Step | Hyp | Ref
| Expression |
1 | | eqid 2739 |
. . . . . . 7
⊢ (𝐼 Mat 𝑅) = (𝐼 Mat 𝑅) |
2 | | eqid 2739 |
. . . . . . 7
⊢
(Base‘(𝐼 Mat
𝑅)) = (Base‘(𝐼 Mat 𝑅)) |
3 | 1, 2 | matrcl 21568 |
. . . . . 6
⊢ (𝑀 ∈ (Base‘(𝐼 Mat 𝑅)) → (𝐼 ∈ Fin ∧ 𝑅 ∈ V)) |
4 | 3 | simpld 495 |
. . . . 5
⊢ (𝑀 ∈ (Base‘(𝐼 Mat 𝑅)) → 𝐼 ∈ Fin) |
5 | 4 | ad3antlr 728 |
. . . 4
⊢ ((((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ 𝐼 ≠ ∅) ∧ curry 𝑀 LIndF (𝑅 freeLMod 𝐼)) → 𝐼 ∈ Fin) |
6 | | isfld 20009 |
. . . . . . 7
⊢ (𝑅 ∈ Field ↔ (𝑅 ∈ DivRing ∧ 𝑅 ∈ CRing)) |
7 | 6 | simplbi 498 |
. . . . . 6
⊢ (𝑅 ∈ Field → 𝑅 ∈
DivRing) |
8 | 7 | anim1i 615 |
. . . . 5
⊢ ((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) → (𝑅 ∈ DivRing ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅)))) |
9 | 4 | ad2antrl 725 |
. . . . . . . . . . . 12
⊢ ((𝑅 ∈ DivRing ∧ (𝑀 ∈ (Base‘(𝐼 Mat 𝑅)) ∧ 𝐼 ≠ ∅)) → 𝐼 ∈ Fin) |
10 | | simpr 485 |
. . . . . . . . . . . . . . 15
⊢ ((𝑅 ∈ DivRing ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) → 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) |
11 | | xpfi 9094 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝐼 ∈ Fin ∧ 𝐼 ∈ Fin) → (𝐼 × 𝐼) ∈ Fin) |
12 | 11 | anidms 567 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝐼 ∈ Fin → (𝐼 × 𝐼) ∈ Fin) |
13 | | eqid 2739 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑅 freeLMod (𝐼 × 𝐼)) = (𝑅 freeLMod (𝐼 × 𝐼)) |
14 | | eqid 2739 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(Base‘𝑅) =
(Base‘𝑅) |
15 | 13, 14 | frlmfibas 20978 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑅 ∈ DivRing ∧ (𝐼 × 𝐼) ∈ Fin) → ((Base‘𝑅) ↑m (𝐼 × 𝐼)) = (Base‘(𝑅 freeLMod (𝐼 × 𝐼)))) |
16 | 12, 15 | sylan2 593 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) →
((Base‘𝑅)
↑m (𝐼
× 𝐼)) =
(Base‘(𝑅 freeLMod
(𝐼 × 𝐼)))) |
17 | 1, 13 | matbas 21569 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐼 ∈ Fin ∧ 𝑅 ∈ DivRing) →
(Base‘(𝑅 freeLMod
(𝐼 × 𝐼))) = (Base‘(𝐼 Mat 𝑅))) |
18 | 17 | ancoms 459 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) →
(Base‘(𝑅 freeLMod
(𝐼 × 𝐼))) = (Base‘(𝐼 Mat 𝑅))) |
19 | 16, 18 | eqtrd 2779 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) →
((Base‘𝑅)
↑m (𝐼
× 𝐼)) =
(Base‘(𝐼 Mat 𝑅))) |
20 | 19 | eleq2d 2825 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) → (𝑀 ∈ ((Base‘𝑅) ↑m (𝐼 × 𝐼)) ↔ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅)))) |
21 | 4, 20 | sylan2 593 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑅 ∈ DivRing ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) → (𝑀 ∈ ((Base‘𝑅) ↑m (𝐼 × 𝐼)) ↔ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅)))) |
22 | | fvex 6796 |
. . . . . . . . . . . . . . . . . 18
⊢
(Base‘𝑅)
∈ V |
23 | 4, 4, 11 | syl2anc 584 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑀 ∈ (Base‘(𝐼 Mat 𝑅)) → (𝐼 × 𝐼) ∈ Fin) |
24 | | elmapg 8637 |
. . . . . . . . . . . . . . . . . 18
⊢
(((Base‘𝑅)
∈ V ∧ (𝐼 ×
𝐼) ∈ Fin) →
(𝑀 ∈
((Base‘𝑅)
↑m (𝐼
× 𝐼)) ↔ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅))) |
25 | 22, 23, 24 | sylancr 587 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑀 ∈ (Base‘(𝐼 Mat 𝑅)) → (𝑀 ∈ ((Base‘𝑅) ↑m (𝐼 × 𝐼)) ↔ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅))) |
26 | 25 | adantl 482 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑅 ∈ DivRing ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) → (𝑀 ∈ ((Base‘𝑅) ↑m (𝐼 × 𝐼)) ↔ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅))) |
27 | 21, 26 | bitr3d 280 |
. . . . . . . . . . . . . . 15
⊢ ((𝑅 ∈ DivRing ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) → (𝑀 ∈ (Base‘(𝐼 Mat 𝑅)) ↔ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅))) |
28 | 10, 27 | mpbid 231 |
. . . . . . . . . . . . . 14
⊢ ((𝑅 ∈ DivRing ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) → 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) |
29 | 28 | adantrr 714 |
. . . . . . . . . . . . 13
⊢ ((𝑅 ∈ DivRing ∧ (𝑀 ∈ (Base‘(𝐼 Mat 𝑅)) ∧ 𝐼 ≠ ∅)) → 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) |
30 | | eldifsn 4721 |
. . . . . . . . . . . . . . . 16
⊢ (𝐼 ∈ (Fin ∖ {∅})
↔ (𝐼 ∈ Fin ∧
𝐼 ≠
∅)) |
31 | 30 | biimpri 227 |
. . . . . . . . . . . . . . 15
⊢ ((𝐼 ∈ Fin ∧ 𝐼 ≠ ∅) → 𝐼 ∈ (Fin ∖
{∅})) |
32 | 4, 31 | sylan 580 |
. . . . . . . . . . . . . 14
⊢ ((𝑀 ∈ (Base‘(𝐼 Mat 𝑅)) ∧ 𝐼 ≠ ∅) → 𝐼 ∈ (Fin ∖
{∅})) |
33 | 32 | adantl 482 |
. . . . . . . . . . . . 13
⊢ ((𝑅 ∈ DivRing ∧ (𝑀 ∈ (Base‘(𝐼 Mat 𝑅)) ∧ 𝐼 ≠ ∅)) → 𝐼 ∈ (Fin ∖
{∅})) |
34 | | curf 35764 |
. . . . . . . . . . . . . 14
⊢ ((𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅) ∧ 𝐼 ∈ (Fin ∖ {∅}) ∧
(Base‘𝑅) ∈ V)
→ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) |
35 | 22, 34 | mp3an3 1449 |
. . . . . . . . . . . . 13
⊢ ((𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅) ∧ 𝐼 ∈ (Fin ∖ {∅})) →
curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) |
36 | 29, 33, 35 | syl2anc 584 |
. . . . . . . . . . . 12
⊢ ((𝑅 ∈ DivRing ∧ (𝑀 ∈ (Base‘(𝐼 Mat 𝑅)) ∧ 𝐼 ≠ ∅)) → curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) |
37 | 9, 36 | jca 512 |
. . . . . . . . . . 11
⊢ ((𝑅 ∈ DivRing ∧ (𝑀 ∈ (Base‘(𝐼 Mat 𝑅)) ∧ 𝐼 ≠ ∅)) → (𝐼 ∈ Fin ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼))) |
38 | 37 | ex 413 |
. . . . . . . . . 10
⊢ (𝑅 ∈ DivRing → ((𝑀 ∈ (Base‘(𝐼 Mat 𝑅)) ∧ 𝐼 ≠ ∅) → (𝐼 ∈ Fin ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)))) |
39 | 38 | imdistani 569 |
. . . . . . . . 9
⊢ ((𝑅 ∈ DivRing ∧ (𝑀 ∈ (Base‘(𝐼 Mat 𝑅)) ∧ 𝐼 ≠ ∅)) → (𝑅 ∈ DivRing ∧ (𝐼 ∈ Fin ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)))) |
40 | 39 | anassrs 468 |
. . . . . . . 8
⊢ (((𝑅 ∈ DivRing ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ 𝐼 ≠ ∅) → (𝑅 ∈ DivRing ∧ (𝐼 ∈ Fin ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)))) |
41 | | anass 469 |
. . . . . . . 8
⊢ (((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) ↔ (𝑅 ∈ DivRing ∧ (𝐼 ∈ Fin ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)))) |
42 | 40, 41 | sylibr 233 |
. . . . . . 7
⊢ (((𝑅 ∈ DivRing ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ 𝐼 ≠ ∅) → ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼))) |
43 | | drngring 20007 |
. . . . . . . . . . . . 13
⊢ (𝑅 ∈ DivRing → 𝑅 ∈ Ring) |
44 | | eqid 2739 |
. . . . . . . . . . . . . 14
⊢ (𝑅 unitVec 𝐼) = (𝑅 unitVec 𝐼) |
45 | | eqid 2739 |
. . . . . . . . . . . . . 14
⊢ (𝑅 freeLMod 𝐼) = (𝑅 freeLMod 𝐼) |
46 | | eqid 2739 |
. . . . . . . . . . . . . 14
⊢
(Base‘(𝑅
freeLMod 𝐼)) =
(Base‘(𝑅 freeLMod
𝐼)) |
47 | 44, 45, 46 | uvcff 21007 |
. . . . . . . . . . . . 13
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) → (𝑅 unitVec 𝐼):𝐼⟶(Base‘(𝑅 freeLMod 𝐼))) |
48 | 43, 47 | sylan 580 |
. . . . . . . . . . . 12
⊢ ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) → (𝑅 unitVec 𝐼):𝐼⟶(Base‘(𝑅 freeLMod 𝐼))) |
49 | 48 | ffvelrnda 6970 |
. . . . . . . . . . 11
⊢ (((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) ∧ 𝑖 ∈ 𝐼) → ((𝑅 unitVec 𝐼)‘𝑖) ∈ (Base‘(𝑅 freeLMod 𝐼))) |
50 | 49 | ad4ant14 749 |
. . . . . . . . . 10
⊢
(((((𝑅 ∈
DivRing ∧ 𝐼 ∈ Fin)
∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) ∧ curry 𝑀 LIndF (𝑅 freeLMod 𝐼)) ∧ 𝑖 ∈ 𝐼) → ((𝑅 unitVec 𝐼)‘𝑖) ∈ (Base‘(𝑅 freeLMod 𝐼))) |
51 | | ffn 6609 |
. . . . . . . . . . . . . . . 16
⊢ (curry
𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼) → curry 𝑀 Fn 𝐼) |
52 | | fnima 6572 |
. . . . . . . . . . . . . . . 16
⊢ (curry
𝑀 Fn 𝐼 → (curry 𝑀 “ 𝐼) = ran curry 𝑀) |
53 | 51, 52 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (curry
𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼) → (curry 𝑀 “ 𝐼) = ran curry 𝑀) |
