Users' Mathboxes Mathbox for Brendan Leahy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  matunitlindflem2 Structured version   Visualization version   GIF version

Theorem matunitlindflem2 37584
Description: One direction of matunitlindf 37585. (Contributed by Brendan Leahy, 2-Jun-2021.)
Assertion
Ref Expression
matunitlindflem2 ((((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ 𝐼 ≠ ∅) ∧ curry 𝑀 LIndF (𝑅 freeLMod 𝐼)) → ((𝐼 maDet 𝑅)‘𝑀) ∈ (Unit‘𝑅))

Proof of Theorem matunitlindflem2
Dummy variables 𝑓 𝑖 𝑗 𝑘 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2729 . . . . . . 7 (𝐼 Mat 𝑅) = (𝐼 Mat 𝑅)
2 eqid 2729 . . . . . . 7 (Base‘(𝐼 Mat 𝑅)) = (Base‘(𝐼 Mat 𝑅))
31, 2matrcl 22275 . . . . . 6 (𝑀 ∈ (Base‘(𝐼 Mat 𝑅)) → (𝐼 ∈ Fin ∧ 𝑅 ∈ V))
43simpld 494 . . . . 5 (𝑀 ∈ (Base‘(𝐼 Mat 𝑅)) → 𝐼 ∈ Fin)
54ad3antlr 731 . . . 4 ((((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ 𝐼 ≠ ∅) ∧ curry 𝑀 LIndF (𝑅 freeLMod 𝐼)) → 𝐼 ∈ Fin)
6 isfld 20625 . . . . . . 7 (𝑅 ∈ Field ↔ (𝑅 ∈ DivRing ∧ 𝑅 ∈ CRing))
76simplbi 497 . . . . . 6 (𝑅 ∈ Field → 𝑅 ∈ DivRing)
87anim1i 615 . . . . 5 ((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) → (𝑅 ∈ DivRing ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))))
94ad2antrl 728 . . . . . . . . . . . 12 ((𝑅 ∈ DivRing ∧ (𝑀 ∈ (Base‘(𝐼 Mat 𝑅)) ∧ 𝐼 ≠ ∅)) → 𝐼 ∈ Fin)
10 simpr 484 . . . . . . . . . . . . . . 15 ((𝑅 ∈ DivRing ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) → 𝑀 ∈ (Base‘(𝐼 Mat 𝑅)))
11 xpfi 9245 . . . . . . . . . . . . . . . . . . . . 21 ((𝐼 ∈ Fin ∧ 𝐼 ∈ Fin) → (𝐼 × 𝐼) ∈ Fin)
1211anidms 566 . . . . . . . . . . . . . . . . . . . 20 (𝐼 ∈ Fin → (𝐼 × 𝐼) ∈ Fin)
13 eqid 2729 . . . . . . . . . . . . . . . . . . . . 21 (𝑅 freeLMod (𝐼 × 𝐼)) = (𝑅 freeLMod (𝐼 × 𝐼))
14 eqid 2729 . . . . . . . . . . . . . . . . . . . . 21 (Base‘𝑅) = (Base‘𝑅)
1513, 14frlmfibas 21647 . . . . . . . . . . . . . . . . . . . 20 ((𝑅 ∈ DivRing ∧ (𝐼 × 𝐼) ∈ Fin) → ((Base‘𝑅) ↑m (𝐼 × 𝐼)) = (Base‘(𝑅 freeLMod (𝐼 × 𝐼))))
1612, 15sylan2 593 . . . . . . . . . . . . . . . . . . 19 ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) → ((Base‘𝑅) ↑m (𝐼 × 𝐼)) = (Base‘(𝑅 freeLMod (𝐼 × 𝐼))))
171, 13matbas 22276 . . . . . . . . . . . . . . . . . . . 20 ((𝐼 ∈ Fin ∧ 𝑅 ∈ DivRing) → (Base‘(𝑅 freeLMod (𝐼 × 𝐼))) = (Base‘(𝐼 Mat 𝑅)))
1817ancoms 458 . . . . . . . . . . . . . . . . . . 19 ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) → (Base‘(𝑅 freeLMod (𝐼 × 𝐼))) = (Base‘(𝐼 Mat 𝑅)))
1916, 18eqtrd 2764 . . . . . . . . . . . . . . . . . 18 ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) → ((Base‘𝑅) ↑m (𝐼 × 𝐼)) = (Base‘(𝐼 Mat 𝑅)))
2019eleq2d 2814 . . . . . . . . . . . . . . . . 17 ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) → (𝑀 ∈ ((Base‘𝑅) ↑m (𝐼 × 𝐼)) ↔ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))))
214, 20sylan2 593 . . . . . . . . . . . . . . . 16 ((𝑅 ∈ DivRing ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) → (𝑀 ∈ ((Base‘𝑅) ↑m (𝐼 × 𝐼)) ↔ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))))
22 fvex 6853 . . . . . . . . . . . . . . . . . 18 (Base‘𝑅) ∈ V
234, 4, 11syl2anc 584 . . . . . . . . . . . . . . . . . 18 (𝑀 ∈ (Base‘(𝐼 Mat 𝑅)) → (𝐼 × 𝐼) ∈ Fin)
24 elmapg 8789 . . . . . . . . . . . . . . . . . 18 (((Base‘𝑅) ∈ V ∧ (𝐼 × 𝐼) ∈ Fin) → (𝑀 ∈ ((Base‘𝑅) ↑m (𝐼 × 𝐼)) ↔ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)))
2522, 23, 24sylancr 587 . . . . . . . . . . . . . . . . 17 (𝑀 ∈ (Base‘(𝐼 Mat 𝑅)) → (𝑀 ∈ ((Base‘𝑅) ↑m (𝐼 × 𝐼)) ↔ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)))
2625adantl 481 . . . . . . . . . . . . . . . 16 ((𝑅 ∈ DivRing ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) → (𝑀 ∈ ((Base‘𝑅) ↑m (𝐼 × 𝐼)) ↔ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)))
2721, 26bitr3d 281 . . . . . . . . . . . . . . 15 ((𝑅 ∈ DivRing ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) → (𝑀 ∈ (Base‘(𝐼 Mat 𝑅)) ↔ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)))
2810, 27mpbid 232 . . . . . . . . . . . . . 14 ((𝑅 ∈ DivRing ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) → 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅))
2928adantrr 717 . . . . . . . . . . . . 13 ((𝑅 ∈ DivRing ∧ (𝑀 ∈ (Base‘(𝐼 Mat 𝑅)) ∧ 𝐼 ≠ ∅)) → 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅))
30 eldifsn 4746 . . . . . . . . . . . . . . . 16 (𝐼 ∈ (Fin ∖ {∅}) ↔ (𝐼 ∈ Fin ∧ 𝐼 ≠ ∅))
3130biimpri 228 . . . . . . . . . . . . . . 15 ((𝐼 ∈ Fin ∧ 𝐼 ≠ ∅) → 𝐼 ∈ (Fin ∖ {∅}))
324, 31sylan 580 . . . . . . . . . . . . . 14 ((𝑀 ∈ (Base‘(𝐼 Mat 𝑅)) ∧ 𝐼 ≠ ∅) → 𝐼 ∈ (Fin ∖ {∅}))
3332adantl 481 . . . . . . . . . . . . 13 ((𝑅 ∈ DivRing ∧ (𝑀 ∈ (Base‘(𝐼 Mat 𝑅)) ∧ 𝐼 ≠ ∅)) → 𝐼 ∈ (Fin ∖ {∅}))
34 curf 37565 . . . . . . . . . . . . . 14 ((𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅) ∧ 𝐼 ∈ (Fin ∖ {∅}) ∧ (Base‘𝑅) ∈ V) → curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼))
3522, 34mp3an3 1452 . . . . . . . . . . . . 13 ((𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅) ∧ 𝐼 ∈ (Fin ∖ {∅})) → curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼))
3629, 33, 35syl2anc 584 . . . . . . . . . . . 12 ((𝑅 ∈ DivRing ∧ (𝑀 ∈ (Base‘(𝐼 Mat 𝑅)) ∧ 𝐼 ≠ ∅)) → curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼))
379, 36jca 511 . . . . . . . . . . 11 ((𝑅 ∈ DivRing ∧ (𝑀 ∈ (Base‘(𝐼 Mat 𝑅)) ∧ 𝐼 ≠ ∅)) → (𝐼 ∈ Fin ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)))
3837ex 412 . . . . . . . . . 10 (𝑅 ∈ DivRing → ((𝑀 ∈ (Base‘(𝐼 Mat 𝑅)) ∧ 𝐼 ≠ ∅) → (𝐼 ∈ Fin ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼))))
3938imdistani 568 . . . . . . . . 9 ((𝑅 ∈ DivRing ∧ (𝑀 ∈ (Base‘(𝐼 Mat 𝑅)) ∧ 𝐼 ≠ ∅)) → (𝑅 ∈ DivRing ∧ (𝐼 ∈ Fin ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼))))
4039anassrs 467 . . . . . . . 8 (((𝑅 ∈ DivRing ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ 𝐼 ≠ ∅) → (𝑅 ∈ DivRing ∧ (𝐼 ∈ Fin ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼))))
41 anass 468 . . . . . . . 8 (((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) ↔ (𝑅 ∈ DivRing ∧ (𝐼 ∈ Fin ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼))))
4240, 41sylibr 234 . . . . . . 7 (((𝑅 ∈ DivRing ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ 𝐼 ≠ ∅) → ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)))
43 drngring 20621 . . . . . . . . . . . . 13 (𝑅 ∈ DivRing → 𝑅 ∈ Ring)
44 eqid 2729 . . . . . . . . . . . . . 14 (𝑅 unitVec 𝐼) = (𝑅 unitVec 𝐼)
45 eqid 2729 . . . . . . . . . . . . . 14 (𝑅 freeLMod 𝐼) = (𝑅 freeLMod 𝐼)
46 eqid 2729 . . . . . . . . . . . . . 14 (Base‘(𝑅 freeLMod 𝐼)) = (Base‘(𝑅 freeLMod 𝐼))
4744, 45, 46uvcff 21676 . . . . . . . . . . . . 13 ((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) → (𝑅 unitVec 𝐼):𝐼⟶(Base‘(𝑅 freeLMod 𝐼)))
4843, 47sylan 580 . . . . . . . . . . . 12 ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) → (𝑅 unitVec 𝐼):𝐼⟶(Base‘(𝑅 freeLMod 𝐼)))
4948ffvelcdmda 7038 . . . . . . . . . . 11 (((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) ∧ 𝑖𝐼) → ((𝑅 unitVec 𝐼)‘𝑖) ∈ (Base‘(𝑅 freeLMod 𝐼)))
5049ad4ant14 752 . . . . . . . . . 10 (((((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) ∧ curry 𝑀 LIndF (𝑅 freeLMod 𝐼)) ∧ 𝑖𝐼) → ((𝑅 unitVec 𝐼)‘𝑖) ∈ (Base‘(𝑅 freeLMod 𝐼)))
51 ffn 6670 . . . . . . . . . . . . . . . 16 (curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼) → curry 𝑀 Fn 𝐼)
52 fnima 6630 . . . . . . . . . . . . . . . 16 (curry 𝑀 Fn 𝐼 → (curry 𝑀𝐼) = ran curry 𝑀)
