 𝑦} ⊆ 𝐷 ∧ {𝑥, 𝑦} ≈ 2o) → (𝑇‘{𝑥, 𝑦}) ∈ ran 𝑇)
162, 5, 12, 15syl3anc 1373 . . . . . 6 (((((𝑥𝐷𝑦𝐷) ∧ 𝑧𝐷) ∧ (𝑥𝑦𝑥𝑧𝑦𝑧)) ∧ (𝐷𝑉 ∧ 3 ≤ (♯‘𝐷))) → (𝑇‘{𝑥, 𝑦}) ∈ ran 𝑇)
17 prssi 4787 . . . . . . . 8 ((𝑦𝐷𝑧𝐷) → {𝑦, 𝑧} ⊆ 𝐷)
1817ad5ant23 759 . . . . . . 7 (((((𝑥𝐷𝑦𝐷) ∧ 𝑧𝐷) ∧ (𝑥𝑦𝑥𝑧𝑦𝑧)) ∧ (𝐷𝑉 ∧ 3 ≤ (♯‘𝐷))) → {𝑦, 𝑧} ⊆ 𝐷)
19 simplr 768 . . . . . . . . 9 ((((𝑥𝐷𝑦𝐷) ∧ 𝑧𝐷) ∧ (𝑥𝑦𝑥𝑧𝑦𝑧)) → 𝑧𝐷)
20 simpr3 1197 . . . . . . . . 9 ((((𝑥𝐷𝑦𝐷) ∧ 𝑧𝐷) ∧ (𝑥𝑦𝑥𝑧𝑦𝑧)) → 𝑦𝑧)
21 enpr2 9961 . . . . . . . . 9 ((𝑦𝐷𝑧𝐷𝑦𝑧) → {𝑦, 𝑧} ≈ 2o)
228, 19, 20, 21syl3anc 1373 . . . . . . . 8 ((((𝑥𝐷𝑦𝐷) ∧ 𝑧𝐷) ∧ (𝑥𝑦𝑥𝑧𝑦𝑧)) → {𝑦, 𝑧} ≈ 2o)
2322adantr 480 . . . . . . 7 (((((𝑥𝐷𝑦𝐷) ∧ 𝑧𝐷) ∧ (𝑥𝑦𝑥𝑧𝑦𝑧)) ∧ (𝐷𝑉 ∧ 3 ≤ (♯‘𝐷))) → {𝑦, 𝑧} ≈ 2o)
2413, 14pmtrrn 19393 . . . . . . 7 ((𝐷𝑉 ∧ {𝑦, 𝑧} ⊆ 𝐷 ∧ {𝑦, 𝑧} ≈ 2o) → (𝑇‘{𝑦, 𝑧}) ∈ ran 𝑇)
252, 18, 23, 24syl3anc 1373 . . . . . 6 (((((𝑥𝐷𝑦𝐷) ∧ 𝑧𝐷) ∧ (𝑥𝑦𝑥𝑧𝑦𝑧)) ∧ (𝐷𝑉 ∧ 3 ≤ (♯‘𝐷))) → (𝑇‘{𝑦, 𝑧}) ∈ ran 𝑇)
26 df-3an 1088 . . . . . . . . 9 ((𝑥𝐷𝑦𝐷𝑧𝐷) ↔ ((𝑥𝐷𝑦𝐷) ∧ 𝑧𝐷))
2726biimpri 228 . . . . . . . 8 (((𝑥𝐷𝑦𝐷) ∧ 𝑧𝐷) → (𝑥𝐷𝑦𝐷𝑧𝐷))
2827ad2antrr 726 . . . . . . 7 (((((𝑥𝐷𝑦𝐷) ∧ 𝑧𝐷) ∧ (𝑥𝑦𝑥𝑧𝑦𝑧)) ∧ (𝐷𝑉 ∧ 3 ≤ (♯‘𝐷))) → (𝑥𝐷𝑦𝐷𝑧𝐷))
29 simplr 768 . . . . . . 7 (((((𝑥𝐷𝑦𝐷) ∧ 𝑧𝐷) ∧ (𝑥𝑦𝑥𝑧𝑦𝑧)) ∧ (𝐷𝑉 ∧ 3 ≤ (♯‘𝐷))) → (𝑥𝑦𝑥𝑧𝑦𝑧))
30 eqid 2730 . . . . . . . 8 (𝑇‘{𝑥, 𝑦}) = (𝑇‘{𝑥, 𝑦})
31 eqid 2730 . . . . . . . 8 (𝑇‘{𝑦, 𝑧}) = (𝑇‘{𝑦, 𝑧})
3213, 30, 31pmtr3ncomlem2 19410 . . . . . . 7 ((𝐷𝑉 ∧ (𝑥𝐷𝑦𝐷𝑧𝐷) ∧ (𝑥𝑦𝑥𝑧𝑦𝑧)) → ((𝑇‘{𝑦, 𝑧}) ∘ (𝑇‘{𝑥, 𝑦})) ≠ ((𝑇‘{𝑥, 𝑦}) ∘ (𝑇‘{𝑦, 𝑧})))
332, 28, 29, 32syl3anc 1373 . . . . . 6 (((((𝑥𝐷𝑦𝐷) ∧ 𝑧𝐷) ∧ (𝑥𝑦𝑥𝑧𝑦𝑧)) ∧ (𝐷𝑉 ∧ 3 ≤ (♯‘𝐷))) → ((𝑇‘{𝑦, 𝑧}) ∘ (𝑇‘{𝑥, 𝑦})) ≠ ((𝑇‘{𝑥, 𝑦}) ∘ (𝑇‘{𝑦, 𝑧})))
