Users' Mathboxes Mathbox for Brendan Leahy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  matunitlindflem2 Structured version   Visualization version   GIF version

Theorem matunitlindflem2 35334
Description: One direction of matunitlindf 35335. (Contributed by Brendan Leahy, 2-Jun-2021.)
Assertion
Ref Expression
matunitlindflem2 ((((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ 𝐼 ≠ ∅) ∧ curry 𝑀 LIndF (𝑅 freeLMod 𝐼)) → ((𝐼 maDet 𝑅)‘𝑀) ∈ (Unit‘𝑅))

Proof of Theorem matunitlindflem2
Dummy variables 𝑓 𝑖 𝑗 𝑘 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2758 . . . . . . 7 (𝐼 Mat 𝑅) = (𝐼 Mat 𝑅)
2 eqid 2758 . . . . . . 7 (Base‘(𝐼 Mat 𝑅)) = (Base‘(𝐼 Mat 𝑅))
31, 2matrcl 21112 . . . . . 6 (𝑀 ∈ (Base‘(𝐼 Mat 𝑅)) → (𝐼 ∈ Fin ∧ 𝑅 ∈ V))
43simpld 498 . . . . 5 (𝑀 ∈ (Base‘(𝐼 Mat 𝑅)) → 𝐼 ∈ Fin)
54ad3antlr 730 . . . 4 ((((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ 𝐼 ≠ ∅) ∧ curry 𝑀 LIndF (𝑅 freeLMod 𝐼)) → 𝐼 ∈ Fin)
6 isfld 19579 . . . . . . 7 (𝑅 ∈ Field ↔ (𝑅 ∈ DivRing ∧ 𝑅 ∈ CRing))
76simplbi 501 . . . . . 6 (𝑅 ∈ Field → 𝑅 ∈ DivRing)
87anim1i 617 . . . . 5 ((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) → (𝑅 ∈ DivRing ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))))
94ad2antrl 727 . . . . . . . . . . . 12 ((𝑅 ∈ DivRing ∧ (𝑀 ∈ (Base‘(𝐼 Mat 𝑅)) ∧ 𝐼 ≠ ∅)) → 𝐼 ∈ Fin)
10 simpr 488 . . . . . . . . . . . . . . 15 ((𝑅 ∈ DivRing ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) → 𝑀 ∈ (Base‘(𝐼 Mat 𝑅)))
11 xpfi 8822 . . . . . . . . . . . . . . . . . . . . 21 ((𝐼 ∈ Fin ∧ 𝐼 ∈ Fin) → (𝐼 × 𝐼) ∈ Fin)
1211anidms 570 . . . . . . . . . . . . . . . . . . . 20 (𝐼 ∈ Fin → (𝐼 × 𝐼) ∈ Fin)
13 eqid 2758 . . . . . . . . . . . . . . . . . . . . 21 (𝑅 freeLMod (𝐼 × 𝐼)) = (𝑅 freeLMod (𝐼 × 𝐼))
14 eqid 2758 . . . . . . . . . . . . . . . . . . . . 21 (Base‘𝑅) = (Base‘𝑅)
1513, 14frlmfibas 20527 . . . . . . . . . . . . . . . . . . . 20 ((𝑅 ∈ DivRing ∧ (𝐼 × 𝐼) ∈ Fin) → ((Base‘𝑅) ↑m (𝐼 × 𝐼)) = (Base‘(𝑅 freeLMod (𝐼 × 𝐼))))
1612, 15sylan2 595 . . . . . . . . . . . . . . . . . . 19 ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) → ((Base‘𝑅) ↑m (𝐼 × 𝐼)) = (Base‘(𝑅 freeLMod (𝐼 × 𝐼))))
171, 13matbas 21113 . . . . . . . . . . . . . . . . . . . 20 ((𝐼 ∈ Fin ∧ 𝑅 ∈ DivRing) → (Base‘(𝑅 freeLMod (𝐼 × 𝐼))) = (Base‘(𝐼 Mat 𝑅)))
1817ancoms 462 . . . . . . . . . . . . . . . . . . 19 ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) → (Base‘(𝑅 freeLMod (𝐼 × 𝐼))) = (Base‘(𝐼 Mat 𝑅)))
1916, 18eqtrd 2793 . . . . . . . . . . . . . . . . . 18 ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) → ((Base‘𝑅) ↑m (𝐼 × 𝐼)) = (Base‘(𝐼 Mat 𝑅)))
2019eleq2d 2837 . . . . . . . . . . . . . . . . 17 ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) → (𝑀 ∈ ((Base‘𝑅) ↑m (𝐼 × 𝐼)) ↔ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))))
214, 20sylan2 595 . . . . . . . . . . . . . . . 16 ((𝑅 ∈ DivRing ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) → (𝑀 ∈ ((Base‘𝑅) ↑m (𝐼 × 𝐼)) ↔ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))))
22 fvex 6671 . . . . . . . . . . . . . . . . . 18 (Base‘𝑅) ∈ V
234, 4, 11syl2anc 587 . . . . . . . . . . . . . . . . . 18 (𝑀 ∈ (Base‘(𝐼 Mat 𝑅)) → (𝐼 × 𝐼) ∈ Fin)
24 elmapg 8429 . . . . . . . . . . . . . . . . . 18 (((Base‘𝑅) ∈ V ∧ (𝐼 × 𝐼) ∈ Fin) → (𝑀 ∈ ((Base‘𝑅) ↑m (𝐼 × 𝐼)) ↔ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)))
2522, 23, 24sylancr 590 . . . . . . . . . . . . . . . . 17 (𝑀 ∈ (Base‘(𝐼 Mat 𝑅)) → (𝑀 ∈ ((Base‘𝑅) ↑m (𝐼 × 𝐼)) ↔ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)))
2625adantl 485 . . . . . . . . . . . . . . . 16 ((𝑅 ∈ DivRing ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) → (𝑀 ∈ ((Base‘𝑅) ↑m (𝐼 × 𝐼)) ↔ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)))
2721, 26bitr3d 284 . . . . . . . . . . . . . . 15 ((𝑅 ∈ DivRing ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) → (𝑀 ∈ (Base‘(𝐼 Mat 𝑅)) ↔ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)))
2810, 27mpbid 235 . . . . . . . . . . . . . 14 ((𝑅 ∈ DivRing ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) → 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅))
2928adantrr 716 . . . . . . . . . . . . 13 ((𝑅 ∈ DivRing ∧ (𝑀 ∈ (Base‘(𝐼 Mat 𝑅)) ∧ 𝐼 ≠ ∅)) → 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅))
30 eldifsn 4677 . . . . . . . . . . . . . . . 16 (𝐼 ∈ (Fin ∖ {∅}) ↔ (𝐼 ∈ Fin ∧ 𝐼 ≠ ∅))
3130biimpri 231 . . . . . . . . . . . . . . 15 ((𝐼 ∈ Fin ∧ 𝐼 ≠ ∅) → 𝐼 ∈ (Fin ∖ {∅}))
324, 31sylan 583 . . . . . . . . . . . . . 14 ((𝑀 ∈ (Base‘(𝐼 Mat 𝑅)) ∧ 𝐼 ≠ ∅) → 𝐼 ∈ (Fin ∖ {∅}))
3332adantl 485 . . . . . . . . . . . . 13 ((𝑅 ∈ DivRing ∧ (𝑀 ∈ (Base‘(𝐼 Mat 𝑅)) ∧ 𝐼 ≠ ∅)) → 𝐼 ∈ (Fin ∖ {∅}))
34 curf 35315 . . . . . . . . . . . . . 14 ((𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅) ∧ 𝐼 ∈ (Fin ∖ {∅}) ∧ (Base‘𝑅) ∈ V) → curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼))
3522, 34mp3an3 1447 . . . . . . . . . . . . 13 ((𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅) ∧ 𝐼 ∈ (Fin ∖ {∅})) → curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼))
3629, 33, 35syl2anc 587 . . . . . . . . . . . 12 ((𝑅 ∈ DivRing ∧ (𝑀 ∈ (Base‘(𝐼 Mat 𝑅)) ∧ 𝐼 ≠ ∅)) → curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼))
379, 36jca 515 . . . . . . . . . . 11 ((𝑅 ∈ DivRing ∧ (𝑀 ∈ (Base‘(𝐼 Mat 𝑅)) ∧ 𝐼 ≠ ∅)) → (𝐼 ∈ Fin ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)))
3837ex 416 . . . . . . . . . 10 (𝑅 ∈ DivRing → ((𝑀 ∈ (Base‘(𝐼 Mat 𝑅)) ∧ 𝐼 ≠ ∅) → (𝐼 ∈ Fin ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼))))
3938imdistani 572 . . . . . . . . 9 ((𝑅 ∈ DivRing ∧ (𝑀 ∈ (Base‘(𝐼 Mat 𝑅)) ∧ 𝐼 ≠ ∅)) → (𝑅 ∈ DivRing ∧ (𝐼 ∈ Fin ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼))))
4039anassrs 471 . . . . . . . 8 (((𝑅 ∈ DivRing ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ 𝐼 ≠ ∅) → (𝑅 ∈ DivRing ∧ (𝐼 ∈ Fin ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼))))
41 anass 472 . . . . . . . 8 (((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) ↔ (𝑅 ∈ DivRing ∧ (𝐼 ∈ Fin ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼))))
4240, 41sylibr 237 . . . . . . 7 (((𝑅 ∈ DivRing ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ 𝐼 ≠ ∅) → ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)))
43 drngring 19577 . . . . . . . . . . . . 13 (𝑅 ∈ DivRing → 𝑅 ∈ Ring)
44 eqid 2758 . . . . . . . . . . . . . 14 (𝑅 unitVec 𝐼) = (𝑅 unitVec 𝐼)
45 eqid 2758 . . . . . . . . . . . . . 14 (𝑅 freeLMod 𝐼) = (𝑅 freeLMod 𝐼)
46 eqid 2758 . . . . . . . . . . . . . 14 (Base‘(𝑅 freeLMod 𝐼)) = (Base‘(𝑅 freeLMod 𝐼))
4744, 45, 46uvcff 20556 . . . . . . . . . . . . 13 ((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) → (𝑅 unitVec 𝐼):𝐼⟶(Base‘(𝑅 freeLMod 𝐼)))
4843, 47sylan 583 . . . . . . . . . . . 12 ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) → (𝑅 unitVec 𝐼):𝐼⟶(Base‘(𝑅 freeLMod 𝐼)))
4948ffvelrnda 6842 . . . . . . . . . . 11 (((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) ∧ 𝑖𝐼) → ((𝑅 unitVec 𝐼)‘𝑖) ∈ (Base‘(𝑅 freeLMod 𝐼)))
5049ad4ant14 751 . . . . . . . . . 10 (((((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) ∧ curry 𝑀 LIndF (𝑅 freeLMod 𝐼)) ∧ 𝑖𝐼) → ((𝑅 unitVec 𝐼)‘𝑖) ∈ (Base‘(𝑅 freeLMod 𝐼)))
51 ffn 6498 . . . . . . . . . . . . . . . 16 (curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼) → curry 𝑀 Fn 𝐼)
52 fnima 6461 . . . . . . . . . . . . . . . 16 (curry 𝑀 Fn 𝐼 → (curry 𝑀𝐼) = ran curry 𝑀)
5351, 52syl 17 . . . . . . . . . . . . . . 15 (curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼) → (curry 𝑀𝐼) = ran curry 𝑀)
5453adantl 485 . . . . . . . . . . . . . 14 (((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) → (curry 𝑀𝐼) = ran curry 𝑀)