54 | 53 | adantl 482 |
. . . . . . . . . . . . . 14
⊢ (((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) → (curry 𝑀 “ 𝐼) = ran curry 𝑀) |
55 | 54 | fveq2d 6787 |
. . . . . . . . . . . . 13
⊢ (((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) → ((LSpan‘(𝑅 freeLMod 𝐼))‘(curry 𝑀 “ 𝐼)) = ((LSpan‘(𝑅 freeLMod 𝐼))‘ran curry 𝑀)) |
56 | 55 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) ∧ curry 𝑀 LIndF (𝑅 freeLMod 𝐼)) → ((LSpan‘(𝑅 freeLMod 𝐼))‘(curry 𝑀 “ 𝐼)) = ((LSpan‘(𝑅 freeLMod 𝐼))‘ran curry 𝑀)) |
57 | | simplll 772 |
. . . . . . . . . . . . . 14
⊢ ((((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) ∧ curry 𝑀 LIndF (𝑅 freeLMod 𝐼)) → 𝑅 ∈ DivRing) |
58 | | simpllr 773 |
. . . . . . . . . . . . . 14
⊢ ((((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) ∧ curry 𝑀 LIndF (𝑅 freeLMod 𝐼)) → 𝐼 ∈ Fin) |
59 | 45 | frlmlmod 20965 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) → (𝑅 freeLMod 𝐼) ∈ LMod) |
60 | 43, 59 | sylan 580 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) → (𝑅 freeLMod 𝐼) ∈ LMod) |
61 | 60 | adantr 481 |
. . . . . . . . . . . . . . 15
⊢ (((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) → (𝑅 freeLMod 𝐼) ∈ LMod) |
62 | | lindfrn 21037 |
. . . . . . . . . . . . . . 15
⊢ (((𝑅 freeLMod 𝐼) ∈ LMod ∧ curry 𝑀 LIndF (𝑅 freeLMod 𝐼)) → ran curry 𝑀 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) |
63 | 61, 62 | sylan 580 |
. . . . . . . . . . . . . 14
⊢ ((((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) ∧ curry 𝑀 LIndF (𝑅 freeLMod 𝐼)) → ran curry 𝑀 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) |
64 | 45 | frlmsca 20969 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) → 𝑅 = (Scalar‘(𝑅 freeLMod 𝐼))) |
65 | | drngnzr 20542 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑅 ∈ DivRing → 𝑅 ∈ NzRing) |
66 | 65 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) → 𝑅 ∈ NzRing) |
67 | 64, 66 | eqeltrrd 2841 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) →
(Scalar‘(𝑅 freeLMod
𝐼)) ∈
NzRing) |
68 | 60, 67 | jca 512 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) → ((𝑅 freeLMod 𝐼) ∈ LMod ∧ (Scalar‘(𝑅 freeLMod 𝐼)) ∈ NzRing)) |
69 | | eqid 2739 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(Scalar‘(𝑅
freeLMod 𝐼)) =
(Scalar‘(𝑅 freeLMod
𝐼)) |
70 | 46, 69 | lindff1 21036 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝑅 freeLMod 𝐼) ∈ LMod ∧ (Scalar‘(𝑅 freeLMod 𝐼)) ∈ NzRing ∧ curry 𝑀 LIndF (𝑅 freeLMod 𝐼)) → curry 𝑀:dom curry 𝑀–1-1→(Base‘(𝑅 freeLMod 𝐼))) |
71 | 70 | 3expa 1117 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝑅 freeLMod 𝐼) ∈ LMod ∧ (Scalar‘(𝑅 freeLMod 𝐼)) ∈ NzRing) ∧ curry 𝑀 LIndF (𝑅 freeLMod 𝐼)) → curry 𝑀:dom curry 𝑀–1-1→(Base‘(𝑅 freeLMod 𝐼))) |
72 | 68, 71 | sylan 580 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) ∧ curry 𝑀 LIndF (𝑅 freeLMod 𝐼)) → curry 𝑀:dom curry 𝑀–1-1→(Base‘(𝑅 freeLMod 𝐼))) |
73 | | fdm 6618 |
. . . . . . . . . . . . . . . . . . 19
⊢ (curry
𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼) → dom curry 𝑀 = 𝐼) |
74 | | f1eq2 6675 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (dom
curry 𝑀 = 𝐼 → (curry 𝑀:dom curry 𝑀–1-1→(Base‘(𝑅 freeLMod 𝐼)) ↔ curry 𝑀:𝐼–1-1→(Base‘(𝑅 freeLMod 𝐼)))) |
75 | 74 | biimpac 479 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((curry
𝑀:dom curry 𝑀–1-1→(Base‘(𝑅 freeLMod 𝐼)) ∧ dom curry 𝑀 = 𝐼) → curry 𝑀:𝐼–1-1→(Base‘(𝑅 freeLMod 𝐼))) |
76 | 72, 73, 75 | syl2an 596 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) ∧ curry 𝑀 LIndF (𝑅 freeLMod 𝐼)) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) → curry 𝑀:𝐼–1-1→(Base‘(𝑅 freeLMod 𝐼))) |
77 | 76 | an32s 649 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) ∧ curry 𝑀 LIndF (𝑅 freeLMod 𝐼)) → curry 𝑀:𝐼–1-1→(Base‘(𝑅 freeLMod 𝐼))) |
78 | | f1f1orn 6736 |
. . . . . . . . . . . . . . . . 17
⊢ (curry
𝑀:𝐼–1-1→(Base‘(𝑅 freeLMod 𝐼)) → curry 𝑀:𝐼–1-1-onto→ran
curry 𝑀) |
79 | 77, 78 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) ∧ curry 𝑀 LIndF (𝑅 freeLMod 𝐼)) → curry 𝑀:𝐼–1-1-onto→ran
curry 𝑀) |
80 | | f1oeng 8768 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐼 ∈ Fin ∧ curry 𝑀:𝐼–1-1-onto→ran
curry 𝑀) → 𝐼 ≈ ran curry 𝑀) |
81 | 58, 79, 80 | syl2anc 584 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) ∧ curry 𝑀 LIndF (𝑅 freeLMod 𝐼)) → 𝐼 ≈ ran curry 𝑀) |
82 | 81 | ensymd 8800 |
. . . . . . . . . . . . . 14
⊢ ((((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) ∧ curry 𝑀 LIndF (𝑅 freeLMod 𝐼)) → ran curry 𝑀 ≈ 𝐼) |
83 | | lindsenlbs 35781 |
. . . . . . . . . . . . . 14
⊢ (((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ ran curry
𝑀 ∈
(LIndS‘(𝑅 freeLMod
𝐼))) ∧ ran curry 𝑀 ≈ 𝐼) → ran curry 𝑀 ∈ (LBasis‘(𝑅 freeLMod 𝐼))) |
84 | 57, 58, 63, 82, 83 | syl31anc 1372 |
. . . . . . . . . . . . 13
⊢ ((((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) ∧ curry 𝑀 LIndF (𝑅 freeLMod 𝐼)) → ran curry 𝑀 ∈ (LBasis‘(𝑅 freeLMod 𝐼))) |
85 | | eqid 2739 |
. . . . . . . . . . . . . 14
⊢
(LBasis‘(𝑅
freeLMod 𝐼)) =
(LBasis‘(𝑅 freeLMod
𝐼)) |
86 | | eqid 2739 |
. . . . . . . . . . . . . 14
⊢
(LSpan‘(𝑅
freeLMod 𝐼)) =
(LSpan‘(𝑅 freeLMod
𝐼)) |
87 | 46, 85, 86 | lbssp 20350 |
. . . . . . . . . . . . 13
⊢ (ran
curry 𝑀 ∈
(LBasis‘(𝑅 freeLMod
𝐼)) →
((LSpan‘(𝑅 freeLMod
𝐼))‘ran curry 𝑀) = (Base‘(𝑅 freeLMod 𝐼))) |
88 | 84, 87 | syl 17 |
. . . . . . . . . . . 12
⊢ ((((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) ∧ curry 𝑀 LIndF (𝑅 freeLMod 𝐼)) → ((LSpan‘(𝑅 freeLMod 𝐼))‘ran curry 𝑀) = (Base‘(𝑅 freeLMod 𝐼))) |
89 | 56, 88 | eqtrd 2779 |
. . . . . . . . . . 11
⊢ ((((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) ∧ curry 𝑀 LIndF (𝑅 freeLMod 𝐼)) → ((LSpan‘(𝑅 freeLMod 𝐼))‘(curry 𝑀 “ 𝐼)) = (Base‘(𝑅 freeLMod 𝐼))) |
90 | 89 | adantr 481 |
. . . . . . . . . 10
⊢
(((((𝑅 ∈
DivRing ∧ 𝐼 ∈ Fin)
∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) ∧ curry 𝑀 LIndF (𝑅 freeLMod 𝐼)) ∧ 𝑖 ∈ 𝐼) → ((LSpan‘(𝑅 freeLMod 𝐼))‘(curry 𝑀 “ 𝐼)) = (Base‘(𝑅 freeLMod 𝐼))) |
91 | 50, 90 | eleqtrrd 2843 |
. . . . . . . . 9
⊢
(((((𝑅 ∈
DivRing ∧ 𝐼 ∈ Fin)
∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) ∧ curry 𝑀 LIndF (𝑅 freeLMod 𝐼)) ∧ 𝑖 ∈ 𝐼) → ((𝑅 unitVec 𝐼)‘𝑖) ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘(curry 𝑀 “ 𝐼))) |
92 | | eqid 2739 |
. . . . . . . . . . . . 13
⊢
(Base‘(Scalar‘(𝑅 freeLMod 𝐼))) = (Base‘(Scalar‘(𝑅 freeLMod 𝐼))) |
93 | | eqid 2739 |
. . . . . . . . . . . . 13
⊢
(0g‘(Scalar‘(𝑅 freeLMod 𝐼))) =
(0g‘(Scalar‘(𝑅 freeLMod 𝐼))) |
94 | | eqid 2739 |
. . . . . . . . . . . . 13
⊢ (
·𝑠 ‘(𝑅 freeLMod 𝐼)) = ( ·𝑠
‘(𝑅 freeLMod 𝐼)) |
95 | 45, 14 | frlmfibas 20978 |
. . . . . . . . . . . . . . 15
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) →
((Base‘𝑅)
↑m 𝐼) =
(Base‘(𝑅 freeLMod
𝐼))) |
96 | 95 | feq3d 6596 |
. . . . . . . . . . . . . 14
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) → (curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼) ↔ curry 𝑀:𝐼⟶(Base‘(𝑅 freeLMod 𝐼)))) |
97 | 96 | biimpa 477 |
. . . . . . . . . . . . 13
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) → curry 𝑀:𝐼⟶(Base‘(𝑅 freeLMod 𝐼))) |
98 | 59 | adantr 481 |
. . . . . . . . . . . . 13
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) → (𝑅 freeLMod 𝐼) ∈ LMod) |
99 | | simplr 766 |
. . . . . . . . . . . . 13
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) → 𝐼 ∈ Fin) |
100 | 86, 46, 92, 69, 93, 94, 97, 98, 99 | elfilspd 21019 |
. . . . . . . . . . . 12