34 coeq2 5824 . . . . . . . 8 (𝑓 = (𝑇‘{𝑥, 𝑦}) → (𝑔𝑓) = (𝑔 ∘ (𝑇‘{𝑥, 𝑦})))
35 coeq1 5823 . . . . . . . 8 (𝑓 = (𝑇‘{𝑥, 𝑦}) → (𝑓𝑔) = ((𝑇‘{𝑥, 𝑦}) ∘ 𝑔))
3634, 35neeq12d 2987 . . . . . . 7 (𝑓 = (𝑇‘{𝑥, 𝑦}) → ((𝑔𝑓) ≠ (𝑓𝑔) ↔ (𝑔 ∘ (𝑇‘{𝑥, 𝑦})) ≠ ((𝑇‘{𝑥, 𝑦}) ∘ 𝑔)))
37 coeq1 5823 . . . . . . . 8 (𝑔 = (𝑇‘{𝑦, 𝑧}) → (𝑔 ∘ (𝑇‘{𝑥, 𝑦})) = ((𝑇‘{𝑦, 𝑧}) ∘ (𝑇‘{𝑥, 𝑦})))
38 coeq2 5824 . . . . . . . 8 (𝑔 = (𝑇‘{𝑦, 𝑧}) → ((𝑇‘{𝑥, 𝑦}) ∘ 𝑔) = ((𝑇‘{𝑥, 𝑦}) ∘ (𝑇‘{𝑦, 𝑧})))
3937, 38neeq12d 2987 . . . . . . 7 (𝑔 = (𝑇‘{𝑦, 𝑧}) → ((𝑔 ∘ (𝑇‘{𝑥, 𝑦})) ≠ ((𝑇‘{𝑥, 𝑦}) ∘ 𝑔) ↔ ((𝑇‘{𝑦, 𝑧}) ∘ (𝑇‘{𝑥, 𝑦})) ≠ ((𝑇‘{𝑥, 𝑦}) ∘ (𝑇‘{𝑦, 𝑧}))))
4036, 39rspc2ev 3604 . . . . . 6 (((𝑇‘{𝑥, 𝑦}) ∈ ran 𝑇 ∧ (𝑇‘{𝑦, 𝑧}) ∈ ran 𝑇 ∧ ((𝑇‘{𝑦, 𝑧}) ∘ (𝑇‘{𝑥, 𝑦})) ≠ ((𝑇‘{𝑥, 𝑦}) ∘ (𝑇‘{𝑦, 𝑧}))) → ∃𝑓 ∈ ran 𝑇𝑔 ∈ ran 𝑇(𝑔𝑓) ≠ (𝑓𝑔))
4116, 25, 33, 40syl3anc 1373 . . . . 5 (((((𝑥𝐷𝑦𝐷) ∧ 𝑧𝐷) ∧ (𝑥𝑦𝑥𝑧𝑦𝑧)) ∧ (𝐷𝑉 ∧ 3 ≤ (♯‘𝐷))) → ∃𝑓 ∈ ran 𝑇𝑔 ∈ ran 𝑇(𝑔𝑓) ≠ (𝑓𝑔))
4241exp31 419 . . . 4 (((𝑥𝐷𝑦𝐷) ∧ 𝑧𝐷) → ((𝑥𝑦𝑥𝑧𝑦𝑧) → ((𝐷𝑉 ∧ 3 ≤ (♯‘𝐷)) → ∃𝑓 ∈ ran 𝑇𝑔 ∈ ran 𝑇(𝑔𝑓) ≠ (𝑓𝑔))))
4342rexlimdva 3135 . . 3 ((𝑥𝐷𝑦𝐷) → (∃𝑧𝐷 (𝑥𝑦𝑥𝑧𝑦𝑧) → ((𝐷𝑉 ∧ 3 ≤ (♯‘𝐷)) → ∃𝑓 ∈ ran 𝑇𝑔 ∈ ran 𝑇(𝑔𝑓) ≠ (𝑓𝑔))))
4443rexlimivv 3180 . 2 (∃𝑥𝐷𝑦𝐷𝑧𝐷 (𝑥𝑦𝑥𝑧𝑦𝑧) → ((𝐷𝑉 ∧ 3 ≤ (♯‘𝐷)) → ∃𝑓 ∈ ran 𝑇𝑔 ∈ ran 𝑇(𝑔𝑓) ≠ (𝑓𝑔)))
451, 44mpcom 38 1 ((𝐷𝑉 ∧ 3 ≤ (♯‘𝐷)) → ∃𝑓 ∈ ran 𝑇𝑔 ∈ ran 𝑇(𝑔𝑓) ≠ (𝑓𝑔))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2926  wrex 3054  wss 3916  {cpr 4593   class class class wbr 5109  ran crn 5641  ccom 5644  cfv 6513  2oc2o 8430  cen 8917  cle 11215  3c3 12243  chash 14301  pmTrspcpmtr 19377