5554fveq2d 6662 . . . . . . . . . . . . 13 (((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) → ((LSpan‘(𝑅 freeLMod 𝐼))‘(curry 𝑀𝐼)) = ((LSpan‘(𝑅 freeLMod 𝐼))‘ran curry 𝑀))
5655adantr 484 . . . . . . . . . . . 12 ((((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) ∧ curry 𝑀 LIndF (𝑅 freeLMod 𝐼)) → ((LSpan‘(𝑅 freeLMod 𝐼))‘(curry 𝑀𝐼)) = ((LSpan‘(𝑅 freeLMod 𝐼))‘ran curry 𝑀))
57 simplll 774 . . . . . . . . . . . . . 14 ((((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) ∧ curry 𝑀 LIndF (𝑅 freeLMod 𝐼)) → 𝑅 ∈ DivRing)
58 simpllr 775 . . . . . . . . . . . . . 14 ((((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) ∧ curry 𝑀 LIndF (𝑅 freeLMod 𝐼)) → 𝐼 ∈ Fin)
5945frlmlmod 20514 . . . . . . . . . . . . . . . . 17 ((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) → (𝑅 freeLMod 𝐼) ∈ LMod)
6043, 59sylan 583 . . . . . . . . . . . . . . . 16 ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) → (𝑅 freeLMod 𝐼) ∈ LMod)
6160adantr 484 . . . . . . . . . . . . . . 15 (((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) → (𝑅 freeLMod 𝐼) ∈ LMod)
62 lindfrn 20586 . . . . . . . . . . . . . . 15 (((𝑅 freeLMod 𝐼) ∈ LMod ∧ curry 𝑀 LIndF (𝑅 freeLMod 𝐼)) → ran curry 𝑀 ∈ (LIndS‘(𝑅 freeLMod 𝐼)))
6361, 62sylan 583 . . . . . . . . . . . . . 14 ((((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) ∧ curry 𝑀 LIndF (𝑅 freeLMod 𝐼)) → ran curry 𝑀 ∈ (LIndS‘(𝑅 freeLMod 𝐼)))
6445frlmsca 20518 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) → 𝑅 = (Scalar‘(𝑅 freeLMod 𝐼)))
65 drngnzr 20103 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑅 ∈ DivRing → 𝑅 ∈ NzRing)
6665adantr 484 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) → 𝑅 ∈ NzRing)
6764, 66eqeltrrd 2853 . . . . . . . . . . . . . . . . . . . . 21 ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) → (Scalar‘(𝑅 freeLMod 𝐼)) ∈ NzRing)
6860, 67jca 515 . . . . . . . . . . . . . . . . . . . 20 ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) → ((𝑅 freeLMod 𝐼) ∈ LMod ∧ (Scalar‘(𝑅 freeLMod 𝐼)) ∈ NzRing))
69 eqid 2758 . . . . . . . . . . . . . . . . . . . . . 22 (Scalar‘(𝑅 freeLMod 𝐼)) = (Scalar‘(𝑅 freeLMod 𝐼))
7046, 69lindff1 20585 . . . . . . . . . . . . . . . . . . . . 21 (((𝑅 freeLMod 𝐼) ∈ LMod ∧ (Scalar‘(𝑅 freeLMod 𝐼)) ∈ NzRing ∧ curry 𝑀 LIndF (𝑅 freeLMod 𝐼)) → curry 𝑀:dom curry 𝑀1-1→(Base‘(𝑅 freeLMod 𝐼)))
71703expa 1115 . . . . . . . . . . . . . . . . . . . 20 ((((𝑅 freeLMod 𝐼) ∈ LMod ∧ (Scalar‘(𝑅 freeLMod 𝐼)) ∈ NzRing) ∧ curry 𝑀 LIndF (𝑅 freeLMod 𝐼)) → curry 𝑀:dom curry 𝑀1-1→(Base‘(𝑅 freeLMod 𝐼)))
7268, 71sylan 583 . . . . . . . . . . . . . . . . . . 19 (((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) ∧ curry 𝑀 LIndF (𝑅 freeLMod 𝐼)) → curry 𝑀:dom curry 𝑀1-1→(Base‘(𝑅 freeLMod 𝐼)))
73 fdm 6506 . . . . . . . . . . . . . . . . . . 19 (curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼) → dom curry 𝑀 = 𝐼)
74 f1eq2 6556 . . . . . . . . . . . . . . . . . . . 20 (dom curry 𝑀 = 𝐼 → (curry 𝑀:dom curry 𝑀1-1→(Base‘(𝑅 freeLMod 𝐼)) ↔ curry 𝑀:𝐼1-1→(Base‘(𝑅 freeLMod 𝐼))))
7574biimpac 482 . . . . . . . . . . . . . . . . . . 19 ((curry 𝑀:dom curry 𝑀1-1→(Base‘(𝑅 freeLMod 𝐼)) ∧ dom curry 𝑀 = 𝐼) → curry 𝑀:𝐼1-1→(Base‘(𝑅 freeLMod 𝐼)))
7672, 73, 75syl2an 598 . . . . . . . . . . . . . . . . . 18 ((((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) ∧ curry 𝑀 LIndF (𝑅 freeLMod 𝐼)) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) → curry 𝑀:𝐼1-1→(Base‘(𝑅 freeLMod 𝐼)))
7776an32s 651 . . . . . . . . . . . . . . . . 17 ((((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) ∧ curry 𝑀 LIndF (𝑅 freeLMod 𝐼)) → curry 𝑀:𝐼1-1→(Base‘(𝑅 freeLMod 𝐼)))
78 f1f1orn 6613 . . . . . . . . . . . . . . . . 17 (curry 𝑀:𝐼1-1→(Base‘(𝑅 freeLMod 𝐼)) → curry 𝑀:𝐼1-1-onto→ran curry 𝑀)
7977, 78syl 17 . . . . . . . . . . . . . . . 16 ((((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) ∧ curry 𝑀 LIndF (𝑅 freeLMod 𝐼)) → curry 𝑀:𝐼1-1-onto→ran curry 𝑀)
80 f1oeng 8546 . . . . . . . . . . . . . . . 16 ((𝐼 ∈ Fin ∧ curry 𝑀:𝐼1-1-onto→ran curry 𝑀) → 𝐼 ≈ ran curry 𝑀)
8158, 79, 80syl2anc 587 . . . . . . . . . . . . . . 15 ((((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) ∧ curry 𝑀 LIndF (𝑅 freeLMod 𝐼)) → 𝐼 ≈ ran curry 𝑀)
8281ensymd 8578 . . . . . . . . . . . . . 14 ((((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) ∧ curry 𝑀 LIndF (𝑅 freeLMod 𝐼)) → ran curry 𝑀𝐼)
83 lindsenlbs 35332 . . . . . . . . . . . . . 14 (((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ ran curry 𝑀 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ ran curry 𝑀𝐼) → ran curry 𝑀 ∈ (LBasis‘(𝑅 freeLMod 𝐼)))
8457, 58, 63, 82, 83syl31anc 1370 . . . . . . . . . . . . 13 ((((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) ∧ curry 𝑀 LIndF (𝑅 freeLMod 𝐼)) → ran curry 𝑀 ∈ (LBasis‘(𝑅 freeLMod 𝐼)))
85 eqid 2758 . . . . . . . . . . . . . 14 (LBasis‘(𝑅 freeLMod 𝐼)) = (LBasis‘(𝑅 freeLMod 𝐼))
86 eqid 2758 . . . . . . . . . . . . . 14 (LSpan‘(𝑅 freeLMod 𝐼)) = (LSpan‘(𝑅 freeLMod 𝐼))
8746, 85, 86lbssp 19919 . . . . . . . . . . . . 13 (ran curry 𝑀 ∈ (LBasis‘(𝑅 freeLMod 𝐼)) → ((LSpan‘(𝑅 freeLMod 𝐼))‘ran curry 𝑀) = (Base‘(𝑅 freeLMod 𝐼)))
8884, 87syl 17 . . . . . . . . . . . 12 ((((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) ∧ curry 𝑀 LIndF (𝑅 freeLMod 𝐼)) → ((LSpan‘(𝑅 freeLMod 𝐼))‘ran curry 𝑀) = (Base‘(𝑅 freeLMod 𝐼)))
8956, 88eqtrd 2793 . . . . . . . . . . 11 ((((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) ∧ curry 𝑀 LIndF (𝑅 freeLMod 𝐼)) → ((LSpan‘(𝑅 freeLMod 𝐼))‘(curry 𝑀𝐼)) = (Base‘(𝑅 freeLMod 𝐼)))
9089adantr 484 . . . . . . . . . 10 (((((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) ∧ curry 𝑀 LIndF (𝑅 freeLMod 𝐼)) ∧ 𝑖𝐼) → ((LSpan‘(𝑅 freeLMod 𝐼))‘(curry 𝑀𝐼)) = (Base‘(𝑅 freeLMod 𝐼)))
9150, 90eleqtrrd 2855 . . . . . . . . 9 (((((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) ∧ curry 𝑀 LIndF (𝑅 freeLMod 𝐼)) ∧ 𝑖𝐼) → ((𝑅 unitVec 𝐼)‘𝑖) ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘(curry 𝑀𝐼)))
92 eqid 2758 . . . . . . . . . . . . 13 (Base‘(Scalar‘(𝑅 freeLMod 𝐼))) = (Base‘(Scalar‘(𝑅 freeLMod 𝐼)))
93 eqid 2758 . . . . . . . . . . . . 13 (0g‘(Scalar‘(𝑅 freeLMod 𝐼))) = (0g‘(Scalar‘(𝑅 freeLMod 𝐼)))
94 eqid 2758 . . . . . . . . . . . . 13 ( ·𝑠 ‘(𝑅 freeLMod 𝐼)) = ( ·𝑠 ‘(𝑅 freeLMod 𝐼))
9545, 14frlmfibas 20527 . . . . . . . . . . . . . . 15 ((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) → ((Base‘𝑅) ↑m 𝐼) = (Base‘(𝑅 freeLMod 𝐼)))
9695feq3d 6485 . . . . . . . . . . . . . 14 ((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) → (curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼) ↔ curry 𝑀:𝐼⟶(Base‘(𝑅 freeLMod 𝐼))))
9796biimpa 480 . . . . . . . . . . . . 13 (((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) → curry 𝑀:𝐼⟶(Base‘(𝑅 freeLMod 𝐼)))
9859adantr 484 . . . . . . . . . . . . 13 (((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) → (𝑅 freeLMod 𝐼) ∈ LMod)
99 simplr 768 . . . . . . . . . . . . 13 (((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) → 𝐼 ∈ Fin)
10086, 46, 92, 69, 93, 94, 97, 98, 99elfilspd 20568 . . . . . . . . . . . 12 (((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) → (((𝑅 unitVec 𝐼)‘𝑖) ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘(curry 𝑀𝐼)) ↔ ∃𝑛 ∈ ((Base‘(Scalar‘(𝑅 freeLMod 𝐼))) ↑m 𝐼)((𝑅 unitVec 𝐼)‘𝑖) = ((𝑅 freeLMod 𝐼) Σg (𝑛f ( ·𝑠 ‘(𝑅 freeLMod 𝐼))curry 𝑀))))
10145frlmsca 20518 . . . . . . . . . . . . . . . 16 ((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) → 𝑅 = (Scalar‘(𝑅 freeLMod 𝐼)))