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) → (((𝑅 unitVec 𝐼)‘𝑖) ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘(curry 𝑀 “ 𝐼)) ↔ ∃𝑛 ∈ ((Base‘(Scalar‘(𝑅 freeLMod 𝐼))) ↑m 𝐼)((𝑅 unitVec 𝐼)‘𝑖) = ((𝑅 freeLMod 𝐼) Σg (𝑛 ∘f (
·𝑠 ‘(𝑅 freeLMod 𝐼))curry 𝑀)))) |
101 | 45 | frlmsca 20969 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) → 𝑅 = (Scalar‘(𝑅 freeLMod 𝐼))) |
102 | 101 | fveq2d 6787 |
. . . . . . . . . . . . . . 15
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) →
(Base‘𝑅) =
(Base‘(Scalar‘(𝑅 freeLMod 𝐼)))) |
103 | 102 | oveq1d 7299 |
. . . . . . . . . . . . . 14
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) →
((Base‘𝑅)
↑m 𝐼) =
((Base‘(Scalar‘(𝑅 freeLMod 𝐼))) ↑m 𝐼)) |
104 | 103 | adantr 481 |
. . . . . . . . . . . . 13
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) → ((Base‘𝑅) ↑m 𝐼) = ((Base‘(Scalar‘(𝑅 freeLMod 𝐼))) ↑m 𝐼)) |
105 | | elmapi 8646 |
. . . . . . . . . . . . . . 15
⊢ (𝑛 ∈ ((Base‘𝑅) ↑m 𝐼) → 𝑛:𝐼⟶(Base‘𝑅)) |
106 | | ffn 6609 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑛:𝐼⟶(Base‘𝑅) → 𝑛 Fn 𝐼) |
107 | 106 | adantl 482 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) ∧ 𝑛:𝐼⟶(Base‘𝑅)) → 𝑛 Fn 𝐼) |
108 | 51 | ad2antlr 724 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) ∧ 𝑛:𝐼⟶(Base‘𝑅)) → curry 𝑀 Fn 𝐼) |
109 | | simpllr 773 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) ∧ 𝑛:𝐼⟶(Base‘𝑅)) → 𝐼 ∈ Fin) |
110 | | inidm 4153 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝐼 ∩ 𝐼) = 𝐼 |
111 | | eqidd 2740 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝑅 ∈ Ring
∧ 𝐼 ∈ Fin) ∧
curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) ∧ 𝑛:𝐼⟶(Base‘𝑅)) ∧ 𝑘 ∈ 𝐼) → (𝑛‘𝑘) = (𝑛‘𝑘)) |
112 | | eqidd 2740 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝑅 ∈ Ring
∧ 𝐼 ∈ Fin) ∧
curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) ∧ 𝑛:𝐼⟶(Base‘𝑅)) ∧ 𝑘 ∈ 𝐼) → (curry 𝑀‘𝑘) = (curry 𝑀‘𝑘)) |
113 | 107, 108,
109, 109, 110, 111, 112 | offval 7551 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) ∧ 𝑛:𝐼⟶(Base‘𝑅)) → (𝑛 ∘f (
·𝑠 ‘(𝑅 freeLMod 𝐼))curry 𝑀) = (𝑘 ∈ 𝐼 ↦ ((𝑛‘𝑘)( ·𝑠
‘(𝑅 freeLMod 𝐼))(curry 𝑀‘𝑘)))) |
114 | | simp-4r 781 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(((((𝑅 ∈ Ring
∧ 𝐼 ∈ Fin) ∧
curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) ∧ 𝑛:𝐼⟶(Base‘𝑅)) ∧ 𝑘 ∈ 𝐼) → 𝐼 ∈ Fin) |
115 | | ffvelrn 6968 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑛:𝐼⟶(Base‘𝑅) ∧ 𝑘 ∈ 𝐼) → (𝑛‘𝑘) ∈ (Base‘𝑅)) |
116 | 115 | adantll 711 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(((((𝑅 ∈ Ring
∧ 𝐼 ∈ Fin) ∧
curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) ∧ 𝑛:𝐼⟶(Base‘𝑅)) ∧ 𝑘 ∈ 𝐼) → (𝑛‘𝑘) ∈ (Base‘𝑅)) |
117 | | ffvelrn 6968 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((curry
𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼) ∧ 𝑘 ∈ 𝐼) → (curry 𝑀‘𝑘) ∈ ((Base‘𝑅) ↑m 𝐼)) |
118 | 117 | ad4ant24 751 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(((((𝑅 ∈ Ring
∧ 𝐼 ∈ Fin) ∧
curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) ∧ 𝑛:𝐼⟶(Base‘𝑅)) ∧ 𝑘 ∈ 𝐼) → (curry 𝑀‘𝑘) ∈ ((Base‘𝑅) ↑m 𝐼)) |
119 | 95 | ad3antrrr 727 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(((((𝑅 ∈ Ring
∧ 𝐼 ∈ Fin) ∧
curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) ∧ 𝑛:𝐼⟶(Base‘𝑅)) ∧ 𝑘 ∈ 𝐼) → ((Base‘𝑅) ↑m 𝐼) = (Base‘(𝑅 freeLMod 𝐼))) |
120 | 118, 119 | eleqtrd 2842 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(((((𝑅 ∈ Ring
∧ 𝐼 ∈ Fin) ∧
curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) ∧ 𝑛:𝐼⟶(Base‘𝑅)) ∧ 𝑘 ∈ 𝐼) → (curry 𝑀‘𝑘) ∈ (Base‘(𝑅 freeLMod 𝐼))) |
121 | | eqid 2739 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(.r‘𝑅) = (.r‘𝑅) |
122 | 45, 46, 14, 114, 116, 120, 94, 121 | frlmvscafval 20982 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((𝑅 ∈ Ring
∧ 𝐼 ∈ Fin) ∧
curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) ∧ 𝑛:𝐼⟶(Base‘𝑅)) ∧ 𝑘 ∈ 𝐼) → ((𝑛‘𝑘)( ·𝑠
‘(𝑅 freeLMod 𝐼))(curry 𝑀‘𝑘)) = ((𝐼 × {(𝑛‘𝑘)}) ∘f
(.r‘𝑅)(curry 𝑀‘𝑘))) |
123 | | fvex 6796 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑛‘𝑘) ∈ V |
124 | | fnconstg 6671 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑛‘𝑘) ∈ V → (𝐼 × {(𝑛‘𝑘)}) Fn 𝐼) |
125 | 123, 124 | mp1i 13 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(((((𝑅 ∈ Ring
∧ 𝐼 ∈ Fin) ∧
curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) ∧ 𝑛:𝐼⟶(Base‘𝑅)) ∧ 𝑘 ∈ 𝐼) → (𝐼 × {(𝑛‘𝑘)}) Fn 𝐼) |
126 | | elmapfn 8662 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((curry
𝑀‘𝑘) ∈ ((Base‘𝑅) ↑m 𝐼) → (curry 𝑀‘𝑘) Fn 𝐼) |
127 | 117, 126 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((curry
𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼) ∧ 𝑘 ∈ 𝐼) → (curry 𝑀‘𝑘) Fn 𝐼) |
128 | 127 | ad4ant24 751 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(((((𝑅 ∈ Ring
∧ 𝐼 ∈ Fin) ∧
curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) ∧ 𝑛:𝐼⟶(Base‘𝑅)) ∧ 𝑘 ∈ 𝐼) → (curry 𝑀‘𝑘) Fn 𝐼) |
129 | 123 | fvconst2 7088 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑗 ∈ 𝐼 → ((𝐼 × {(𝑛‘𝑘)})‘𝑗) = (𝑛‘𝑘)) |
130 | 129 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
((((((𝑅 ∈ Ring
∧ 𝐼 ∈ Fin) ∧
curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) ∧ 𝑛:𝐼⟶(Base‘𝑅)) ∧ 𝑘 ∈ 𝐼) ∧ 𝑗 ∈ 𝐼) → ((𝐼 × {(𝑛‘𝑘)})‘𝑗) = (𝑛‘𝑘)) |
131 | | eqidd 2740 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
((((((𝑅 ∈ Ring
∧ 𝐼 ∈ Fin) ∧
curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) ∧ 𝑛:𝐼⟶(Base‘𝑅)) ∧ 𝑘 ∈ 𝐼) ∧ 𝑗 ∈ 𝐼) → ((curry 𝑀‘𝑘)‘𝑗) = ((curry 𝑀‘𝑘)‘𝑗)) |
132 | 125, 128,
114, 114, 110, 130, 131 | offval 7551 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((𝑅 ∈ Ring
∧ 𝐼 ∈ Fin) ∧
curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) ∧ 𝑛:𝐼⟶(Base‘𝑅)) ∧ 𝑘 ∈ 𝐼) → ((𝐼 × {(𝑛‘𝑘)}) ∘f
(.r‘𝑅)(curry 𝑀‘𝑘)) = (𝑗 ∈ 𝐼 ↦ ((𝑛‘𝑘)(.r‘𝑅)((curry 𝑀‘𝑘)‘𝑗)))) |
133 | 122, 132 | eqtrd 2779 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝑅 ∈ Ring
∧ 𝐼 ∈ Fin) ∧
curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) ∧ 𝑛:𝐼⟶(Base‘𝑅)) ∧ 𝑘 ∈ 𝐼) → ((𝑛‘𝑘)( ·𝑠
‘(𝑅 freeLMod 𝐼))(curry 𝑀‘𝑘)) = (𝑗 ∈ 𝐼 ↦ ((𝑛‘𝑘)(.r‘𝑅)((curry 𝑀‘𝑘)‘𝑗)))) |
134 | 133 | mpteq2dva 5175 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) ∧ 𝑛:𝐼⟶(Base‘𝑅)) → (𝑘 ∈ 𝐼 ↦ ((𝑛‘𝑘)( ·𝑠
‘(𝑅 freeLMod 𝐼))(curry 𝑀‘𝑘))) = (𝑘 ∈ 𝐼 ↦ (𝑗 ∈ 𝐼 ↦ ((𝑛‘𝑘)(.r‘𝑅)((curry 𝑀‘𝑘)‘𝑗))))) |
135 | 113, 134 | eqtrd 2779 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) ∧ 𝑛:𝐼⟶(Base‘𝑅)) → (𝑛 ∘f (
·𝑠 ‘(𝑅 freeLMod 𝐼))curry 𝑀) = (𝑘 ∈ 𝐼 ↦ (𝑗 ∈ 𝐼 ↦ ((𝑛‘𝑘)(.r‘𝑅)((curry 𝑀‘𝑘)‘𝑗))))) |
136 | 135 | oveq2d 7300 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) ∧ 𝑛:𝐼⟶(Base‘𝑅)) → ((𝑅 freeLMod 𝐼) Σg (𝑛 ∘f (
·𝑠 ‘(𝑅 freeLMod 𝐼))curry 𝑀)) = ((𝑅 freeLMod 𝐼) Σg (𝑘 ∈ 𝐼 ↦ (𝑗 ∈ 𝐼 ↦ ((𝑛‘𝑘)(.r‘𝑅)((curry 𝑀‘𝑘)‘𝑗)))))) |
137 | | eqid 2739 |
. . . . . . . . . . . . . . . . 17
⊢
(0g‘(𝑅 freeLMod 𝐼)) = (0g‘(𝑅 freeLMod 𝐼)) |
138 | | simplll 772 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) ∧ 𝑛:𝐼⟶(Base‘𝑅)) → 𝑅 ∈ Ring) |
139 | | simp-5l 782 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((((((𝑅 ∈ Ring
∧ 𝐼 ∈ Fin) ∧
curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) ∧ 𝑛:𝐼⟶(Base‘𝑅)) ∧ 𝑘 ∈ 𝐼) ∧ 𝑗 ∈ 𝐼) → 𝑅 ∈ Ring) |
140 | 115 | ad4ant23 750 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((((((𝑅 ∈ Ring
∧ 𝐼 ∈ Fin) ∧
curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) ∧ 𝑛:𝐼⟶(Base‘𝑅)) ∧ 𝑘 ∈ 𝐼) ∧ 𝑗 ∈ 𝐼) → (𝑛‘𝑘) ∈ (Base‘𝑅)) |
141 | | simplr 766 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) ∧ 𝑛:𝐼⟶(Base‘𝑅)) → curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) |
142 | | elmapi 8646 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((curry
𝑀‘𝑘) ∈ ((Base‘𝑅) ↑m 𝐼) → (curry 𝑀‘𝑘):𝐼⟶(Base‘𝑅)) |
143 | 117, 142 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((curry
𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼) ∧ 𝑘 ∈ 𝐼) → (curry 𝑀‘𝑘):𝐼⟶(Base‘𝑅)) |
144 | 143 | ffvelrnda 6970 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((curry
𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼) ∧ 𝑘 ∈ 𝐼) ∧ 𝑗 ∈ 𝐼) → ((curry 𝑀‘𝑘)‘𝑗) ∈ (Base‘𝑅)) |
145 | 141, 144 | sylanl1 677 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((((((𝑅 ∈ Ring
∧ 𝐼 ∈ Fin) ∧
curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) ∧ 𝑛:𝐼⟶(Base‘𝑅)) ∧ 𝑘 ∈ 𝐼) ∧ 𝑗 ∈ 𝐼) → ((curry 𝑀‘𝑘)‘𝑗) ∈ (Base‘𝑅)) |
146 | 14, 121 | ringcl 19809 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑅 ∈ Ring ∧ (𝑛‘𝑘) ∈ (Base‘𝑅) ∧ ((curry 𝑀‘𝑘)‘𝑗) ∈ (Base‘𝑅)) → ((𝑛‘𝑘)(.r‘𝑅)((curry 𝑀‘𝑘)‘𝑗)) ∈ (Base‘𝑅)) |
147 | 139, 140,
145, 146 | syl3anc 1370 |
. . . . . . . . . . . . . . . . . . 19
⊢
((((((𝑅 ∈ Ring
∧ 𝐼 ∈ Fin) ∧
curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) ∧ 𝑛:𝐼⟶(Base‘𝑅)) ∧ 𝑘 ∈ 𝐼) ∧ 𝑗 ∈ 𝐼) → ((𝑛‘𝑘)(.r‘𝑅)((curry 𝑀‘𝑘)‘𝑗)) ∈ (Base‘𝑅)) |
148 | 147 | fmpttd 6998 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝑅 ∈ Ring
∧ 𝐼 ∈ Fin) ∧
curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) ∧ 𝑛:𝐼⟶(Base‘𝑅)) ∧ 𝑘 ∈ 𝐼) → (𝑗 ∈ 𝐼 ↦ ((𝑛‘𝑘)(.r‘𝑅)((curry 𝑀‘𝑘)‘𝑗))):𝐼⟶(Base‘𝑅)) |
149 | | elmapg 8637 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(((Base‘𝑅)
∈ V ∧ 𝐼 ∈
Fin) → ((𝑗 ∈
𝐼 ↦ ((𝑛‘𝑘)(.r‘𝑅)((curry 𝑀‘𝑘)‘𝑗))) ∈ ((Base‘𝑅) ↑m 𝐼) ↔ (𝑗 ∈ 𝐼 ↦ ((𝑛‘𝑘)(.r‘𝑅)((curry 𝑀‘𝑘)‘𝑗))):𝐼⟶(Base‘𝑅))) |
150 | 22, 149 | mpan 687 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝐼 ∈ Fin → ((𝑗 ∈ 𝐼 ↦ ((𝑛‘𝑘)(.r‘𝑅)((curry 𝑀‘𝑘)‘𝑗))) ∈ ((Base‘𝑅) ↑m 𝐼) ↔ (𝑗 ∈ 𝐼 ↦ ((𝑛‘𝑘)(.r‘𝑅)((curry 𝑀‘𝑘)‘𝑗))):𝐼⟶(Base‘𝑅))) |
151 | 150 | adantl 482 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) → ((𝑗 ∈ 𝐼 ↦ ((𝑛‘𝑘)(.r‘𝑅)((curry 𝑀‘𝑘)‘𝑗))) ∈ ((Base‘𝑅) ↑m 𝐼) ↔ (𝑗 ∈ 𝐼 ↦ ((𝑛‘𝑘)(.r‘𝑅)((curry 𝑀‘𝑘)‘𝑗))):𝐼⟶(Base‘𝑅))) |
152 | 95 | eleq2d 2825 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) → ((𝑗 ∈ 𝐼 ↦ ((𝑛‘𝑘)(.r‘𝑅)((curry 𝑀‘𝑘)‘𝑗))) ∈ ((Base‘𝑅) ↑m 𝐼) ↔ (𝑗 ∈ 𝐼 ↦ ((𝑛‘𝑘)(.r‘𝑅)((curry 𝑀‘𝑘)‘𝑗))) ∈ (Base‘(𝑅 freeLMod 𝐼)))) |
153 | 151, 152 | bitr3d 280 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) → ((𝑗 ∈ 𝐼 ↦ ((𝑛‘𝑘)(.r‘𝑅)((curry 𝑀‘𝑘)‘𝑗))):𝐼⟶(Base‘𝑅) ↔ (𝑗 ∈ 𝐼 ↦ ((𝑛‘𝑘)(.r‘𝑅)((curry 𝑀‘𝑘)‘𝑗))) ∈ (Base‘(𝑅 freeLMod 𝐼)))) |
154 | 153 | ad3antrrr 727 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝑅 ∈ Ring
∧ 𝐼 ∈ Fin) ∧
curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) ∧ 𝑛:𝐼⟶(Base‘𝑅)) ∧ 𝑘 ∈ 𝐼) → ((𝑗 ∈ 𝐼 ↦ ((𝑛‘𝑘)(.r‘𝑅)((curry 𝑀‘𝑘)‘𝑗))):𝐼⟶(Base‘𝑅) ↔ (𝑗 ∈ 𝐼 ↦ ((𝑛‘𝑘)(.r‘𝑅)((curry 𝑀‘𝑘)‘𝑗))) ∈ (Base‘(𝑅 freeLMod 𝐼)))) |
155 | 148, 154 | mpbid 231 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝑅 ∈ Ring
∧ 𝐼 ∈ Fin) ∧
curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) ∧ 𝑛:𝐼⟶(Base‘𝑅)) ∧ 𝑘 ∈ 𝐼) → (𝑗 ∈ 𝐼 ↦ ((𝑛‘𝑘)(.r‘𝑅)((curry 𝑀‘𝑘)‘𝑗))) ∈ (Base‘(𝑅 freeLMod 𝐼))) |
156 | | mptexg 7106 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝐼 ∈ Fin → (𝑗 ∈ 𝐼 ↦ ((𝑛‘𝑘)(.r‘𝑅)((curry 𝑀‘𝑘)‘𝑗))) ∈ V) |
157 | 156 | ralrimivw 3105 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝐼 ∈ Fin → ∀𝑘 ∈ 𝐼 (𝑗 ∈ 𝐼 ↦ ((𝑛‘𝑘)(.r‘𝑅)((curry 𝑀‘𝑘)‘𝑗))) ∈ V) |
158 | | eqid 2739 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑘 ∈ 𝐼 ↦ (𝑗 ∈ 𝐼 ↦ ((𝑛‘𝑘)(.r‘𝑅)((curry 𝑀‘𝑘)‘𝑗)))) = (𝑘 ∈ 𝐼 ↦ (𝑗 ∈ 𝐼 ↦ ((𝑛‘𝑘)(.r‘𝑅)((curry 𝑀‘𝑘)‘𝑗)))) |
159 | 158 | fnmpt 6582 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(∀𝑘 ∈
𝐼 (𝑗 ∈ 𝐼 ↦ ((𝑛‘𝑘)(.r‘𝑅)((curry 𝑀‘𝑘)‘𝑗))) ∈ V → (𝑘 ∈ 𝐼 ↦ (𝑗 ∈ 𝐼 ↦ ((𝑛‘𝑘)(.r‘𝑅)((curry 𝑀‘𝑘)‘𝑗)))) Fn 𝐼) |
160 | 157, 159 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝐼 ∈ Fin → (𝑘 ∈ 𝐼 ↦ (𝑗 ∈ 𝐼 ↦ ((𝑛‘𝑘)(.r‘𝑅)((curry 𝑀‘𝑘)‘𝑗)))) Fn 𝐼) |
161 | | id 22 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝐼 ∈ Fin → 𝐼 ∈ Fin) |
162 | | fvexd 6798 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝐼 ∈ Fin →
(0g‘(𝑅
freeLMod 𝐼)) ∈
V) |
163 | 160, 161,
162 | fndmfifsupp 9150 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝐼 ∈ Fin → (𝑘 ∈ 𝐼 ↦ (𝑗 ∈ 𝐼 ↦ ((𝑛‘𝑘)(.r‘𝑅)((curry 𝑀‘𝑘)‘𝑗)))) finSupp (0g‘(𝑅 freeLMod 𝐼))) |
164 | 163 | ad3antlr 728 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) ∧ 𝑛:𝐼⟶(Base‘𝑅)) → (𝑘 ∈ 𝐼 ↦ (𝑗 ∈ 𝐼 ↦ ((𝑛‘𝑘)(.r‘𝑅)((curry 𝑀‘𝑘)‘𝑗)))) finSupp (0g‘(𝑅 freeLMod 𝐼))) |
165 | 45, 46, 137, 109, 109, 138, 155, 164 | frlmgsum 20988 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) ∧ 𝑛:𝐼⟶(Base‘𝑅)) → ((𝑅 freeLMod 𝐼) Σg (𝑘 ∈ 𝐼 ↦ (𝑗 ∈ 𝐼 ↦ ((𝑛‘𝑘)(.r‘𝑅)((curry 𝑀‘𝑘)‘𝑗))))) = (𝑗 ∈ 𝐼 ↦ (𝑅 Σg (𝑘 ∈ 𝐼 ↦ ((𝑛‘𝑘)(.r‘𝑅)((curry 𝑀‘𝑘)‘𝑗)))))) |
166 | 136, 165 | eqtr2d 2780 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) ∧ 𝑛:𝐼⟶(Base‘𝑅)) → (𝑗 ∈ 𝐼 ↦ (𝑅 Σg (𝑘 ∈ 𝐼 ↦ ((𝑛‘𝑘)(.r‘𝑅)((curry 𝑀‘𝑘)‘𝑗))))) = ((𝑅 freeLMod 𝐼) Σg (𝑛 ∘f (
·𝑠 ‘(𝑅 freeLMod 𝐼))curry 𝑀))) |
167 | 105, 166 | sylan2 593 |
. . . . . . . . . . . . . 14
⊢ ((((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) ∧ 𝑛 ∈ ((Base‘𝑅) ↑m 𝐼)) → (𝑗 ∈ 𝐼 ↦ (𝑅 Σg (𝑘 ∈ 𝐼 ↦ ((𝑛‘𝑘)(.r‘𝑅)((curry 𝑀‘𝑘)‘𝑗))))) = ((𝑅 freeLMod 𝐼) Σg (𝑛 ∘f (
·𝑠 ‘(𝑅 freeLMod 𝐼))curry 𝑀))) |
168 | 167 | eqeq2d 2750 |
. . . . . . . . . . . . 13
⊢ ((((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) ∧ 𝑛 ∈ ((Base‘𝑅) ↑m 𝐼)) → (((𝑅 unitVec 𝐼)‘𝑖) = (𝑗 ∈ 𝐼 ↦ (𝑅 Σg (𝑘 ∈ 𝐼 ↦ ((𝑛‘𝑘)(.r‘𝑅)((curry 𝑀‘𝑘)‘𝑗))))) ↔ ((𝑅 unitVec 𝐼)‘𝑖) = ((𝑅 freeLMod 𝐼) Σg (𝑛 ∘f (
·𝑠 ‘(𝑅 freeLMod 𝐼))curry 𝑀)))) |
169 | 104, 168 | rexeqbidva 3356 |
. . . . . . . . . . . 12
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) → (∃𝑛 ∈ ((Base‘𝑅) ↑m 𝐼)((𝑅 unitVec 𝐼)‘𝑖) = (𝑗 ∈ 𝐼 ↦ (𝑅 Σg (𝑘 ∈ 𝐼 ↦ ((𝑛‘𝑘)(.r‘𝑅)((curry 𝑀‘𝑘)‘𝑗))))) ↔ ∃𝑛 ∈ ((Base‘(Scalar‘(𝑅 freeLMod 𝐼))) ↑m 𝐼)((𝑅 unitVec 𝐼)‘𝑖) = ((𝑅 freeLMod 𝐼) Σg (𝑛 ∘f (
·𝑠 ‘(𝑅 freeLMod 𝐼))curry 𝑀)))) |
170 | 100, 169 | bitr4d 281 |
. . . . . . . . . . 11
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) → (((𝑅 unitVec 𝐼)‘𝑖) ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘(curry 𝑀 “ 𝐼)) ↔ ∃𝑛 ∈ ((Base‘𝑅) ↑m 𝐼)((𝑅 unitVec 𝐼)‘𝑖) = (𝑗 ∈ 𝐼 ↦ (𝑅 Σg (𝑘 ∈ 𝐼 ↦ ((𝑛‘𝑘)(.r‘𝑅)((curry 𝑀‘𝑘)‘𝑗))))))) |
171 | 43, 170 | sylanl1 677 |
. . . . . . . . . 10
⊢ (((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) → (((𝑅 unitVec 𝐼)‘𝑖) ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘(curry 𝑀 “ 𝐼)) ↔ ∃𝑛 ∈ ((Base‘𝑅) ↑m 𝐼)((𝑅 unitVec 𝐼)‘𝑖) = (𝑗 ∈ 𝐼 ↦ (𝑅 Σg (𝑘 ∈ 𝐼 ↦ ((𝑛‘𝑘)(.r‘𝑅)((curry 𝑀‘𝑘)‘𝑗))))))) |
172 | 171 | ad2antrr 723 |
. . . . . . . . 9
⊢
(((((𝑅 ∈
DivRing ∧ 𝐼 ∈ Fin)
∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) ∧ curry 𝑀 LIndF (𝑅 freeLMod 𝐼)) ∧ 𝑖 ∈ 𝐼) → (((𝑅 unitVec 𝐼)‘𝑖) ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘(curry 𝑀 “ 𝐼)) ↔ ∃𝑛 ∈ ((Base‘𝑅) ↑m 𝐼)((𝑅 unitVec 𝐼)‘𝑖) = (𝑗 ∈ 𝐼 ↦ (𝑅 Σg (𝑘 ∈ 𝐼 ↦ ((𝑛‘𝑘)(.r‘𝑅)((curry 𝑀‘𝑘)‘𝑗))))))) |
173 | 91, 172 | mpbid 231 |
. . . . . . . 8
⊢
(((((𝑅 ∈
DivRing ∧ 𝐼 ∈ Fin)
∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) ∧ curry 𝑀 LIndF (𝑅 freeLMod 𝐼)) ∧ 𝑖 ∈ 𝐼) → ∃𝑛 ∈ ((Base‘𝑅) ↑m 𝐼)((𝑅 unitVec 𝐼)‘𝑖) = (𝑗 ∈ 𝐼 ↦ (𝑅 Σg (𝑘 ∈ 𝐼 ↦ ((𝑛‘𝑘)(.r‘𝑅)((curry 𝑀‘𝑘)‘𝑗)))))) |
174 | 173 | ralrimiva 3104 |
. . . . . . 7
⊢ ((((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) ∧ curry 𝑀 LIndF (𝑅 freeLMod 𝐼)) → ∀𝑖 ∈ 𝐼 ∃𝑛 ∈ ((Base‘𝑅) ↑m 𝐼)((𝑅 unitVec 𝐼)‘𝑖) = (𝑗 ∈ 𝐼 ↦ (𝑅 Σg (𝑘 ∈ 𝐼 ↦ ((𝑛‘𝑘)(.r‘𝑅)((curry 𝑀‘𝑘)‘𝑗)))))) |
175 | 42, 174 | sylan 580 |
. . . . . 6
⊢ ((((𝑅 ∈ DivRing ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ 𝐼 ≠ ∅) ∧ curry 𝑀 LIndF (𝑅 freeLMod 𝐼)) → ∀𝑖 ∈ 𝐼 ∃𝑛 ∈ ((Base‘𝑅) ↑m 𝐼)((𝑅 unitVec 𝐼)‘𝑖) = (𝑗 ∈ 𝐼 ↦ (𝑅 Σg (𝑘 ∈ 𝐼 ↦ ((𝑛‘𝑘)(.r‘𝑅)((curry 𝑀‘𝑘)‘𝑗)))))) |
176 | 10, 21 | mpbird 256 |
. . . . . . . . 9
⊢ ((𝑅 ∈ DivRing ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) → 𝑀 ∈ ((Base‘𝑅) ↑m (𝐼 × 𝐼))) |
177 | | elmapfn 8662 |