5351, 52syl 17 . . . . . . . . . . . . . . 15 (curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼) → (curry 𝑀𝐼) = ran curry 𝑀)
5453adantl 481 . . . . . . . . . . . . . 14 (((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) → (curry 𝑀𝐼) = ran curry 𝑀)
5554fveq2d 6844 . . . . . . . . . . . . 13 (((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) → ((LSpan‘(𝑅 freeLMod 𝐼))‘(curry 𝑀𝐼)) = ((LSpan‘(𝑅 freeLMod 𝐼))‘ran curry 𝑀))
5655adantr 480 . . . . . . . . . . . 12 ((((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) ∧ curry 𝑀 LIndF (𝑅 freeLMod 𝐼)) → ((LSpan‘(𝑅 freeLMod 𝐼))‘(curry 𝑀𝐼)) = ((LSpan‘(𝑅 freeLMod 𝐼))‘ran curry 𝑀))
57 simplll 774 . . . . . . . . . . . . . 14 ((((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) ∧ curry 𝑀 LIndF (𝑅 freeLMod 𝐼)) → 𝑅 ∈ DivRing)
58 simpllr 775 . . . . . . . . . . . . . 14 ((((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) ∧ curry 𝑀 LIndF (𝑅 freeLMod 𝐼)) → 𝐼 ∈ Fin)
5945frlmlmod 21634 . . . . . . . . . . . . . . . . 17 ((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) → (𝑅 freeLMod 𝐼) ∈ LMod)
6043, 59sylan 580 . . . . . . . . . . . . . . . 16 ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) → (𝑅 freeLMod 𝐼) ∈ LMod)
6160adantr 480 . . . . . . . . . . . . . . 15 (((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) → (𝑅 freeLMod 𝐼) ∈ LMod)
62 lindfrn 21706 . . . . . . . . . . . . . . 15 (((𝑅 freeLMod 𝐼) ∈ LMod ∧ curry 𝑀 LIndF (𝑅 freeLMod 𝐼)) → ran curry 𝑀 ∈ (LIndS‘(𝑅 freeLMod 𝐼)))
6361, 62sylan 580 . . . . . . . . . . . . . 14 ((((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) ∧ curry 𝑀 LIndF (𝑅 freeLMod 𝐼)) → ran curry 𝑀 ∈ (LIndS‘(𝑅 freeLMod 𝐼)))
6445frlmsca 21638 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) → 𝑅 = (Scalar‘(𝑅 freeLMod 𝐼)))
65 drngnzr 20633 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑅 ∈ DivRing → 𝑅 ∈ NzRing)
6665adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) → 𝑅 ∈ NzRing)
6764, 66eqeltrrd 2829 . . . . . . . . . . . . . . . . . . . . 21 ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) → (Scalar‘(𝑅 freeLMod 𝐼)) ∈ NzRing)
6860, 67jca 511 . . . . . . . . . . . . . . . . . . . 20 ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) → ((𝑅 freeLMod 𝐼) ∈ LMod ∧ (Scalar‘(𝑅 freeLMod 𝐼)) ∈ NzRing))
69 eqid 2729 . . . . . . . . . . . . . . . . . . . . . 22 (Scalar‘(𝑅 freeLMod 𝐼)) = (Scalar‘(𝑅 freeLMod 𝐼))
7046, 69lindff1 21705 . . . . . . . . . . . . . . . . . . . . 21 (((𝑅 freeLMod 𝐼) ∈ LMod ∧ (Scalar‘(𝑅 freeLMod 𝐼)) ∈ NzRing ∧ curry 𝑀 LIndF (𝑅 freeLMod 𝐼)) → curry 𝑀:dom curry 𝑀1-1→(Base‘(𝑅 freeLMod 𝐼)))
71703expa 1118 . . . . . . . . . . . . . . . . . . . 20 ((((𝑅 freeLMod 𝐼) ∈ LMod ∧ (Scalar‘(𝑅 freeLMod 𝐼)) ∈ NzRing) ∧ curry 𝑀 LIndF (𝑅 freeLMod 𝐼)) → curry 𝑀:dom curry 𝑀1-1→(Base‘(𝑅 freeLMod 𝐼)))
7268, 71sylan 580 . . . . . . . . . . . . . . . . . . 19 (((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) ∧ curry 𝑀 LIndF (𝑅 freeLMod 𝐼)) → curry 𝑀:dom curry 𝑀1-1→(Base‘(𝑅 freeLMod 𝐼)))
73 fdm 6679 . . . . . . . . . . . . . . . . . . 19 (curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼) → dom curry 𝑀 = 𝐼)
74 f1eq2 6734 . . . . . . . . . . . . . . . . . . . 20 (dom curry 𝑀 = 𝐼 → (curry 𝑀:dom curry 𝑀1-1→(Base‘(𝑅 freeLMod 𝐼)) ↔ curry 𝑀:𝐼1-1→(Base‘(𝑅 freeLMod 𝐼))))
7574biimpac 478 . . . . . . . . . . . . . . . . . . 19 ((curry 𝑀:dom curry 𝑀1-1→(Base‘(𝑅 freeLMod 𝐼)) ∧ dom curry 𝑀 = 𝐼) → curry 𝑀:𝐼1-1→(Base‘(𝑅 freeLMod 𝐼)))
7672, 73, 75syl2an 596 . . . . . . . . . . . . . . . . . 18 ((((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) ∧ curry 𝑀 LIndF (𝑅 freeLMod 𝐼)) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) → curry 𝑀:𝐼1-1→(Base‘(𝑅 freeLMod 𝐼)))
7776an32s 652 . . . . . . . . . . . . . . . . 17 ((((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) ∧ curry 𝑀 LIndF (𝑅 freeLMod 𝐼)) → curry 𝑀:𝐼1-1→(Base‘(𝑅 freeLMod 𝐼)))
78 f1f1orn 6793 . . . . . . . . . . . . . . . . 17 (curry 𝑀:𝐼1-1→(Base‘(𝑅 freeLMod 𝐼)) → curry 𝑀:𝐼1-1-onto→ran curry 𝑀)
7977, 78syl 17 . . . . . . . . . . . . . . . 16 ((((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) ∧ curry 𝑀 LIndF (𝑅 freeLMod 𝐼)) → curry 𝑀:𝐼1-1-onto→ran curry 𝑀)
80 f1oeng 8919 . . . . . . . . . . . . . . . 16 ((𝐼 ∈ Fin ∧ curry 𝑀:𝐼1-1-onto→ran curry 𝑀) → 𝐼 ≈ ran curry 𝑀)
8158, 79, 80syl2anc 584 . . . . . . . . . . . . . . 15 ((((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) ∧ curry 𝑀 LIndF (𝑅 freeLMod 𝐼)) → 𝐼 ≈ ran curry 𝑀)
8281ensymd 8953 . . . . . . . . . . . . . 14 ((((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) ∧ curry 𝑀 LIndF (𝑅 freeLMod 𝐼)) → ran curry 𝑀𝐼)
83 lindsenlbs 37582 . . . . . . . . . . . . . 14 (((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ ran curry 𝑀 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ ran curry 𝑀𝐼) → ran curry 𝑀 ∈ (LBasis‘(𝑅 freeLMod 𝐼)))
8457, 58, 63, 82, 83syl31anc 1375 . . . . . . . . . . . . 13 ((((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) ∧ curry 𝑀 LIndF (𝑅 freeLMod 𝐼)) → ran curry 𝑀 ∈ (LBasis‘(𝑅 freeLMod 𝐼)))
85 eqid 2729 . . . . . . . . . . . . . 14 (LBasis‘(𝑅 freeLMod 𝐼)) = (LBasis‘(𝑅 freeLMod 𝐼))
86 eqid 2729 . . . . . . . . . . . . . 14 (LSpan‘(𝑅 freeLMod 𝐼)) = (LSpan‘(𝑅 freeLMod 𝐼))
8746, 85, 86lbssp 20962 . . . . . . . . . . . . 13 (ran curry 𝑀 ∈ (LBasis‘(𝑅 freeLMod 𝐼)) → ((LSpan‘(𝑅 freeLMod 𝐼))‘ran curry 𝑀) = (Base‘(𝑅 freeLMod 𝐼)))
8884, 87syl 17 . . . . . . . . . . . 12 ((((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) ∧ curry 𝑀 LIndF (𝑅 freeLMod 𝐼)) → ((LSpan‘(𝑅 freeLMod 𝐼))‘ran curry 𝑀) = (Base‘(𝑅 freeLMod 𝐼)))
8956, 88eqtrd 2764 . . . . . . . . . . 11 ((((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) ∧ curry 𝑀 LIndF (𝑅 freeLMod 𝐼)) → ((LSpan‘(𝑅 freeLMod 𝐼))‘(curry 𝑀𝐼)) = (Base‘(𝑅 freeLMod 𝐼)))
9089adantr 480 . . . . . . . . . 10 (((((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) ∧ curry 𝑀 LIndF (𝑅 freeLMod 𝐼)) ∧ 𝑖𝐼) → ((LSpan‘(𝑅 freeLMod 𝐼))‘(curry 𝑀𝐼)) = (Base‘(𝑅 freeLMod 𝐼)))
9150, 90eleqtrrd 2831 . . . . . . . . 9 (((((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) ∧ curry 𝑀 LIndF (𝑅 freeLMod 𝐼)) ∧ 𝑖𝐼) → ((𝑅 unitVec 𝐼)‘𝑖) ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘(curry 𝑀𝐼)))
92 eqid 2729 . . . . . . . . . . . . 13 (Base‘(Scalar‘(𝑅 freeLMod 𝐼))) = (Base‘(Scalar‘(𝑅 freeLMod 𝐼)))
93 eqid 2729 . . . . . . . . . . . . 13 (0g‘(Scalar‘(𝑅 freeLMod 𝐼))) = (0g‘(Scalar‘(𝑅 freeLMod 𝐼)))
94 eqid 2729 . . . . . . . . . . . . 13 ( ·𝑠 ‘(𝑅 freeLMod 𝐼)) = ( ·𝑠 ‘(𝑅 freeLMod 𝐼))
9545, 14frlmfibas 21647 . . . . . . . . . . . . . . 15 ((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) → ((Base‘𝑅) ↑m 𝐼) = (Base‘(𝑅 freeLMod 𝐼)))
9695feq3d 6655 . . . . . . . . . . . . . 14 ((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) → (curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼) ↔ curry 𝑀:𝐼⟶(Base‘(𝑅 freeLMod 𝐼))))
9796biimpa 476 . . . . . . . . . . . . 13 (((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) → curry 𝑀:𝐼⟶(Base‘(𝑅 freeLMod 𝐼)))
9859adantr 480 . . . . . . . . . . . . 13 (((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) → (𝑅 freeLMod 𝐼) ∈ LMod)
99 simplr 768 . . . . . . . . . . . . 13 (((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) → 𝐼 ∈ Fin)
10086, 46, 92, 69, 93, 94, 97, 98, 99elfilspd 21688 . . . . . . . . . . . 12 (((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) → (((𝑅 unitVec 𝐼)‘𝑖) ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘(curry 𝑀𝐼)) ↔ ∃𝑛 ∈ ((Base‘(Scalar‘(𝑅 freeLMod 𝐼))) ↑m 𝐼)((𝑅 unitVec 𝐼)‘𝑖) = ((𝑅 freeLMod 𝐼) Σg (𝑛f ( ·𝑠 ‘(𝑅 freeLMod 𝐼))curry 𝑀))))