102101fveq2d 6662 . . . . . . . . . . . . . . 15 ((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) → (Base‘𝑅) = (Base‘(Scalar‘(𝑅 freeLMod 𝐼))))
103102oveq1d 7165 . . . . . . . . . . . . . 14 ((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) → ((Base‘𝑅) ↑m 𝐼) = ((Base‘(Scalar‘(𝑅 freeLMod 𝐼))) ↑m 𝐼))
104103adantr 484 . . . . . . . . . . . . 13 (((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) → ((Base‘𝑅) ↑m 𝐼) = ((Base‘(Scalar‘(𝑅 freeLMod 𝐼))) ↑m 𝐼))
105 elmapi 8438 . . . . . . . . . . . . . . 15 (𝑛 ∈ ((Base‘𝑅) ↑m 𝐼) → 𝑛:𝐼⟶(Base‘𝑅))
106 ffn 6498 . . . . . . . . . . . . . . . . . . . 20 (𝑛:𝐼⟶(Base‘𝑅) → 𝑛 Fn 𝐼)
107106adantl 485 . . . . . . . . . . . . . . . . . . 19 ((((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) ∧ 𝑛:𝐼⟶(Base‘𝑅)) → 𝑛 Fn 𝐼)
10851ad2antlr 726 . . . . . . . . . . . . . . . . . . 19 ((((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) ∧ 𝑛:𝐼⟶(Base‘𝑅)) → curry 𝑀 Fn 𝐼)
109 simpllr 775 . . . . . . . . . . . . . . . . . . 19 ((((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) ∧ 𝑛:𝐼⟶(Base‘𝑅)) → 𝐼 ∈ Fin)
110 inidm 4123 . . . . . . . . . . . . . . . . . . 19 (𝐼𝐼) = 𝐼
111 eqidd 2759 . . . . . . . . . . . . . . . . . . 19 (((((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) ∧ 𝑛:𝐼⟶(Base‘𝑅)) ∧ 𝑘𝐼) → (𝑛𝑘) = (𝑛𝑘))
112 eqidd 2759 . . . . . . . . . . . . . . . . . . 19 (((((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) ∧ 𝑛:𝐼⟶(Base‘𝑅)) ∧ 𝑘𝐼) → (curry 𝑀𝑘) = (curry 𝑀𝑘))
113107, 108, 109, 109, 110, 111, 112offval 7413 . . . . . . . . . . . . . . . . . 18 ((((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) ∧ 𝑛:𝐼⟶(Base‘𝑅)) → (𝑛f ( ·𝑠 ‘(𝑅 freeLMod 𝐼))curry 𝑀) = (𝑘𝐼 ↦ ((𝑛𝑘)( ·𝑠 ‘(𝑅 freeLMod 𝐼))(curry 𝑀𝑘))))
114 simp-4r 783 . . . . . . . . . . . . . . . . . . . . 21 (((((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) ∧ 𝑛:𝐼⟶(Base‘𝑅)) ∧ 𝑘𝐼) → 𝐼 ∈ Fin)
115 ffvelrn 6840 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑛:𝐼⟶(Base‘𝑅) ∧ 𝑘𝐼) → (𝑛𝑘) ∈ (Base‘𝑅))
116115adantll 713 . . . . . . . . . . . . . . . . . . . . 21 (((((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) ∧ 𝑛:𝐼⟶(Base‘𝑅)) ∧ 𝑘𝐼) → (𝑛𝑘) ∈ (Base‘𝑅))
117 ffvelrn 6840 . . . . . . . . . . . . . . . . . . . . . . 23 ((curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼) ∧ 𝑘𝐼) → (curry 𝑀𝑘) ∈ ((Base‘𝑅) ↑m 𝐼))
118117ad4ant24 753 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) ∧ 𝑛:𝐼⟶(Base‘𝑅)) ∧ 𝑘𝐼) → (curry 𝑀𝑘) ∈ ((Base‘𝑅) ↑m 𝐼))
11995ad3antrrr 729 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) ∧ 𝑛:𝐼⟶(Base‘𝑅)) ∧ 𝑘𝐼) → ((Base‘𝑅) ↑m 𝐼) = (Base‘(𝑅 freeLMod 𝐼)))
120118, 119eleqtrd 2854 . . . . . . . . . . . . . . . . . . . . 21 (((((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) ∧ 𝑛:𝐼⟶(Base‘𝑅)) ∧ 𝑘𝐼) → (curry 𝑀𝑘) ∈ (Base‘(𝑅 freeLMod 𝐼)))
121 eqid 2758 . . . . . . . . . . . . . . . . . . . . 21 (.r𝑅) = (.r𝑅)
12245, 46, 14, 114, 116, 120, 94, 121frlmvscafval 20531 . . . . . . . . . . . . . . . . . . . 20 (((((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) ∧ 𝑛:𝐼⟶(Base‘𝑅)) ∧ 𝑘𝐼) → ((𝑛𝑘)( ·𝑠 ‘(𝑅 freeLMod 𝐼))(curry 𝑀𝑘)) = ((𝐼 × {(𝑛𝑘)}) ∘f (.r𝑅)(curry 𝑀𝑘)))
123 fvex 6671 . . . . . . . . . . . . . . . . . . . . . 22 (𝑛𝑘) ∈ V
124 fnconstg 6552 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑛𝑘) ∈ V → (𝐼 × {(𝑛𝑘)}) Fn 𝐼)
125123, 124mp1i 13 . . . . . . . . . . . . . . . . . . . . 21 (((((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) ∧ 𝑛:𝐼⟶(Base‘𝑅)) ∧ 𝑘𝐼) → (𝐼 × {(𝑛𝑘)}) Fn 𝐼)
126 elmapfn 8447 . . . . . . . . . . . . . . . . . . . . . . 23 ((curry 𝑀𝑘) ∈ ((Base‘𝑅) ↑m 𝐼) → (curry 𝑀𝑘) Fn 𝐼)
127117, 126syl 17 . . . . . . . . . . . . . . . . . . . . . 22 ((curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼) ∧ 𝑘𝐼) → (curry 𝑀𝑘) Fn 𝐼)
128127ad4ant24 753 . . . . . . . . . . . . . . . . . . . . 21 (((((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) ∧ 𝑛:𝐼⟶(Base‘𝑅)) ∧ 𝑘𝐼) → (curry 𝑀𝑘) Fn 𝐼)
129123fvconst2 6957 . . . . . . . . . . . . . . . . . . . . . 22 (𝑗𝐼 → ((𝐼 × {(𝑛𝑘)})‘𝑗) = (𝑛𝑘))
130129adantl 485 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) ∧ 𝑛:𝐼⟶(Base‘𝑅)) ∧ 𝑘𝐼) ∧ 𝑗𝐼) → ((𝐼 × {(𝑛𝑘)})‘𝑗) = (𝑛𝑘))
131 eqidd 2759 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) ∧ 𝑛:𝐼⟶(Base‘𝑅)) ∧ 𝑘𝐼) ∧ 𝑗𝐼) → ((curry 𝑀𝑘)‘𝑗) = ((curry 𝑀𝑘)‘𝑗))
132125, 128, 114, 114, 110, 130, 131offval 7413 . . . . . . . . . . . . . . . . . . . 20 (((((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) ∧ 𝑛:𝐼⟶(Base‘𝑅)) ∧ 𝑘𝐼) → ((𝐼 × {(𝑛𝑘)}) ∘f (.r𝑅)(curry 𝑀𝑘)) = (𝑗𝐼 ↦ ((𝑛𝑘)(.r𝑅)((curry 𝑀𝑘)‘𝑗))))
133122, 132eqtrd 2793 . . . . . . . . . . . . . . . . . . 19 (((((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) ∧ 𝑛:𝐼⟶(Base‘𝑅)) ∧ 𝑘𝐼) → ((𝑛𝑘)( ·𝑠 ‘(𝑅 freeLMod 𝐼))(curry 𝑀𝑘)) = (𝑗𝐼 ↦ ((𝑛𝑘)(.r𝑅)((curry 𝑀𝑘)‘𝑗))))
134133mpteq2dva 5127 . . . . . . . . . . . . . . . . . 18 ((((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) ∧ 𝑛:𝐼⟶(Base‘𝑅)) → (𝑘𝐼 ↦ ((𝑛𝑘)( ·𝑠 ‘(𝑅 freeLMod 𝐼))(curry 𝑀𝑘))) = (𝑘𝐼 ↦ (𝑗𝐼 ↦ ((𝑛𝑘)(.r𝑅)((curry 𝑀𝑘)‘𝑗)))))
135113, 134eqtrd 2793 . . . . . . . . . . . . . . . . 17 ((((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) ∧ 𝑛:𝐼⟶(Base‘𝑅)) → (𝑛f ( ·𝑠 ‘(𝑅 freeLMod 𝐼))curry 𝑀) = (𝑘𝐼 ↦ (𝑗𝐼 ↦ ((𝑛𝑘)(.r𝑅)((curry 𝑀𝑘)‘𝑗)))))
136135oveq2d 7166 . . . . . . . . . . . . . . . 16 ((((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) ∧ 𝑛:𝐼⟶(Base‘𝑅)) → ((𝑅 freeLMod 𝐼) Σg (𝑛f ( ·𝑠 ‘(𝑅 freeLMod 𝐼))curry 𝑀)) = ((𝑅 freeLMod 𝐼) Σg (𝑘𝐼 ↦ (𝑗𝐼 ↦ ((𝑛𝑘)(.r𝑅)((curry 𝑀𝑘)‘𝑗))))))
137 eqid 2758 . . . . . . . . . . . . . . . . 17 (0g‘(𝑅 freeLMod 𝐼)) = (0g‘(𝑅 freeLMod 𝐼))
138 simplll 774 . . . . . . . . . . . . . . . . 17 ((((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) ∧ 𝑛:𝐼⟶(Base‘𝑅)) → 𝑅 ∈ Ring)
139 simp-5l 784 . . . . . . . . . . . . . . . . . . . 20 ((((((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) ∧ 𝑛:𝐼⟶(Base‘𝑅)) ∧ 𝑘𝐼) ∧ 𝑗𝐼) → 𝑅 ∈ Ring)
140115ad4ant23 752 . . . . . . . . . . . . . . . . . . . 20 ((((((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) ∧ 𝑛:𝐼⟶(Base‘𝑅)) ∧ 𝑘𝐼) ∧ 𝑗𝐼) → (𝑛𝑘) ∈ (Base‘𝑅))
141 simplr 768 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) ∧ 𝑛:𝐼⟶(Base‘𝑅)) → curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼))
142 elmapi 8438 . . . . . . . . . . . . . . . . . . . . . . 23 ((curry 𝑀𝑘) ∈ ((Base‘𝑅) ↑m 𝐼) → (curry 𝑀𝑘):𝐼⟶(Base‘𝑅))
143117, 142syl 17 . . . . . . . . . . . . . . . . . . . . . 22 ((curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼) ∧ 𝑘𝐼) → (curry 𝑀𝑘):𝐼⟶(Base‘𝑅))
144143ffvelrnda 6842 . . . . . . . . . . . . . . . . . . . . 21 (((curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼) ∧ 𝑘𝐼) ∧ 𝑗𝐼) → ((curry 𝑀𝑘)‘𝑗) ∈ (Base‘𝑅))
145141, 144sylanl1 679 . . . . . . . . . . . . . . . . . . . 20 ((((((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) ∧ 𝑛:𝐼⟶(Base‘𝑅)) ∧ 𝑘𝐼) ∧ 𝑗𝐼) → ((curry 𝑀𝑘)‘𝑗) ∈ (Base‘𝑅))
14614, 121ringcl 19382 . . . . . . . . . . . . . . . . . . . 20 ((𝑅 ∈ Ring ∧ (𝑛𝑘) ∈ (Base‘𝑅) ∧ ((curry 𝑀𝑘)‘𝑗) ∈ (Base‘𝑅)) → ((𝑛𝑘)(.r𝑅)((curry 𝑀𝑘)‘𝑗)) ∈ (Base‘𝑅))
147139, 140, 145, 146syl3anc 1368 . . . . . . . . . . . . . . . . . . 19 ((((((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) ∧ 𝑛:𝐼⟶(Base‘𝑅)) ∧ 𝑘𝐼) ∧ 𝑗𝐼) → ((𝑛𝑘)(.r𝑅)((curry 𝑀𝑘)‘𝑗)) ∈ (Base‘𝑅))
148147fmpttd 6870 . . . . . . . . . . . . . . . . . 18 (((((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) ∧ 𝑛:𝐼⟶(Base‘𝑅)) ∧ 𝑘𝐼) → (𝑗𝐼 ↦ ((𝑛𝑘)(.r𝑅)((curry 𝑀𝑘)‘𝑗))):𝐼⟶(Base‘𝑅))
149 elmapg 8429 . . . . . . . . . . . . . . . . . . . . . 22 (((Base‘𝑅) ∈ V ∧ 𝐼 ∈ Fin) → ((𝑗𝐼 ↦ ((𝑛𝑘)(.r𝑅)((curry 𝑀𝑘)‘𝑗))) ∈ ((Base‘𝑅) ↑m 𝐼) ↔ (𝑗𝐼 ↦ ((𝑛𝑘)(.r𝑅)((curry 𝑀𝑘)‘𝑗))):𝐼⟶(Base‘𝑅)))
15022, 149mpan 689 . . . . . . . . . . . . . . . . . . . . 21 (𝐼 ∈ Fin → ((𝑗𝐼 ↦ ((𝑛𝑘)(.r𝑅)((curry 𝑀𝑘)‘𝑗))) ∈ ((Base‘𝑅) ↑m 𝐼) ↔ (𝑗𝐼 ↦ ((𝑛𝑘)(.r𝑅)((curry 𝑀𝑘)‘𝑗))):𝐼⟶(Base‘𝑅)))