. . . . . . . . 9
⊢ (𝑀 ∈ ((Base‘𝑅) ↑m (𝐼 × 𝐼)) → 𝑀 Fn (𝐼 × 𝐼)) |
178 | 176, 177 | syl 17 |
. . . . . . . 8
⊢ ((𝑅 ∈ DivRing ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) → 𝑀 Fn (𝐼 × 𝐼)) |
179 | 4 | adantl 482 |
. . . . . . . 8
⊢ ((𝑅 ∈ DivRing ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) → 𝐼 ∈ Fin) |
180 | | an32 643 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑀 Fn (𝐼 × 𝐼) ∧ 𝑗 ∈ 𝐼) ∧ 𝑘 ∈ 𝐼) ↔ ((𝑀 Fn (𝐼 × 𝐼) ∧ 𝑘 ∈ 𝐼) ∧ 𝑗 ∈ 𝐼)) |
181 | | df-3an 1088 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑀 Fn (𝐼 × 𝐼) ∧ 𝑘 ∈ 𝐼 ∧ 𝑗 ∈ 𝐼) ↔ ((𝑀 Fn (𝐼 × 𝐼) ∧ 𝑘 ∈ 𝐼) ∧ 𝑗 ∈ 𝐼)) |
182 | 180, 181 | bitr4i 277 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑀 Fn (𝐼 × 𝐼) ∧ 𝑗 ∈ 𝐼) ∧ 𝑘 ∈ 𝐼) ↔ (𝑀 Fn (𝐼 × 𝐼) ∧ 𝑘 ∈ 𝐼 ∧ 𝑗 ∈ 𝐼)) |
183 | | curfv 35766 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑀 Fn (𝐼 × 𝐼) ∧ 𝑘 ∈ 𝐼 ∧ 𝑗 ∈ 𝐼) ∧ 𝐼 ∈ Fin) → ((curry 𝑀‘𝑘)‘𝑗) = (𝑘𝑀𝑗)) |
184 | 182, 183 | sylanb 581 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝑀 Fn (𝐼 × 𝐼) ∧ 𝑗 ∈ 𝐼) ∧ 𝑘 ∈ 𝐼) ∧ 𝐼 ∈ Fin) → ((curry 𝑀‘𝑘)‘𝑗) = (𝑘𝑀𝑗)) |
185 | 184 | an32s 649 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝑀 Fn (𝐼 × 𝐼) ∧ 𝑗 ∈ 𝐼) ∧ 𝐼 ∈ Fin) ∧ 𝑘 ∈ 𝐼) → ((curry 𝑀‘𝑘)‘𝑗) = (𝑘𝑀𝑗)) |
186 | 185 | oveq2d 7300 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑀 Fn (𝐼 × 𝐼) ∧ 𝑗 ∈ 𝐼) ∧ 𝐼 ∈ Fin) ∧ 𝑘 ∈ 𝐼) → ((𝑛‘𝑘)(.r‘𝑅)((curry 𝑀‘𝑘)‘𝑗)) = ((𝑛‘𝑘)(.r‘𝑅)(𝑘𝑀𝑗))) |
187 | 186 | mpteq2dva 5175 |
. . . . . . . . . . . . . 14
⊢ (((𝑀 Fn (𝐼 × 𝐼) ∧ 𝑗 ∈ 𝐼) ∧ 𝐼 ∈ Fin) → (𝑘 ∈ 𝐼 ↦ ((𝑛‘𝑘)(.r‘𝑅)((curry 𝑀‘𝑘)‘𝑗))) = (𝑘 ∈ 𝐼 ↦ ((𝑛‘𝑘)(.r‘𝑅)(𝑘𝑀𝑗)))) |
188 | 187 | an32s 649 |
. . . . . . . . . . . . 13
⊢ (((𝑀 Fn (𝐼 × 𝐼) ∧ 𝐼 ∈ Fin) ∧ 𝑗 ∈ 𝐼) → (𝑘 ∈ 𝐼 ↦ ((𝑛‘𝑘)(.r‘𝑅)((curry 𝑀‘𝑘)‘𝑗))) = (𝑘 ∈ 𝐼 ↦ ((𝑛‘𝑘)(.r‘𝑅)(𝑘𝑀𝑗)))) |
189 | 188 | oveq2d 7300 |
. . . . . . . . . . . 12
⊢ (((𝑀 Fn (𝐼 × 𝐼) ∧ 𝐼 ∈ Fin) ∧ 𝑗 ∈ 𝐼) → (𝑅 Σg (𝑘 ∈ 𝐼 ↦ ((𝑛‘𝑘)(.r‘𝑅)((curry 𝑀‘𝑘)‘𝑗)))) = (𝑅 Σg (𝑘 ∈ 𝐼 ↦ ((𝑛‘𝑘)(.r‘𝑅)(𝑘𝑀𝑗))))) |
190 | 189 | mpteq2dva 5175 |
. . . . . . . . . . 11
⊢ ((𝑀 Fn (𝐼 × 𝐼) ∧ 𝐼 ∈ Fin) → (𝑗 ∈ 𝐼 ↦ (𝑅 Σg (𝑘 ∈ 𝐼 ↦ ((𝑛‘𝑘)(.r‘𝑅)((curry 𝑀‘𝑘)‘𝑗))))) = (𝑗 ∈ 𝐼 ↦ (𝑅 Σg (𝑘 ∈ 𝐼 ↦ ((𝑛‘𝑘)(.r‘𝑅)(𝑘𝑀𝑗)))))) |
191 | 190 | eqeq2d 2750 |
. . . . . . . . . 10
⊢ ((𝑀 Fn (𝐼 × 𝐼) ∧ 𝐼 ∈ Fin) → (((𝑅 unitVec 𝐼)‘𝑖) = (𝑗 ∈ 𝐼 ↦ (𝑅 Σg (𝑘 ∈ 𝐼 ↦ ((𝑛‘𝑘)(.r‘𝑅)((curry 𝑀‘𝑘)‘𝑗))))) ↔ ((𝑅 unitVec 𝐼)‘𝑖) = (𝑗 ∈ 𝐼 ↦ (𝑅 Σg (𝑘 ∈ 𝐼 ↦ ((𝑛‘𝑘)(.r‘𝑅)(𝑘𝑀𝑗))))))) |
192 | 191 | rexbidv 3227 |
. . . . . . . . 9
⊢ ((𝑀 Fn (𝐼 × 𝐼) ∧ 𝐼 ∈ Fin) → (∃𝑛 ∈ ((Base‘𝑅) ↑m 𝐼)((𝑅 unitVec 𝐼)‘𝑖) = (𝑗 ∈ 𝐼 ↦ (𝑅 Σg (𝑘 ∈ 𝐼 ↦ ((𝑛‘𝑘)(.r‘𝑅)((curry 𝑀‘𝑘)‘𝑗))))) ↔ ∃𝑛 ∈ ((Base‘𝑅) ↑m 𝐼)((𝑅 unitVec 𝐼)‘𝑖) = (𝑗 ∈ 𝐼 ↦ (𝑅 Σg (𝑘 ∈ 𝐼 ↦ ((𝑛‘𝑘)(.r‘𝑅)(𝑘𝑀𝑗))))))) |
193 | 192 | ralbidv 3113 |
. . . . . . . 8
⊢ ((𝑀 Fn (𝐼 × 𝐼) ∧ 𝐼 ∈ Fin) → (∀𝑖 ∈ 𝐼 ∃𝑛 ∈ ((Base‘𝑅) ↑m 𝐼)((𝑅 unitVec 𝐼)‘𝑖) = (𝑗 ∈ 𝐼 ↦ (𝑅 Σg (𝑘 ∈ 𝐼 ↦ ((𝑛‘𝑘)(.r‘𝑅)((curry 𝑀‘𝑘)‘𝑗))))) ↔ ∀𝑖 ∈ 𝐼 ∃𝑛 ∈ ((Base‘𝑅) ↑m 𝐼)((𝑅 unitVec 𝐼)‘𝑖) = (𝑗 ∈ 𝐼 ↦ (𝑅 Σg (𝑘 ∈ 𝐼 ↦ ((𝑛‘𝑘)(.r‘𝑅)(𝑘𝑀𝑗))))))) |
194 | 178, 179,
193 | syl2anc 584 |
. . . . . . 7
⊢ ((𝑅 ∈ DivRing ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) → (∀𝑖 ∈ 𝐼 ∃𝑛 ∈ ((Base‘𝑅) ↑m 𝐼)((𝑅 unitVec 𝐼)‘𝑖) = (𝑗 ∈ 𝐼 ↦ (𝑅 Σg (𝑘 ∈ 𝐼 ↦ ((𝑛‘𝑘)(.r‘𝑅)((curry 𝑀‘𝑘)‘𝑗))))) ↔ ∀𝑖 ∈ 𝐼 ∃𝑛 ∈ ((Base‘𝑅) ↑m 𝐼)((𝑅 unitVec 𝐼)‘𝑖) = (𝑗 ∈ 𝐼 ↦ (𝑅 Σg (𝑘 ∈ 𝐼 ↦ ((𝑛‘𝑘)(.r‘𝑅)(𝑘𝑀𝑗))))))) |
195 | 194 | ad2antrr 723 |
. . . . . 6
⊢ ((((𝑅 ∈ DivRing ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ 𝐼 ≠ ∅) ∧ curry 𝑀 LIndF (𝑅 freeLMod 𝐼)) → (∀𝑖 ∈ 𝐼 ∃𝑛 ∈ ((Base‘𝑅) ↑m 𝐼)((𝑅 unitVec 𝐼)‘𝑖) = (𝑗 ∈ 𝐼 ↦ (𝑅 Σg (𝑘 ∈ 𝐼 ↦ ((𝑛‘𝑘)(.r‘𝑅)((curry 𝑀‘𝑘)‘𝑗))))) ↔ ∀𝑖 ∈ 𝐼 ∃𝑛 ∈ ((Base‘𝑅) ↑m 𝐼)((𝑅 unitVec 𝐼)‘𝑖) = (𝑗 ∈ 𝐼 ↦ (𝑅 Σg (𝑘 ∈ 𝐼 ↦ ((𝑛‘𝑘)(.r‘𝑅)(𝑘𝑀𝑗))))))) |
196 | 175, 195 | mpbid 231 |
. . . . 5
⊢ ((((𝑅 ∈ DivRing ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ 𝐼 ≠ ∅) ∧ curry 𝑀 LIndF (𝑅 freeLMod 𝐼)) → ∀𝑖 ∈ 𝐼 ∃𝑛 ∈ ((Base‘𝑅) ↑m 𝐼)((𝑅 unitVec 𝐼)‘𝑖) = (𝑗 ∈ 𝐼 ↦ (𝑅 Σg (𝑘 ∈ 𝐼 ↦ ((𝑛‘𝑘)(.r‘𝑅)(𝑘𝑀𝑗)))))) |
197 | 8, 196 | sylanl1 677 |
. . . 4
⊢ ((((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ 𝐼 ≠ ∅) ∧ curry 𝑀 LIndF (𝑅 freeLMod 𝐼)) → ∀𝑖 ∈ 𝐼 ∃𝑛 ∈ ((Base‘𝑅) ↑m 𝐼)((𝑅 unitVec 𝐼)‘𝑖) = (𝑗 ∈ 𝐼 ↦ (𝑅 Σg (𝑘 ∈ 𝐼 ↦ ((𝑛‘𝑘)(.r‘𝑅)(𝑘𝑀𝑗)))))) |
198 | | fveq1 6782 |
. . . . . . . . . . 11
⊢ (𝑛 = (𝑓‘𝑖) → (𝑛‘𝑘) = ((𝑓‘𝑖)‘𝑘)) |
199 | | uncov 35767 |
. . . . . . . . . . . 12
⊢ ((𝑖 ∈ V ∧ 𝑘 ∈ V) → (𝑖uncurry 𝑓𝑘) = ((𝑓‘𝑖)‘𝑘)) |
200 | 199 | el2v 3441 |
. . . . . . . . . . 11
⊢ (𝑖uncurry 𝑓𝑘) = ((𝑓‘𝑖)‘𝑘) |
201 | 198, 200 | eqtr4di 2797 |
. . . . . . . . . 10
⊢ (𝑛 = (𝑓‘𝑖) → (𝑛‘𝑘) = (𝑖uncurry 𝑓𝑘)) |
202 | 201 | oveq1d 7299 |
. . . . . . . . 9
⊢ (𝑛 = (𝑓‘𝑖) → ((𝑛‘𝑘)(.r‘𝑅)(𝑘𝑀𝑗)) = ((𝑖uncurry 𝑓𝑘)(.r‘𝑅)(𝑘𝑀𝑗))) |
203 | 202 | mpteq2dv 5177 |
. . . . . . . 8
⊢ (𝑛 = (𝑓‘𝑖) → (𝑘 ∈ 𝐼 ↦ ((𝑛‘𝑘)(.r‘𝑅)(𝑘𝑀𝑗))) = (𝑘 ∈ 𝐼 ↦ ((𝑖uncurry 𝑓𝑘)(.r‘𝑅)(𝑘𝑀𝑗)))) |
204 | 203 | oveq2d 7300 |
. . . . . . 7
⊢ (𝑛 = (𝑓‘𝑖) → (𝑅 Σg (𝑘 ∈ 𝐼 ↦ ((𝑛‘𝑘)(.r‘𝑅)(𝑘𝑀𝑗)))) = (𝑅 Σg (𝑘 ∈ 𝐼 ↦ ((𝑖uncurry 𝑓𝑘)(.r‘𝑅)(𝑘𝑀𝑗))))) |
205 | 204 | mpteq2dv 5177 |
. . . . . 6
⊢ (𝑛 = (𝑓‘𝑖) → (𝑗 ∈ 𝐼 ↦ (𝑅 Σg (𝑘 ∈ 𝐼 ↦ ((𝑛‘𝑘)(.r‘𝑅)(𝑘𝑀𝑗))))) = (𝑗 ∈ 𝐼 ↦ (𝑅 Σg (𝑘 ∈ 𝐼 ↦ ((𝑖uncurry 𝑓𝑘)(.r‘𝑅)(𝑘𝑀𝑗)))))) |
206 | 205 | eqeq2d 2750 |
. . . . 5
⊢ (𝑛 = (𝑓‘𝑖) → (((𝑅 unitVec 𝐼)‘𝑖) = (𝑗 ∈ 𝐼 ↦ (𝑅 Σg (𝑘 ∈ 𝐼 ↦ ((𝑛‘𝑘)(.r‘𝑅)(𝑘𝑀𝑗))))) ↔ ((𝑅 unitVec 𝐼)‘𝑖) = (𝑗 ∈ 𝐼 ↦ (𝑅 Σg (𝑘 ∈ 𝐼 ↦ ((𝑖uncurry 𝑓𝑘)(.r‘𝑅)(𝑘𝑀𝑗))))))) |
207 | 206 | ac6sfi 9067 |
. . . 4
⊢ ((𝐼 ∈ Fin ∧ ∀𝑖 ∈ 𝐼 ∃𝑛 ∈ ((Base‘𝑅) ↑m 𝐼)((𝑅 unitVec 𝐼)‘𝑖) = (𝑗 ∈ 𝐼 ↦ (𝑅 Σg (𝑘 ∈ 𝐼 ↦ ((𝑛‘𝑘)(.r‘𝑅)(𝑘𝑀𝑗)))))) → ∃𝑓(𝑓:𝐼⟶((Base‘𝑅) ↑m 𝐼) ∧ ∀𝑖 ∈ 𝐼 ((𝑅 unitVec 𝐼)‘𝑖) = (𝑗 ∈ 𝐼 ↦ (𝑅 Σg (𝑘 ∈ 𝐼 ↦ ((𝑖uncurry 𝑓𝑘)(.r‘𝑅)(𝑘𝑀𝑗))))))) |
208 | 5, 197, 207 | syl2anc 584 |
. . 3
⊢ ((((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ 𝐼 ≠ ∅) ∧ curry 𝑀 LIndF (𝑅 freeLMod 𝐼)) → ∃𝑓(𝑓:𝐼⟶((Base‘𝑅) ↑m 𝐼) ∧ ∀𝑖 ∈ 𝐼 ((𝑅 unitVec 𝐼)‘𝑖) = (𝑗 ∈ 𝐼 ↦ (𝑅 Σg (𝑘 ∈ 𝐼 ↦ ((𝑖uncurry 𝑓𝑘)(.r‘𝑅)(𝑘𝑀𝑗))))))) |
209 | | uncf 35765 |
. . . . . . 7
⊢ (𝑓:𝐼⟶((Base‘𝑅) ↑m 𝐼) → uncurry 𝑓:(𝐼 × 𝐼)⟶(Base‘𝑅)) |
210 | 13, 14 | frlmfibas 20978 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑅 ∈ Field ∧ (𝐼 × 𝐼) ∈ Fin) → ((Base‘𝑅) ↑m (𝐼 × 𝐼)) = (Base‘(𝑅 freeLMod (𝐼 × 𝐼)))) |
211 | 12, 210 | sylan2 593 |
. . . . . . . . . . . . . . 15
⊢ ((𝑅 ∈ Field ∧ 𝐼 ∈ Fin) →
((Base‘𝑅)
↑m (𝐼
× 𝐼)) =
(Base‘(𝑅 freeLMod
(𝐼 × 𝐼)))) |
212 | 1, 13 | matbas 21569 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐼 ∈ Fin ∧ 𝑅 ∈ Field) →
(Base‘(𝑅 freeLMod
(𝐼 × 𝐼))) = (Base‘(𝐼 Mat 𝑅))) |
213 | 212 | ancoms 459 |
. . . . . . . . . . . . . . 15
⊢ ((𝑅 ∈ Field ∧ 𝐼 ∈ Fin) →
(Base‘(𝑅 freeLMod
(𝐼 × 𝐼))) = (Base‘(𝐼 Mat 𝑅))) |
214 | 211, 213 | eqtrd 2779 |
. . . . . . . . . . . . . 14
⊢ ((𝑅 ∈ Field ∧ 𝐼 ∈ Fin) →
((Base‘𝑅)
↑m (𝐼
× 𝐼)) =
(Base‘(𝐼 Mat 𝑅))) |
215 | 4, 214 | sylan2 593 |
. . . . . . . . . . . . 13
⊢ ((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) → ((Base‘𝑅) ↑m (𝐼 × 𝐼)) = (Base‘(𝐼 Mat 𝑅))) |
216 | 215 | eleq2d 2825 |
. . . . . . . . . . . 12
⊢ ((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) → (uncurry 𝑓 ∈ ((Base‘𝑅) ↑m (𝐼 × 𝐼)) ↔ uncurry 𝑓 ∈ (Base‘(𝐼 Mat 𝑅)))) |
217 | | elmapg 8637 |
. . . . . . . . . . . . . 14
⊢
(((Base‘𝑅)
∈ V ∧ (𝐼 ×
𝐼) ∈ Fin) →
(uncurry 𝑓 ∈
((Base‘𝑅)
↑m (𝐼
× 𝐼)) ↔ uncurry
𝑓:(𝐼 × 𝐼)⟶(Base‘𝑅))) |
218 | 22, 23, 217 | sylancr 587 |
. . . . . . . . . . . . 13
⊢ (𝑀 ∈ (Base‘(𝐼 Mat 𝑅)) → (uncurry 𝑓 ∈ ((Base‘𝑅) ↑m (𝐼 × 𝐼)) ↔ uncurry 𝑓:(𝐼 × 𝐼)⟶(Base‘𝑅))) |
219 | 218 | adantl 482 |
. . . . . . . . . . . 12
⊢ ((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) → (uncurry 𝑓 ∈ ((Base‘𝑅) ↑m (𝐼 × 𝐼)) ↔ uncurry 𝑓:(𝐼 × 𝐼)⟶(Base‘𝑅))) |
220 | 216, 219 | bitr3d 280 |
. . . . . . . . . . 11
⊢ ((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) → (uncurry 𝑓 ∈ (Base‘(𝐼 Mat 𝑅)) ↔ uncurry 𝑓:(𝐼 × 𝐼)⟶(Base‘𝑅))) |
221 | 220 | biimpar 478 |