10145frlmsca 21638 . . . . . . . . . . . . . . . 16 ((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) → 𝑅 = (Scalar‘(𝑅 freeLMod 𝐼)))
102101fveq2d 6844 . . . . . . . . . . . . . . 15 ((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) → (Base‘𝑅) = (Base‘(Scalar‘(𝑅 freeLMod 𝐼))))
103102oveq1d 7384 . . . . . . . . . . . . . 14 ((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) → ((Base‘𝑅) ↑m 𝐼) = ((Base‘(Scalar‘(𝑅 freeLMod 𝐼))) ↑m 𝐼))
104103adantr 480 . . . . . . . . . . . . 13 (((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) → ((Base‘𝑅) ↑m 𝐼) = ((Base‘(Scalar‘(𝑅 freeLMod 𝐼))) ↑m 𝐼))
105 elmapi 8799 . . . . . . . . . . . . . . 15 (𝑛 ∈ ((Base‘𝑅) ↑m 𝐼) → 𝑛:𝐼⟶(Base‘𝑅))
106 ffn 6670 . . . . . . . . . . . . . . . . . . . 20 (𝑛:𝐼⟶(Base‘𝑅) → 𝑛 Fn 𝐼)
107106adantl 481 . . . . . . . . . . . . . . . . . . 19 ((((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) ∧ 𝑛:𝐼⟶(Base‘𝑅)) → 𝑛 Fn 𝐼)
10851ad2antlr 727 . . . . . . . . . . . . . . . . . . 19 ((((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) ∧ 𝑛:𝐼⟶(Base‘𝑅)) → curry 𝑀 Fn 𝐼)
109 simpllr 775 . . . . . . . . . . . . . . . . . . 19 ((((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) ∧ 𝑛:𝐼⟶(Base‘𝑅)) → 𝐼 ∈ Fin)
110 inidm 4186 . . . . . . . . . . . . . . . . . . 19 (𝐼𝐼) = 𝐼
111 eqidd 2730 . . . . . . . . . . . . . . . . . . 19 (((((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) ∧ 𝑛:𝐼⟶(Base‘𝑅)) ∧ 𝑘𝐼) → (𝑛𝑘) = (𝑛𝑘))
112 eqidd 2730 . . . . . . . . . . . . . . . . . . 19 (((((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) ∧ 𝑛:𝐼⟶(Base‘𝑅)) ∧ 𝑘𝐼) → (curry 𝑀𝑘) = (curry 𝑀𝑘))
113107, 108, 109, 109, 110, 111, 112offval 7642 . . . . . . . . . . . . . . . . . 18 ((((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) ∧ 𝑛:𝐼⟶(Base‘𝑅)) → (𝑛f ( ·𝑠 ‘(𝑅 freeLMod 𝐼))curry 𝑀) = (𝑘𝐼 ↦ ((𝑛𝑘)( ·𝑠 ‘(𝑅 freeLMod 𝐼))(curry 𝑀𝑘))))
114 simp-4r 783 . . . . . . . . . . . . . . . . . . . . 21 (((((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) ∧ 𝑛:𝐼⟶(Base‘𝑅)) ∧ 𝑘𝐼) → 𝐼 ∈ Fin)
115 ffvelcdm 7035 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑛:𝐼⟶(Base‘𝑅) ∧ 𝑘𝐼) → (𝑛𝑘) ∈ (Base‘𝑅))
116115adantll 714 . . . . . . . . . . . . . . . . . . . . 21 (((((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) ∧ 𝑛:𝐼⟶(Base‘𝑅)) ∧ 𝑘𝐼) → (𝑛𝑘) ∈ (Base‘𝑅))
117 ffvelcdm 7035 . . . . . . . . . . . . . . . . . . . . . . 23 ((curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼) ∧ 𝑘𝐼) → (curry 𝑀𝑘) ∈ ((Base‘𝑅) ↑m 𝐼))
118117ad4ant24 754 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) ∧ 𝑛:𝐼⟶(Base‘𝑅)) ∧ 𝑘𝐼) → (curry 𝑀𝑘) ∈ ((Base‘𝑅) ↑m 𝐼))
11995ad3antrrr 730 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) ∧ 𝑛:𝐼⟶(Base‘𝑅)) ∧ 𝑘𝐼) → ((Base‘𝑅) ↑m 𝐼) = (Base‘(𝑅 freeLMod 𝐼)))
120118, 119eleqtrd 2830 . . . . . . . . . . . . . . . . . . . . 21 (((((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) ∧ 𝑛:𝐼⟶(Base‘𝑅)) ∧ 𝑘𝐼) → (curry 𝑀𝑘) ∈ (Base‘(𝑅 freeLMod 𝐼)))
121 eqid 2729 . . . . . . . . . . . . . . . . . . . . 21 (.r𝑅) = (.r𝑅)
12245, 46, 14, 114, 116, 120, 94, 121frlmvscafval 21651 . . . . . . . . . . . . . . . . . . . 20 (((((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) ∧ 𝑛:𝐼⟶(Base‘𝑅)) ∧ 𝑘𝐼) → ((𝑛𝑘)( ·𝑠 ‘(𝑅 freeLMod 𝐼))(curry 𝑀𝑘)) = ((𝐼 × {(𝑛𝑘)}) ∘f (.r𝑅)(curry 𝑀𝑘)))
123 fvex 6853 . . . . . . . . . . . . . . . . . . . . . 22 (𝑛𝑘) ∈ V
124 fnconstg 6730 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑛𝑘) ∈ V → (𝐼 × {(𝑛𝑘)}) Fn 𝐼)
125123, 124mp1i 13 . . . . . . . . . . . . . . . . . . . . 21 (((((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) ∧ 𝑛:𝐼⟶(Base‘𝑅)) ∧ 𝑘𝐼) → (𝐼 × {(𝑛𝑘)}) Fn 𝐼)
126 elmapfn 8815 . . . . . . . . . . . . . . . . . . . . . . 23 ((curry 𝑀𝑘) ∈ ((Base‘𝑅) ↑m 𝐼) → (curry 𝑀𝑘) Fn 𝐼)
127117, 126syl 17 . . . . . . . . . . . . . . . . . . . . . 22 ((curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼) ∧ 𝑘𝐼) → (curry 𝑀𝑘) Fn 𝐼)
128127ad4ant24 754 . . . . . . . . . . . . . . . . . . . . 21 (((((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) ∧ 𝑛:𝐼⟶(Base‘𝑅)) ∧ 𝑘𝐼) → (curry 𝑀𝑘) Fn 𝐼)
129123fvconst2 7160 . . . . . . . . . . . . . . . . . . . . . 22 (𝑗𝐼 → ((𝐼 × {(𝑛𝑘)})‘𝑗) = (𝑛𝑘))
130129adantl 481 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) ∧ 𝑛:𝐼⟶(Base‘𝑅)) ∧ 𝑘𝐼) ∧ 𝑗𝐼) → ((𝐼 × {(𝑛𝑘)})‘𝑗) = (𝑛𝑘))
131 eqidd 2730 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) ∧ 𝑛:𝐼⟶(Base‘𝑅)) ∧ 𝑘𝐼) ∧ 𝑗𝐼) → ((curry 𝑀𝑘)‘𝑗) = ((curry 𝑀𝑘)‘𝑗))
132125, 128, 114, 114, 110, 130, 131offval 7642 . . . . . . . . . . . . . . . . . . . 20 (((((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) ∧ 𝑛:𝐼⟶(Base‘𝑅)) ∧ 𝑘𝐼) → ((𝐼 × {(𝑛𝑘)}) ∘f (.r𝑅)(curry 𝑀𝑘)) = (𝑗𝐼 ↦ ((𝑛𝑘)(.r𝑅)((curry 𝑀𝑘)‘𝑗))))
133122, 132eqtrd 2764 . . . . . . . . . . . . . . . . . . 19 (((((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) ∧ 𝑛:𝐼⟶(Base‘𝑅)) ∧ 𝑘𝐼) → ((𝑛𝑘)( ·𝑠 ‘(𝑅 freeLMod 𝐼))(curry 𝑀𝑘)) = (𝑗𝐼 ↦ ((𝑛𝑘)(.r𝑅)((curry 𝑀𝑘)‘𝑗))))
134133mpteq2dva 5195 . . . . . . . . . . . . . . . . . 18 ((((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) ∧ 𝑛:𝐼⟶(Base‘𝑅)) → (𝑘𝐼 ↦ ((𝑛𝑘)( ·𝑠 ‘(𝑅 freeLMod 𝐼))(curry 𝑀𝑘))) = (𝑘𝐼 ↦ (𝑗𝐼 ↦ ((𝑛𝑘)(.r𝑅)((curry 𝑀𝑘)‘𝑗)))))
135113, 134eqtrd 2764 . . . . . . . . . . . . . . . . 17 ((((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) ∧ 𝑛:𝐼⟶(Base‘𝑅)) → (𝑛f ( ·𝑠 ‘(𝑅 freeLMod 𝐼))curry 𝑀) = (𝑘𝐼 ↦ (𝑗𝐼 ↦ ((𝑛𝑘)(.r𝑅)((curry 𝑀𝑘)‘𝑗)))))
136135oveq2d 7385 . . . . . . . . . . . . . . . 16 ((((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) ∧ 𝑛:𝐼⟶(Base‘𝑅)) → ((𝑅 freeLMod 𝐼) Σg (𝑛f ( ·𝑠 ‘(𝑅 freeLMod 𝐼))curry 𝑀)) = ((𝑅 freeLMod 𝐼) Σg (𝑘𝐼 ↦ (𝑗𝐼 ↦ ((𝑛𝑘)(.r𝑅)((curry 𝑀𝑘)‘𝑗))))))
137 eqid 2729 . . . . . . . . . . . . . . . . 17 (0g‘(𝑅 freeLMod 𝐼)) = (0g‘(𝑅 freeLMod 𝐼))
138 simplll 774 . . . . . . . . . . . . . . . . 17 ((((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) ∧ 𝑛:𝐼⟶(Base‘𝑅)) → 𝑅 ∈ Ring)
139 simp-5l 784 . . . . . . . . . . . . . . . . . . . 20 ((((((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) ∧ 𝑛:𝐼⟶(Base‘𝑅)) ∧ 𝑘𝐼) ∧ 𝑗𝐼) → 𝑅 ∈ Ring)
140115ad4ant23 753 . . . . . . . . . . . . . . . . . . . 20 ((((((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) ∧ 𝑛:𝐼⟶(Base‘𝑅)) ∧ 𝑘𝐼) ∧ 𝑗𝐼) → (𝑛𝑘) ∈ (Base‘𝑅))
141 simplr 768 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) ∧ 𝑛:𝐼⟶(Base‘𝑅)) → curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼))
142 elmapi 8799 . . . . . . . . . . . . . . . . . . . . . . 23 ((curry 𝑀𝑘) ∈ ((Base‘𝑅) ↑m 𝐼) → (curry 𝑀𝑘):𝐼⟶(Base‘𝑅))
143117, 142syl 17 . . . . . . . . . . . . . . . . . . . . . 22 ((curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼) ∧ 𝑘𝐼) → (curry 𝑀𝑘):𝐼⟶(Base‘𝑅))
144143ffvelcdmda 7038 . . . . . . . . . . . . . . . . . . . . 21 (((curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼) ∧ 𝑘𝐼) ∧ 𝑗𝐼) → ((curry 𝑀𝑘)‘𝑗) ∈ (Base‘𝑅))
145141, 144sylanl1 680 . . . . . . . . . . . . . . . . . . . 20 ((((((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) ∧ 𝑛:𝐼⟶(Base‘𝑅)) ∧ 𝑘𝐼) ∧ 𝑗𝐼) → ((curry 𝑀𝑘)‘𝑗) ∈ (Base‘𝑅))
14614, 121ringcl 20135 . . . . . . . . . . . . . . . . . . . 20 ((𝑅 ∈ Ring ∧ (𝑛𝑘) ∈ (Base‘𝑅) ∧ ((curry 𝑀𝑘)‘𝑗) ∈ (Base‘𝑅)) → ((𝑛𝑘)(.r𝑅)((curry 𝑀𝑘)‘𝑗)) ∈ (Base‘𝑅))
147139, 140, 145, 146syl3anc 1373 . . . . . . . . . . . . . . . . . . 19 ((((((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) ∧ 𝑛:𝐼⟶(Base‘𝑅)) ∧ 𝑘𝐼) ∧ 𝑗𝐼) → ((𝑛𝑘)(.r𝑅)((curry 𝑀𝑘)‘𝑗)) ∈ (Base‘𝑅))