151150adantl 485 . . . . . . . . . . . . . . . . . . . 20 ((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) → ((𝑗𝐼 ↦ ((𝑛𝑘)(.r𝑅)((curry 𝑀𝑘)‘𝑗))) ∈ ((Base‘𝑅) ↑m 𝐼) ↔ (𝑗𝐼 ↦ ((𝑛𝑘)(.r𝑅)((curry 𝑀𝑘)‘𝑗))):𝐼⟶(Base‘𝑅)))
15295eleq2d 2837 . . . . . . . . . . . . . . . . . . . 20 ((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) → ((𝑗𝐼 ↦ ((𝑛𝑘)(.r𝑅)((curry 𝑀𝑘)‘𝑗))) ∈ ((Base‘𝑅) ↑m 𝐼) ↔ (𝑗𝐼 ↦ ((𝑛𝑘)(.r𝑅)((curry 𝑀𝑘)‘𝑗))) ∈ (Base‘(𝑅 freeLMod 𝐼))))
153151, 152bitr3d 284 . . . . . . . . . . . . . . . . . . 19 ((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) → ((𝑗𝐼 ↦ ((𝑛𝑘)(.r𝑅)((curry 𝑀𝑘)‘𝑗))):𝐼⟶(Base‘𝑅) ↔ (𝑗𝐼 ↦ ((𝑛𝑘)(.r𝑅)((curry 𝑀𝑘)‘𝑗))) ∈ (Base‘(𝑅 freeLMod 𝐼))))
154153ad3antrrr 729 . . . . . . . . . . . . . . . . . 18 (((((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) ∧ 𝑛:𝐼⟶(Base‘𝑅)) ∧ 𝑘𝐼) → ((𝑗𝐼 ↦ ((𝑛𝑘)(.r𝑅)((curry 𝑀𝑘)‘𝑗))):𝐼⟶(Base‘𝑅) ↔ (𝑗𝐼 ↦ ((𝑛𝑘)(.r𝑅)((curry 𝑀𝑘)‘𝑗))) ∈ (Base‘(𝑅 freeLMod 𝐼))))
155148, 154mpbid 235 . . . . . . . . . . . . . . . . 17 (((((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) ∧ 𝑛:𝐼⟶(Base‘𝑅)) ∧ 𝑘𝐼) → (𝑗𝐼 ↦ ((𝑛𝑘)(.r𝑅)((curry 𝑀𝑘)‘𝑗))) ∈ (Base‘(𝑅 freeLMod 𝐼)))
156 mptexg 6975 . . . . . . . . . . . . . . . . . . . . 21 (𝐼 ∈ Fin → (𝑗𝐼 ↦ ((𝑛𝑘)(.r𝑅)((curry 𝑀𝑘)‘𝑗))) ∈ V)
157156ralrimivw 3114 . . . . . . . . . . . . . . . . . . . 20 (𝐼 ∈ Fin → ∀𝑘𝐼 (𝑗𝐼 ↦ ((𝑛𝑘)(.r𝑅)((curry 𝑀𝑘)‘𝑗))) ∈ V)
158 eqid 2758 . . . . . . . . . . . . . . . . . . . . 21 (𝑘𝐼 ↦ (𝑗𝐼 ↦ ((𝑛𝑘)(.r𝑅)((curry 𝑀𝑘)‘𝑗)))) = (𝑘𝐼 ↦ (𝑗𝐼 ↦ ((𝑛𝑘)(.r𝑅)((curry 𝑀𝑘)‘𝑗))))
159158fnmpt 6471 . . . . . . . . . . . . . . . . . . . 20 (∀𝑘𝐼 (𝑗𝐼 ↦ ((𝑛𝑘)(.r𝑅)((curry 𝑀𝑘)‘𝑗))) ∈ V → (𝑘𝐼 ↦ (𝑗𝐼 ↦ ((𝑛𝑘)(.r𝑅)((curry 𝑀𝑘)‘𝑗)))) Fn 𝐼)
160157, 159syl 17 . . . . . . . . . . . . . . . . . . 19 (𝐼 ∈ Fin → (𝑘𝐼 ↦ (𝑗𝐼 ↦ ((𝑛𝑘)(.r𝑅)((curry 𝑀𝑘)‘𝑗)))) Fn 𝐼)
161 id 22 . . . . . . . . . . . . . . . . . . 19 (𝐼 ∈ Fin → 𝐼 ∈ Fin)
162 fvexd 6673 . . . . . . . . . . . . . . . . . . 19 (𝐼 ∈ Fin → (0g‘(𝑅 freeLMod 𝐼)) ∈ V)
163160, 161, 162fndmfifsupp 8879 . . . . . . . . . . . . . . . . . 18 (𝐼 ∈ Fin → (𝑘𝐼 ↦ (𝑗𝐼 ↦ ((𝑛𝑘)(.r𝑅)((curry 𝑀𝑘)‘𝑗)))) finSupp (0g‘(𝑅 freeLMod 𝐼)))
164163ad3antlr 730 . . . . . . . . . . . . . . . . 17 ((((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) ∧ 𝑛:𝐼⟶(Base‘𝑅)) → (𝑘𝐼 ↦ (𝑗𝐼 ↦ ((𝑛𝑘)(.r𝑅)((curry 𝑀𝑘)‘𝑗)))) finSupp (0g‘(𝑅 freeLMod 𝐼)))
16545, 46, 137, 109, 109, 138, 155, 164frlmgsum 20537 . . . . . . . . . . . . . . . 16 ((((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) ∧ 𝑛:𝐼⟶(Base‘𝑅)) → ((𝑅 freeLMod 𝐼) Σg (𝑘𝐼 ↦ (𝑗𝐼 ↦ ((𝑛𝑘)(.r𝑅)((curry 𝑀𝑘)‘𝑗))))) = (𝑗𝐼 ↦ (𝑅 Σg (𝑘𝐼 ↦ ((𝑛𝑘)(.r𝑅)((curry 𝑀𝑘)‘𝑗))))))
166136, 165eqtr2d 2794 . . . . . . . . . . . . . . 15 ((((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) ∧ 𝑛:𝐼⟶(Base‘𝑅)) → (𝑗𝐼 ↦ (𝑅 Σg (𝑘𝐼 ↦ ((𝑛𝑘)(.r𝑅)((curry 𝑀𝑘)‘𝑗))))) = ((𝑅 freeLMod 𝐼) Σg (𝑛f ( ·𝑠 ‘(𝑅 freeLMod 𝐼))curry 𝑀)))
167105, 166sylan2 595 . . . . . . . . . . . . . 14 ((((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) ∧ 𝑛 ∈ ((Base‘𝑅) ↑m 𝐼)) → (𝑗𝐼 ↦ (𝑅 Σg (𝑘𝐼 ↦ ((𝑛𝑘)(.r𝑅)((curry 𝑀𝑘)‘𝑗))))) = ((𝑅 freeLMod 𝐼) Σg (𝑛f ( ·𝑠 ‘(𝑅 freeLMod 𝐼))curry 𝑀)))
168167eqeq2d 2769 . . . . . . . . . . . . 13 ((((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) ∧ 𝑛 ∈ ((Base‘𝑅) ↑m 𝐼)) → (((𝑅 unitVec 𝐼)‘𝑖) = (𝑗𝐼 ↦ (𝑅 Σg (𝑘𝐼 ↦ ((𝑛𝑘)(.r𝑅)((curry 𝑀𝑘)‘𝑗))))) ↔ ((𝑅 unitVec 𝐼)‘𝑖) = ((𝑅 freeLMod 𝐼) Σg (𝑛f ( ·𝑠 ‘(𝑅 freeLMod 𝐼))curry 𝑀))))
169104, 168rexeqbidva 3336 . . . . . . . . . . . 12 (((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) → (∃𝑛 ∈ ((Base‘𝑅) ↑m 𝐼)((𝑅 unitVec 𝐼)‘𝑖) = (𝑗𝐼 ↦ (𝑅 Σg (𝑘𝐼 ↦ ((𝑛𝑘)(.r𝑅)((curry 𝑀𝑘)‘𝑗))))) ↔ ∃𝑛 ∈ ((Base‘(Scalar‘(𝑅 freeLMod 𝐼))) ↑m 𝐼)((𝑅 unitVec 𝐼)‘𝑖) = ((𝑅 freeLMod 𝐼) Σg (𝑛f ( ·𝑠 ‘(𝑅 freeLMod 𝐼))curry 𝑀))))
170100, 169bitr4d 285 . . . . . . . . . . 11 (((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) → (((𝑅 unitVec 𝐼)‘𝑖) ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘(curry 𝑀𝐼)) ↔ ∃𝑛 ∈ ((Base‘𝑅) ↑m 𝐼)((𝑅 unitVec 𝐼)‘𝑖) = (𝑗𝐼 ↦ (𝑅 Σg (𝑘𝐼 ↦ ((𝑛𝑘)(.r𝑅)((curry 𝑀𝑘)‘𝑗)))))))
17143, 170sylanl1 679 . . . . . . . . . 10 (((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) → (((𝑅 unitVec 𝐼)‘𝑖) ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘(curry 𝑀𝐼)) ↔ ∃𝑛 ∈ ((Base‘𝑅) ↑m 𝐼)((𝑅 unitVec 𝐼)‘𝑖) = (𝑗𝐼 ↦ (𝑅 Σg (𝑘𝐼 ↦ ((𝑛𝑘)(.r𝑅)((curry 𝑀𝑘)‘𝑗)))))))
172171ad2antrr 725 . . . . . . . . 9 (((((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) ∧ curry 𝑀 LIndF (𝑅 freeLMod 𝐼)) ∧ 𝑖𝐼) → (((𝑅 unitVec 𝐼)‘𝑖) ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘(curry 𝑀𝐼)) ↔ ∃𝑛 ∈ ((Base‘𝑅) ↑m 𝐼)((𝑅 unitVec 𝐼)‘𝑖) = (𝑗𝐼 ↦ (𝑅 Σg (𝑘𝐼 ↦ ((𝑛𝑘)(.r𝑅)((curry 𝑀𝑘)‘𝑗)))))))
17391, 172mpbid 235 . . . . . . . 8 (((((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) ∧ curry 𝑀 LIndF (𝑅 freeLMod 𝐼)) ∧ 𝑖𝐼) → ∃𝑛 ∈ ((Base‘𝑅) ↑m 𝐼)((𝑅 unitVec 𝐼)‘𝑖) = (𝑗𝐼 ↦ (𝑅 Σg (𝑘𝐼 ↦ ((𝑛𝑘)(.r𝑅)((curry 𝑀𝑘)‘𝑗))))))
174173ralrimiva 3113 . . . . . . 7 ((((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) ∧ curry 𝑀 LIndF (𝑅 freeLMod 𝐼)) → ∀𝑖𝐼𝑛 ∈ ((Base‘𝑅) ↑m 𝐼)((𝑅 unitVec 𝐼)‘𝑖) = (𝑗𝐼 ↦ (𝑅 Σg (𝑘𝐼 ↦ ((𝑛𝑘)(.r𝑅)((curry 𝑀𝑘)‘𝑗))))))
17542, 174sylan 583 . . . . . 6 ((((𝑅 ∈ DivRing ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ 𝐼 ≠ ∅) ∧ curry 𝑀 LIndF (𝑅 freeLMod 𝐼)) → ∀𝑖𝐼𝑛 ∈ ((Base‘𝑅) ↑m 𝐼)((𝑅 unitVec 𝐼)‘𝑖) = (𝑗𝐼 ↦ (𝑅 Σg (𝑘𝐼 ↦ ((𝑛𝑘)(.r𝑅)((curry 𝑀𝑘)‘𝑗))))))
17610, 21mpbird 260 . . . . . . . . 9 ((𝑅 ∈ DivRing ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) → 𝑀 ∈ ((Base‘𝑅) ↑m (𝐼 × 𝐼)))
177 elmapfn 8447 . . . . . . . . 9 (𝑀 ∈ ((Base‘𝑅) ↑m (𝐼 × 𝐼)) → 𝑀 Fn (𝐼 × 𝐼))
178176, 177syl 17 . . . . . . . 8 ((𝑅 ∈ DivRing ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) → 𝑀 Fn (𝐼 × 𝐼))
1794adantl 485 . . . . . . . 8 ((𝑅 ∈ DivRing ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) → 𝐼 ∈ Fin)
180 an32 645 . . . . . . . . . . . . . . . . . . 19 (((𝑀 Fn (𝐼 × 𝐼) ∧ 𝑗𝐼) ∧ 𝑘𝐼) ↔ ((𝑀 Fn (𝐼 × 𝐼) ∧ 𝑘𝐼) ∧ 𝑗𝐼))
181 df-3an 1086 . . . . . . . . . . . . . . . . . . 19 ((𝑀 Fn (𝐼 × 𝐼) ∧ 𝑘𝐼𝑗𝐼) ↔ ((𝑀 Fn (𝐼 × 𝐼) ∧ 𝑘𝐼) ∧ 𝑗𝐼))
182180, 181bitr4i 281 . . . . . . . . . . . . . . . . . 18 (((𝑀 Fn (𝐼 × 𝐼) ∧ 𝑗𝐼) ∧ 𝑘𝐼) ↔ (𝑀 Fn (𝐼 × 𝐼) ∧ 𝑘𝐼𝑗𝐼))
183 curfv 35317 . . . . . . . . . . . . . . . . . 18 (((𝑀 Fn (𝐼 × 𝐼) ∧ 𝑘𝐼𝑗𝐼) ∧ 𝐼 ∈ Fin) → ((curry 𝑀𝑘)‘𝑗) = (𝑘𝑀𝑗))
184182, 183sylanb 584 . . . . . . . . . . . . . . . . 17 ((((𝑀 Fn (𝐼 × 𝐼) ∧ 𝑗𝐼) ∧ 𝑘𝐼) ∧ 𝐼 ∈ Fin) → ((curry 𝑀𝑘)‘𝑗) = (𝑘𝑀𝑗))
185184an32s 651 . . . . . . . . . . . . . . . 16 ((((𝑀 Fn (𝐼 × 𝐼) ∧ 𝑗𝐼) ∧ 𝐼 ∈ Fin) ∧ 𝑘𝐼) → ((curry 𝑀𝑘)‘𝑗) = (𝑘𝑀𝑗))
186185oveq2d 7166 . . . . . . . . . . . . . . 15 ((((𝑀 Fn (𝐼 × 𝐼) ∧ 𝑗𝐼) ∧ 𝐼 ∈ Fin) ∧ 𝑘𝐼) → ((𝑛𝑘)(.r𝑅)((curry 𝑀𝑘)‘𝑗)) = ((𝑛𝑘)(.r𝑅)(𝑘𝑀𝑗)))
187186mpteq2dva 5127 . . . . . . . . . . . . . 14 (((𝑀 Fn (𝐼 × 𝐼) ∧ 𝑗𝐼) ∧ 𝐼 ∈ Fin) → (𝑘𝐼 ↦ ((𝑛𝑘)(.r𝑅)((curry 𝑀𝑘)‘𝑗))) = (𝑘𝐼 ↦ ((𝑛𝑘)(.r𝑅)(𝑘𝑀𝑗))))
188187an32s 651 . . . . . . . . . . . . 13 (((𝑀 Fn (𝐼 × 𝐼) ∧ 𝐼 ∈ Fin) ∧ 𝑗𝐼) → (𝑘𝐼 ↦ ((𝑛𝑘)(.r𝑅)((curry 𝑀𝑘)‘𝑗))) = (𝑘𝐼 ↦ ((𝑛𝑘)(.r𝑅)(𝑘𝑀𝑗))))
189188oveq2d 7166 . . . . . . . . . . . 12 (((𝑀 Fn (𝐼 × 𝐼) ∧ 𝐼 ∈ Fin) ∧ 𝑗𝐼) → (𝑅 Σg (𝑘𝐼 ↦ ((𝑛𝑘)(.r𝑅)((curry 𝑀𝑘)‘𝑗)))) = (𝑅 Σg (𝑘𝐼 ↦ ((𝑛𝑘)(.r𝑅)(𝑘𝑀𝑗)))))
190189mpteq2dva 5127 . . . . . . . . . . 11 ((𝑀 Fn (𝐼 × 𝐼) ∧ 𝐼 ∈ Fin) → (𝑗𝐼 ↦ (𝑅 Σg (𝑘𝐼 ↦ ((𝑛𝑘)(.r𝑅)((curry 𝑀𝑘)‘𝑗))))) = (𝑗𝐼 ↦ (𝑅 Σg (𝑘𝐼 ↦ ((𝑛𝑘)(.r𝑅)(𝑘𝑀𝑗))))))
191190eqeq2d 2769 . . . . . . . . . 10 ((𝑀 Fn (𝐼 × 𝐼) ∧ 𝐼 ∈ Fin) → (((𝑅 unitVec 𝐼)‘𝑖) = (𝑗𝐼 ↦ (𝑅 Σg (𝑘𝐼 ↦ ((𝑛𝑘)(.r𝑅)((curry 𝑀𝑘)‘𝑗))))) ↔ ((𝑅 unitVec 𝐼)‘𝑖) = (𝑗𝐼 ↦ (𝑅 Σg (𝑘𝐼 ↦ ((𝑛𝑘)(.r𝑅)(𝑘𝑀𝑗)))))))
192191rexbidv 3221 . . . . . . . . 9 ((𝑀 Fn (𝐼 × 𝐼) ∧ 𝐼 ∈ Fin) → (∃𝑛 ∈ ((Base‘𝑅) ↑m 𝐼)((𝑅 unitVec 𝐼)‘𝑖) = (𝑗𝐼 ↦ (𝑅 Σg (𝑘𝐼 ↦ ((𝑛𝑘)(.r𝑅)((curry 𝑀𝑘)‘𝑗))))) ↔ ∃𝑛 ∈ ((Base‘𝑅) ↑m 𝐼)((𝑅 unitVec 𝐼)‘𝑖) = (𝑗𝐼 ↦ (𝑅 Σg (𝑘𝐼 ↦ ((𝑛𝑘)(.r𝑅)(𝑘𝑀𝑗)))))))