. . . . . . . . . 10
⊢ (((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ uncurry 𝑓:(𝐼 × 𝐼)⟶(Base‘𝑅)) → uncurry 𝑓 ∈ (Base‘(𝐼 Mat 𝑅))) |
222 | 221 | adantr 481 |
. . . . . . . . 9
⊢ ((((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ uncurry 𝑓:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ ∀𝑖 ∈ 𝐼 ((𝑅 unitVec 𝐼)‘𝑖) = (𝑗 ∈ 𝐼 ↦ (𝑅 Σg (𝑘 ∈ 𝐼 ↦ ((𝑖uncurry 𝑓𝑘)(.r‘𝑅)(𝑘𝑀𝑗)))))) → uncurry 𝑓 ∈ (Base‘(𝐼 Mat 𝑅))) |
223 | | nfv 1918 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑗(((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ uncurry 𝑓:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝑖 ∈ 𝐼) |
224 | | nfmpt1 5183 |
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑗(𝑗 ∈ 𝐼 ↦ (𝑅 Σg (𝑘 ∈ 𝐼 ↦ ((𝑖uncurry 𝑓𝑘)(.r‘𝑅)(𝑘𝑀𝑗))))) |
225 | 224 | nfeq2 2925 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑗((𝑅 unitVec 𝐼)‘𝑖) = (𝑗 ∈ 𝐼 ↦ (𝑅 Σg (𝑘 ∈ 𝐼 ↦ ((𝑖uncurry 𝑓𝑘)(.r‘𝑅)(𝑘𝑀𝑗))))) |
226 | | fveq1 6782 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑅 unitVec 𝐼)‘𝑖) = (𝑗 ∈ 𝐼 ↦ (𝑅 Σg (𝑘 ∈ 𝐼 ↦ ((𝑖uncurry 𝑓𝑘)(.r‘𝑅)(𝑘𝑀𝑗))))) → (((𝑅 unitVec 𝐼)‘𝑖)‘𝑗) = ((𝑗 ∈ 𝐼 ↦ (𝑅 Σg (𝑘 ∈ 𝐼 ↦ ((𝑖uncurry 𝑓𝑘)(.r‘𝑅)(𝑘𝑀𝑗)))))‘𝑗)) |
227 | 7, 43 | syl 17 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑅 ∈ Field → 𝑅 ∈ Ring) |
228 | 227, 4 | anim12i 613 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) → (𝑅 ∈ Ring ∧ 𝐼 ∈ Fin)) |
229 | 228 | adantr 481 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ uncurry 𝑓:(𝐼 × 𝐼)⟶(Base‘𝑅)) → (𝑅 ∈ Ring ∧ 𝐼 ∈ Fin)) |
230 | | equcom 2022 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑖 = 𝑗 ↔ 𝑗 = 𝑖) |
231 | | ifbi 4482 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑖 = 𝑗 ↔ 𝑗 = 𝑖) → if(𝑖 = 𝑗, (1r‘𝑅), (0g‘𝑅)) = if(𝑗 = 𝑖, (1r‘𝑅), (0g‘𝑅))) |
232 | 230, 231 | ax-mp 5 |
. . . . . . . . . . . . . . . . . . . 20
⊢ if(𝑖 = 𝑗, (1r‘𝑅), (0g‘𝑅)) = if(𝑗 = 𝑖, (1r‘𝑅), (0g‘𝑅)) |
233 | | eqid 2739 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(1r‘𝑅) = (1r‘𝑅) |
234 | | eqid 2739 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(0g‘𝑅) = (0g‘𝑅) |
235 | | simpllr 773 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) ∧ 𝑖 ∈ 𝐼) ∧ 𝑗 ∈ 𝐼) → 𝐼 ∈ Fin) |
236 | | simplll 772 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) ∧ 𝑖 ∈ 𝐼) ∧ 𝑗 ∈ 𝐼) → 𝑅 ∈ Ring) |
237 | | simplr 766 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) ∧ 𝑖 ∈ 𝐼) ∧ 𝑗 ∈ 𝐼) → 𝑖 ∈ 𝐼) |
238 | | simpr 485 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) ∧ 𝑖 ∈ 𝐼) ∧ 𝑗 ∈ 𝐼) → 𝑗 ∈ 𝐼) |
239 | | eqid 2739 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(1r‘(𝐼 Mat 𝑅)) = (1r‘(𝐼 Mat 𝑅)) |
240 | 1, 233, 234, 235, 236, 237, 238, 239 | mat1ov 21606 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) ∧ 𝑖 ∈ 𝐼) ∧ 𝑗 ∈ 𝐼) → (𝑖(1r‘(𝐼 Mat 𝑅))𝑗) = if(𝑖 = 𝑗, (1r‘𝑅), (0g‘𝑅))) |
241 | | df-3an 1088 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin ∧ 𝑖 ∈ 𝐼) ↔ ((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) ∧ 𝑖 ∈ 𝐼)) |
242 | 44, 233, 234 | uvcvval 21002 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin ∧ 𝑖 ∈ 𝐼) ∧ 𝑗 ∈ 𝐼) → (((𝑅 unitVec 𝐼)‘𝑖)‘𝑗) = if(𝑗 = 𝑖, (1r‘𝑅), (0g‘𝑅))) |
243 | 241, 242 | sylanbr 582 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) ∧ 𝑖 ∈ 𝐼) ∧ 𝑗 ∈ 𝐼) → (((𝑅 unitVec 𝐼)‘𝑖)‘𝑗) = if(𝑗 = 𝑖, (1r‘𝑅), (0g‘𝑅))) |
244 | 232, 240,
243 | 3eqtr4a 2805 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) ∧ 𝑖 ∈ 𝐼) ∧ 𝑗 ∈ 𝐼) → (𝑖(1r‘(𝐼 Mat 𝑅))𝑗) = (((𝑅 unitVec 𝐼)‘𝑖)‘𝑗)) |
245 | 229, 244 | sylanl1 677 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝑅 ∈ Field
∧ 𝑀 ∈
(Base‘(𝐼 Mat 𝑅))) ∧ uncurry 𝑓:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝑖 ∈ 𝐼) ∧ 𝑗 ∈ 𝐼) → (𝑖(1r‘(𝐼 Mat 𝑅))𝑗) = (((𝑅 unitVec 𝐼)‘𝑖)‘𝑗)) |
246 | | ovex 7317 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑅 Σg
(𝑘 ∈ 𝐼 ↦ ((𝑖uncurry 𝑓𝑘)(.r‘𝑅)(𝑘𝑀𝑗)))) ∈ V |
247 | | eqid 2739 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑗 ∈ 𝐼 ↦ (𝑅 Σg (𝑘 ∈ 𝐼 ↦ ((𝑖uncurry 𝑓𝑘)(.r‘𝑅)(𝑘𝑀𝑗))))) = (𝑗 ∈ 𝐼 ↦ (𝑅 Σg (𝑘 ∈ 𝐼 ↦ ((𝑖uncurry 𝑓𝑘)(.r‘𝑅)(𝑘𝑀𝑗))))) |
248 | 247 | fvmpt2 6895 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑗 ∈ 𝐼 ∧ (𝑅 Σg (𝑘 ∈ 𝐼 ↦ ((𝑖uncurry 𝑓𝑘)(.r‘𝑅)(𝑘𝑀𝑗)))) ∈ V) → ((𝑗 ∈ 𝐼 ↦ (𝑅 Σg (𝑘 ∈ 𝐼 ↦ ((𝑖uncurry 𝑓𝑘)(.r‘𝑅)(𝑘𝑀𝑗)))))‘𝑗) = (𝑅 Σg (𝑘 ∈ 𝐼 ↦ ((𝑖uncurry 𝑓𝑘)(.r‘𝑅)(𝑘𝑀𝑗))))) |
249 | 246, 248 | mpan2 688 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑗 ∈ 𝐼 → ((𝑗 ∈ 𝐼 ↦ (𝑅 Σg (𝑘 ∈ 𝐼 ↦ ((𝑖uncurry 𝑓𝑘)(.r‘𝑅)(𝑘𝑀𝑗)))))‘𝑗) = (𝑅 Σg (𝑘 ∈ 𝐼 ↦ ((𝑖uncurry 𝑓𝑘)(.r‘𝑅)(𝑘𝑀𝑗))))) |
250 | 249 | adantl 482 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝑅 ∈ Field
∧ 𝑀 ∈
(Base‘(𝐼 Mat 𝑅))) ∧ uncurry 𝑓:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝑖 ∈ 𝐼) ∧ 𝑗 ∈ 𝐼) → ((𝑗 ∈ 𝐼 ↦ (𝑅 Σg (𝑘 ∈ 𝐼 ↦ ((𝑖uncurry 𝑓𝑘)(.r‘𝑅)(𝑘𝑀𝑗)))))‘𝑗) = (𝑅 Σg (𝑘 ∈ 𝐼 ↦ ((𝑖uncurry 𝑓𝑘)(.r‘𝑅)(𝑘𝑀𝑗))))) |
251 | | eqid 2739 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑅 maMul 〈𝐼, 𝐼, 𝐼〉) = (𝑅 maMul 〈𝐼, 𝐼, 𝐼〉) |
252 | | simp-4l 780 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((𝑅 ∈ Field
∧ 𝑀 ∈
(Base‘(𝐼 Mat 𝑅))) ∧ uncurry 𝑓:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝑖 ∈ 𝐼) ∧ 𝑗 ∈ 𝐼) → 𝑅 ∈ Field) |
253 | 4 | ad4antlr 730 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((𝑅 ∈ Field
∧ 𝑀 ∈
(Base‘(𝐼 Mat 𝑅))) ∧ uncurry 𝑓:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝑖 ∈ 𝐼) ∧ 𝑗 ∈ 𝐼) → 𝐼 ∈ Fin) |
254 | 218 | biimpar 478 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑀 ∈ (Base‘(𝐼 Mat 𝑅)) ∧ uncurry 𝑓:(𝐼 × 𝐼)⟶(Base‘𝑅)) → uncurry 𝑓 ∈ ((Base‘𝑅) ↑m (𝐼 × 𝐼))) |
255 | 254 | ad5ant23 757 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((𝑅 ∈ Field
∧ 𝑀 ∈
(Base‘(𝐼 Mat 𝑅))) ∧ uncurry 𝑓:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝑖 ∈ 𝐼) ∧ 𝑗 ∈ 𝐼) → uncurry 𝑓 ∈ ((Base‘𝑅) ↑m (𝐼 × 𝐼))) |
256 | | simpr 485 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) → 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) |
257 | 256, 215 | eleqtrrd 2843 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) → 𝑀 ∈ ((Base‘𝑅) ↑m (𝐼 × 𝐼))) |
258 | 257 | ad3antrrr 727 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((𝑅 ∈ Field
∧ 𝑀 ∈
(Base‘(𝐼 Mat 𝑅))) ∧ uncurry 𝑓:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝑖 ∈ 𝐼) ∧ 𝑗 ∈ 𝐼) → 𝑀 ∈ ((Base‘𝑅) ↑m (𝐼 × 𝐼))) |
259 | | simplr 766 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((𝑅 ∈ Field
∧ 𝑀 ∈
(Base‘(𝐼 Mat 𝑅))) ∧ uncurry 𝑓:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝑖 ∈ 𝐼) ∧ 𝑗 ∈ 𝐼) → 𝑖 ∈ 𝐼) |
260 | | simpr 485 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((𝑅 ∈ Field
∧ 𝑀 ∈
(Base‘(𝐼 Mat 𝑅))) ∧ uncurry 𝑓:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝑖 ∈ 𝐼) ∧ 𝑗 ∈ 𝐼) → 𝑗 ∈ 𝐼) |
261 | 251, 14, 121, 252, 253, 253, 253, 255, 258, 259, 260 | mamufv 21545 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝑅 ∈ Field
∧ 𝑀 ∈
(Base‘(𝐼 Mat 𝑅))) ∧ uncurry 𝑓:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝑖 ∈ 𝐼) ∧ 𝑗 ∈ 𝐼) → (𝑖(uncurry 𝑓(𝑅 maMul 〈𝐼, 𝐼, 𝐼〉)𝑀)𝑗) = (𝑅 Σg (𝑘 ∈ 𝐼 ↦ ((𝑖uncurry 𝑓𝑘)(.r‘𝑅)(𝑘𝑀𝑗))))) |
262 | 1, 251 | matmulr 21596 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝐼 ∈ Fin ∧ 𝑅 ∈ Field) → (𝑅 maMul 〈𝐼, 𝐼, 𝐼〉) = (.r‘(𝐼 Mat 𝑅))) |
263 | 262 | ancoms 459 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑅 ∈ Field ∧ 𝐼 ∈ Fin) → (𝑅 maMul 〈𝐼, 𝐼, 𝐼〉) = (.r‘(𝐼 Mat 𝑅))) |
264 | 263 | oveqd 7301 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑅 ∈ Field ∧ 𝐼 ∈ Fin) → (uncurry
𝑓(𝑅 maMul 〈𝐼, 𝐼, 𝐼〉)𝑀) = (uncurry 𝑓(.r‘(𝐼 Mat 𝑅))𝑀)) |
265 | 264 | oveqd 7301 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑅 ∈ Field ∧ 𝐼 ∈ Fin) → (𝑖(uncurry 𝑓(𝑅 maMul 〈𝐼, 𝐼, 𝐼〉)𝑀)𝑗) = (𝑖(uncurry 𝑓(.r‘(𝐼 Mat 𝑅))𝑀)𝑗)) |