148147fmpttd 7069 . . . . . . . . . . . . . . . . . 18 (((((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) ∧ 𝑛:𝐼⟶(Base‘𝑅)) ∧ 𝑘𝐼) → (𝑗𝐼 ↦ ((𝑛𝑘)(.r𝑅)((curry 𝑀𝑘)‘𝑗))):𝐼⟶(Base‘𝑅))
149 elmapg 8789 . . . . . . . . . . . . . . . . . . . . . 22 (((Base‘𝑅) ∈ V ∧ 𝐼 ∈ Fin) → ((𝑗𝐼 ↦ ((𝑛𝑘)(.r𝑅)((curry 𝑀𝑘)‘𝑗))) ∈ ((Base‘𝑅) ↑m 𝐼) ↔ (𝑗𝐼 ↦ ((𝑛𝑘)(.r𝑅)((curry 𝑀𝑘)‘𝑗))):𝐼⟶(Base‘𝑅)))
15022, 149mpan 690 . . . . . . . . . . . . . . . . . . . . 21 (𝐼 ∈ Fin → ((𝑗𝐼 ↦ ((𝑛𝑘)(.r𝑅)((curry 𝑀𝑘)‘𝑗))) ∈ ((Base‘𝑅) ↑m 𝐼) ↔ (𝑗𝐼 ↦ ((𝑛𝑘)(.r𝑅)((curry 𝑀𝑘)‘𝑗))):𝐼⟶(Base‘𝑅)))
151150adantl 481 . . . . . . . . . . . . . . . . . . . 20 ((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) → ((𝑗𝐼 ↦ ((𝑛𝑘)(.r𝑅)((curry 𝑀𝑘)‘𝑗))) ∈ ((Base‘𝑅) ↑m 𝐼) ↔ (𝑗𝐼 ↦ ((𝑛𝑘)(.r𝑅)((curry 𝑀𝑘)‘𝑗))):𝐼⟶(Base‘𝑅)))
15295eleq2d 2814 . . . . . . . . . . . . . . . . . . . 20 ((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) → ((𝑗𝐼 ↦ ((𝑛𝑘)(.r𝑅)((curry 𝑀𝑘)‘𝑗))) ∈ ((Base‘𝑅) ↑m 𝐼) ↔ (𝑗𝐼 ↦ ((𝑛𝑘)(.r𝑅)((curry 𝑀𝑘)‘𝑗))) ∈ (Base‘(𝑅 freeLMod 𝐼))))
153151, 152bitr3d 281 . . . . . . . . . . . . . . . . . . 19 ((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) → ((𝑗𝐼 ↦ ((𝑛𝑘)(.r𝑅)((curry 𝑀𝑘)‘𝑗))):𝐼⟶(Base‘𝑅) ↔ (𝑗𝐼 ↦ ((𝑛𝑘)(.r𝑅)((curry 𝑀𝑘)‘𝑗))) ∈ (Base‘(𝑅 freeLMod 𝐼))))
154153ad3antrrr 730 . . . . . . . . . . . . . . . . . 18 (((((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) ∧ 𝑛:𝐼⟶(Base‘𝑅)) ∧ 𝑘𝐼) → ((𝑗𝐼 ↦ ((𝑛𝑘)(.r𝑅)((curry 𝑀𝑘)‘𝑗))):𝐼⟶(Base‘𝑅) ↔ (𝑗𝐼 ↦ ((𝑛𝑘)(.r𝑅)((curry 𝑀𝑘)‘𝑗))) ∈ (Base‘(𝑅 freeLMod 𝐼))))
155148, 154mpbid 232 . . . . . . . . . . . . . . . . 17 (((((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) ∧ 𝑛:𝐼⟶(Base‘𝑅)) ∧ 𝑘𝐼) → (𝑗𝐼 ↦ ((𝑛𝑘)(.r𝑅)((curry 𝑀𝑘)‘𝑗))) ∈ (Base‘(𝑅 freeLMod 𝐼)))
156 mptexg 7177 . . . . . . . . . . . . . . . . . . . . 21 (𝐼 ∈ Fin → (𝑗𝐼 ↦ ((𝑛𝑘)(.r𝑅)((curry 𝑀𝑘)‘𝑗))) ∈ V)
157156ralrimivw 3129 . . . . . . . . . . . . . . . . . . . 20 (𝐼 ∈ Fin → ∀𝑘𝐼 (𝑗𝐼 ↦ ((𝑛𝑘)(.r𝑅)((curry 𝑀𝑘)‘𝑗))) ∈ V)
158 eqid 2729 . . . . . . . . . . . . . . . . . . . . 21 (𝑘𝐼 ↦ (𝑗𝐼 ↦ ((𝑛𝑘)(.r𝑅)((curry 𝑀𝑘)‘𝑗)))) = (𝑘𝐼 ↦ (𝑗𝐼 ↦ ((𝑛𝑘)(.r𝑅)((curry 𝑀𝑘)‘𝑗))))
159158fnmpt 6640 . . . . . . . . . . . . . . . . . . . 20 (∀𝑘𝐼 (𝑗𝐼 ↦ ((𝑛𝑘)(.r𝑅)((curry 𝑀𝑘)‘𝑗))) ∈ V → (𝑘𝐼 ↦ (𝑗𝐼 ↦ ((𝑛𝑘)(.r𝑅)((curry 𝑀𝑘)‘𝑗)))) Fn 𝐼)
160157, 159syl 17 . . . . . . . . . . . . . . . . . . 19 (𝐼 ∈ Fin → (𝑘𝐼 ↦ (𝑗𝐼 ↦ ((𝑛𝑘)(.r𝑅)((curry 𝑀𝑘)‘𝑗)))) Fn 𝐼)
161 id 22 . . . . . . . . . . . . . . . . . . 19 (𝐼 ∈ Fin → 𝐼 ∈ Fin)
162 fvexd 6855 . . . . . . . . . . . . . . . . . . 19 (𝐼 ∈ Fin → (0g‘(𝑅 freeLMod 𝐼)) ∈ V)
163160, 161, 162fndmfifsupp 9305 . . . . . . . . . . . . . . . . . 18 (𝐼 ∈ Fin → (𝑘𝐼 ↦ (𝑗𝐼 ↦ ((𝑛𝑘)(.r𝑅)((curry 𝑀𝑘)‘𝑗)))) finSupp (0g‘(𝑅 freeLMod 𝐼)))
164163ad3antlr 731 . . . . . . . . . . . . . . . . 17 ((((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) ∧ 𝑛:𝐼⟶(Base‘𝑅)) → (𝑘𝐼 ↦ (𝑗𝐼 ↦ ((𝑛𝑘)(.r𝑅)((curry 𝑀𝑘)‘𝑗)))) finSupp (0g‘(𝑅 freeLMod 𝐼)))
16545, 46, 137, 109, 109, 138, 155, 164frlmgsum 21657 . . . . . . . . . . . . . . . 16 ((((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) ∧ 𝑛:𝐼⟶(Base‘𝑅)) → ((𝑅 freeLMod 𝐼) Σg (𝑘𝐼 ↦ (𝑗𝐼 ↦ ((𝑛𝑘)(.r𝑅)((curry 𝑀𝑘)‘𝑗))))) = (𝑗𝐼 ↦ (𝑅 Σg (𝑘𝐼 ↦ ((𝑛𝑘)(.r𝑅)((curry 𝑀𝑘)‘𝑗))))))
166136, 165eqtr2d 2765 . . . . . . . . . . . . . . 15 ((((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) ∧ 𝑛:𝐼⟶(Base‘𝑅)) → (𝑗𝐼 ↦ (𝑅 Σg (𝑘𝐼 ↦ ((𝑛𝑘)(.r𝑅)((curry 𝑀𝑘)‘𝑗))))) = ((𝑅 freeLMod 𝐼) Σg (𝑛f ( ·𝑠 ‘(𝑅 freeLMod 𝐼))curry 𝑀)))
167105, 166sylan2 593 . . . . . . . . . . . . . 14 ((((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) ∧ 𝑛 ∈ ((Base‘𝑅) ↑m 𝐼)) → (𝑗𝐼 ↦ (𝑅 Σg (𝑘𝐼 ↦ ((𝑛𝑘)(.r𝑅)((curry 𝑀𝑘)‘𝑗))))) = ((𝑅 freeLMod 𝐼) Σg (𝑛f ( ·𝑠 ‘(𝑅 freeLMod 𝐼))curry 𝑀)))
168167eqeq2d 2740 . . . . . . . . . . . . 13 ((((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) ∧ 𝑛 ∈ ((Base‘𝑅) ↑m 𝐼)) → (((𝑅 unitVec 𝐼)‘𝑖) = (𝑗𝐼 ↦ (𝑅 Σg (𝑘𝐼 ↦ ((𝑛𝑘)(.r𝑅)((curry 𝑀𝑘)‘𝑗))))) ↔ ((𝑅 unitVec 𝐼)‘𝑖) = ((𝑅 freeLMod 𝐼) Σg (𝑛f ( ·𝑠 ‘(𝑅 freeLMod 𝐼))curry 𝑀))))
169104, 168rexeqbidva 3303 . . . . . . . . . . . 12 (((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) → (∃𝑛 ∈ ((Base‘𝑅) ↑m 𝐼)((𝑅 unitVec 𝐼)‘𝑖) = (𝑗𝐼 ↦ (𝑅 Σg (𝑘𝐼 ↦ ((𝑛𝑘)(.r𝑅)((curry 𝑀𝑘)‘𝑗))))) ↔ ∃𝑛 ∈ ((Base‘(Scalar‘(𝑅 freeLMod 𝐼))) ↑m 𝐼)((𝑅 unitVec 𝐼)‘𝑖) = ((𝑅 freeLMod 𝐼) Σg (𝑛f ( ·𝑠 ‘(𝑅 freeLMod 𝐼))curry 𝑀))))
170100, 169bitr4d 282 . . . . . . . . . . 11 (((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) → (((𝑅 unitVec 𝐼)‘𝑖) ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘(curry 𝑀𝐼)) ↔ ∃𝑛 ∈ ((Base‘𝑅) ↑m 𝐼)((𝑅 unitVec 𝐼)‘𝑖) = (𝑗𝐼 ↦ (𝑅 Σg (𝑘𝐼 ↦ ((𝑛𝑘)(.r𝑅)((curry 𝑀𝑘)‘𝑗)))))))
17143, 170sylanl1 680 . . . . . . . . . 10 (((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) → (((𝑅 unitVec 𝐼)‘𝑖) ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘(curry 𝑀𝐼)) ↔ ∃𝑛 ∈ ((Base‘𝑅) ↑m 𝐼)((𝑅 unitVec 𝐼)‘𝑖) = (𝑗𝐼 ↦ (𝑅 Σg (𝑘𝐼 ↦ ((𝑛𝑘)(.r𝑅)((curry 𝑀𝑘)‘𝑗)))))))
172171ad2antrr 726 . . . . . . . . 9 (((((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) ∧ curry 𝑀 LIndF (𝑅 freeLMod 𝐼)) ∧ 𝑖𝐼) → (((𝑅 unitVec 𝐼)‘𝑖) ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘(curry 𝑀𝐼)) ↔ ∃𝑛 ∈ ((Base‘𝑅) ↑m 𝐼)((𝑅 unitVec 𝐼)‘𝑖) = (𝑗𝐼 ↦ (𝑅 Σg (𝑘𝐼 ↦ ((𝑛𝑘)(.r𝑅)((curry 𝑀𝑘)‘𝑗)))))))
17391, 172mpbid 232 . . . . . . . 8 (((((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) ∧ curry 𝑀 LIndF (𝑅 freeLMod 𝐼)) ∧ 𝑖𝐼) → ∃𝑛 ∈ ((Base‘𝑅) ↑m 𝐼)((𝑅 unitVec 𝐼)‘𝑖) = (𝑗𝐼 ↦ (𝑅 Σg (𝑘𝐼 ↦ ((𝑛𝑘)(.r𝑅)((curry 𝑀𝑘)‘𝑗))))))
174173ralrimiva 3125 . . . . . . 7 ((((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) ∧ curry 𝑀 LIndF (𝑅 freeLMod 𝐼)) → ∀𝑖𝐼𝑛 ∈ ((Base‘𝑅) ↑m 𝐼)((𝑅 unitVec 𝐼)‘𝑖) = (𝑗𝐼 ↦ (𝑅 Σg (𝑘𝐼 ↦ ((𝑛𝑘)(.r𝑅)((curry 𝑀𝑘)‘𝑗))))))
17542, 174sylan 580 . . . . . 6 ((((𝑅 ∈ DivRing ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ 𝐼 ≠ ∅) ∧ curry 𝑀 LIndF (𝑅 freeLMod 𝐼)) → ∀𝑖𝐼𝑛 ∈ ((Base‘𝑅) ↑m 𝐼)((𝑅 unitVec 𝐼)‘𝑖) = (𝑗𝐼 ↦ (𝑅 Σg (𝑘𝐼 ↦ ((𝑛𝑘)(.r𝑅)((curry 𝑀𝑘)‘𝑗))))))
17610, 21mpbird 257 . . . . . . . . 9 ((𝑅 ∈ DivRing ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) → 𝑀 ∈ ((Base‘𝑅) ↑m (𝐼 × 𝐼)))
177 elmapfn 8815 . . . . . . . . 9 (𝑀 ∈ ((Base‘𝑅) ↑m (𝐼 × 𝐼)) → 𝑀 Fn (𝐼 × 𝐼))
178176, 177syl 17 . . . . . . . 8 ((𝑅 ∈ DivRing ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) → 𝑀 Fn (𝐼 × 𝐼))
1794adantl 481 . . . . . . . 8 ((𝑅 ∈ DivRing ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) → 𝐼 ∈ Fin)
180 an32 646 . . . . . . . . . . . . . . . . . . 19 (((𝑀 Fn (𝐼 × 𝐼) ∧ 𝑗𝐼) ∧ 𝑘𝐼) ↔ ((𝑀 Fn (𝐼 × 𝐼) ∧ 𝑘𝐼) ∧ 𝑗𝐼))
181 df-3an 1088 . . . . . . . . . . . . . . . . . . 19 ((𝑀 Fn (𝐼 × 𝐼) ∧ 𝑘𝐼𝑗𝐼) ↔ ((𝑀 Fn (𝐼 × 𝐼) ∧ 𝑘𝐼) ∧ 𝑗𝐼))
182180, 181bitr4i 278 . . . . . . . . . . . . . . . . . 18 (((𝑀 Fn (𝐼 × 𝐼) ∧ 𝑗𝐼) ∧ 𝑘𝐼) ↔ (𝑀 Fn (𝐼 × 𝐼) ∧ 𝑘𝐼𝑗𝐼))
183 curfv 37567 . . . . . . . . . . . . . . . . . 18 (((𝑀 Fn (𝐼 × 𝐼) ∧ 𝑘𝐼𝑗𝐼) ∧ 𝐼 ∈ Fin) → ((curry 𝑀𝑘)‘𝑗) = (𝑘𝑀𝑗))
184182, 183sylanb 581 . . . . . . . . . . . . . . . . 17 ((((𝑀 Fn (𝐼 × 𝐼) ∧ 𝑗𝐼) ∧ 𝑘𝐼) ∧ 𝐼 ∈ Fin) → ((curry 𝑀𝑘)‘𝑗) = (𝑘𝑀𝑗))
185184an32s 652 . . . . . . . . . . . . . . . 16 ((((𝑀 Fn (𝐼 × 𝐼) ∧ 𝑗𝐼) ∧ 𝐼 ∈ Fin) ∧ 𝑘𝐼) → ((curry 𝑀𝑘)‘𝑗) = (𝑘𝑀𝑗))
186185oveq2d 7385 . . . . . . . . . . . . . . 15 ((((𝑀 Fn (𝐼 × 𝐼) ∧ 𝑗𝐼) ∧ 𝐼 ∈ Fin) ∧ 𝑘𝐼) → ((𝑛𝑘)(.r𝑅)((curry 𝑀𝑘)‘𝑗)) = ((𝑛𝑘)(.r𝑅)(𝑘𝑀𝑗)))
187186mpteq2dva 5195 . . . . . . . . . . . . . 14 (((𝑀 Fn (𝐼 × 𝐼) ∧ 𝑗𝐼) ∧ 𝐼 ∈ Fin) → (𝑘𝐼 ↦ ((𝑛𝑘)(.r𝑅)((curry 𝑀𝑘)‘𝑗))) = (𝑘𝐼 ↦ ((𝑛𝑘)(.r𝑅)(𝑘𝑀𝑗))))
188187an32s 652 . . . . . . . . . . . . 13 (((𝑀 Fn (𝐼 × 𝐼) ∧ 𝐼 ∈ Fin) ∧ 𝑗𝐼) → (𝑘𝐼 ↦ ((𝑛𝑘)(.r𝑅)((curry 𝑀𝑘)‘𝑗))) = (𝑘𝐼 ↦ ((𝑛𝑘)(.r𝑅)(𝑘𝑀𝑗))))
189188oveq2d 7385 . . . . . . . . . . . 12 (((𝑀 Fn (𝐼 × 𝐼) ∧ 𝐼 ∈ Fin) ∧ 𝑗𝐼) → (𝑅 Σg (𝑘𝐼 ↦ ((𝑛𝑘)(.r𝑅)((curry 𝑀𝑘)‘𝑗)))) = (𝑅 Σg (𝑘𝐼 ↦ ((𝑛𝑘)(.r𝑅)(𝑘𝑀𝑗)))))