193192ralbidv 3126 . . . . . . . 8 ((𝑀 Fn (𝐼 × 𝐼) ∧ 𝐼 ∈ Fin) → (∀𝑖𝐼𝑛 ∈ ((Base‘𝑅) ↑m 𝐼)((𝑅 unitVec 𝐼)‘𝑖) = (𝑗𝐼 ↦ (𝑅 Σg (𝑘𝐼 ↦ ((𝑛𝑘)(.r𝑅)((curry 𝑀𝑘)‘𝑗))))) ↔ ∀𝑖𝐼𝑛 ∈ ((Base‘𝑅) ↑m 𝐼)((𝑅 unitVec 𝐼)‘𝑖) = (𝑗𝐼 ↦ (𝑅 Σg (𝑘𝐼 ↦ ((𝑛𝑘)(.r𝑅)(𝑘𝑀𝑗)))))))
194178, 179, 193syl2anc 587 . . . . . . 7 ((𝑅 ∈ DivRing ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) → (∀𝑖𝐼𝑛 ∈ ((Base‘𝑅) ↑m 𝐼)((𝑅 unitVec 𝐼)‘𝑖) = (𝑗𝐼 ↦ (𝑅 Σg (𝑘𝐼 ↦ ((𝑛𝑘)(.r𝑅)((curry 𝑀𝑘)‘𝑗))))) ↔ ∀𝑖𝐼𝑛 ∈ ((Base‘𝑅) ↑m 𝐼)((𝑅 unitVec 𝐼)‘𝑖) = (𝑗𝐼 ↦ (𝑅 Σg (𝑘𝐼 ↦ ((𝑛𝑘)(.r𝑅)(𝑘𝑀𝑗)))))))
195194ad2antrr 725 . . . . . 6 ((((𝑅 ∈ DivRing ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ 𝐼 ≠ ∅) ∧ curry 𝑀 LIndF (𝑅 freeLMod 𝐼)) → (∀𝑖𝐼𝑛 ∈ ((Base‘𝑅) ↑m 𝐼)((𝑅 unitVec 𝐼)‘𝑖) = (𝑗𝐼 ↦ (𝑅 Σg (𝑘𝐼 ↦ ((𝑛𝑘)(.r𝑅)((curry 𝑀𝑘)‘𝑗))))) ↔ ∀𝑖𝐼𝑛 ∈ ((Base‘𝑅) ↑m 𝐼)((𝑅 unitVec 𝐼)‘𝑖) = (𝑗𝐼 ↦ (𝑅 Σg (𝑘𝐼 ↦ ((𝑛𝑘)(.r𝑅)(𝑘𝑀𝑗)))))))
196175, 195mpbid 235 . . . . 5 ((((𝑅 ∈ DivRing ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ 𝐼 ≠ ∅) ∧ curry 𝑀 LIndF (𝑅 freeLMod 𝐼)) → ∀𝑖𝐼𝑛 ∈ ((Base‘𝑅) ↑m 𝐼)((𝑅 unitVec 𝐼)‘𝑖) = (𝑗𝐼 ↦ (𝑅 Σg (𝑘𝐼 ↦ ((𝑛𝑘)(.r𝑅)(𝑘𝑀𝑗))))))
1978, 196sylanl1 679 . . . 4 ((((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ 𝐼 ≠ ∅) ∧ curry 𝑀 LIndF (𝑅 freeLMod 𝐼)) → ∀𝑖𝐼𝑛 ∈ ((Base‘𝑅) ↑m 𝐼)((𝑅 unitVec 𝐼)‘𝑖) = (𝑗𝐼 ↦ (𝑅 Σg (𝑘𝐼 ↦ ((𝑛𝑘)(.r𝑅)(𝑘𝑀𝑗))))))
198 fveq1 6657 . . . . . . . . . . 11 (𝑛 = (𝑓𝑖) → (𝑛𝑘) = ((𝑓𝑖)‘𝑘))
199 uncov 35318 . . . . . . . . . . . 12 ((𝑖 ∈ V ∧ 𝑘 ∈ V) → (𝑖uncurry 𝑓𝑘) = ((𝑓𝑖)‘𝑘))
200199el2v 3417 . . . . . . . . . . 11 (𝑖uncurry 𝑓𝑘) = ((𝑓𝑖)‘𝑘)
201198, 200eqtr4di 2811 . . . . . . . . . 10 (𝑛 = (𝑓𝑖) → (𝑛𝑘) = (𝑖uncurry 𝑓𝑘))
202201oveq1d 7165 . . . . . . . . 9 (𝑛 = (𝑓𝑖) → ((𝑛𝑘)(.r𝑅)(𝑘𝑀𝑗)) = ((𝑖uncurry 𝑓𝑘)(.r𝑅)(𝑘𝑀𝑗)))
203202mpteq2dv 5128 . . . . . . . 8 (𝑛 = (𝑓𝑖) → (𝑘𝐼 ↦ ((𝑛𝑘)(.r𝑅)(𝑘𝑀𝑗))) = (𝑘𝐼 ↦ ((𝑖uncurry 𝑓𝑘)(.r𝑅)(𝑘𝑀𝑗))))
204203oveq2d 7166 . . . . . . 7 (𝑛 = (𝑓𝑖) → (𝑅 Σg (𝑘𝐼 ↦ ((𝑛𝑘)(.r𝑅)(𝑘𝑀𝑗)))) = (𝑅 Σg (𝑘𝐼 ↦ ((𝑖uncurry 𝑓𝑘)(.r𝑅)(𝑘𝑀𝑗)))))
205204mpteq2dv 5128 . . . . . 6 (𝑛 = (𝑓𝑖) → (𝑗𝐼 ↦ (𝑅 Σg (𝑘𝐼 ↦ ((𝑛𝑘)(.r𝑅)(𝑘𝑀𝑗))))) = (𝑗𝐼 ↦ (𝑅 Σg (𝑘𝐼 ↦ ((𝑖uncurry 𝑓𝑘)(.r𝑅)(𝑘𝑀𝑗))))))
206205eqeq2d 2769 . . . . 5 (𝑛 = (𝑓𝑖) → (((𝑅 unitVec 𝐼)‘𝑖) = (𝑗𝐼 ↦ (𝑅 Σg (𝑘𝐼 ↦ ((𝑛𝑘)(.r𝑅)(𝑘𝑀𝑗))))) ↔ ((𝑅 unitVec 𝐼)‘𝑖) = (𝑗𝐼 ↦ (𝑅 Σg (𝑘𝐼 ↦ ((𝑖uncurry 𝑓𝑘)(.r𝑅)(𝑘𝑀𝑗)))))))
207206ac6sfi 8795 . . . 4 ((𝐼 ∈ Fin ∧ ∀𝑖𝐼𝑛 ∈ ((Base‘𝑅) ↑m 𝐼)((𝑅 unitVec 𝐼)‘𝑖) = (𝑗𝐼 ↦ (𝑅 Σg (𝑘𝐼 ↦ ((𝑛𝑘)(.r𝑅)(𝑘𝑀𝑗)))))) → ∃𝑓(𝑓:𝐼⟶((Base‘𝑅) ↑m 𝐼) ∧ ∀𝑖𝐼 ((𝑅 unitVec 𝐼)‘𝑖) = (𝑗𝐼 ↦ (𝑅 Σg (𝑘𝐼 ↦ ((𝑖uncurry 𝑓𝑘)(.r𝑅)(𝑘𝑀𝑗)))))))
2085, 197, 207syl2anc 587 . . 3 ((((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ 𝐼 ≠ ∅) ∧ curry 𝑀 LIndF (𝑅 freeLMod 𝐼)) → ∃𝑓(𝑓:𝐼⟶((Base‘𝑅) ↑m 𝐼) ∧ ∀𝑖𝐼 ((𝑅 unitVec 𝐼)‘𝑖) = (𝑗𝐼 ↦ (𝑅 Σg (𝑘𝐼 ↦ ((𝑖uncurry 𝑓𝑘)(.r𝑅)(𝑘𝑀𝑗)))))))
209 uncf 35316 . . . . . . 7 (𝑓:𝐼⟶((Base‘𝑅) ↑m 𝐼) → uncurry 𝑓:(𝐼 × 𝐼)⟶(Base‘𝑅))
21013, 14frlmfibas 20527 . . . . . . . . . . . . . . . 16 ((𝑅 ∈ Field ∧ (𝐼 × 𝐼) ∈ Fin) → ((Base‘𝑅) ↑m (𝐼 × 𝐼)) = (Base‘(𝑅 freeLMod (𝐼 × 𝐼))))
21112, 210sylan2 595 . . . . . . . . . . . . . . 15 ((𝑅 ∈ Field ∧ 𝐼 ∈ Fin) → ((Base‘𝑅) ↑m (𝐼 × 𝐼)) = (Base‘(𝑅 freeLMod (𝐼 × 𝐼))))
2121, 13matbas 21113 . . . . . . . . . . . . . . . 16 ((𝐼 ∈ Fin ∧ 𝑅 ∈ Field) → (Base‘(𝑅 freeLMod (𝐼 × 𝐼))) = (Base‘(𝐼 Mat 𝑅)))
213212ancoms 462 . . . . . . . . . . . . . . 15 ((𝑅 ∈ Field ∧ 𝐼 ∈ Fin) → (Base‘(𝑅 freeLMod (𝐼 × 𝐼))) = (Base‘(𝐼 Mat 𝑅)))
214211, 213eqtrd 2793 . . . . . . . . . . . . . 14 ((𝑅 ∈ Field ∧ 𝐼 ∈ Fin) → ((Base‘𝑅) ↑m (𝐼 × 𝐼)) = (Base‘(𝐼 Mat 𝑅)))
2154, 214sylan2 595 . . . . . . . . . . . . 13 ((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) → ((Base‘𝑅) ↑m (𝐼 × 𝐼)) = (Base‘(𝐼 Mat 𝑅)))
216215eleq2d 2837 . . . . . . . . . . . 12 ((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) → (uncurry 𝑓 ∈ ((Base‘𝑅) ↑m (𝐼 × 𝐼)) ↔ uncurry 𝑓 ∈ (Base‘(𝐼 Mat 𝑅))))
217 elmapg 8429 . . . . . . . . . . . . . 14 (((Base‘𝑅) ∈ V ∧ (𝐼 × 𝐼) ∈ Fin) → (uncurry 𝑓 ∈ ((Base‘𝑅) ↑m (𝐼 × 𝐼)) ↔ uncurry 𝑓:(𝐼 × 𝐼)⟶(Base‘𝑅)))
21822, 23, 217sylancr 590 . . . . . . . . . . . . 13 (𝑀 ∈ (Base‘(𝐼 Mat 𝑅)) → (uncurry 𝑓 ∈ ((Base‘𝑅) ↑m (𝐼 × 𝐼)) ↔ uncurry 𝑓:(𝐼 × 𝐼)⟶(Base‘𝑅)))
219218adantl 485 . . . . . . . . . . . 12 ((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) → (uncurry 𝑓 ∈ ((Base‘𝑅) ↑m (𝐼 × 𝐼)) ↔ uncurry 𝑓:(𝐼 × 𝐼)⟶(Base‘𝑅)))
220216, 219bitr3d 284 . . . . . . . . . . 11 ((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) → (uncurry 𝑓 ∈ (Base‘(𝐼 Mat 𝑅)) ↔ uncurry 𝑓:(𝐼 × 𝐼)⟶(Base‘𝑅)))
221220biimpar 481 . . . . . . . . . 10 (((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ uncurry 𝑓:(𝐼 × 𝐼)⟶(Base‘𝑅)) → uncurry 𝑓 ∈ (Base‘(𝐼 Mat 𝑅)))
222221adantr 484 . . . . . . . . 9 ((((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ uncurry 𝑓:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ ∀𝑖𝐼 ((𝑅 unitVec 𝐼)‘𝑖) = (𝑗𝐼 ↦ (𝑅 Σg (𝑘𝐼 ↦ ((𝑖uncurry 𝑓𝑘)(.r𝑅)(𝑘𝑀𝑗)))))) → uncurry 𝑓 ∈ (Base‘(𝐼 Mat 𝑅)))
223 nfv 1915 . . . . . . . . . . . . . 14 𝑗(((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ uncurry 𝑓:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝑖𝐼)
224 nfmpt1 5130 . . . . . . . . . . . . . . 15 𝑗(𝑗𝐼 ↦ (𝑅 Σg (𝑘𝐼 ↦ ((𝑖uncurry 𝑓𝑘)(.r𝑅)(𝑘𝑀𝑗)))))
225224nfeq2 2936 . . . . . . . . . . . . . 14 𝑗((𝑅 unitVec 𝐼)‘𝑖) = (𝑗𝐼 ↦ (𝑅 Σg (𝑘𝐼 ↦ ((𝑖uncurry 𝑓𝑘)(.r𝑅)(𝑘𝑀𝑗)))))
226 fveq1 6657 . . . . . . . . . . . . . . . . 17 (((𝑅 unitVec 𝐼)‘𝑖) = (𝑗𝐼 ↦ (𝑅 Σg (𝑘𝐼 ↦ ((𝑖uncurry 𝑓𝑘)(.r𝑅)(𝑘𝑀𝑗))))) → (((𝑅 unitVec 𝐼)‘𝑖)‘𝑗) = ((𝑗𝐼 ↦ (𝑅 Σg (𝑘𝐼 ↦ ((𝑖uncurry 𝑓𝑘)(.r𝑅)(𝑘𝑀𝑗)))))‘𝑗))
2277, 43syl 17 . . . . . . . . . . . . . . . . . . . . 21 (𝑅 ∈ Field → 𝑅 ∈ Ring)
228227, 4anim12i 615 . . . . . . . . . . . . . . . . . . . 20 ((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) → (𝑅 ∈ Ring ∧ 𝐼 ∈ Fin))
229228adantr 484 . . . . . . . . . . . . . . . . . . 19 (((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ uncurry 𝑓:(𝐼 × 𝐼)⟶(Base‘𝑅)) → (𝑅 ∈ Ring ∧ 𝐼 ∈ Fin))
230 equcom 2025 . . . . . . . . . . . . . . . . . . . . 21 (𝑖 = 𝑗𝑗 = 𝑖)
231 ifbi 4442 . . . . . . . . . . . . . . . . . . . . 21 ((𝑖 = 𝑗𝑗 = 𝑖) → if(𝑖 = 𝑗, (1r𝑅), (0g𝑅)) = if(𝑗 = 𝑖, (1r𝑅), (0g𝑅)))
232230, 231ax-mp 5 . . . . . . . . . . . . . . . . . . . 20 if(𝑖 = 𝑗, (1r𝑅), (0g𝑅)) = if(𝑗 = 𝑖, (1r𝑅), (0g𝑅))
233 eqid 2758 . . . . . . . . . . . . . . . . . . . . 21 (1r𝑅) = (1r𝑅)
234 eqid 2758 . . . . . . . . . . . . . . . . . . . . 21 (0g𝑅) = (0g𝑅)
235 simpllr 775 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) ∧ 𝑖𝐼) ∧ 𝑗𝐼) → 𝐼 ∈ Fin)
236 simplll 774 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) ∧ 𝑖𝐼) ∧ 𝑗𝐼) → 𝑅 ∈ Ring)
237 simplr 768 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) ∧ 𝑖𝐼) ∧ 𝑗𝐼) → 𝑖𝐼)
238 simpr 488 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) ∧ 𝑖𝐼) ∧ 𝑗𝐼) → 𝑗𝐼)
239 eqid 2758 . . . . . . . . . . . . . . . . . . . . 21 (1r‘(𝐼 Mat 𝑅)) = (1r‘(𝐼 Mat 𝑅))
2401, 233, 234, 235, 236, 237, 238, 239mat1ov 21148 . . . . . . . . . . . . . . . . . . . 20 ((((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) ∧ 𝑖𝐼) ∧ 𝑗𝐼) → (𝑖(1r‘(𝐼 Mat 𝑅))𝑗) = if(𝑖 = 𝑗, (1r𝑅), (0g𝑅)))
241 df-3an 1086 . . . . . . . . . . . . . . . . . . . . 21 ((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin ∧ 𝑖𝐼) ↔ ((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) ∧ 𝑖𝐼))
24244, 233, 234uvcvval 20551 . . . . . . . . . . . . . . . . . . . . 21 (((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin ∧ 𝑖𝐼) ∧ 𝑗𝐼) → (((𝑅 unitVec 𝐼)‘𝑖)‘𝑗) = if(𝑗 = 𝑖, (1r𝑅), (0g𝑅)))
243241, 242sylanbr 585 . . . . . . . . . . . . . . . . . . . 20 ((((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) ∧ 𝑖𝐼) ∧ 𝑗𝐼) → (((𝑅 unitVec 𝐼)‘𝑖)‘𝑗) = if(𝑗 = 𝑖, (1r𝑅), (0g𝑅)))
244232, 240, 2433eqtr4a 2819 . . . . . . . . . . . . . . . . . . 19 ((((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) ∧ 𝑖𝐼) ∧ 𝑗𝐼) → (𝑖(1r‘(𝐼 Mat 𝑅))𝑗) = (((𝑅 unitVec 𝐼)‘𝑖)‘𝑗))