266 | 4, 265 | sylan2 593 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) → (𝑖(uncurry 𝑓(𝑅 maMul 〈𝐼, 𝐼, 𝐼〉)𝑀)𝑗) = (𝑖(uncurry 𝑓(.r‘(𝐼 Mat 𝑅))𝑀)𝑗)) |
267 | 266 | ad3antrrr 727 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝑅 ∈ Field
∧ 𝑀 ∈
(Base‘(𝐼 Mat 𝑅))) ∧ uncurry 𝑓:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝑖 ∈ 𝐼) ∧ 𝑗 ∈ 𝐼) → (𝑖(uncurry 𝑓(𝑅 maMul 〈𝐼, 𝐼, 𝐼〉)𝑀)𝑗) = (𝑖(uncurry 𝑓(.r‘(𝐼 Mat 𝑅))𝑀)𝑗)) |
268 | 250, 261,
267 | 3eqtr2rd 2786 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝑅 ∈ Field
∧ 𝑀 ∈
(Base‘(𝐼 Mat 𝑅))) ∧ uncurry 𝑓:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝑖 ∈ 𝐼) ∧ 𝑗 ∈ 𝐼) → (𝑖(uncurry 𝑓(.r‘(𝐼 Mat 𝑅))𝑀)𝑗) = ((𝑗 ∈ 𝐼 ↦ (𝑅 Σg (𝑘 ∈ 𝐼 ↦ ((𝑖uncurry 𝑓𝑘)(.r‘𝑅)(𝑘𝑀𝑗)))))‘𝑗)) |
269 | 245, 268 | eqeq12d 2755 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝑅 ∈ Field
∧ 𝑀 ∈
(Base‘(𝐼 Mat 𝑅))) ∧ uncurry 𝑓:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝑖 ∈ 𝐼) ∧ 𝑗 ∈ 𝐼) → ((𝑖(1r‘(𝐼 Mat 𝑅))𝑗) = (𝑖(uncurry 𝑓(.r‘(𝐼 Mat 𝑅))𝑀)𝑗) ↔ (((𝑅 unitVec 𝐼)‘𝑖)‘𝑗) = ((𝑗 ∈ 𝐼 ↦ (𝑅 Σg (𝑘 ∈ 𝐼 ↦ ((𝑖uncurry 𝑓𝑘)(.r‘𝑅)(𝑘𝑀𝑗)))))‘𝑗))) |
270 | 226, 269 | syl5ibr 245 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝑅 ∈ Field
∧ 𝑀 ∈
(Base‘(𝐼 Mat 𝑅))) ∧ uncurry 𝑓:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝑖 ∈ 𝐼) ∧ 𝑗 ∈ 𝐼) → (((𝑅 unitVec 𝐼)‘𝑖) = (𝑗 ∈ 𝐼 ↦ (𝑅 Σg (𝑘 ∈ 𝐼 ↦ ((𝑖uncurry 𝑓𝑘)(.r‘𝑅)(𝑘𝑀𝑗))))) → (𝑖(1r‘(𝐼 Mat 𝑅))𝑗) = (𝑖(uncurry 𝑓(.r‘(𝐼 Mat 𝑅))𝑀)𝑗))) |
271 | 270 | ex 413 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ uncurry 𝑓:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝑖 ∈ 𝐼) → (𝑗 ∈ 𝐼 → (((𝑅 unitVec 𝐼)‘𝑖) = (𝑗 ∈ 𝐼 ↦ (𝑅 Σg (𝑘 ∈ 𝐼 ↦ ((𝑖uncurry 𝑓𝑘)(.r‘𝑅)(𝑘𝑀𝑗))))) → (𝑖(1r‘(𝐼 Mat 𝑅))𝑗) = (𝑖(uncurry 𝑓(.r‘(𝐼 Mat 𝑅))𝑀)𝑗)))) |
272 | 271 | com23 86 |
. . . . . . . . . . . . . 14
⊢ ((((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ uncurry 𝑓:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝑖 ∈ 𝐼) → (((𝑅 unitVec 𝐼)‘𝑖) = (𝑗 ∈ 𝐼 ↦ (𝑅 Σg (𝑘 ∈ 𝐼 ↦ ((𝑖uncurry 𝑓𝑘)(.r‘𝑅)(𝑘𝑀𝑗))))) → (𝑗 ∈ 𝐼 → (𝑖(1r‘(𝐼 Mat 𝑅))𝑗) = (𝑖(uncurry 𝑓(.r‘(𝐼 Mat 𝑅))𝑀)𝑗)))) |
273 | 223, 225,
272 | ralrimd 3144 |
. . . . . . . . . . . . 13
⊢ ((((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ uncurry 𝑓:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝑖 ∈ 𝐼) → (((𝑅 unitVec 𝐼)‘𝑖) = (𝑗 ∈ 𝐼 ↦ (𝑅 Σg (𝑘 ∈ 𝐼 ↦ ((𝑖uncurry 𝑓𝑘)(.r‘𝑅)(𝑘𝑀𝑗))))) → ∀𝑗 ∈ 𝐼 (𝑖(1r‘(𝐼 Mat 𝑅))𝑗) = (𝑖(uncurry 𝑓(.r‘(𝐼 Mat 𝑅))𝑀)𝑗))) |
274 | 273 | ralimdva 3109 |
. . . . . . . . . . . 12
⊢ (((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ uncurry 𝑓:(𝐼 × 𝐼)⟶(Base‘𝑅)) → (∀𝑖 ∈ 𝐼 ((𝑅 unitVec 𝐼)‘𝑖) = (𝑗 ∈ 𝐼 ↦ (𝑅 Σg (𝑘 ∈ 𝐼 ↦ ((𝑖uncurry 𝑓𝑘)(.r‘𝑅)(𝑘𝑀𝑗))))) → ∀𝑖 ∈ 𝐼 ∀𝑗 ∈ 𝐼 (𝑖(1r‘(𝐼 Mat 𝑅))𝑗) = (𝑖(uncurry 𝑓(.r‘(𝐼 Mat 𝑅))𝑀)𝑗))) |
275 | 1, 2, 239 | mat1bas 21607 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) →
(1r‘(𝐼 Mat
𝑅)) ∈
(Base‘(𝐼 Mat 𝑅))) |
276 | 13, 14 | frlmfibas 20978 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑅 ∈ Ring ∧ (𝐼 × 𝐼) ∈ Fin) → ((Base‘𝑅) ↑m (𝐼 × 𝐼)) = (Base‘(𝑅 freeLMod (𝐼 × 𝐼)))) |
277 | 12, 276 | sylan2 593 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) →
((Base‘𝑅)
↑m (𝐼
× 𝐼)) =
(Base‘(𝑅 freeLMod
(𝐼 × 𝐼)))) |
278 | 1, 13 | matbas 21569 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐼 ∈ Fin ∧ 𝑅 ∈ Ring) →
(Base‘(𝑅 freeLMod
(𝐼 × 𝐼))) = (Base‘(𝐼 Mat 𝑅))) |
279 | 278 | ancoms 459 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) →
(Base‘(𝑅 freeLMod
(𝐼 × 𝐼))) = (Base‘(𝐼 Mat 𝑅))) |
280 | 277, 279 | eqtrd 2779 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) →
((Base‘𝑅)
↑m (𝐼
× 𝐼)) =
(Base‘(𝐼 Mat 𝑅))) |
281 | 275, 280 | eleqtrrd 2843 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) →
(1r‘(𝐼 Mat
𝑅)) ∈
((Base‘𝑅)
↑m (𝐼
× 𝐼))) |
282 | | elmapfn 8662 |
. . . . . . . . . . . . . . . 16
⊢
((1r‘(𝐼 Mat 𝑅)) ∈ ((Base‘𝑅) ↑m (𝐼 × 𝐼)) → (1r‘(𝐼 Mat 𝑅)) Fn (𝐼 × 𝐼)) |
283 | 281, 282 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) →
(1r‘(𝐼 Mat
𝑅)) Fn (𝐼 × 𝐼)) |
284 | 227, 4, 283 | syl2an 596 |
. . . . . . . . . . . . . 14
⊢ ((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) → (1r‘(𝐼 Mat 𝑅)) Fn (𝐼 × 𝐼)) |
285 | 284 | adantr 481 |
. . . . . . . . . . . . 13
⊢ (((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ uncurry 𝑓:(𝐼 × 𝐼)⟶(Base‘𝑅)) → (1r‘(𝐼 Mat 𝑅)) Fn (𝐼 × 𝐼)) |
286 | 1 | matring 21601 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐼 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝐼 Mat 𝑅) ∈ Ring) |
287 | 4, 227, 286 | syl2anr 597 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) → (𝐼 Mat 𝑅) ∈ Ring) |
288 | 287 | adantr 481 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ uncurry 𝑓:(𝐼 × 𝐼)⟶(Base‘𝑅)) → (𝐼 Mat 𝑅) ∈ Ring) |
289 | | simplr 766 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ uncurry 𝑓:(𝐼 × 𝐼)⟶(Base‘𝑅)) → 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) |
290 | | eqid 2739 |
. . . . . . . . . . . . . . . . 17
⊢
(.r‘(𝐼 Mat 𝑅)) = (.r‘(𝐼 Mat 𝑅)) |
291 | 2, 290 | ringcl 19809 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐼 Mat 𝑅) ∈ Ring ∧ uncurry 𝑓 ∈ (Base‘(𝐼 Mat 𝑅)) ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) → (uncurry 𝑓(.r‘(𝐼 Mat 𝑅))𝑀) ∈ (Base‘(𝐼 Mat 𝑅))) |
292 | 288, 221,
289, 291 | syl3anc 1370 |
. . . . . . . . . . . . . . 15
⊢ (((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ uncurry 𝑓:(𝐼 × 𝐼)⟶(Base‘𝑅)) → (uncurry 𝑓(.r‘(𝐼 Mat 𝑅))𝑀) ∈ (Base‘(𝐼 Mat 𝑅))) |
293 | 215 | adantr 481 |
. . . . . . . . . . . . . . 15
⊢ (((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ uncurry 𝑓:(𝐼 × 𝐼)⟶(Base‘𝑅)) → ((Base‘𝑅) ↑m (𝐼 × 𝐼)) = (Base‘(𝐼 Mat 𝑅))) |
294 | 292, 293 | eleqtrrd 2843 |
. . . . . . . . . . . . . 14
⊢ (((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ uncurry 𝑓:(𝐼 × 𝐼)⟶(Base‘𝑅)) → (uncurry 𝑓(.r‘(𝐼 Mat 𝑅))𝑀) ∈ ((Base‘𝑅) ↑m (𝐼 × 𝐼))) |
295 | | elmapfn 8662 |
. . . . . . . . . . . . . 14
⊢ ((uncurry
𝑓(.r‘(𝐼 Mat 𝑅))𝑀) ∈ ((Base‘𝑅) ↑m (𝐼 × 𝐼)) → (uncurry 𝑓(.r‘(𝐼 Mat 𝑅))𝑀) Fn (𝐼 × 𝐼)) |
296 | 294, 295 | syl 17 |
. . . . . . . . . . . . 13
⊢ (((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ uncurry 𝑓:(𝐼 × 𝐼)⟶(Base‘𝑅)) → (uncurry 𝑓(.r‘(𝐼 Mat 𝑅))𝑀) Fn (𝐼 × 𝐼)) |
297 | | eqfnov2 7413 |
. . . . . . . . . . . . 13
⊢
(((1r‘(𝐼 Mat 𝑅)) Fn (𝐼 × 𝐼) ∧ (uncurry 𝑓(.r‘(𝐼 Mat 𝑅))𝑀) Fn (𝐼 × 𝐼)) → ((1r‘(𝐼 Mat 𝑅)) = (uncurry 𝑓(.r‘(𝐼 Mat 𝑅))𝑀) ↔ ∀𝑖 ∈ 𝐼 ∀𝑗 ∈ 𝐼 (𝑖(1r‘(𝐼 Mat 𝑅))𝑗) = (𝑖(uncurry 𝑓(.r‘(𝐼 Mat 𝑅))𝑀)𝑗))) |
298 | 285, 296,
297 | syl2anc 584 |
. . . . . . . . . . . 12
⊢ (((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ uncurry 𝑓:(𝐼 × 𝐼)⟶(Base‘𝑅)) → ((1r‘(𝐼 Mat 𝑅)) = (uncurry 𝑓(.r‘(𝐼 Mat 𝑅))𝑀) ↔ ∀𝑖 ∈ 𝐼 ∀𝑗 ∈ 𝐼 (𝑖(1r‘(𝐼 Mat 𝑅))𝑗) = (𝑖(uncurry 𝑓(.r‘(𝐼 Mat 𝑅))𝑀)𝑗))) |
299 | 274, 298 | sylibrd 258 |
. . . . . . . . . . 11
⊢ (((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ uncurry 𝑓:(𝐼 × 𝐼)⟶(Base‘𝑅)) → (∀𝑖 ∈ 𝐼 ((𝑅 unitVec 𝐼)‘𝑖) = (𝑗 ∈ 𝐼 ↦ (𝑅 Σg (𝑘 ∈ 𝐼 ↦ ((𝑖uncurry 𝑓𝑘)(.r‘𝑅)(𝑘𝑀𝑗))))) → (1r‘(𝐼 Mat 𝑅)) = (uncurry 𝑓(.r‘(𝐼 Mat 𝑅))𝑀))) |
300 | 299 | imp 407 |
. . . . . . . . . 10
⊢ ((((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ uncurry 𝑓:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ ∀𝑖 ∈ 𝐼 ((𝑅 unitVec 𝐼)‘𝑖) = (𝑗 ∈ 𝐼 ↦ (𝑅 Σg (𝑘 ∈ 𝐼 ↦ ((𝑖uncurry 𝑓𝑘)(.r‘𝑅)(𝑘𝑀𝑗)))))) → (1r‘(𝐼 Mat 𝑅)) = (uncurry 𝑓(.r‘(𝐼 Mat 𝑅))𝑀)) |
301 | 300 | eqcomd 2745 |
. . . . . . . . 9
⊢ ((((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ uncurry 𝑓:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ ∀𝑖 ∈ 𝐼 ((𝑅 unitVec 𝐼)‘𝑖) = (𝑗 ∈ 𝐼 ↦ (𝑅 Σg (𝑘 ∈ 𝐼 ↦ ((𝑖uncurry 𝑓𝑘)(.r‘𝑅)(𝑘𝑀𝑗)))))) → (uncurry 𝑓(.r‘(𝐼 Mat 𝑅))𝑀) = (1r‘(𝐼 Mat 𝑅))) |
302 | | oveq1 7291 |
. . . . . . . . . . 11