190189mpteq2dva 5195 . . . . . . . . . . 11 ((𝑀 Fn (𝐼 × 𝐼) ∧ 𝐼 ∈ Fin) → (𝑗𝐼 ↦ (𝑅 Σg (𝑘𝐼 ↦ ((𝑛𝑘)(.r𝑅)((curry 𝑀𝑘)‘𝑗))))) = (𝑗𝐼 ↦ (𝑅 Σg (𝑘𝐼 ↦ ((𝑛𝑘)(.r𝑅)(𝑘𝑀𝑗))))))
191190eqeq2d 2740 . . . . . . . . . 10 ((𝑀 Fn (𝐼 × 𝐼) ∧ 𝐼 ∈ Fin) → (((𝑅 unitVec 𝐼)‘𝑖) = (𝑗𝐼 ↦ (𝑅 Σg (𝑘𝐼 ↦ ((𝑛𝑘)(.r𝑅)((curry 𝑀𝑘)‘𝑗))))) ↔ ((𝑅 unitVec 𝐼)‘𝑖) = (𝑗𝐼 ↦ (𝑅 Σg (𝑘𝐼 ↦ ((𝑛𝑘)(.r𝑅)(𝑘𝑀𝑗)))))))
192191rexbidv 3157 . . . . . . . . 9 ((𝑀 Fn (𝐼 × 𝐼) ∧ 𝐼 ∈ Fin) → (∃𝑛 ∈ ((Base‘𝑅) ↑m 𝐼)((𝑅 unitVec 𝐼)‘𝑖) = (𝑗𝐼 ↦ (𝑅 Σg (𝑘𝐼 ↦ ((𝑛𝑘)(.r𝑅)((curry 𝑀𝑘)‘𝑗))))) ↔ ∃𝑛 ∈ ((Base‘𝑅) ↑m 𝐼)((𝑅 unitVec 𝐼)‘𝑖) = (𝑗𝐼 ↦ (𝑅 Σg (𝑘𝐼 ↦ ((𝑛𝑘)(.r𝑅)(𝑘𝑀𝑗)))))))
193192ralbidv 3156 . . . . . . . 8 ((𝑀 Fn (𝐼 × 𝐼) ∧ 𝐼 ∈ Fin) → (∀𝑖𝐼𝑛 ∈ ((Base‘𝑅) ↑m 𝐼)((𝑅 unitVec 𝐼)‘𝑖) = (𝑗𝐼 ↦ (𝑅 Σg (𝑘𝐼 ↦ ((𝑛𝑘)(.r𝑅)((curry 𝑀𝑘)‘𝑗))))) ↔ ∀𝑖𝐼𝑛 ∈ ((Base‘𝑅) ↑m 𝐼)((𝑅 unitVec 𝐼)‘𝑖) = (𝑗𝐼 ↦ (𝑅 Σg (𝑘𝐼 ↦ ((𝑛𝑘)(.r𝑅)(𝑘𝑀𝑗)))))))
194178, 179, 193syl2anc 584 . . . . . . 7 ((𝑅 ∈ DivRing ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) → (∀𝑖𝐼𝑛 ∈ ((Base‘𝑅) ↑m 𝐼)((𝑅 unitVec 𝐼)‘𝑖) = (𝑗𝐼 ↦ (𝑅 Σg (𝑘𝐼 ↦ ((𝑛𝑘)(.r𝑅)((curry 𝑀𝑘)‘𝑗))))) ↔ ∀𝑖𝐼𝑛 ∈ ((Base‘𝑅) ↑m 𝐼)((𝑅 unitVec 𝐼)‘𝑖) = (𝑗𝐼 ↦ (𝑅 Σg (𝑘𝐼 ↦ ((𝑛𝑘)(.r𝑅)(𝑘𝑀𝑗)))))))
195194ad2antrr 726 . . . . . 6 ((((𝑅 ∈ DivRing ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ 𝐼 ≠ ∅) ∧ curry 𝑀 LIndF (𝑅 freeLMod 𝐼)) → (∀𝑖𝐼𝑛 ∈ ((Base‘𝑅) ↑m 𝐼)((𝑅 unitVec 𝐼)‘𝑖) = (𝑗𝐼 ↦ (𝑅 Σg (𝑘𝐼 ↦ ((𝑛𝑘)(.r𝑅)((curry 𝑀𝑘)‘𝑗))))) ↔ ∀𝑖𝐼𝑛 ∈ ((Base‘𝑅) ↑m 𝐼)((𝑅 unitVec 𝐼)‘𝑖) = (𝑗𝐼 ↦ (𝑅 Σg (𝑘𝐼 ↦ ((𝑛𝑘)(.r𝑅)(𝑘𝑀𝑗)))))))
196175, 195mpbid 232 . . . . 5 ((((𝑅 ∈ DivRing ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ 𝐼 ≠ ∅) ∧ curry 𝑀 LIndF (𝑅 freeLMod 𝐼)) → ∀𝑖𝐼𝑛 ∈ ((Base‘𝑅) ↑m 𝐼)((𝑅 unitVec 𝐼)‘𝑖) = (𝑗𝐼 ↦ (𝑅 Σg (𝑘𝐼 ↦ ((𝑛𝑘)(.r𝑅)(𝑘𝑀𝑗))))))
1978, 196sylanl1 680 . . . 4 ((((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ 𝐼 ≠ ∅) ∧ curry 𝑀 LIndF (𝑅 freeLMod 𝐼)) → ∀𝑖𝐼𝑛 ∈ ((Base‘𝑅) ↑m 𝐼)((𝑅 unitVec 𝐼)‘𝑖) = (𝑗𝐼 ↦ (𝑅 Σg (𝑘𝐼 ↦ ((𝑛𝑘)(.r𝑅)(𝑘𝑀𝑗))))))
198 fveq1 6839 . . . . . . . . . . 11 (𝑛 = (𝑓𝑖) → (𝑛𝑘) = ((𝑓𝑖)‘𝑘))
199 uncov 37568 . . . . . . . . . . . 12 ((𝑖 ∈ V ∧ 𝑘 ∈ V) → (𝑖uncurry 𝑓𝑘) = ((𝑓𝑖)‘𝑘))
200199el2v 3451 . . . . . . . . . . 11 (𝑖uncurry 𝑓𝑘) = ((𝑓𝑖)‘𝑘)
201198, 200eqtr4di 2782 . . . . . . . . . 10 (𝑛 = (𝑓𝑖) → (𝑛𝑘) = (𝑖uncurry 𝑓𝑘))
202201oveq1d 7384 . . . . . . . . 9 (𝑛 = (𝑓𝑖) → ((𝑛𝑘)(.r𝑅)(𝑘𝑀𝑗)) = ((𝑖uncurry 𝑓𝑘)(.r𝑅)(𝑘𝑀𝑗)))
203202mpteq2dv 5196 . . . . . . . 8 (𝑛 = (𝑓𝑖) → (𝑘𝐼 ↦ ((𝑛𝑘)(.r𝑅)(𝑘𝑀𝑗))) = (𝑘𝐼 ↦ ((𝑖uncurry 𝑓𝑘)(.r𝑅)(𝑘𝑀𝑗))))
204203oveq2d 7385 . . . . . . 7 (𝑛 = (𝑓𝑖) → (𝑅 Σg (𝑘𝐼 ↦ ((𝑛𝑘)(.r𝑅)(𝑘𝑀𝑗)))) = (𝑅 Σg (𝑘𝐼 ↦ ((𝑖uncurry 𝑓𝑘)(.r𝑅)(𝑘𝑀𝑗)))))
205204mpteq2dv 5196 . . . . . 6 (𝑛 = (𝑓𝑖) → (𝑗𝐼 ↦ (𝑅 Σg (𝑘𝐼 ↦ ((𝑛𝑘)(.r𝑅)(𝑘𝑀𝑗))))) = (𝑗𝐼 ↦ (𝑅 Σg (𝑘𝐼 ↦ ((𝑖uncurry 𝑓𝑘)(.r𝑅)(𝑘𝑀𝑗))))))
206205eqeq2d 2740 . . . . 5 (𝑛 = (𝑓𝑖) → (((𝑅 unitVec 𝐼)‘𝑖) = (𝑗𝐼 ↦ (𝑅 Σg (𝑘𝐼 ↦ ((𝑛𝑘)(.r𝑅)(𝑘𝑀𝑗))))) ↔ ((𝑅 unitVec 𝐼)‘𝑖) = (𝑗𝐼 ↦ (𝑅 Σg (𝑘𝐼 ↦ ((𝑖uncurry 𝑓𝑘)(.r𝑅)(𝑘𝑀𝑗)))))))
207206ac6sfi 9207 . . . 4 ((𝐼 ∈ Fin ∧ ∀𝑖𝐼𝑛 ∈ ((Base‘𝑅) ↑m 𝐼)((𝑅 unitVec 𝐼)‘𝑖) = (𝑗𝐼 ↦ (𝑅 Σg (𝑘𝐼 ↦ ((𝑛𝑘)(.r𝑅)(𝑘𝑀𝑗)))))) → ∃𝑓(𝑓:𝐼⟶((Base‘𝑅) ↑m 𝐼) ∧ ∀𝑖𝐼 ((𝑅 unitVec 𝐼)‘𝑖) = (𝑗𝐼 ↦ (𝑅 Σg (𝑘𝐼 ↦ ((𝑖uncurry 𝑓𝑘)(.r𝑅)(𝑘𝑀𝑗)))))))
2085, 197, 207syl2anc 584 . . 3 ((((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ 𝐼 ≠ ∅) ∧ curry 𝑀 LIndF (𝑅 freeLMod 𝐼)) → ∃𝑓(𝑓:𝐼⟶((Base‘𝑅) ↑m 𝐼) ∧ ∀𝑖𝐼 ((𝑅 unitVec 𝐼)‘𝑖) = (𝑗𝐼 ↦ (𝑅 Σg (𝑘𝐼 ↦ ((𝑖uncurry 𝑓𝑘)(.r𝑅)(𝑘𝑀𝑗)))))))
209 uncf 37566 . . . . . . 7 (𝑓:𝐼⟶((Base‘𝑅) ↑m 𝐼) → uncurry 𝑓:(𝐼 × 𝐼)⟶(Base‘𝑅))
21013, 14frlmfibas 21647 . . . . . . . . . . . . . . . 16 ((𝑅 ∈ Field ∧ (𝐼 × 𝐼) ∈ Fin) → ((Base‘𝑅) ↑m (𝐼 × 𝐼)) = (Base‘(𝑅 freeLMod (𝐼 × 𝐼))))
21112, 210sylan2 593 . . . . . . . . . . . . . . 15 ((𝑅 ∈ Field ∧ 𝐼 ∈ Fin) → ((Base‘𝑅) ↑m (𝐼 × 𝐼)) = (Base‘(𝑅 freeLMod (𝐼 × 𝐼))))
2121, 13matbas 22276 . . . . . . . . . . . . . . . 16 ((𝐼 ∈ Fin ∧ 𝑅 ∈ Field) → (Base‘(𝑅 freeLMod (𝐼 × 𝐼))) = (Base‘(𝐼 Mat 𝑅)))
213212ancoms 458 . . . . . . . . . . . . . . 15 ((𝑅 ∈ Field ∧ 𝐼 ∈ Fin) → (Base‘(𝑅 freeLMod (𝐼 × 𝐼))) = (Base‘(𝐼 Mat 𝑅)))
214211, 213eqtrd 2764 . . . . . . . . . . . . . 14 ((𝑅 ∈ Field ∧ 𝐼 ∈ Fin) → ((Base‘𝑅) ↑m (𝐼 × 𝐼)) = (Base‘(𝐼 Mat 𝑅)))
2154, 214sylan2 593 . . . . . . . . . . . . 13 ((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) → ((Base‘𝑅) ↑m (𝐼 × 𝐼)) = (Base‘(𝐼 Mat 𝑅)))
216215eleq2d 2814 . . . . . . . . . . . 12 ((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) → (uncurry 𝑓 ∈ ((Base‘𝑅) ↑m (𝐼 × 𝐼)) ↔ uncurry 𝑓 ∈ (Base‘(𝐼 Mat 𝑅))))
217 elmapg 8789 . . . . . . . . . . . . . 14 (((Base‘𝑅) ∈ V ∧ (𝐼 × 𝐼) ∈ Fin) → (uncurry 𝑓 ∈ ((Base‘𝑅) ↑m (𝐼 × 𝐼)) ↔ uncurry 𝑓:(𝐼 × 𝐼)⟶(Base‘𝑅)))
21822, 23, 217sylancr 587 . . . . . . . . . . . . 13 (𝑀 ∈ (Base‘(𝐼 Mat 𝑅)) → (uncurry 𝑓 ∈ ((Base‘𝑅) ↑m (𝐼 × 𝐼)) ↔ uncurry 𝑓:(𝐼 × 𝐼)⟶(Base‘𝑅)))
219218adantl 481 . . . . . . . . . . . 12 ((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) → (uncurry 𝑓 ∈ ((Base‘𝑅) ↑m (𝐼 × 𝐼)) ↔ uncurry 𝑓:(𝐼 × 𝐼)⟶(Base‘𝑅)))
220216, 219bitr3d 281 . . . . . . . . . . 11 ((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) → (uncurry 𝑓 ∈ (Base‘(𝐼 Mat 𝑅)) ↔ uncurry 𝑓:(𝐼 × 𝐼)⟶(Base‘𝑅)))
221220biimpar 477 . . . . . . . . . 10 (((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ uncurry 𝑓:(𝐼 × 𝐼)⟶(Base‘𝑅)) → uncurry 𝑓 ∈ (Base‘(𝐼 Mat 𝑅)))
222221adantr 480 . . . . . . . . 9 ((((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ uncurry 𝑓:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ ∀𝑖𝐼 ((𝑅 unitVec 𝐼)‘𝑖) = (𝑗𝐼 ↦ (𝑅 Σg (𝑘𝐼 ↦ ((𝑖uncurry 𝑓𝑘)(.r𝑅)(𝑘𝑀𝑗)))))) → uncurry 𝑓 ∈ (Base‘(𝐼 Mat 𝑅)))
223 nfv 1914 . . . . . . . . . . . . . 14 𝑗(((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ uncurry 𝑓:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝑖𝐼)
224 nfmpt1 5201 . . . . . . . . . . . . . . 15 𝑗(𝑗𝐼 ↦ (𝑅 Σg (𝑘𝐼 ↦ ((𝑖uncurry 𝑓𝑘)(.r𝑅)(𝑘𝑀𝑗)))))
225224nfeq2 2909 . . . . . . . . . . . . . 14 𝑗((𝑅 unitVec 𝐼)‘𝑖) = (𝑗𝐼 ↦ (𝑅 Σg (𝑘𝐼 ↦ ((𝑖uncurry 𝑓𝑘)(.r𝑅)(𝑘𝑀𝑗)))))
226 fveq1 6839 . . . . . . . . . . . . . . . . 17 (((𝑅 unitVec 𝐼)‘𝑖) = (𝑗𝐼 ↦ (𝑅 Σg (𝑘𝐼 ↦ ((𝑖uncurry 𝑓𝑘)(.r𝑅)(𝑘𝑀𝑗))))) → (((𝑅 unitVec 𝐼)‘𝑖)‘𝑗) = ((𝑗𝐼 ↦ (𝑅 Σg (𝑘𝐼 ↦ ((𝑖uncurry 𝑓𝑘)(.r𝑅)(𝑘𝑀𝑗)))))‘𝑗))
2277, 43syl 17 . . . . . . . . . . . . . . . . . . . . 21 (𝑅 ∈ Field → 𝑅 ∈ Ring)
228227, 4anim12i 613 . . . . . . . . . . . . . . . . . . . 20 ((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) → (𝑅 ∈ Ring ∧ 𝐼 ∈ Fin))
229228adantr 480 . . . . . . . . . . . . . . . . . . 19 (((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ uncurry 𝑓:(𝐼 × 𝐼)⟶(Base‘𝑅)) → (𝑅 ∈ Ring ∧ 𝐼 ∈ Fin))
230 equcom 2018 . . . . . . . . . . . . . . . . . . . . 21 (𝑖 = 𝑗𝑗 = 𝑖)
231 ifbi 4507 . . . . . . . . . . . . . . . . . . . . 21 ((𝑖 = 𝑗𝑗 = 𝑖) → if(𝑖 = 𝑗, (1r𝑅), (0g𝑅)) = if(𝑗 = 𝑖, (1r𝑅), (0g𝑅)))
232230, 231ax-mp 5 . . . . . . . . . . . . . . . . . . . 20 if(𝑖 = 𝑗, (1r𝑅), (0g𝑅)) = if(𝑗 = 𝑖, (1r𝑅), (0g𝑅))
233 eqid 2729 . . . . . . . . . . . . . . . . . . . . 21 (1r𝑅) = (1r𝑅)
234 eqid 2729 . . . . . . . . . . . . . . . . . . . . 21 (0g𝑅) = (0g𝑅)
235 simpllr 775 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) ∧ 𝑖𝐼) ∧ 𝑗𝐼) → 𝐼 ∈ Fin)
236 simplll 774 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) ∧ 𝑖𝐼) ∧ 𝑗𝐼) → 𝑅 ∈ Ring)
237 simplr 768 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) ∧ 𝑖𝐼) ∧ 𝑗𝐼) → 𝑖𝐼)
238 simpr 484 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) ∧ 𝑖𝐼) ∧ 𝑗𝐼) → 𝑗𝐼)
239 eqid 2729 . . . . . . . . . . . . . . . . . . . . 21 (1r‘(𝐼 Mat 𝑅)) = (1r‘(𝐼 Mat 𝑅))
2401, 233, 234, 235, 236, 237, 238, 239mat1ov 22311 . . . . . . . . . . . . . . . . . . . 20 ((((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) ∧ 𝑖𝐼) ∧ 𝑗𝐼) → (𝑖(1r‘(𝐼 Mat 𝑅))𝑗) = if(𝑖 = 𝑗, (1r𝑅), (0g𝑅)))