245229, 244sylanl1 679 . . . . . . . . . . . . . . . . . 18 (((((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ uncurry 𝑓:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝑖𝐼) ∧ 𝑗𝐼) → (𝑖(1r‘(𝐼 Mat 𝑅))𝑗) = (((𝑅 unitVec 𝐼)‘𝑖)‘𝑗))
246 ovex 7183 . . . . . . . . . . . . . . . . . . . . 21 (𝑅 Σg (𝑘𝐼 ↦ ((𝑖uncurry 𝑓𝑘)(.r𝑅)(𝑘𝑀𝑗)))) ∈ V
247 eqid 2758 . . . . . . . . . . . . . . . . . . . . . 22 (𝑗𝐼 ↦ (𝑅 Σg (𝑘𝐼 ↦ ((𝑖uncurry 𝑓𝑘)(.r𝑅)(𝑘𝑀𝑗))))) = (𝑗𝐼 ↦ (𝑅 Σg (𝑘𝐼 ↦ ((𝑖uncurry 𝑓𝑘)(.r𝑅)(𝑘𝑀𝑗)))))
248247fvmpt2 6770 . . . . . . . . . . . . . . . . . . . . 21 ((𝑗𝐼 ∧ (𝑅 Σg (𝑘𝐼 ↦ ((𝑖uncurry 𝑓𝑘)(.r𝑅)(𝑘𝑀𝑗)))) ∈ V) → ((𝑗𝐼 ↦ (𝑅 Σg (𝑘𝐼 ↦ ((𝑖uncurry 𝑓𝑘)(.r𝑅)(𝑘𝑀𝑗)))))‘𝑗) = (𝑅 Σg (𝑘𝐼 ↦ ((𝑖uncurry 𝑓𝑘)(.r𝑅)(𝑘𝑀𝑗)))))
249246, 248mpan2 690 . . . . . . . . . . . . . . . . . . . 20 (𝑗𝐼 → ((𝑗𝐼 ↦ (𝑅 Σg (𝑘𝐼 ↦ ((𝑖uncurry 𝑓𝑘)(.r𝑅)(𝑘𝑀𝑗)))))‘𝑗) = (𝑅 Σg (𝑘𝐼 ↦ ((𝑖uncurry 𝑓𝑘)(.r𝑅)(𝑘𝑀𝑗)))))
250249adantl 485 . . . . . . . . . . . . . . . . . . 19 (((((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ uncurry 𝑓:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝑖𝐼) ∧ 𝑗𝐼) → ((𝑗𝐼 ↦ (𝑅 Σg (𝑘𝐼 ↦ ((𝑖uncurry 𝑓𝑘)(.r𝑅)(𝑘𝑀𝑗)))))‘𝑗) = (𝑅 Σg (𝑘𝐼 ↦ ((𝑖uncurry 𝑓𝑘)(.r𝑅)(𝑘𝑀𝑗)))))
251 eqid 2758 . . . . . . . . . . . . . . . . . . . 20 (𝑅 maMul ⟨𝐼, 𝐼, 𝐼⟩) = (𝑅 maMul ⟨𝐼, 𝐼, 𝐼⟩)
252 simp-4l 782 . . . . . . . . . . . . . . . . . . . 20 (((((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ uncurry 𝑓:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝑖𝐼) ∧ 𝑗𝐼) → 𝑅 ∈ Field)
2534ad4antlr 732 . . . . . . . . . . . . . . . . . . . 20 (((((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ uncurry 𝑓:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝑖𝐼) ∧ 𝑗𝐼) → 𝐼 ∈ Fin)
254218biimpar 481 . . . . . . . . . . . . . . . . . . . . 21 ((𝑀 ∈ (Base‘(𝐼 Mat 𝑅)) ∧ uncurry 𝑓:(𝐼 × 𝐼)⟶(Base‘𝑅)) → uncurry 𝑓 ∈ ((Base‘𝑅) ↑m (𝐼 × 𝐼)))
255254ad5ant23 759 . . . . . . . . . . . . . . . . . . . 20 (((((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ uncurry 𝑓:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝑖𝐼) ∧ 𝑗𝐼) → uncurry 𝑓 ∈ ((Base‘𝑅) ↑m (𝐼 × 𝐼)))
256 simpr 488 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) → 𝑀 ∈ (Base‘(𝐼 Mat 𝑅)))
257256, 215eleqtrrd 2855 . . . . . . . . . . . . . . . . . . . . 21 ((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) → 𝑀 ∈ ((Base‘𝑅) ↑m (𝐼 × 𝐼)))
258257ad3antrrr 729 . . . . . . . . . . . . . . . . . . . 20 (((((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ uncurry 𝑓:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝑖𝐼) ∧ 𝑗𝐼) → 𝑀 ∈ ((Base‘𝑅) ↑m (𝐼 × 𝐼)))
259 simplr 768 . . . . . . . . . . . . . . . . . . . 20 (((((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ uncurry 𝑓:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝑖𝐼) ∧ 𝑗𝐼) → 𝑖𝐼)
260 simpr 488 . . . . . . . . . . . . . . . . . . . 20 (((((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ uncurry 𝑓:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝑖𝐼) ∧ 𝑗𝐼) → 𝑗𝐼)
261251, 14, 121, 252, 253, 253, 253, 255, 258, 259, 260mamufv 21089 . . . . . . . . . . . . . . . . . . 19 (((((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ uncurry 𝑓:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝑖𝐼) ∧ 𝑗𝐼) → (𝑖(uncurry 𝑓(𝑅 maMul ⟨𝐼, 𝐼, 𝐼⟩)𝑀)𝑗) = (𝑅 Σg (𝑘𝐼 ↦ ((𝑖uncurry 𝑓𝑘)(.r𝑅)(𝑘𝑀𝑗)))))
2621, 251matmulr 21138 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐼 ∈ Fin ∧ 𝑅 ∈ Field) → (𝑅 maMul ⟨𝐼, 𝐼, 𝐼⟩) = (.r‘(𝐼 Mat 𝑅)))
263262ancoms 462 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑅 ∈ Field ∧ 𝐼 ∈ Fin) → (𝑅 maMul ⟨𝐼, 𝐼, 𝐼⟩) = (.r‘(𝐼 Mat 𝑅)))
264263oveqd 7167 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑅 ∈ Field ∧ 𝐼 ∈ Fin) → (uncurry 𝑓(𝑅 maMul ⟨𝐼, 𝐼, 𝐼⟩)𝑀) = (uncurry 𝑓(.r‘(𝐼 Mat 𝑅))𝑀))
265264oveqd 7167 . . . . . . . . . . . . . . . . . . . . 21 ((𝑅 ∈ Field ∧ 𝐼 ∈ Fin) → (𝑖(uncurry 𝑓(𝑅 maMul ⟨𝐼, 𝐼, 𝐼⟩)𝑀)𝑗) = (𝑖(uncurry 𝑓(.r‘(𝐼 Mat 𝑅))𝑀)𝑗))
2664, 265sylan2 595 . . . . . . . . . . . . . . . . . . . 20 ((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) → (𝑖(uncurry 𝑓(𝑅 maMul ⟨𝐼, 𝐼, 𝐼⟩)𝑀)𝑗) = (𝑖(uncurry 𝑓(.r‘(𝐼 Mat 𝑅))𝑀)𝑗))
267266ad3antrrr 729 . . . . . . . . . . . . . . . . . . 19 (((((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ uncurry 𝑓:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝑖𝐼) ∧ 𝑗𝐼) → (𝑖(uncurry 𝑓(𝑅 maMul ⟨𝐼, 𝐼, 𝐼⟩)𝑀)𝑗) = (𝑖(uncurry 𝑓(.r‘(𝐼 Mat 𝑅))𝑀)𝑗))
268250, 261, 2673eqtr2rd 2800 . . . . . . . . . . . . . . . . . 18 (((((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ uncurry 𝑓:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝑖𝐼) ∧ 𝑗𝐼) → (𝑖(uncurry 𝑓(.r‘(𝐼 Mat 𝑅))𝑀)𝑗) = ((𝑗𝐼 ↦ (𝑅 Σg (𝑘𝐼 ↦ ((𝑖uncurry 𝑓𝑘)(.r𝑅)(𝑘𝑀𝑗)))))‘𝑗))
269245, 268eqeq12d 2774 . . . . . . . . . . . . . . . . 17 (((((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ uncurry 𝑓:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝑖𝐼) ∧ 𝑗𝐼) → ((𝑖(1r‘(𝐼 Mat 𝑅))𝑗) = (𝑖(uncurry 𝑓(.r‘(𝐼 Mat 𝑅))𝑀)𝑗) ↔ (((𝑅 unitVec 𝐼)‘𝑖)‘𝑗) = ((𝑗𝐼 ↦ (𝑅 Σg (𝑘𝐼 ↦ ((𝑖uncurry 𝑓𝑘)(.r𝑅)(𝑘𝑀𝑗)))))‘𝑗)))
270226, 269syl5ibr 249 . . . . . . . . . . . . . . . 16 (((((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ uncurry 𝑓:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝑖𝐼) ∧ 𝑗𝐼) → (((𝑅 unitVec 𝐼)‘𝑖) = (𝑗𝐼 ↦ (𝑅 Σg (𝑘𝐼 ↦ ((𝑖uncurry 𝑓𝑘)(.r𝑅)(𝑘𝑀𝑗))))) → (𝑖(1r‘(𝐼 Mat 𝑅))𝑗) = (𝑖(uncurry 𝑓(.r‘(𝐼 Mat 𝑅))𝑀)𝑗)))
271270ex 416 . . . . . . . . . . . . . . 15 ((((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ uncurry 𝑓:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝑖𝐼) → (𝑗𝐼 → (((𝑅 unitVec 𝐼)‘𝑖) = (𝑗𝐼 ↦ (𝑅 Σg (𝑘𝐼 ↦ ((𝑖uncurry 𝑓𝑘)(.r𝑅)(𝑘𝑀𝑗))))) → (𝑖(1r‘(𝐼 Mat 𝑅))𝑗) = (𝑖(uncurry 𝑓(.r‘(𝐼 Mat 𝑅))𝑀)𝑗))))
272271com23 86 . . . . . . . . . . . . . 14 ((((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ uncurry 𝑓:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝑖𝐼) → (((𝑅 unitVec 𝐼)‘𝑖) = (𝑗𝐼 ↦ (𝑅 Σg (𝑘𝐼 ↦ ((𝑖uncurry 𝑓𝑘)(.r𝑅)(𝑘𝑀𝑗))))) → (𝑗𝐼 → (𝑖(1r‘(𝐼 Mat 𝑅))𝑗) = (𝑖(uncurry 𝑓(.r‘(𝐼 Mat 𝑅))𝑀)𝑗))))
273223, 225, 272ralrimd 3146 . . . . . . . . . . . . 13 ((((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ uncurry 𝑓:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝑖𝐼) → (((𝑅 unitVec 𝐼)‘𝑖) = (𝑗𝐼 ↦ (𝑅 Σg (𝑘𝐼 ↦ ((𝑖uncurry 𝑓𝑘)(.r𝑅)(𝑘𝑀𝑗))))) → ∀𝑗𝐼 (𝑖(1r‘(𝐼 Mat 𝑅))𝑗) = (𝑖(uncurry 𝑓(.r‘(𝐼 Mat 𝑅))𝑀)𝑗)))
274273ralimdva 3108 . . . . . . . . . . . 12 (((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ uncurry 𝑓:(𝐼 × 𝐼)⟶(Base‘𝑅)) → (∀𝑖𝐼 ((𝑅 unitVec 𝐼)‘𝑖) = (𝑗𝐼 ↦ (𝑅 Σg (𝑘𝐼 ↦ ((𝑖uncurry 𝑓𝑘)(.r𝑅)(𝑘𝑀𝑗))))) → ∀𝑖𝐼𝑗𝐼 (𝑖(1r‘(𝐼 Mat 𝑅))𝑗) = (𝑖(uncurry 𝑓(.r‘(𝐼 Mat 𝑅))𝑀)𝑗)))
2751, 2, 239mat1bas 21149 . . . . . . . . . . . . . . . . 17 ((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) → (1r‘(𝐼 Mat 𝑅)) ∈ (Base‘(𝐼 Mat 𝑅)))
27613, 14frlmfibas 20527 . . . . . . . . . . . . . . . . . . 19 ((𝑅 ∈ Ring ∧ (𝐼 × 𝐼) ∈ Fin) → ((Base‘𝑅) ↑m (𝐼 × 𝐼)) = (Base‘(𝑅 freeLMod (𝐼 × 𝐼))))
27712, 276sylan2 595 . . . . . . . . . . . . . . . . . 18 ((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) → ((Base‘𝑅) ↑m (𝐼 × 𝐼)) = (Base‘(𝑅 freeLMod (𝐼 × 𝐼))))
2781, 13matbas 21113 . . . . . . . . . . . . . . . . . . 19 ((𝐼 ∈ Fin ∧ 𝑅 ∈ Ring) → (Base‘(𝑅 freeLMod (𝐼 × 𝐼))) = (Base‘(𝐼 Mat 𝑅)))
279278ancoms 462 . . . . . . . . . . . . . . . . . 18 ((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) → (Base‘(𝑅 freeLMod (𝐼 × 𝐼))) = (Base‘(𝐼 Mat 𝑅)))
280277, 279eqtrd 2793 . . . . . . . . . . . . . . . . 17 ((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) → ((Base‘𝑅) ↑m (𝐼 × 𝐼)) = (Base‘(𝐼 Mat 𝑅)))
281275, 280eleqtrrd 2855 . . . . . . . . . . . . . . . 16 ((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) → (1r‘(𝐼 Mat 𝑅)) ∈ ((Base‘𝑅) ↑m (𝐼 × 𝐼)))
