Users' Mathboxes Mathbox for Brendan Leahy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  matunitlindflem2 Structured version   Visualization version   GIF version

Theorem matunitlindflem2 37604
Description: One direction of matunitlindf 37605. (Contributed by Brendan Leahy, 2-Jun-2021.)
Assertion
Ref Expression
matunitlindflem2 ((((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ 𝐼 ≠ ∅) ∧ curry 𝑀 LIndF (𝑅 freeLMod 𝐼)) → ((𝐼 maDet 𝑅)‘𝑀) ∈ (Unit‘𝑅))

Proof of Theorem matunitlindflem2
Dummy variables 𝑓 𝑖 𝑗 𝑘 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2735 . . . . . . 7 (𝐼 Mat 𝑅) = (𝐼 Mat 𝑅)
2 eqid 2735 . . . . . . 7 (Base‘(𝐼 Mat 𝑅)) = (Base‘(𝐼 Mat 𝑅))
31, 2matrcl 22432 . . . . . 6 (𝑀 ∈ (Base‘(𝐼 Mat 𝑅)) → (𝐼 ∈ Fin ∧ 𝑅 ∈ V))
43simpld 494 . . . . 5 (𝑀 ∈ (Base‘(𝐼 Mat 𝑅)) → 𝐼 ∈ Fin)
54ad3antlr 731 . . . 4 ((((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ 𝐼 ≠ ∅) ∧ curry 𝑀 LIndF (𝑅 freeLMod 𝐼)) → 𝐼 ∈ Fin)
6 isfld 20757 . . . . . . 7 (𝑅 ∈ Field ↔ (𝑅 ∈ DivRing ∧ 𝑅 ∈ CRing))
76simplbi 497 . . . . . 6 (𝑅 ∈ Field → 𝑅 ∈ DivRing)
87anim1i 615 . . . . 5 ((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) → (𝑅 ∈ DivRing ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))))
94ad2antrl 728 . . . . . . . . . . . 12 ((𝑅 ∈ DivRing ∧ (𝑀 ∈ (Base‘(𝐼 Mat 𝑅)) ∧ 𝐼 ≠ ∅)) → 𝐼 ∈ Fin)
10 simpr 484 . . . . . . . . . . . . . . 15 ((𝑅 ∈ DivRing ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) → 𝑀 ∈ (Base‘(𝐼 Mat 𝑅)))
11 xpfi 9356 . . . . . . . . . . . . . . . . . . . . 21 ((𝐼 ∈ Fin ∧ 𝐼 ∈ Fin) → (𝐼 × 𝐼) ∈ Fin)
1211anidms 566 . . . . . . . . . . . . . . . . . . . 20 (𝐼 ∈ Fin → (𝐼 × 𝐼) ∈ Fin)
13 eqid 2735 . . . . . . . . . . . . . . . . . . . . 21 (𝑅 freeLMod (𝐼 × 𝐼)) = (𝑅 freeLMod (𝐼 × 𝐼))
14 eqid 2735 . . . . . . . . . . . . . . . . . . . . 21 (Base‘𝑅) = (Base‘𝑅)
1513, 14frlmfibas 21800 . . . . . . . . . . . . . . . . . . . 20 ((𝑅 ∈ DivRing ∧ (𝐼 × 𝐼) ∈ Fin) → ((Base‘𝑅) ↑m (𝐼 × 𝐼)) = (Base‘(𝑅 freeLMod (𝐼 × 𝐼))))
1612, 15sylan2 593 . . . . . . . . . . . . . . . . . . 19 ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) → ((Base‘𝑅) ↑m (𝐼 × 𝐼)) = (Base‘(𝑅 freeLMod (𝐼 × 𝐼))))
171, 13matbas 22433 . . . . . . . . . . . . . . . . . . . 20 ((𝐼 ∈ Fin ∧ 𝑅 ∈ DivRing) → (Base‘(𝑅 freeLMod (𝐼 × 𝐼))) = (Base‘(𝐼 Mat 𝑅)))
1817ancoms 458 . . . . . . . . . . . . . . . . . . 19 ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) → (Base‘(𝑅 freeLMod (𝐼 × 𝐼))) = (Base‘(𝐼 Mat 𝑅)))
1916, 18eqtrd 2775 . . . . . . . . . . . . . . . . . 18 ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) → ((Base‘𝑅) ↑m (𝐼 × 𝐼)) = (Base‘(𝐼 Mat 𝑅)))
2019eleq2d 2825 . . . . . . . . . . . . . . . . 17 ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) → (𝑀 ∈ ((Base‘𝑅) ↑m (𝐼 × 𝐼)) ↔ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))))