241 df-3an 1088 . . . . . . . . . . . . . . . . . . . . 21 ((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin ∧ 𝑖𝐼) ↔ ((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) ∧ 𝑖𝐼))
24244, 233, 234uvcvval 21671 . . . . . . . . . . . . . . . . . . . . 21 (((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin ∧ 𝑖𝐼) ∧ 𝑗𝐼) → (((𝑅 unitVec 𝐼)‘𝑖)‘𝑗) = if(𝑗 = 𝑖, (1r𝑅), (0g𝑅)))
243241, 242sylanbr 582 . . . . . . . . . . . . . . . . . . . 20 ((((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) ∧ 𝑖𝐼) ∧ 𝑗𝐼) → (((𝑅 unitVec 𝐼)‘𝑖)‘𝑗) = if(𝑗 = 𝑖, (1r𝑅), (0g𝑅)))
244232, 240, 2433eqtr4a 2790 . . . . . . . . . . . . . . . . . . 19 ((((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) ∧ 𝑖𝐼) ∧ 𝑗𝐼) → (𝑖(1r‘(𝐼 Mat 𝑅))𝑗) = (((𝑅 unitVec 𝐼)‘𝑖)‘𝑗))
245229, 244sylanl1 680 . . . . . . . . . . . . . . . . . 18 (((((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ uncurry 𝑓:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝑖𝐼) ∧ 𝑗𝐼) → (𝑖(1r‘(𝐼 Mat 𝑅))𝑗) = (((𝑅 unitVec 𝐼)‘𝑖)‘𝑗))
246 ovex 7402 . . . . . . . . . . . . . . . . . . . . 21 (𝑅 Σg (𝑘𝐼 ↦ ((𝑖uncurry 𝑓𝑘)(.r𝑅)(𝑘𝑀𝑗)))) ∈ V
247 eqid 2729 . . . . . . . . . . . . . . . . . . . . . 22 (𝑗𝐼 ↦ (𝑅 Σg (𝑘𝐼 ↦ ((𝑖uncurry 𝑓𝑘)(.r𝑅)(𝑘𝑀𝑗))))) = (𝑗𝐼 ↦ (𝑅 Σg (𝑘𝐼 ↦ ((𝑖uncurry 𝑓𝑘)(.r𝑅)(𝑘𝑀𝑗)))))
248247fvmpt2 6961 . . . . . . . . . . . . . . . . . . . . 21 ((𝑗𝐼 ∧ (𝑅 Σg (𝑘𝐼 ↦ ((𝑖uncurry 𝑓𝑘)(.r𝑅)(𝑘𝑀𝑗)))) ∈ V) → ((𝑗𝐼 ↦ (𝑅 Σg (𝑘𝐼 ↦ ((𝑖uncurry 𝑓𝑘)(.r𝑅)(𝑘𝑀𝑗)))))‘𝑗) = (𝑅 Σg (𝑘𝐼 ↦ ((𝑖uncurry 𝑓𝑘)(.r𝑅)(𝑘𝑀𝑗)))))
249246, 248mpan2 691 . . . . . . . . . . . . . . . . . . . 20 (𝑗𝐼 → ((𝑗𝐼 ↦ (𝑅 Σg (𝑘𝐼 ↦ ((𝑖uncurry 𝑓𝑘)(.r𝑅)(𝑘𝑀𝑗)))))‘𝑗) = (𝑅 Σg (𝑘𝐼 ↦ ((𝑖uncurry 𝑓𝑘)(.r𝑅)(𝑘𝑀𝑗)))))
250249adantl 481 . . . . . . . . . . . . . . . . . . 19 (((((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ uncurry 𝑓:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝑖𝐼) ∧ 𝑗𝐼) → ((𝑗𝐼 ↦ (𝑅 Σg (𝑘𝐼 ↦ ((𝑖uncurry 𝑓𝑘)(.r𝑅)(𝑘𝑀𝑗)))))‘𝑗) = (𝑅 Σg (𝑘𝐼 ↦ ((𝑖uncurry 𝑓𝑘)(.r𝑅)(𝑘𝑀𝑗)))))
251 eqid 2729 . . . . . . . . . . . . . . . . . . . 20 (𝑅 maMul ⟨𝐼, 𝐼, 𝐼⟩) = (𝑅 maMul ⟨𝐼, 𝐼, 𝐼⟩)
252 simp-4l 782 . . . . . . . . . . . . . . . . . . . 20 (((((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ uncurry 𝑓:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝑖𝐼) ∧ 𝑗𝐼) → 𝑅 ∈ Field)
2534ad4antlr 733 . . . . . . . . . . . . . . . . . . . 20 (((((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ uncurry 𝑓:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝑖𝐼) ∧ 𝑗𝐼) → 𝐼 ∈ Fin)
254218biimpar 477 . . . . . . . . . . . . . . . . . . . . 21 ((𝑀 ∈ (Base‘(𝐼 Mat 𝑅)) ∧ uncurry 𝑓:(𝐼 × 𝐼)⟶(Base‘𝑅)) → uncurry 𝑓 ∈ ((Base‘𝑅) ↑m (𝐼 × 𝐼)))
255254ad5ant23 759 . . . . . . . . . . . . . . . . . . . 20 (((((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ uncurry 𝑓:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝑖𝐼) ∧ 𝑗𝐼) → uncurry 𝑓 ∈ ((Base‘𝑅) ↑m (𝐼 × 𝐼)))
256 simpr 484 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) → 𝑀 ∈ (Base‘(𝐼 Mat 𝑅)))
257256, 215eleqtrrd 2831 . . . . . . . . . . . . . . . . . . . . 21 ((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) → 𝑀 ∈ ((Base‘𝑅) ↑m (𝐼 × 𝐼)))
258257ad3antrrr 730 . . . . . . . . . . . . . . . . . . . 20 (((((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ uncurry 𝑓:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝑖𝐼) ∧ 𝑗𝐼) → 𝑀 ∈ ((Base‘𝑅) ↑m (𝐼 × 𝐼)))
259 simplr 768 . . . . . . . . . . . . . . . . . . . 20 (((((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ uncurry 𝑓:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝑖𝐼) ∧ 𝑗𝐼) → 𝑖𝐼)
260 simpr 484 . . . . . . . . . . . . . . . . . . . 20 (((((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ uncurry 𝑓:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝑖𝐼) ∧ 𝑗𝐼) → 𝑗𝐼)
261251, 14, 121, 252, 253, 253, 253, 255, 258, 259, 260mamufv 22257 . . . . . . . . . . . . . . . . . . 19 (((((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ uncurry 𝑓:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝑖𝐼) ∧ 𝑗𝐼) → (𝑖(uncurry 𝑓(𝑅 maMul ⟨𝐼, 𝐼, 𝐼⟩)𝑀)𝑗) = (𝑅 Σg (𝑘𝐼 ↦ ((𝑖uncurry 𝑓𝑘)(.r𝑅)(𝑘𝑀𝑗)))))
2621, 251matmulr 22301 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐼 ∈ Fin ∧ 𝑅 ∈ Field) → (𝑅 maMul ⟨𝐼, 𝐼, 𝐼⟩) = (.r‘(𝐼 Mat 𝑅)))
263262ancoms 458 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑅 ∈ Field ∧ 𝐼 ∈ Fin) → (𝑅 maMul ⟨𝐼, 𝐼, 𝐼⟩) = (.r‘(𝐼 Mat 𝑅)))
264263oveqd 7386 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑅 ∈ Field ∧ 𝐼 ∈ Fin) → (uncurry 𝑓(𝑅 maMul ⟨𝐼, 𝐼, 𝐼⟩)𝑀) = (uncurry 𝑓(.r‘(𝐼 Mat 𝑅))𝑀))
265264oveqd 7386 . . . . . . . . . . . . . . . . . . . . 21 ((𝑅 ∈ Field ∧ 𝐼 ∈ Fin) → (𝑖(uncurry 𝑓(𝑅 maMul ⟨𝐼, 𝐼, 𝐼⟩)𝑀)𝑗) = (𝑖(uncurry 𝑓(.r‘(𝐼 Mat 𝑅))𝑀)𝑗))
2664, 265sylan2 593 . . . . . . . . . . . . . . . . . . . 20 ((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) → (𝑖(uncurry 𝑓(𝑅 maMul ⟨𝐼, 𝐼, 𝐼⟩)𝑀)𝑗) = (𝑖(uncurry 𝑓(.r‘(𝐼 Mat 𝑅))𝑀)𝑗))
267266ad3antrrr 730 . . . . . . . . . . . . . . . . . . 19 (((((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ uncurry 𝑓:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝑖𝐼) ∧ 𝑗𝐼) → (𝑖(uncurry 𝑓(𝑅 maMul ⟨𝐼, 𝐼, 𝐼⟩)𝑀)𝑗) = (𝑖(uncurry 𝑓(.r‘(𝐼 Mat 𝑅))𝑀)𝑗))
268250, 261, 2673eqtr2rd 2771 . . . . . . . . . . . . . . . . . 18 (((((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ uncurry 𝑓:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝑖𝐼) ∧ 𝑗𝐼) → (𝑖(uncurry 𝑓(.r‘(𝐼 Mat 𝑅))𝑀)𝑗) = ((𝑗𝐼 ↦ (𝑅 Σg (𝑘𝐼 ↦ ((𝑖uncurry 𝑓𝑘)(.r𝑅)(𝑘𝑀𝑗)))))‘𝑗))
269245, 268eqeq12d 2745 . . . . . . . . . . . . . . . . 17 (((((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ uncurry 𝑓:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝑖𝐼) ∧ 𝑗𝐼) → ((𝑖(1r‘(𝐼 Mat 𝑅))𝑗) = (𝑖(uncurry 𝑓(.r‘(𝐼 Mat 𝑅))𝑀)𝑗) ↔ (((𝑅 unitVec 𝐼)‘𝑖)‘𝑗) = ((𝑗𝐼 ↦ (𝑅 Σg (𝑘𝐼 ↦ ((𝑖uncurry 𝑓𝑘)(.r𝑅)(𝑘𝑀𝑗)))))‘𝑗)))
270226, 269imbitrrid 246 . . . . . . . . . . . . . . . 16 (((((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ uncurry 𝑓:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝑖𝐼) ∧ 𝑗𝐼) → (((𝑅 unitVec 𝐼)‘𝑖) = (𝑗𝐼 ↦ (𝑅 Σg (𝑘𝐼 ↦ ((𝑖uncurry 𝑓𝑘)(.r𝑅)(𝑘𝑀𝑗))))) → (𝑖(1r‘(𝐼 Mat 𝑅))𝑗) = (𝑖(uncurry 𝑓(.r‘(𝐼 Mat 𝑅))𝑀)𝑗)))
271270ex 412 . . . . . . . . . . . . . . 15 ((((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ uncurry 𝑓:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝑖𝐼) → (𝑗𝐼 → (((𝑅 unitVec 𝐼)‘𝑖) = (𝑗𝐼 ↦ (𝑅 Σg (𝑘𝐼 ↦ ((𝑖uncurry 𝑓𝑘)(.r𝑅)(𝑘𝑀𝑗))))) → (𝑖(1r‘(𝐼 Mat 𝑅))𝑗) = (𝑖(uncurry 𝑓(.r‘(𝐼 Mat 𝑅))𝑀)𝑗))))
272271com23 86 . . . . . . . . . . . . . 14 ((((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ uncurry 𝑓:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝑖𝐼) → (((𝑅 unitVec 𝐼)‘𝑖) = (𝑗𝐼 ↦ (𝑅 Σg (𝑘𝐼 ↦ ((𝑖uncurry 𝑓𝑘)(.r𝑅)(𝑘𝑀𝑗))))) → (𝑗𝐼 → (𝑖(1r‘(𝐼 Mat 𝑅))𝑗) = (𝑖(uncurry 𝑓(.r‘(𝐼 Mat 𝑅))𝑀)𝑗))))
273223, 225, 272ralrimd 3240 . . . . . . . . . . . . 13 ((((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ uncurry 𝑓:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝑖𝐼) → (((𝑅 unitVec 𝐼)‘𝑖) = (𝑗𝐼 ↦ (𝑅 Σg (𝑘𝐼 ↦ ((𝑖uncurry 𝑓𝑘)(.r𝑅)(𝑘𝑀𝑗))))) → ∀𝑗𝐼 (𝑖(1r‘(𝐼 Mat 𝑅))𝑗) = (𝑖(uncurry 𝑓(.r‘(𝐼 Mat 𝑅))𝑀)𝑗)))
274273ralimdva 3145 . . . . . . . . . . . 12 (((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ uncurry 𝑓:(𝐼 × 𝐼)⟶(Base‘𝑅)) → (∀𝑖𝐼 ((𝑅 unitVec 𝐼)‘𝑖) = (𝑗𝐼 ↦ (𝑅 Σg (𝑘𝐼 ↦ ((𝑖uncurry 𝑓𝑘)(.r𝑅)(𝑘𝑀𝑗))))) → ∀𝑖𝐼𝑗𝐼 (𝑖(1r‘(𝐼 Mat 𝑅))𝑗) = (𝑖(uncurry 𝑓(.r‘(𝐼 Mat 𝑅))𝑀)𝑗)))
2751, 2, 239mat1bas 22312 . . . . . . . . . . . . . . . . 17 ((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) → (1r‘(𝐼 Mat 𝑅)) ∈ (Base‘(𝐼 Mat 𝑅)))