282 elmapfn 8447 . . . . . . . . . . . . . . . 16 ((1r‘(𝐼 Mat 𝑅)) ∈ ((Base‘𝑅) ↑m (𝐼 × 𝐼)) → (1r‘(𝐼 Mat 𝑅)) Fn (𝐼 × 𝐼))
283281, 282syl 17 . . . . . . . . . . . . . . 15 ((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) → (1r‘(𝐼 Mat 𝑅)) Fn (𝐼 × 𝐼))
284227, 4, 283syl2an 598 . . . . . . . . . . . . . 14 ((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) → (1r‘(𝐼 Mat 𝑅)) Fn (𝐼 × 𝐼))
285284adantr 484 . . . . . . . . . . . . 13 (((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ uncurry 𝑓:(𝐼 × 𝐼)⟶(Base‘𝑅)) → (1r‘(𝐼 Mat 𝑅)) Fn (𝐼 × 𝐼))
2861matring 21143 . . . . . . . . . . . . . . . . . 18 ((𝐼 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝐼 Mat 𝑅) ∈ Ring)
2874, 227, 286syl2anr 599 . . . . . . . . . . . . . . . . 17 ((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) → (𝐼 Mat 𝑅) ∈ Ring)
288287adantr 484 . . . . . . . . . . . . . . . 16 (((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ uncurry 𝑓:(𝐼 × 𝐼)⟶(Base‘𝑅)) → (𝐼 Mat 𝑅) ∈ Ring)
289 simplr 768 . . . . . . . . . . . . . . . 16 (((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ uncurry 𝑓:(𝐼 × 𝐼)⟶(Base‘𝑅)) → 𝑀 ∈ (Base‘(𝐼 Mat 𝑅)))
290 eqid 2758 . . . . . . . . . . . . . . . . 17 (.r‘(𝐼 Mat 𝑅)) = (.r‘(𝐼 Mat 𝑅))
2912, 290ringcl 19382 . . . . . . . . . . . . . . . 16 (((𝐼 Mat 𝑅) ∈ Ring ∧ uncurry 𝑓 ∈ (Base‘(𝐼 Mat 𝑅)) ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) → (uncurry 𝑓(.r‘(𝐼 Mat 𝑅))𝑀) ∈ (Base‘(𝐼 Mat 𝑅)))
292288, 221, 289, 291syl3anc 1368 . . . . . . . . . . . . . . 15 (((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ uncurry 𝑓:(𝐼 × 𝐼)⟶(Base‘𝑅)) → (uncurry 𝑓(.r‘(𝐼 Mat 𝑅))𝑀) ∈ (Base‘(𝐼 Mat 𝑅)))
293215adantr 484 . . . . . . . . . . . . . . 15 (((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ uncurry 𝑓:(𝐼 × 𝐼)⟶(Base‘𝑅)) → ((Base‘𝑅) ↑m (𝐼 × 𝐼)) = (Base‘(𝐼 Mat 𝑅)))
294292, 293eleqtrrd 2855 . . . . . . . . . . . . . 14 (((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ uncurry 𝑓:(𝐼 × 𝐼)⟶(Base‘𝑅)) → (uncurry 𝑓(.r‘(𝐼 Mat 𝑅))𝑀) ∈ ((Base‘𝑅) ↑m (𝐼 × 𝐼)))
295 elmapfn 8447 . . . . . . . . . . . . . 14 ((uncurry 𝑓(.r‘(𝐼 Mat 𝑅))𝑀) ∈ ((Base‘𝑅) ↑m (𝐼 × 𝐼)) → (uncurry 𝑓(.r‘(𝐼 Mat 𝑅))𝑀) Fn (𝐼 × 𝐼))
296294, 295syl 17 . . . . . . . . . . . . 13 (((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ uncurry 𝑓:(𝐼 × 𝐼)⟶(Base‘𝑅)) → (uncurry 𝑓(.r‘(𝐼 Mat 𝑅))𝑀) Fn (𝐼 × 𝐼))
297 eqfnov2 7276 . . . . . . . . . . . . 13 (((1r‘(𝐼 Mat 𝑅)) Fn (𝐼 × 𝐼) ∧ (uncurry 𝑓(.r‘(𝐼 Mat 𝑅))𝑀) Fn (𝐼 × 𝐼)) → ((1r‘(𝐼 Mat 𝑅)) = (uncurry 𝑓(.r‘(𝐼 Mat 𝑅))𝑀) ↔ ∀𝑖𝐼𝑗𝐼 (𝑖(1r‘(𝐼 Mat 𝑅))𝑗) = (𝑖(uncurry 𝑓(.r‘(𝐼 Mat 𝑅))𝑀)𝑗)))
298285, 296, 297syl2anc 587 . . . . . . . . . . . 12 (((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ uncurry 𝑓:(𝐼 × 𝐼)⟶(Base‘𝑅)) → ((1r‘(𝐼 Mat 𝑅)) = (uncurry 𝑓(.r‘(𝐼 Mat 𝑅))𝑀) ↔ ∀𝑖𝐼𝑗𝐼 (𝑖(1r‘(𝐼 Mat 𝑅))𝑗) = (𝑖(uncurry 𝑓(.r‘(𝐼 Mat 𝑅))𝑀)𝑗)))
299274, 298sylibrd 262 . . . . . . . . . . 11 (((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ uncurry 𝑓:(𝐼 × 𝐼)⟶(Base‘𝑅)) → (∀𝑖𝐼 ((𝑅 unitVec 𝐼)‘𝑖) = (𝑗𝐼 ↦ (𝑅 Σg (𝑘𝐼 ↦ ((𝑖uncurry 𝑓𝑘)(.r𝑅)(𝑘𝑀𝑗))))) → (1r‘(𝐼 Mat 𝑅)) = (uncurry 𝑓(.r‘(𝐼 Mat 𝑅))𝑀)))
300299imp 410 . . . . . . . . . 10 ((((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ uncurry 𝑓:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ ∀𝑖𝐼 ((𝑅 unitVec 𝐼)‘𝑖) = (𝑗𝐼 ↦ (𝑅 Σg (𝑘𝐼 ↦ ((𝑖uncurry 𝑓𝑘)(.r𝑅)(𝑘𝑀𝑗)))))) → (1r‘(𝐼 Mat 𝑅)) = (uncurry 𝑓(.r‘(𝐼 Mat 𝑅))𝑀))
301300eqcomd 2764 . . . . . . . . 9 ((((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ uncurry 𝑓:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ ∀𝑖𝐼 ((𝑅 unitVec 𝐼)‘𝑖) = (𝑗𝐼 ↦ (𝑅 Σg (𝑘𝐼 ↦ ((𝑖uncurry 𝑓𝑘)(.r𝑅)(𝑘𝑀𝑗)))))) → (uncurry 𝑓(.r‘(𝐼 Mat 𝑅))𝑀) = (1r‘(𝐼 Mat 𝑅)))
302 oveq1 7157 . . . . . . . . . . 11 (𝑛 = uncurry 𝑓 → (𝑛(.r‘(𝐼 Mat 𝑅))𝑀) = (uncurry 𝑓(.r‘(𝐼 Mat 𝑅))𝑀))
303302eqeq1d 2760 . . . . . . . . . 10 (𝑛 = uncurry 𝑓 → ((𝑛(.r‘(𝐼 Mat 𝑅))𝑀) = (1r‘(𝐼 Mat 𝑅)) ↔ (uncurry 𝑓(.r‘(𝐼 Mat 𝑅))𝑀) = (1r‘(𝐼 Mat 𝑅))))
304303rspcev 3541 . . . . . . . . 9 ((uncurry 𝑓 ∈ (Base‘(𝐼 Mat 𝑅)) ∧ (uncurry 𝑓(.r‘(𝐼 Mat 𝑅))𝑀) = (1r‘(𝐼 Mat 𝑅))) → ∃𝑛 ∈ (Base‘(𝐼 Mat 𝑅))(𝑛(.r‘(𝐼 Mat 𝑅))𝑀) = (1r‘(𝐼 Mat 𝑅)))
305222, 301, 304syl2anc 587 . . . . . . . 8 ((((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ uncurry 𝑓:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ ∀𝑖𝐼 ((𝑅 unitVec 𝐼)‘𝑖) = (𝑗𝐼 ↦ (𝑅 Σg (𝑘𝐼 ↦ ((𝑖uncurry 𝑓𝑘)(.r𝑅)(𝑘𝑀𝑗)))))) → ∃𝑛 ∈ (Base‘(𝐼 Mat 𝑅))(𝑛(.r‘(𝐼 Mat 𝑅))𝑀) = (1r‘(𝐼 Mat 𝑅)))
306305expl 461 . . . . . . 7 ((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) → ((uncurry 𝑓:(𝐼 × 𝐼)⟶(Base‘𝑅) ∧ ∀𝑖𝐼 ((𝑅 unitVec 𝐼)‘𝑖) = (𝑗𝐼 ↦ (𝑅 Σg (𝑘𝐼 ↦ ((𝑖uncurry 𝑓𝑘)(.r𝑅)(𝑘𝑀𝑗)))))) → ∃𝑛 ∈ (Base‘(𝐼 Mat 𝑅))(𝑛(.r‘(𝐼 Mat 𝑅))𝑀) = (1r‘(𝐼 Mat 𝑅))))
307209, 306sylani 606 . . . . . 6 ((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) → ((𝑓:𝐼⟶((Base‘𝑅) ↑m 𝐼) ∧ ∀𝑖𝐼 ((𝑅 unitVec 𝐼)‘𝑖) = (𝑗𝐼 ↦ (𝑅 Σg (𝑘𝐼 ↦ ((𝑖uncurry 𝑓𝑘)(.r𝑅)(𝑘𝑀𝑗)))))) → ∃𝑛 ∈ (Base‘(𝐼 Mat 𝑅))(𝑛(.r‘(𝐼 Mat 𝑅))𝑀) = (1r‘(𝐼 Mat 𝑅))))
308307exlimdv 1934 . . . . 5 ((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) → (∃𝑓(𝑓:𝐼⟶((Base‘𝑅) ↑m 𝐼) ∧ ∀𝑖𝐼 ((𝑅 unitVec 𝐼)‘𝑖) = (𝑗𝐼 ↦ (𝑅 Σg (𝑘𝐼 ↦ ((𝑖uncurry 𝑓𝑘)(.r𝑅)(𝑘𝑀𝑗)))))) → ∃𝑛 ∈ (Base‘(𝐼 Mat 𝑅))(𝑛(.r‘(𝐼 Mat 𝑅))𝑀) = (1r‘(𝐼 Mat 𝑅))))
309308imp 410 . . . 4 (((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ ∃𝑓(𝑓:𝐼⟶((Base‘𝑅) ↑m 𝐼) ∧ ∀𝑖𝐼 ((𝑅 unitVec 𝐼)‘𝑖) = (𝑗𝐼 ↦ (𝑅 Σg (𝑘𝐼 ↦ ((𝑖uncurry 𝑓𝑘)(.r𝑅)(𝑘𝑀𝑗))))))) → ∃𝑛 ∈ (Base‘(𝐼 Mat 𝑅))(𝑛(.r‘(𝐼 Mat 𝑅))𝑀) = (1r‘(𝐼 Mat 𝑅)))
310309adantlr 714 . . 3 ((((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ 𝐼 ≠ ∅) ∧ ∃𝑓(𝑓:𝐼⟶((Base‘𝑅) ↑m 𝐼) ∧ ∀𝑖𝐼 ((𝑅 unitVec 𝐼)‘𝑖) = (𝑗𝐼 ↦ (𝑅 Σg (𝑘𝐼 ↦ ((𝑖uncurry 𝑓𝑘)(.r𝑅)(𝑘𝑀𝑗))))))) → ∃𝑛 ∈ (Base‘(𝐼 Mat 𝑅))(𝑛(.r‘(𝐼 Mat 𝑅))𝑀) = (1r‘(𝐼 Mat 𝑅)))
311208, 310syldan 594 . 2 ((((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ 𝐼 ≠ ∅) ∧ curry 𝑀 LIndF (𝑅 freeLMod 𝐼)) → ∃𝑛 ∈ (Base‘(𝐼 Mat 𝑅))(𝑛(.r‘(𝐼 Mat 𝑅))𝑀) = (1r‘(𝐼 Mat 𝑅)))
3126simprbi 500 . . . 4 (𝑅 ∈ Field → 𝑅 ∈ CRing)
313 eqid 2758 . . . . . . . . . 10 (𝐼 maDet 𝑅) = (𝐼 maDet 𝑅)
314313, 1, 2, 14mdetcl 21296 . . . . . . . . 9 ((𝑅 ∈ CRing ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) → ((𝐼 maDet 𝑅)‘𝑀) ∈ (Base‘𝑅))
315313, 1, 2, 14mdetcl 21296 . . . . . . . . 9 ((𝑅 ∈ CRing ∧ 𝑛 ∈ (Base‘(𝐼 Mat 𝑅))) → ((𝐼 maDet 𝑅)‘𝑛) ∈ (Base‘𝑅))
316 eqid 2758 . . . . . . . . . 10 (∥r𝑅) = (∥r𝑅)
31714, 316, 121dvdsrmul 19469 . . . . . . . . 9 ((((𝐼 maDet 𝑅)‘𝑀) ∈ (Base‘𝑅) ∧ ((𝐼 maDet 𝑅)‘𝑛) ∈ (Base‘𝑅)) → ((𝐼 maDet 𝑅)‘𝑀)(∥r𝑅)(((𝐼 maDet 𝑅)‘𝑛)(.r𝑅)((𝐼 maDet 𝑅)‘𝑀)))
318314, 315, 317syl2an 598 . . . . . . . 8 (((𝑅 ∈ CRing ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ (𝑅 ∈ CRing ∧ 𝑛 ∈ (Base‘(𝐼 Mat 𝑅)))) → ((𝐼 maDet 𝑅)‘𝑀)(∥r𝑅)(((𝐼 maDet 𝑅)‘𝑛)(.r𝑅)((𝐼 maDet 𝑅)‘𝑀)))
319318anandis 677 . . . . . . 7 ((𝑅 ∈ CRing ∧ (𝑀 ∈ (Base‘(𝐼 Mat 𝑅)) ∧ 𝑛 ∈ (Base‘(𝐼 Mat 𝑅)))) → ((𝐼 maDet 𝑅)‘𝑀)(∥r𝑅)(((𝐼 maDet 𝑅)‘𝑛)(.r𝑅)((𝐼 maDet 𝑅)‘𝑀)))
320319anassrs 471 . . . . . 6 (((𝑅 ∈ CRing ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ 𝑛 ∈ (Base‘(𝐼 Mat 𝑅))) → ((𝐼 maDet 𝑅)‘𝑀)(∥r𝑅)(((𝐼 maDet 𝑅)‘𝑛)(.r𝑅)((𝐼 maDet 𝑅)‘𝑀)))
321320adantrr 716 . . . . 5 (((𝑅 ∈ CRing ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ (𝑛 ∈ (Base‘(𝐼 Mat 𝑅)) ∧ (𝑛(.r‘(𝐼 Mat 𝑅))𝑀) = (1r‘(𝐼 Mat 𝑅)))) → ((𝐼 maDet 𝑅)‘𝑀)(∥r𝑅)(((𝐼 maDet 𝑅)‘𝑛)(.r𝑅)((𝐼 maDet 𝑅)‘𝑀)))
322 fveq2 6658 . . . . . . . . 9 ((𝑛(.r‘(𝐼 Mat 𝑅))𝑀) = (1r‘(𝐼 Mat 𝑅)) → ((𝐼 maDet 𝑅)‘(𝑛(.r‘(𝐼 Mat 𝑅))𝑀)) = ((𝐼 maDet 𝑅)‘(1r‘(𝐼 Mat 𝑅))))
3231, 2, 313, 121, 290mdetmul 21323 . . . . . . . . . . . 12 ((𝑅 ∈ CRing ∧ 𝑛 ∈ (Base‘(𝐼 Mat 𝑅)) ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) → ((𝐼 maDet 𝑅)‘(𝑛(.r‘(𝐼 Mat 𝑅))𝑀)) = (((𝐼 maDet 𝑅)‘𝑛)(.r𝑅)((𝐼 maDet 𝑅)‘𝑀)))