214, 20sylan2 593 . . . . . . . . . . . . . . . 16 ((𝑅 ∈ DivRing ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) → (𝑀 ∈ ((Base‘𝑅) ↑m (𝐼 × 𝐼)) ↔ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))))
22 fvex 6920 . . . . . . . . . . . . . . . . . 18 (Base‘𝑅) ∈ V
234, 4, 11syl2anc 584 . . . . . . . . . . . . . . . . . 18 (𝑀 ∈ (Base‘(𝐼 Mat 𝑅)) → (𝐼 × 𝐼) ∈ Fin)
24 elmapg 8878 . . . . . . . . . . . . . . . . . 18 (((Base‘𝑅) ∈ V ∧ (𝐼 × 𝐼) ∈ Fin) → (𝑀 ∈ ((Base‘𝑅) ↑m (𝐼 × 𝐼)) ↔ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)))
2522, 23, 24sylancr 587 . . . . . . . . . . . . . . . . 17 (𝑀 ∈ (Base‘(𝐼 Mat 𝑅)) → (𝑀 ∈ ((Base‘𝑅) ↑m (𝐼 × 𝐼)) ↔ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)))
2625adantl 481 . . . . . . . . . . . . . . . 16 ((𝑅 ∈ DivRing ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) → (𝑀 ∈ ((Base‘𝑅) ↑m (𝐼 × 𝐼)) ↔ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)))
2721, 26bitr3d 281 . . . . . . . . . . . . . . 15 ((𝑅 ∈ DivRing ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) → (𝑀 ∈ (Base‘(𝐼 Mat 𝑅)) ↔ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)))
2810, 27mpbid 232 . . . . . . . . . . . . . 14 ((𝑅 ∈ DivRing ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) → 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅))
2928adantrr 717 . . . . . . . . . . . . 13 ((𝑅 ∈ DivRing ∧ (𝑀 ∈ (Base‘(𝐼 Mat 𝑅)) ∧ 𝐼 ≠ ∅)) → 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅))
30 eldifsn 4791 . . . . . . . . . . . . . . . 16 (𝐼 ∈ (Fin ∖ {∅}) ↔ (𝐼 ∈ Fin ∧ 𝐼 ≠ ∅))
3130biimpri 228 . . . . . . . . . . . . . . 15 ((𝐼 ∈ Fin ∧ 𝐼 ≠ ∅) → 𝐼 ∈ (Fin ∖ {∅}))
324, 31sylan 580 . . . . . . . . . . . . . 14 ((𝑀 ∈ (Base‘(𝐼 Mat 𝑅)) ∧ 𝐼 ≠ ∅) → 𝐼 ∈ (Fin ∖ {∅}))
3332adantl 481 . . . . . . . . . . . . 13 ((𝑅 ∈ DivRing ∧ (𝑀 ∈ (Base‘(𝐼 Mat 𝑅)) ∧ 𝐼 ≠ ∅)) → 𝐼 ∈ (Fin ∖ {∅}))
34 curf 37585 . . . . . . . . . . . . . 14 ((𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅) ∧ 𝐼 ∈ (Fin ∖ {∅}) ∧ (Base‘𝑅) ∈ V) → curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼))
3522, 34mp3an3 1449 . . . . . . . . . . . . 13 ((𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅) ∧ 𝐼 ∈ (Fin ∖ {∅})) → curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼))
3629, 33, 35syl2anc 584 . . . . . . . . . . . 12 ((𝑅 ∈ DivRing ∧ (𝑀 ∈ (Base‘(𝐼 Mat 𝑅)) ∧ 𝐼 ≠ ∅)) → curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼))
379, 36jca 511 . . . . . . . . . . 11 ((𝑅 ∈ DivRing ∧ (𝑀 ∈ (Base‘(𝐼 Mat 𝑅)) ∧ 𝐼 ≠ ∅)) → (𝐼 ∈ Fin ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)))
3837ex 412 . . . . . . . . . 10 (𝑅 ∈ DivRing → ((𝑀 ∈ (Base‘(𝐼 Mat 𝑅)) ∧ 𝐼 ≠ ∅) → (𝐼 ∈ Fin ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼))))
3938imdistani 568 . . . . . . . . 9 ((𝑅 ∈ DivRing ∧ (𝑀 ∈ (Base‘(𝐼 Mat 𝑅)) ∧ 𝐼 ≠ ∅)) → (𝑅 ∈ DivRing ∧ (𝐼 ∈ Fin ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼))))
4039anassrs 467 . . . . . . . 8 (((𝑅 ∈ DivRing ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ 𝐼 ≠ ∅) → (𝑅 ∈ DivRing ∧ (𝐼 ∈ Fin ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼))))