27613, 14frlmfibas 21647 . . . . . . . . . . . . . . . . . . 19 ((𝑅 ∈ Ring ∧ (𝐼 × 𝐼) ∈ Fin) → ((Base‘𝑅) ↑m (𝐼 × 𝐼)) = (Base‘(𝑅 freeLMod (𝐼 × 𝐼))))
27712, 276sylan2 593 . . . . . . . . . . . . . . . . . 18 ((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) → ((Base‘𝑅) ↑m (𝐼 × 𝐼)) = (Base‘(𝑅 freeLMod (𝐼 × 𝐼))))
2781, 13matbas 22276 . . . . . . . . . . . . . . . . . . 19 ((𝐼 ∈ Fin ∧ 𝑅 ∈ Ring) → (Base‘(𝑅 freeLMod (𝐼 × 𝐼))) = (Base‘(𝐼 Mat 𝑅)))
279278ancoms 458 . . . . . . . . . . . . . . . . . 18 ((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) → (Base‘(𝑅 freeLMod (𝐼 × 𝐼))) = (Base‘(𝐼 Mat 𝑅)))
280277, 279eqtrd 2764 . . . . . . . . . . . . . . . . 17 ((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) → ((Base‘𝑅) ↑m (𝐼 × 𝐼)) = (Base‘(𝐼 Mat 𝑅)))
281275, 280eleqtrrd 2831 . . . . . . . . . . . . . . . 16 ((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) → (1r‘(𝐼 Mat 𝑅)) ∈ ((Base‘𝑅) ↑m (𝐼 × 𝐼)))
282 elmapfn 8815 . . . . . . . . . . . . . . . 16 ((1r‘(𝐼 Mat 𝑅)) ∈ ((Base‘𝑅) ↑m (𝐼 × 𝐼)) → (1r‘(𝐼 Mat 𝑅)) Fn (𝐼 × 𝐼))
283281, 282syl 17 . . . . . . . . . . . . . . 15 ((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) → (1r‘(𝐼 Mat 𝑅)) Fn (𝐼 × 𝐼))
284227, 4, 283syl2an 596 . . . . . . . . . . . . . 14 ((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) → (1r‘(𝐼 Mat 𝑅)) Fn (𝐼 × 𝐼))
285284adantr 480 . . . . . . . . . . . . 13 (((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ uncurry 𝑓:(𝐼 × 𝐼)⟶(Base‘𝑅)) → (1r‘(𝐼 Mat 𝑅)) Fn (𝐼 × 𝐼))
2861matring 22306 . . . . . . . . . . . . . . . . . 18 ((𝐼 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝐼 Mat 𝑅) ∈ Ring)
2874, 227, 286syl2anr 597 . . . . . . . . . . . . . . . . 17 ((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) → (𝐼 Mat 𝑅) ∈ Ring)
288287adantr 480 . . . . . . . . . . . . . . . 16 (((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ uncurry 𝑓:(𝐼 × 𝐼)⟶(Base‘𝑅)) → (𝐼 Mat 𝑅) ∈ Ring)
289 simplr 768 . . . . . . . . . . . . . . . 16 (((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ uncurry 𝑓:(𝐼 × 𝐼)⟶(Base‘𝑅)) → 𝑀 ∈ (Base‘(𝐼 Mat 𝑅)))
290 eqid 2729 . . . . . . . . . . . . . . . . 17 (.r‘(𝐼 Mat 𝑅)) = (.r‘(𝐼 Mat 𝑅))
2912, 290ringcl 20135 . . . . . . . . . . . . . . . 16 (((𝐼 Mat 𝑅) ∈ Ring ∧ uncurry 𝑓 ∈ (Base‘(𝐼 Mat 𝑅)) ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) → (uncurry 𝑓(.r‘(𝐼 Mat 𝑅))𝑀) ∈ (Base‘(𝐼 Mat 𝑅)))
292288, 221, 289, 291syl3anc 1373 . . . . . . . . . . . . . . 15 (((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ uncurry 𝑓:(𝐼 × 𝐼)⟶(Base‘𝑅)) → (uncurry 𝑓(.r‘(𝐼 Mat 𝑅))𝑀) ∈ (Base‘(𝐼 Mat 𝑅)))
293215adantr 480 . . . . . . . . . . . . . . 15 (((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ uncurry 𝑓:(𝐼 × 𝐼)⟶(Base‘𝑅)) → ((Base‘𝑅) ↑m (𝐼 × 𝐼)) = (Base‘(𝐼 Mat 𝑅)))
294292, 293eleqtrrd 2831 . . . . . . . . . . . . . 14 (((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ uncurry 𝑓:(𝐼 × 𝐼)⟶(Base‘𝑅)) → (uncurry 𝑓(.r‘(𝐼 Mat 𝑅))𝑀) ∈ ((Base‘𝑅) ↑m (𝐼 × 𝐼)))
295 elmapfn 8815 . . . . . . . . . . . . . 14 ((uncurry 𝑓(.r‘(𝐼 Mat 𝑅))𝑀) ∈ ((Base‘𝑅) ↑m (𝐼 × 𝐼)) → (uncurry 𝑓(.r‘(𝐼 Mat 𝑅))𝑀) Fn (𝐼 × 𝐼))
296294, 295syl 17 . . . . . . . . . . . . 13 (((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ uncurry 𝑓:(𝐼 × 𝐼)⟶(Base‘𝑅)) → (uncurry 𝑓(.r‘(𝐼 Mat 𝑅))𝑀) Fn (𝐼 × 𝐼))
297 eqfnov2 7499 . . . . . . . . . . . . 13 (((1r‘(𝐼 Mat 𝑅)) Fn (𝐼 × 𝐼) ∧ (uncurry 𝑓(.r‘(𝐼 Mat 𝑅))𝑀) Fn (𝐼 × 𝐼)) → ((1r‘(𝐼 Mat 𝑅)) = (uncurry 𝑓(.r‘(𝐼 Mat 𝑅))𝑀) ↔ ∀𝑖𝐼𝑗𝐼 (𝑖(1r‘(𝐼 Mat 𝑅))𝑗) = (𝑖(uncurry 𝑓(.r‘(𝐼 Mat 𝑅))𝑀)𝑗)))
298285, 296, 297syl2anc 584 . . . . . . . . . . . 12 (((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ uncurry 𝑓:(𝐼 × 𝐼)⟶(Base‘𝑅)) → ((1r‘(𝐼 Mat 𝑅)) = (uncurry 𝑓(.r‘(𝐼 Mat 𝑅))𝑀) ↔ ∀𝑖𝐼𝑗𝐼 (𝑖(1r‘(𝐼 Mat 𝑅))𝑗) = (𝑖(uncurry 𝑓(.r‘(𝐼 Mat 𝑅))𝑀)𝑗)))
299274, 298sylibrd 259 . . . . . . . . . . 11 (((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ uncurry 𝑓:(𝐼 × 𝐼)⟶(Base‘𝑅)) → (∀𝑖𝐼 ((𝑅 unitVec 𝐼)‘𝑖) = (𝑗𝐼 ↦ (𝑅 Σg (𝑘𝐼 ↦ ((𝑖uncurry 𝑓𝑘)(.r𝑅)(𝑘𝑀𝑗))))) → (1r‘(𝐼 Mat 𝑅)) = (uncurry 𝑓(.r‘(𝐼 Mat 𝑅))𝑀)))
300299imp 406 . . . . . . . . . 10 ((((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ uncurry 𝑓:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ ∀𝑖𝐼 ((𝑅 unitVec 𝐼)‘𝑖) = (𝑗𝐼 ↦ (𝑅 Σg (𝑘𝐼 ↦ ((𝑖uncurry 𝑓𝑘)(.r𝑅)(𝑘𝑀𝑗)))))) → (1r‘(𝐼 Mat 𝑅)) = (uncurry 𝑓(.r‘(𝐼 Mat 𝑅))𝑀))
301300eqcomd 2735 . . . . . . . . 9 ((((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ uncurry 𝑓:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ ∀𝑖𝐼 ((𝑅 unitVec 𝐼)‘𝑖) = (𝑗𝐼 ↦ (𝑅 Σg (𝑘𝐼 ↦ ((𝑖uncurry 𝑓𝑘)(.r𝑅)(𝑘𝑀𝑗)))))) → (uncurry 𝑓(.r‘(𝐼 Mat 𝑅))𝑀) = (1r‘(𝐼 Mat 𝑅)))
302 oveq1 7376 . . . . . . . . . . 11 (𝑛 = uncurry 𝑓 → (𝑛(.r‘(𝐼 Mat 𝑅))𝑀) = (uncurry 𝑓(.r‘(𝐼 Mat 𝑅))𝑀))
303302eqeq1d 2731 . . . . . . . . . 10 (𝑛 = uncurry 𝑓 → ((𝑛(.r‘(𝐼 Mat 𝑅))𝑀) = (1r‘(𝐼 Mat 𝑅)) ↔ (uncurry 𝑓(.r‘(𝐼 Mat 𝑅))𝑀) = (1r‘(𝐼 Mat 𝑅))))
304303rspcev 3585 . . . . . . . . 9 ((uncurry 𝑓 ∈ (Base‘(𝐼 Mat 𝑅)) ∧ (uncurry 𝑓(.r‘(𝐼 Mat 𝑅))𝑀) = (1r‘(𝐼 Mat 𝑅))) → ∃𝑛 ∈ (Base‘(𝐼 Mat 𝑅))(𝑛(.r‘(𝐼 Mat 𝑅))𝑀) = (1r‘(𝐼 Mat 𝑅)))
305222, 301, 304syl2anc 584 . . . . . . . 8 ((((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ uncurry 𝑓:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ ∀𝑖𝐼 ((𝑅 unitVec 𝐼)‘𝑖) = (𝑗𝐼 ↦ (𝑅 Σg (𝑘𝐼 ↦ ((𝑖uncurry 𝑓𝑘)(.r𝑅)(𝑘𝑀𝑗)))))) → ∃𝑛 ∈ (Base‘(𝐼 Mat 𝑅))(𝑛(.r‘(𝐼 Mat 𝑅))𝑀) = (1r‘(𝐼 Mat 𝑅)))
306305expl 457 . . . . . . 7 ((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) → ((uncurry 𝑓:(𝐼 × 𝐼)⟶(Base‘𝑅) ∧ ∀𝑖𝐼 ((𝑅 unitVec 𝐼)‘𝑖) = (𝑗𝐼 ↦ (𝑅 Σg (𝑘𝐼 ↦ ((𝑖uncurry 𝑓𝑘)(.r𝑅)(𝑘𝑀𝑗)))))) → ∃𝑛 ∈ (Base‘(𝐼 Mat 𝑅))(𝑛(.r‘(𝐼 Mat 𝑅))𝑀) = (1r‘(𝐼 Mat 𝑅))))
307209, 306sylani 604 . . . . . 6 ((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) → ((𝑓:𝐼⟶((Base‘𝑅) ↑m 𝐼) ∧ ∀𝑖𝐼 ((𝑅 unitVec 𝐼)‘𝑖) = (𝑗𝐼 ↦ (𝑅 Σg (𝑘𝐼 ↦ ((𝑖uncurry 𝑓𝑘)(.r𝑅)(𝑘𝑀𝑗)))))) → ∃𝑛 ∈ (Base‘(𝐼 Mat 𝑅))(𝑛(.r‘(𝐼 Mat 𝑅))𝑀) = (1r‘(𝐼 Mat 𝑅))))
308307exlimdv 1933 . . . . 5 ((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) → (∃𝑓(𝑓:𝐼⟶((Base‘𝑅) ↑m 𝐼) ∧ ∀𝑖𝐼 ((𝑅 unitVec 𝐼)‘𝑖) = (𝑗𝐼 ↦ (𝑅 Σg (𝑘𝐼 ↦ ((𝑖uncurry 𝑓𝑘)(.r𝑅)(𝑘𝑀𝑗)))))) → ∃𝑛 ∈ (Base‘(𝐼 Mat 𝑅))(𝑛(.r‘(𝐼 Mat 𝑅))𝑀) = (1r‘(𝐼 Mat 𝑅))))
309308imp 406 . . . 4 (((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ ∃𝑓(𝑓:𝐼⟶((Base‘𝑅) ↑m 𝐼) ∧ ∀𝑖𝐼 ((𝑅 unitVec 𝐼)‘𝑖) = (𝑗𝐼 ↦ (𝑅 Σg (𝑘𝐼 ↦ ((𝑖uncurry 𝑓𝑘)(.r𝑅)(𝑘𝑀𝑗))))))) → ∃𝑛 ∈ (Base‘(𝐼 Mat 𝑅))(𝑛(.r‘(𝐼 Mat 𝑅))𝑀) = (1r‘(𝐼 Mat 𝑅)))
310309adantlr 715 . . 3 ((((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ 𝐼 ≠ ∅) ∧ ∃𝑓(𝑓:𝐼⟶((Base‘𝑅) ↑m 𝐼) ∧ ∀𝑖𝐼 ((𝑅 unitVec 𝐼)‘𝑖) = (𝑗𝐼 ↦ (𝑅 Σg (𝑘𝐼 ↦ ((𝑖uncurry 𝑓𝑘)(.r𝑅)(𝑘𝑀𝑗))))))) → ∃𝑛 ∈ (Base‘(𝐼 Mat 𝑅))(𝑛(.r‘(𝐼 Mat 𝑅))𝑀) = (1r‘(𝐼 Mat 𝑅)))
311208, 310syldan 591 . 2 ((((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ 𝐼 ≠ ∅) ∧ curry 𝑀 LIndF (𝑅 freeLMod 𝐼)) → ∃𝑛 ∈ (Base‘(𝐼 Mat 𝑅))(𝑛(.r‘(𝐼 Mat 𝑅))𝑀) = (1r‘(𝐼 Mat 𝑅)))
3126simprbi 496 . . . 4 (𝑅 ∈ Field → 𝑅 ∈ CRing)
313 eqid 2729 . . . . . . . . . 10 (𝐼 maDet 𝑅) = (𝐼 maDet 𝑅)
314313, 1, 2, 14mdetcl 22459 . . . . . . . . 9 ((𝑅 ∈ CRing ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) → ((𝐼 maDet 𝑅)‘𝑀) ∈ (Base‘𝑅))
315313, 1, 2, 14mdetcl 22459 . . . . . . . . 9 ((𝑅 ∈ CRing ∧ 𝑛 ∈ (Base‘(𝐼 Mat 𝑅))) → ((𝐼 maDet 𝑅)‘𝑛) ∈ (Base‘𝑅))
316 eqid 2729 . . . . . . . . . 10 (∥r𝑅) = (∥r𝑅)
31714, 316, 121dvdsrmul 20249 . . . . . . . . 9 ((((𝐼 maDet 𝑅)‘𝑀) ∈ (Base‘𝑅) ∧ ((𝐼 maDet 𝑅)‘𝑛) ∈ (Base‘𝑅)) → ((𝐼 maDet 𝑅)‘𝑀)(∥r𝑅)(((𝐼 maDet 𝑅)‘𝑛)(.r𝑅)((𝐼 maDet 𝑅)‘𝑀)))