3243233expa 1115 . . . . . . . . . . 11 (((𝑅 ∈ CRing ∧ 𝑛 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) → ((𝐼 maDet 𝑅)‘(𝑛(.r‘(𝐼 Mat 𝑅))𝑀)) = (((𝐼 maDet 𝑅)‘𝑛)(.r𝑅)((𝐼 maDet 𝑅)‘𝑀)))
325324an32s 651 . . . . . . . . . 10 (((𝑅 ∈ CRing ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ 𝑛 ∈ (Base‘(𝐼 Mat 𝑅))) → ((𝐼 maDet 𝑅)‘(𝑛(.r‘(𝐼 Mat 𝑅))𝑀)) = (((𝐼 maDet 𝑅)‘𝑛)(.r𝑅)((𝐼 maDet 𝑅)‘𝑀)))
326313, 1, 239, 233mdet1 21301 . . . . . . . . . . . 12 ((𝑅 ∈ CRing ∧ 𝐼 ∈ Fin) → ((𝐼 maDet 𝑅)‘(1r‘(𝐼 Mat 𝑅))) = (1r𝑅))
3274, 326sylan2 595 . . . . . . . . . . 11 ((𝑅 ∈ CRing ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) → ((𝐼 maDet 𝑅)‘(1r‘(𝐼 Mat 𝑅))) = (1r𝑅))
328327adantr 484 . . . . . . . . . 10 (((𝑅 ∈ CRing ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ 𝑛 ∈ (Base‘(𝐼 Mat 𝑅))) → ((𝐼 maDet 𝑅)‘(1r‘(𝐼 Mat 𝑅))) = (1r𝑅))
329325, 328eqeq12d 2774 . . . . . . . . 9 (((𝑅 ∈ CRing ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ 𝑛 ∈ (Base‘(𝐼 Mat 𝑅))) → (((𝐼 maDet 𝑅)‘(𝑛(.r‘(𝐼 Mat 𝑅))𝑀)) = ((𝐼 maDet 𝑅)‘(1r‘(𝐼 Mat 𝑅))) ↔ (((𝐼 maDet 𝑅)‘𝑛)(.r𝑅)((𝐼 maDet 𝑅)‘𝑀)) = (1r𝑅)))
330322, 329syl5ib 247 . . . . . . . 8 (((𝑅 ∈ CRing ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ 𝑛 ∈ (Base‘(𝐼 Mat 𝑅))) → ((𝑛(.r‘(𝐼 Mat 𝑅))𝑀) = (1r‘(𝐼 Mat 𝑅)) → (((𝐼 maDet 𝑅)‘𝑛)(.r𝑅)((𝐼 maDet 𝑅)‘𝑀)) = (1r𝑅)))
331330impr 458 . . . . . . 7 (((𝑅 ∈ CRing ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ (𝑛 ∈ (Base‘(𝐼 Mat 𝑅)) ∧ (𝑛(.r‘(𝐼 Mat 𝑅))𝑀) = (1r‘(𝐼 Mat 𝑅)))) → (((𝐼 maDet 𝑅)‘𝑛)(.r𝑅)((𝐼 maDet 𝑅)‘𝑀)) = (1r𝑅))
332331breq2d 5044 . . . . . 6 (((𝑅 ∈ CRing ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ (𝑛 ∈ (Base‘(𝐼 Mat 𝑅)) ∧ (𝑛(.r‘(𝐼 Mat 𝑅))𝑀) = (1r‘(𝐼 Mat 𝑅)))) → (((𝐼 maDet 𝑅)‘𝑀)(∥r𝑅)(((𝐼 maDet 𝑅)‘𝑛)(.r𝑅)((𝐼 maDet 𝑅)‘𝑀)) ↔ ((𝐼 maDet 𝑅)‘𝑀)(∥r𝑅)(1r𝑅)))
333 eqid 2758 . . . . . . . 8 (Unit‘𝑅) = (Unit‘𝑅)
334333, 233, 316crngunit 19483 . . . . . . 7 (𝑅 ∈ CRing → (((𝐼 maDet 𝑅)‘𝑀) ∈ (Unit‘𝑅) ↔ ((𝐼 maDet 𝑅)‘𝑀)(∥r𝑅)(1r𝑅)))
335334ad2antrr 725 . . . . . 6 (((𝑅 ∈ CRing ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ (𝑛 ∈ (Base‘(𝐼 Mat 𝑅)) ∧ (𝑛(.r‘(𝐼 Mat 𝑅))𝑀) = (1r‘(𝐼 Mat 𝑅)))) → (((𝐼 maDet 𝑅)‘𝑀) ∈ (Unit‘𝑅) ↔ ((𝐼 maDet 𝑅)‘𝑀)(∥r𝑅)(1r𝑅)))
336332, 335bitr4d 285 . . . . 5 (((𝑅 ∈ CRing ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ (𝑛 ∈ (Base‘(𝐼 Mat 𝑅)) ∧ (𝑛(.r‘(𝐼 Mat 𝑅))𝑀) = (1r‘(𝐼 Mat 𝑅)))) → (((𝐼 maDet 𝑅)‘𝑀)(∥r𝑅)(((𝐼 maDet 𝑅)‘𝑛)(.r𝑅)((𝐼 maDet 𝑅)‘𝑀)) ↔ ((𝐼 maDet 𝑅)‘𝑀) ∈ (Unit‘𝑅)))
337321, 336mpbid 235 . . . 4 (((𝑅 ∈ CRing ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ (𝑛 ∈ (Base‘(𝐼 Mat 𝑅)) ∧ (𝑛(.r‘(𝐼 Mat 𝑅))𝑀) = (1r‘(𝐼 Mat 𝑅)))) → ((𝐼 maDet 𝑅)‘𝑀) ∈ (Unit‘𝑅))
338312, 337sylanl1 679 . . 3 (((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ (𝑛 ∈ (Base‘(𝐼 Mat 𝑅)) ∧ (𝑛(.r‘(𝐼 Mat 𝑅))𝑀) = (1r‘(𝐼 Mat 𝑅)))) → ((𝐼 maDet 𝑅)‘𝑀) ∈ (Unit‘𝑅))
339338ad4ant14 751 . 2 (((((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ 𝐼 ≠ ∅) ∧ curry 𝑀 LIndF (𝑅 freeLMod 𝐼)) ∧ (𝑛 ∈ (Base‘(𝐼 Mat 𝑅)) ∧ (𝑛(.r‘(𝐼 Mat 𝑅))𝑀) = (1r‘(𝐼 Mat 𝑅)))) → ((𝐼 maDet 𝑅)‘𝑀) ∈ (Unit‘𝑅))
340311, 339rexlimddv 3215 1 ((((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ 𝐼 ≠ ∅) ∧ curry 𝑀 LIndF (𝑅 freeLMod 𝐼)) → ((𝐼 maDet 𝑅)‘𝑀) ∈ (Unit‘𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wex 1781  wcel 2111  wne 2951  wral 3070  wrex 3071  Vcvv 3409  cdif 3855  c0 4225  ifcif 4420  {csn 4522  cotp 4530   class class class wbr 5032  cmpt 5112   × cxp 5522  dom cdm 5524  ran crn 5525  cima 5527   Fn wfn 6330  wf 6331  1-1wf1 6332  1-1-ontowf1o 6334  cfv 6335  (class class class)co 7150  f cof 7403  curry ccur 7941  uncurry cunc 7942  m cmap 8416  cen 8524  Fincfn 8527   finSupp cfsupp 8866  Basecbs 16541  .rcmulr 16624  Scalarcsca 16626   ·𝑠 cvsca 16627  0gc0g 16771   Σg cgsu 16772  1rcur 19319  Ringcrg 19365  CRingccrg 19366  rcdsr 19459  Unitcui 19460  DivRingcdr 19570  Fieldcfield 19571  LModclmod 19702  LSpanclspn 19811  LBasisclbs 19914  NzRingcnzr 20098   freeLMod cfrlm 20511   unitVec cuvc 20547   LIndF clindf 20569  LIndSclinds 20570   maMul cmmul 21085   Mat cmat 21107   maDet cmdat 21284
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-rep 5156  ax-sep 5169  ax-nul 5176  ax-pow 5234  ax-pr 5298  ax-un 7459  ax-cnex 10631  ax-resscn 10632  ax-1cn 10633  ax-icn 10634  ax-addcl 10635  ax-addrcl 10636  ax-mulcl 10637  ax-mulrcl 10638  ax-mulcom 10639  ax-addass 10640  ax-mulass 10641  ax-distr 10642  ax-i2m1 10643  ax-1ne0 10644  ax-1rid 10645  ax-rnegex 10646  ax-rrecex 10647  ax-cnre 10648  ax-pre-lttri 10649  ax-pre-lttrn 10650  ax-pre-ltadd 10651  ax-pre-mulgt0 10652  ax-addf 10654  ax-mulf 10655
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-xor 1503  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-nel 3056  df-ral 3075  df-rex 3076  df-reu 3077  df-rmo 3078  df-rab 3079  df-v 3411  df-sbc 3697  df-csb 3806  df-dif 3861  df-un 3863  df-in 3865  df-ss 3875  df-pss 3877  df-nul 4226  df-if 4421  df-pw 4496  df-sn 4523  df-pr 4525  df-tp 4527  df-op 4529  df-ot 4531  df-uni 4799  df-int 4839  df-iun 4885  df-iin 4886  df-br 5033  df-opab 5095  df-mpt 5113  df-tr 5139  df-id 5430  df-eprel 5435  df-po 5443  df-so 5444  df-fr 5483  df-se 5484  df-we 5485  df-xp 5530  df-rel 5531  df-cnv 5532  df-co 5533  df-dm 5534  df-rn 5535  df-res 5536  df-ima 5537  df-pred 6126  df-ord 6172  df-on 6173  df-lim 6174  df-suc 6175  df-iota 6294  df-fun 6337  df-fn 6338  df-f 6339  df-f1 6340  df-fo 6341  df-f1o 6342  df-fv 6343  df-isom 6344  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-of 7405  df-om 7580  df-1st 7693  df-2nd 7694  df-supp 7836  df-tpos 7902  df-cur 7943  df-unc 7944  df-wrecs 7957  df-recs 8018  df-rdg 8056  df-1o 8112  df-2o 8113  df-er 8299  df-map 8418  df-pm 8419  df-ixp 8480  df-en 8528  df-dom 8529  df-sdom 8530  df-fin 8531  df-fsupp 8867  df-sup 8939  df-oi 9007  df-card 9401  df-pnf 10715  df-mnf 10716  df-xr 10717  df-ltxr 10718  df-le 10719  df-sub 10910  df-neg 10911  df-div 11336  df-nn 11675  df-2 11737  df-3 11738  df-4 11739  df-5 11740  df-6 11741  df-7 11742  df-8 11743  df-9 11744  df-n0 11935  df-xnn0 12007  df-z 12021  df-dec 12138  df-uz 12283  df-rp 12431  df-fz 12940  df-fzo 13083  df-seq 13419  df-exp 13480  df-hash 13741  df-word 13914  df-lsw 13962  df-concat 13970  df-s1 13997  df-substr 14050  df-pfx 14080  df-splice 14159  df-reverse 14168  df-s2 14257  df-struct 16543  df-ndx 16544  df-slot 16545  df-base 16547  df-sets 16548  df-ress 16549  df-plusg 16636  df-mulr 16637  df-starv 16638  df-sca 16639  df-vsca 16640  df-ip 16641  df-tset 16642  df-ple 16643  df-ds 16645  df-unif 16646  df-hom 16647  df-cco 16648  df-0g 16773  df-gsum 16774  df-prds 16779  df-pws 16781  df-mre 16915  df-mrc 16916  df-mri 16917  df-acs 16918  df-mgm 17918  df-sgrp 17967  df-mnd 17978  df-mhm 18022  df-submnd 18023  df-efmnd 18100  df-grp 18172  df-minusg 18173  df-sbg 18174  df-mulg 18292  df-subg 18343  df-ghm 18423  df-gim 18466  df-cntz 18514  df-oppg 18541  df-symg 18563  df-pmtr 18637  df-psgn 18686  df-evpm 18687  df-cmn 18975  df-abl 18976  df-mgp 19308  df-ur 19320  df-srg 19324  df-ring 19367  df-cring 19368  df-oppr 19444  df-dvdsr 19462  df-unit 19463  df-invr 19493  df-dvr 19504  df-rnghom 19538  df-drng 19572  df-field 19573  df-subrg 19601  df-lmod 19704  df-lss 19772  df-lsp 19812  df-lmhm 19862  df-lbs 19915  df-lvec 19943  df-sra 20012  df-rgmod 20013  df-nzr 20099  df-cnfld 20167  df-zring 20239  df-zrh 20273  df-dsmm 20497  df-frlm 20512  df-uvc 20548  df-lindf 20571  df-linds 20572  df-mamu 21086  df-mat 21108  df-mdet 21285
This theorem is referenced by:  matunitlindf  35335
  Copyright terms: Public domain W3C validator