⊢ (𝑛 = uncurry 𝑓 → (𝑛(.r‘(𝐼 Mat 𝑅))𝑀) = (uncurry 𝑓(.r‘(𝐼 Mat 𝑅))𝑀)) |
303 | 302 | eqeq1d 2741 |
. . . . . . . . . 10
⊢ (𝑛 = uncurry 𝑓 → ((𝑛(.r‘(𝐼 Mat 𝑅))𝑀) = (1r‘(𝐼 Mat 𝑅)) ↔ (uncurry 𝑓(.r‘(𝐼 Mat 𝑅))𝑀) = (1r‘(𝐼 Mat 𝑅)))) |
304 | 303 | rspcev 3562 |
. . . . . . . . 9
⊢ ((uncurry
𝑓 ∈ (Base‘(𝐼 Mat 𝑅)) ∧ (uncurry 𝑓(.r‘(𝐼 Mat 𝑅))𝑀) = (1r‘(𝐼 Mat 𝑅))) → ∃𝑛 ∈ (Base‘(𝐼 Mat 𝑅))(𝑛(.r‘(𝐼 Mat 𝑅))𝑀) = (1r‘(𝐼 Mat 𝑅))) |
305 | 222, 301,
304 | syl2anc 584 |
. . . . . . . 8
⊢ ((((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ uncurry 𝑓:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ ∀𝑖 ∈ 𝐼 ((𝑅 unitVec 𝐼)‘𝑖) = (𝑗 ∈ 𝐼 ↦ (𝑅 Σg (𝑘 ∈ 𝐼 ↦ ((𝑖uncurry 𝑓𝑘)(.r‘𝑅)(𝑘𝑀𝑗)))))) → ∃𝑛 ∈ (Base‘(𝐼 Mat 𝑅))(𝑛(.r‘(𝐼 Mat 𝑅))𝑀) = (1r‘(𝐼 Mat 𝑅))) |
306 | 305 | expl 458 |
. . . . . . 7
⊢ ((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) → ((uncurry 𝑓:(𝐼 × 𝐼)⟶(Base‘𝑅) ∧ ∀𝑖 ∈ 𝐼 ((𝑅 unitVec 𝐼)‘𝑖) = (𝑗 ∈ 𝐼 ↦ (𝑅 Σg (𝑘 ∈ 𝐼 ↦ ((𝑖uncurry 𝑓𝑘)(.r‘𝑅)(𝑘𝑀𝑗)))))) → ∃𝑛 ∈ (Base‘(𝐼 Mat 𝑅))(𝑛(.r‘(𝐼 Mat 𝑅))𝑀) = (1r‘(𝐼 Mat 𝑅)))) |
307 | 209, 306 | sylani 604 |
. . . . . 6
⊢ ((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) → ((𝑓:𝐼⟶((Base‘𝑅) ↑m 𝐼) ∧ ∀𝑖 ∈ 𝐼 ((𝑅 unitVec 𝐼)‘𝑖) = (𝑗 ∈ 𝐼 ↦ (𝑅 Σg (𝑘 ∈ 𝐼 ↦ ((𝑖uncurry 𝑓𝑘)(.r‘𝑅)(𝑘𝑀𝑗)))))) → ∃𝑛 ∈ (Base‘(𝐼 Mat 𝑅))(𝑛(.r‘(𝐼 Mat 𝑅))𝑀) = (1r‘(𝐼 Mat 𝑅)))) |
308 | 307 | exlimdv 1937 |
. . . . 5
⊢ ((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) → (∃𝑓(𝑓:𝐼⟶((Base‘𝑅) ↑m 𝐼) ∧ ∀𝑖 ∈ 𝐼 ((𝑅 unitVec 𝐼)‘𝑖) = (𝑗 ∈ 𝐼 ↦ (𝑅 Σg (𝑘 ∈ 𝐼 ↦ ((𝑖uncurry 𝑓𝑘)(.r‘𝑅)(𝑘𝑀𝑗)))))) → ∃𝑛 ∈ (Base‘(𝐼 Mat 𝑅))(𝑛(.r‘(𝐼 Mat 𝑅))𝑀) = (1r‘(𝐼 Mat 𝑅)))) |
309 | 308 | imp 407 |
. . . 4
⊢ (((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ ∃𝑓(𝑓:𝐼⟶((Base‘𝑅) ↑m 𝐼) ∧ ∀𝑖 ∈ 𝐼 ((𝑅 unitVec 𝐼)‘𝑖) = (𝑗 ∈ 𝐼 ↦ (𝑅 Σg (𝑘 ∈ 𝐼 ↦ ((𝑖uncurry 𝑓𝑘)(.r‘𝑅)(𝑘𝑀𝑗))))))) → ∃𝑛 ∈ (Base‘(𝐼 Mat 𝑅))(𝑛(.r‘(𝐼 Mat 𝑅))𝑀) = (1r‘(𝐼 Mat 𝑅))) |
310 | 309 | adantlr 712 |
. . 3
⊢ ((((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ 𝐼 ≠ ∅) ∧ ∃𝑓(𝑓:𝐼⟶((Base‘𝑅) ↑m 𝐼) ∧ ∀𝑖 ∈ 𝐼 ((𝑅 unitVec 𝐼)‘𝑖) = (𝑗 ∈ 𝐼 ↦ (𝑅 Σg (𝑘 ∈ 𝐼 ↦ ((𝑖uncurry 𝑓𝑘)(.r‘𝑅)(𝑘𝑀𝑗))))))) → ∃𝑛 ∈ (Base‘(𝐼 Mat 𝑅))(𝑛(.r‘(𝐼 Mat 𝑅))𝑀) = (1r‘(𝐼 Mat 𝑅))) |
311 | 208, 310 | syldan 591 |
. 2
⊢ ((((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ 𝐼 ≠ ∅) ∧ curry 𝑀 LIndF (𝑅 freeLMod 𝐼)) → ∃𝑛 ∈ (Base‘(𝐼 Mat 𝑅))(𝑛(.r‘(𝐼 Mat 𝑅))𝑀) = (1r‘(𝐼 Mat 𝑅))) |
312 | 6 | simprbi 497 |
. . . 4
⊢ (𝑅 ∈ Field → 𝑅 ∈ CRing) |
313 | | eqid 2739 |
. . . . . . . . . 10
⊢ (𝐼 maDet 𝑅) = (𝐼 maDet 𝑅) |
314 | 313, 1, 2, 14 | mdetcl 21754 |
. . . . . . . . 9
⊢ ((𝑅 ∈ CRing ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) → ((𝐼 maDet 𝑅)‘𝑀) ∈ (Base‘𝑅)) |
315 | 313, 1, 2, 14 | mdetcl 21754 |
. . . . . . . . 9
⊢ ((𝑅 ∈ CRing ∧ 𝑛 ∈ (Base‘(𝐼 Mat 𝑅))) → ((𝐼 maDet 𝑅)‘𝑛) ∈ (Base‘𝑅)) |
316 | | eqid 2739 |
. . . . . . . . . 10
⊢
(∥r‘𝑅) = (∥r‘𝑅) |
317 | 14, 316, 121 | dvdsrmul 19899 |
. . . . . . . . 9
⊢ ((((𝐼 maDet 𝑅)‘𝑀) ∈ (Base‘𝑅) ∧ ((𝐼 maDet 𝑅)‘𝑛) ∈ (Base‘𝑅)) → ((𝐼 maDet 𝑅)‘𝑀)(∥r‘𝑅)(((𝐼 maDet 𝑅)‘𝑛)(.r‘𝑅)((𝐼 maDet 𝑅)‘𝑀))) |
318 | 314, 315,
317 | syl2an 596 |
. . . . . . . 8
⊢ (((𝑅 ∈ CRing ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ (𝑅 ∈ CRing ∧ 𝑛 ∈ (Base‘(𝐼 Mat 𝑅)))) → ((𝐼 maDet 𝑅)‘𝑀)(∥r‘𝑅)(((𝐼 maDet 𝑅)‘𝑛)(.r‘𝑅)((𝐼 maDet 𝑅)‘𝑀))) |
319 | 318 | anandis 675 |
. . . . . . 7
⊢ ((𝑅 ∈ CRing ∧ (𝑀 ∈ (Base‘(𝐼 Mat 𝑅)) ∧ 𝑛 ∈ (Base‘(𝐼 Mat 𝑅)))) → ((𝐼 maDet 𝑅)‘𝑀)(∥r‘𝑅)(((𝐼 maDet 𝑅)‘𝑛)(.r‘𝑅)((𝐼 maDet 𝑅)‘𝑀))) |
320 | 319 | anassrs 468 |
. . . . . 6
⊢ (((𝑅 ∈ CRing ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ 𝑛 ∈ (Base‘(𝐼 Mat 𝑅))) → ((𝐼 maDet 𝑅)‘𝑀)(∥r‘𝑅)(((𝐼 maDet 𝑅)‘𝑛)(.r‘𝑅)((𝐼 maDet 𝑅)‘𝑀))) |
321 | 320 | adantrr 714 |
. . . . 5
⊢ (((𝑅 ∈ CRing ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ (𝑛 ∈ (Base‘(𝐼 Mat 𝑅)) ∧ (𝑛(.r‘(𝐼 Mat 𝑅))𝑀) = (1r‘(𝐼 Mat 𝑅)))) → ((𝐼 maDet 𝑅)‘𝑀)(∥r‘𝑅)(((𝐼 maDet 𝑅)‘𝑛)(.r‘𝑅)((𝐼 maDet 𝑅)‘𝑀))) |
322 | | fveq2 6783 |
. . . . . . . . 9
⊢ ((𝑛(.r‘(𝐼 Mat 𝑅))𝑀) = (1r‘(𝐼 Mat 𝑅)) → ((𝐼 maDet 𝑅)‘(𝑛(.r‘(𝐼 Mat 𝑅))𝑀)) = ((𝐼 maDet 𝑅)‘(1r‘(𝐼 Mat 𝑅)))) |
323 | 1, 2, 313, 121, 290 | mdetmul 21781 |
. . . . . . . . . . . 12
⊢ ((𝑅 ∈ CRing ∧ 𝑛 ∈ (Base‘(𝐼 Mat 𝑅)) ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) → ((𝐼 maDet 𝑅)‘(𝑛(.r‘(𝐼 Mat 𝑅))𝑀)) = (((𝐼 maDet 𝑅)‘𝑛)(.r‘𝑅)((𝐼 maDet 𝑅)‘𝑀))) |
324 | 323 | 3expa 1117 |
. . . . . . . . . . 11
⊢ (((𝑅 ∈ CRing ∧ 𝑛 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) → ((𝐼 maDet 𝑅)‘(𝑛(.r‘(𝐼 Mat 𝑅))𝑀)) = (((𝐼 maDet 𝑅)‘𝑛)(.r‘𝑅)((𝐼 maDet 𝑅)‘𝑀))) |
325 | 324 | an32s 649 |
. . . . . . . . . 10
⊢ (((𝑅 ∈ CRing ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ 𝑛 ∈ (Base‘(𝐼 Mat 𝑅))) → ((𝐼 maDet 𝑅)‘(𝑛(.r‘(𝐼 Mat 𝑅))𝑀)) = (((𝐼 maDet 𝑅)‘𝑛)(.r‘𝑅)((𝐼 maDet 𝑅)‘𝑀))) |
326 | 313, 1, 239, 233 | mdet1 21759 |
. . . . . . . . . . . 12
⊢ ((𝑅 ∈ CRing ∧ 𝐼 ∈ Fin) → ((𝐼 maDet 𝑅)‘(1r‘(𝐼 Mat 𝑅))) = (1r‘𝑅)) |
327 | 4, 326 | sylan2 593 |
. . . . . . . . . . 11
⊢ ((𝑅 ∈ CRing ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) → ((𝐼 maDet 𝑅)‘(1r‘(𝐼 Mat 𝑅))) = (1r‘𝑅)) |
328 | 327 | adantr 481 |
. . . . . . . . . 10
⊢ (((𝑅 ∈ CRing ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ 𝑛 ∈ (Base‘(𝐼 Mat 𝑅))) → ((𝐼 maDet 𝑅)‘(1r‘(𝐼 Mat 𝑅))) = (1r‘𝑅)) |
329 | 325, 328 | eqeq12d 2755 |
. . . . . . . . 9
⊢ (((𝑅 ∈ CRing ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ 𝑛 ∈ (Base‘(𝐼 Mat 𝑅))) → (((𝐼 maDet 𝑅)‘(𝑛(.r‘(𝐼 Mat 𝑅))𝑀)) = ((𝐼 maDet 𝑅)‘(1r‘(𝐼 Mat 𝑅))) ↔ (((𝐼 maDet 𝑅)‘𝑛)(.r‘𝑅)((𝐼 maDet 𝑅)‘𝑀)) = (1r‘𝑅))) |
330 | 322, 329 | syl5ib 243 |
. . . . . . . 8
⊢ (((𝑅 ∈ CRing ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ 𝑛 ∈ (Base‘(𝐼 Mat 𝑅))) → ((𝑛(.r‘(𝐼 Mat 𝑅))𝑀) = (1r‘(𝐼 Mat 𝑅)) → (((𝐼 maDet 𝑅)‘𝑛)(.r‘𝑅)((𝐼 maDet 𝑅)‘𝑀)) = (1r‘𝑅))) |
331 | 330 | impr 455 |
. . . . . . 7
⊢ (((𝑅 ∈ CRing ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ (𝑛 ∈ (Base‘(𝐼 Mat 𝑅)) ∧ (𝑛(.r‘(𝐼 Mat 𝑅))𝑀) = (1r‘(𝐼 Mat 𝑅)))) → (((𝐼 maDet 𝑅)‘𝑛)(.r‘𝑅)((𝐼 maDet 𝑅)‘𝑀)) = (1r‘𝑅)) |
332 | 331 | breq2d 5087 |
. . . . . 6
⊢ (((𝑅 ∈ CRing ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ (𝑛 ∈ (Base‘(𝐼 Mat 𝑅)) ∧ (𝑛(.r‘(𝐼 Mat 𝑅))𝑀) = (1r‘(𝐼 Mat 𝑅)))) → (((𝐼 maDet 𝑅)‘𝑀)(∥r‘𝑅)(((𝐼 maDet 𝑅)‘𝑛)(.r‘𝑅)((𝐼 maDet 𝑅)‘𝑀)) ↔ ((𝐼 maDet 𝑅)‘𝑀)(∥r‘𝑅)(1r‘𝑅))) |
333 | | eqid 2739 |
. . . . . . . 8
⊢
(Unit‘𝑅) =
(Unit‘𝑅) |
334 | 333, 233,
316 | crngunit 19913 |
. . . . . . 7
⊢ (𝑅 ∈ CRing → (((𝐼 maDet 𝑅)‘𝑀) ∈ (Unit‘𝑅) ↔ ((𝐼 maDet 𝑅)‘𝑀)(∥r‘𝑅)(1r‘𝑅))) |
335 | 334 | ad2antrr 723 |
. . . . . 6
⊢ (((𝑅 ∈ CRing ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ (𝑛 ∈ (Base‘(𝐼 Mat 𝑅)) ∧ (𝑛(.r‘(𝐼 Mat 𝑅))𝑀) = (1r‘(𝐼 Mat 𝑅)))) → (((𝐼 maDet 𝑅)‘𝑀) ∈ (Unit‘𝑅) ↔ ((𝐼 maDet 𝑅)‘𝑀)(∥r‘𝑅)(1r‘𝑅))) |
336 | 332, 335 | bitr4d 281 |
. . . . 5
⊢ (((𝑅 ∈ CRing ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ (𝑛 ∈ (Base‘(𝐼 Mat 𝑅)) ∧ (𝑛(.r‘(𝐼 Mat 𝑅))𝑀) = (1r‘(𝐼 Mat 𝑅)))) → (((𝐼 maDet 𝑅)‘𝑀)(∥r‘𝑅)(((𝐼 maDet 𝑅)‘𝑛)(.r‘𝑅)((𝐼 maDet 𝑅)‘𝑀)) ↔ ((𝐼 maDet 𝑅)‘𝑀) ∈ (Unit‘𝑅))) |
337 | 321, 336 | mpbid 231 |
. . . 4
⊢ (((𝑅 ∈ CRing ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ (𝑛 ∈ (Base‘(𝐼 Mat 𝑅)) ∧ (𝑛(.r‘(𝐼 Mat 𝑅))𝑀) = (1r‘(𝐼 Mat 𝑅)))) → ((𝐼 maDet 𝑅)‘𝑀) ∈ (Unit‘𝑅)) |
338 | 312, 337 | sylanl1 677 |
. . 3
⊢ (((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ (𝑛 ∈ (Base‘(𝐼 Mat 𝑅)) ∧ (𝑛(.r‘(𝐼 Mat 𝑅))𝑀) = (1r‘(𝐼 Mat 𝑅)))) → ((𝐼 maDet 𝑅)‘𝑀) ∈ (Unit‘𝑅)) |
339 | 338 | ad4ant14 749 |
. 2
⊢
(((((𝑅 ∈ Field
∧ 𝑀 ∈
(Base‘(𝐼 Mat 𝑅))) ∧ 𝐼 ≠ ∅) ∧ curry 𝑀 LIndF (𝑅 freeLMod 𝐼)) ∧ (𝑛 ∈ (Base‘(𝐼 Mat 𝑅)) ∧ (𝑛(.r‘(𝐼 Mat 𝑅))𝑀) = (1r‘(𝐼 Mat 𝑅)))) → ((𝐼 maDet 𝑅)‘𝑀) ∈ (Unit‘𝑅)) |
340 | 311, 339 | rexlimddv 3221 |
1
⊢ ((((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ 𝐼 ≠ ∅) ∧ curry 𝑀 LIndF (𝑅 freeLMod 𝐼)) → ((𝐼 maDet 𝑅)‘𝑀) ∈ (Unit‘𝑅)) |