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5236  ax-sep 5253  ax-nul 5263  ax-pow 5322  ax-pr 5389  ax-un 7713  ax-cnex 11130  ax-resscn 11131  ax-1cn 11132  ax-icn 11133  ax-addcl 11134  ax-addrcl 11135  ax-mulcl 11136  ax-mulrcl 11137  ax-mulcom 11138  ax-addass 11139  ax-mulass 11140  ax-distr 11141  ax-i2m1 11142  ax-1ne0 11143  ax-1rid 11144  ax-rnegex 11145  ax-rrecex 11146  ax-cnre 11147  ax-pre-lttri 11148  ax-pre-lttrn 11149  ax-pre-ltadd 11150  ax-pre-mulgt0 11151
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3756  df-csb 3865  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-pss 3936  df-nul 4299  df-if 4491  df-pw 4567  df-sn 4592  df-pr 4594  df-tp 4596  df-op 4598  df-uni 4874  df-int 4913  df-iun 4959  df-br 5110  df-opab 5172  df-mpt 5191  df-tr 5217  df-id 5535  df-eprel 5540  df-po 5548  df-so 5549  df-fr 5593  df-we 5595  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-res 5652  df-ima 5653  df-pred 6276  df-ord 6337  df-on 6338  df-lim 6339  df-suc 6340  df-iota 6466  df-fun 6515  df-fn 6516  df-f 6517  df-f1 6518  df-fo 6519  df-f1o 6520  df-fv 6521  df-riota 7346  df-ov 7392  df-oprab 7393  df-mpo 7394  df-om 7845  df-1st 7970  df-2nd 7971  df-frecs 8262  df-wrecs 8293  df-recs 8342  df-rdg 8380  df-1o 8436  df-2o 8437  df-oadd 8440  df-er 8673  df-en 8921  df-dom 8922  df-sdom 8923  df-fin 8924  df-dju 9860  df-card 9898  df-pnf 11216  df-mnf 11217  df-xr 11218  df-ltxr 11219  df-le 11220  df-sub 11413  df-neg 11414  df-nn 12188  df-2 12250  df-3 12251  df-n0 12449  df-xnn0 12522  df-z 12536  df-uz 12800  df-fz 13475  df-hash 14302  df-pmtr 19378
This theorem is referenced by:  pgrpgt2nabl  48344
  Copyright terms: Public domain W3C validator