318314, 315, 317syl2an 596 . . . . . . . 8 (((𝑅 ∈ CRing ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ (𝑅 ∈ CRing ∧ 𝑛 ∈ (Base‘(𝐼 Mat 𝑅)))) → ((𝐼 maDet 𝑅)‘𝑀)(∥r𝑅)(((𝐼 maDet 𝑅)‘𝑛)(.r𝑅)((𝐼 maDet 𝑅)‘𝑀)))
319318anandis 678 . . . . . . 7 ((𝑅 ∈ CRing ∧ (𝑀 ∈ (Base‘(𝐼 Mat 𝑅)) ∧ 𝑛 ∈ (Base‘(𝐼 Mat 𝑅)))) → ((𝐼 maDet 𝑅)‘𝑀)(∥r𝑅)(((𝐼 maDet 𝑅)‘𝑛)(.r𝑅)((𝐼 maDet 𝑅)‘𝑀)))
320319anassrs 467 . . . . . 6 (((𝑅 ∈ CRing ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ 𝑛 ∈ (Base‘(𝐼 Mat 𝑅))) → ((𝐼 maDet 𝑅)‘𝑀)(∥r𝑅)(((𝐼 maDet 𝑅)‘𝑛)(.r𝑅)((𝐼 maDet 𝑅)‘𝑀)))
321320adantrr 717 . . . . 5 (((𝑅 ∈ CRing ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ (𝑛 ∈ (Base‘(𝐼 Mat 𝑅)) ∧ (𝑛(.r‘(𝐼 Mat 𝑅))𝑀) = (1r‘(𝐼 Mat 𝑅)))) → ((𝐼 maDet 𝑅)‘𝑀)(∥r𝑅)(((𝐼 maDet 𝑅)‘𝑛)(.r𝑅)((𝐼 maDet 𝑅)‘𝑀)))
322 fveq2 6840 . . . . . . . . 9 ((𝑛(.r‘(𝐼 Mat 𝑅))𝑀) = (1r‘(𝐼 Mat 𝑅)) → ((𝐼 maDet 𝑅)‘(𝑛(.r‘(𝐼 Mat 𝑅))𝑀)) = ((𝐼 maDet 𝑅)‘(1r‘(𝐼 Mat 𝑅))))
3231, 2, 313, 121, 290mdetmul 22486 . . . . . . . . . . . 12 ((𝑅 ∈ CRing ∧ 𝑛 ∈ (Base‘(𝐼 Mat 𝑅)) ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) → ((𝐼 maDet 𝑅)‘(𝑛(.r‘(𝐼 Mat 𝑅))𝑀)) = (((𝐼 maDet 𝑅)‘𝑛)(.r𝑅)((𝐼 maDet 𝑅)‘𝑀)))
3243233expa 1118 . . . . . . . . . . 11 (((𝑅 ∈ CRing ∧ 𝑛 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) → ((𝐼 maDet 𝑅)‘(𝑛(.r‘(𝐼 Mat 𝑅))𝑀)) = (((𝐼 maDet 𝑅)‘𝑛)(.r𝑅)((𝐼 maDet 𝑅)‘𝑀)))
325324an32s 652 . . . . . . . . . 10 (((𝑅 ∈ CRing ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ 𝑛 ∈ (Base‘(𝐼 Mat 𝑅))) → ((𝐼 maDet 𝑅)‘(𝑛(.r‘(𝐼 Mat 𝑅))𝑀)) = (((𝐼 maDet 𝑅)‘𝑛)(.r𝑅)((𝐼 maDet 𝑅)‘𝑀)))
326313, 1, 239, 233mdet1 22464 . . . . . . . . . . . 12 ((𝑅 ∈ CRing ∧ 𝐼 ∈ Fin) → ((𝐼 maDet 𝑅)‘(1r‘(𝐼 Mat 𝑅))) = (1r𝑅))
3274, 326sylan2 593 . . . . . . . . . . 11 ((𝑅 ∈ CRing ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) → ((𝐼 maDet 𝑅)‘(1r‘(𝐼 Mat 𝑅))) = (1r𝑅))
328327adantr 480 . . . . . . . . . 10 (((𝑅 ∈ CRing ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ 𝑛 ∈ (Base‘(𝐼 Mat 𝑅))) → ((𝐼 maDet 𝑅)‘(1r‘(𝐼 Mat 𝑅))) = (1r𝑅))
329325, 328eqeq12d 2745 . . . . . . . . 9 (((𝑅 ∈ CRing ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ 𝑛 ∈ (Base‘(𝐼 Mat 𝑅))) → (((𝐼 maDet 𝑅)‘(𝑛(.r‘(𝐼 Mat 𝑅))𝑀)) = ((𝐼 maDet 𝑅)‘(1r‘(𝐼 Mat 𝑅))) ↔ (((𝐼 maDet 𝑅)‘𝑛)(.r𝑅)((𝐼 maDet 𝑅)‘𝑀)) = (1r𝑅)))
330322, 329imbitrid 244 . . . . . . . 8 (((𝑅 ∈ CRing ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ 𝑛 ∈ (Base‘(𝐼 Mat 𝑅))) → ((𝑛(.r‘(𝐼 Mat 𝑅))𝑀) = (1r‘(𝐼 Mat 𝑅)) → (((𝐼 maDet 𝑅)‘𝑛)(.r𝑅)((𝐼 maDet 𝑅)‘𝑀)) = (1r𝑅)))
331330impr 454 . . . . . . 7 (((𝑅 ∈ CRing ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ (𝑛 ∈ (Base‘(𝐼 Mat 𝑅)) ∧ (𝑛(.r‘(𝐼 Mat 𝑅))𝑀) = (1r‘(𝐼 Mat 𝑅)))) → (((𝐼 maDet 𝑅)‘𝑛)(.r𝑅)((𝐼 maDet 𝑅)‘𝑀)) = (1r𝑅))
332331breq2d 5114 . . . . . 6 (((𝑅 ∈ CRing ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ (𝑛 ∈ (Base‘(𝐼 Mat 𝑅)) ∧ (𝑛(.r‘(𝐼 Mat 𝑅))𝑀) = (1r‘(𝐼 Mat 𝑅)))) → (((𝐼 maDet 𝑅)‘𝑀)(∥r𝑅)(((𝐼 maDet 𝑅)‘𝑛)(.r𝑅)((𝐼 maDet 𝑅)‘𝑀)) ↔ ((𝐼 maDet 𝑅)‘𝑀)(∥r𝑅)(1r𝑅)))
333 eqid 2729 . . . . . . . 8 (Unit‘𝑅) = (Unit‘𝑅)
334333, 233, 316crngunit 20263 . . . . . . 7 (𝑅 ∈ CRing → (((𝐼 maDet 𝑅)‘𝑀) ∈ (Unit‘𝑅) ↔ ((𝐼 maDet 𝑅)‘𝑀)(∥r𝑅)(1r𝑅)))
335334ad2antrr 726 . . . . . 6 (((𝑅 ∈ CRing ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ (𝑛 ∈ (Base‘(𝐼 Mat 𝑅)) ∧ (𝑛(.r‘(𝐼 Mat 𝑅))𝑀) = (1r‘(𝐼 Mat 𝑅)))) → (((𝐼 maDet 𝑅)‘𝑀) ∈ (Unit‘𝑅) ↔ ((𝐼 maDet 𝑅)‘𝑀)(∥r𝑅)(1r𝑅)))
336332, 335bitr4d 282 . . . . 5 (((𝑅 ∈ CRing ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ (𝑛 ∈ (Base‘(𝐼 Mat 𝑅)) ∧ (𝑛(.r‘(𝐼 Mat 𝑅))𝑀) = (1r‘(𝐼 Mat 𝑅)))) → (((𝐼 maDet 𝑅)‘𝑀)(∥r𝑅)(((𝐼 maDet 𝑅)‘𝑛)(.r𝑅)((𝐼 maDet 𝑅)‘𝑀)) ↔ ((𝐼 maDet 𝑅)‘𝑀) ∈ (Unit‘𝑅)))
337321, 336mpbid 232 . . . 4 (((𝑅 ∈ CRing ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ (𝑛 ∈ (Base‘(𝐼 Mat 𝑅)) ∧ (𝑛(.r‘(𝐼 Mat 𝑅))𝑀) = (1r‘(𝐼 Mat 𝑅)))) → ((𝐼 maDet 𝑅)‘𝑀) ∈ (Unit‘𝑅))
338312, 337sylanl1 680 . . 3 (((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ (𝑛 ∈ (Base‘(𝐼 Mat 𝑅)) ∧ (𝑛(.r‘(𝐼 Mat 𝑅))𝑀) = (1r‘(𝐼 Mat 𝑅)))) → ((𝐼 maDet 𝑅)‘𝑀) ∈ (Unit‘𝑅))
339338ad4ant14 752 . 2 (((((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ 𝐼 ≠ ∅) ∧ curry 𝑀 LIndF (𝑅 freeLMod 𝐼)) ∧ (𝑛 ∈ (Base‘(𝐼 Mat 𝑅)) ∧ (𝑛(.r‘(𝐼 Mat 𝑅))𝑀) = (1r‘(𝐼 Mat 𝑅)))) → ((𝐼 maDet 𝑅)‘𝑀) ∈ (Unit‘𝑅))
340311, 339rexlimddv 3140 1 ((((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ 𝐼 ≠ ∅) ∧ curry 𝑀 LIndF (𝑅 freeLMod 𝐼)) → ((𝐼 maDet 𝑅)‘𝑀) ∈ (Unit‘𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wex 1779  wcel 2109  wne 2925  wral 3044  wrex 3053  Vcvv 3444  cdif 3908  c0 4292  ifcif 4484  {csn 4585  cotp 4593   class class class wbr 5102  cmpt 5183   × cxp 5629  dom cdm 5631  ran crn 5632  cima 5634   Fn wfn 6494  wf 6495  1-1wf1 6496  1-1-ontowf1o 6498  cfv 6499  (class class class)co 7369  f cof 7631  curry ccur 8221  uncurry cunc 8222  m cmap 8776  cen 8892  Fincfn 8895   finSupp cfsupp 9288  Basecbs 17155  .rcmulr 17197  Scalarcsca 17199   ·𝑠 cvsca 17200  0gc0g 17378   Σg cgsu 17379  1rcur 20066  Ringcrg 20118  CRingccrg 20119  rcdsr 20239  Unitcui 20240  NzRingcnzr 20397  DivRingcdr 20614  Fieldcfield 20615  LModclmod 20742  LSpanclspn 20853  LBasisclbs 20957   freeLMod cfrlm 21631   unitVec cuvc 21667   LIndF clindf 21689  LIndSclinds 21690   maMul cmmul 22253   Mat cmat 22270   maDet cmdat 22447
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-addf 11123  ax-mulf 11124
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-xor 1512  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-ot 4594  df-uni 4868  df-int 4907  df-iun 4953  df-iin 4954  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-of 7633  df-om 7823  df-1st 7947  df-2nd 7948  df-supp 8117  df-tpos 8182  df-cur 8223  df-unc 8224  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-er 8648  df-map 8778  df-pm 8779  df-ixp 8848  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-fsupp 9289  df-sup 9369  df-oi 9439  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-n0 12419  df-xnn0 12492  df-z 12506  df-dec 12626  df-uz 12770  df-rp 12928  df-fz 13445  df-fzo 13592  df-seq 13943  df-exp 14003  df-hash 14272  df-word 14455  df-lsw 14504  df-concat 14512  df-s1 14537  df-substr 14582  df-pfx 14612  df-splice 14691  df-reverse 14700  df-s2 14790  df-struct 17093  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-ress 17177  df-plusg 17209  df-mulr 17210  df-starv 17211  df-sca 17212  df-vsca 17213  df-ip 17214  df-tset 17215  df-ple 17216  df-ds 17218  df-unif 17219  df-hom 17220  df-cco 17221  df-0g 17380  df-gsum 17381  df-prds 17386  df-pws 17388  df-mre 17523  df-mrc 17524  df-mri 17525  df-acs 17526  df-mgm 18543  df-sgrp 18622  df-mnd 18638  df-mhm 18686  df-submnd 18687  df-efmnd 18772  df-grp 18844  df-minusg 18845  df-sbg 18846  df-mulg 18976  df-subg 19031  df-ghm 19121  df-gim 19167  df-cntz 19225  df-oppg 19254  df-symg 19276  df-pmtr 19348  df-psgn 19397  df-evpm 19398  df-cmn 19688  df-abl 19689  df-mgp 20026  df-rng 20038  df-ur 20067  df-srg 20072  df-ring 20120  df-cring 20121  df-oppr 20222  df-dvdsr 20242  df-unit 20243  df-invr 20273  df-dvr 20286  df-rhm 20357  df-nzr 20398  df-subrng 20431  df-subrg 20455  df-drng 20616  df-field 20617  df-lmod 20744  df-lss 20814  df-lsp 20854  df-lmhm 20905  df-lbs 20958  df-lvec 20986  df-sra 21056  df-rgmod 21057  df-cnfld 21241  df-zring 21333  df-zrh 21389  df-dsmm 21617  df-frlm 21632  df-uvc 21668  df-lindf 21691  df-linds 21692  df-mamu 22254  df-mat 22271  df-mdet 22448
This theorem is referenced by:  matunitlindf  37585
  Copyright terms: Public domain W3C validator