41 anass 468 . . . . . . . 8 (((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) ↔ (𝑅 ∈ DivRing ∧ (𝐼 ∈ Fin ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼))))
4240, 41sylibr 234 . . . . . . 7 (((𝑅 ∈ DivRing ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ 𝐼 ≠ ∅) → ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)))
43 drngring 20753 . . . . . . . . . . . . 13 (𝑅 ∈ DivRing → 𝑅 ∈ Ring)
44 eqid 2735 . . . . . . . . . . . . . 14 (𝑅 unitVec 𝐼) = (𝑅 unitVec 𝐼)
45 eqid 2735 . . . . . . . . . . . . . 14 (𝑅 freeLMod 𝐼) = (𝑅 freeLMod 𝐼)
46 eqid 2735 . . . . . . . . . . . . . 14 (Base‘(𝑅 freeLMod 𝐼)) = (Base‘(𝑅 freeLMod 𝐼))
4744, 45, 46uvcff 21829 . . . . . . . . . . . . 13 ((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) → (𝑅 unitVec 𝐼):𝐼⟶(Base‘(𝑅 freeLMod 𝐼)))
4843, 47sylan 580 . . . . . . . . . . . 12 ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) → (𝑅 unitVec 𝐼):𝐼⟶(Base‘(𝑅 freeLMod 𝐼)))
4948ffvelcdmda 7104 . . . . . . . . . . 11 (((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) ∧ 𝑖𝐼) → ((𝑅 unitVec 𝐼)‘𝑖) ∈ (Base‘(𝑅 freeLMod 𝐼)))
5049ad4ant14 752 . . . . . . . . . 10 (((((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) ∧ curry 𝑀 LIndF (𝑅 freeLMod 𝐼)) ∧ 𝑖𝐼) → ((𝑅 unitVec 𝐼)‘𝑖) ∈ (Base‘(𝑅 freeLMod 𝐼)))
51 ffn 6737 . . . . . . . . . . . . . . . 16 (curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼) → curry 𝑀 Fn 𝐼)
52 fnima 6699 . . . . . . . . . . . . . . . 16 (curry 𝑀 Fn 𝐼 → (curry 𝑀𝐼) = ran curry 𝑀)
5351, 52syl 17 . . . . . . . . . . . . . . 15 (curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼) → (curry 𝑀𝐼) = ran curry 𝑀)
5453adantl 481 . . . . . . . . . . . . . 14 (((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) → (curry 𝑀𝐼) = ran curry 𝑀)
5554fveq2d 6911 . . . . . . . . . . . . 13 (((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) → ((LSpan‘(𝑅 freeLMod 𝐼))‘(curry 𝑀𝐼)) = ((LSpan‘(𝑅 freeLMod 𝐼))‘ran curry 𝑀))
5655adantr 480 . . . . . . . . . . . 12 ((((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) ∧ curry 𝑀 LIndF (𝑅 freeLMod 𝐼)) → ((LSpan‘(𝑅 freeLMod 𝐼))‘(curry 𝑀𝐼)) = ((LSpan‘(𝑅 freeLMod 𝐼))‘ran curry 𝑀))
57 simplll 775 . . . . . . . . . . . . . 14 ((((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) ∧ curry 𝑀 LIndF (𝑅 freeLMod 𝐼)) → 𝑅 ∈ DivRing)
58 simpllr 776 . . . . . . . . . . . . . 14 ((((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) ∧ curry 𝑀 LIndF (𝑅 freeLMod 𝐼)) → 𝐼 ∈ Fin)
5945frlmlmod 21787 . . . . . . . . . . . . . . . . 17 ((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) → (𝑅 freeLMod 𝐼) ∈ LMod)
6043, 59sylan 580 . . . . . . . . . . . . . . . 16 ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) → (𝑅 freeLMod 𝐼) ∈ LMod)
6160adantr 480 . . . . . . . . . . . . . . 15 (((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) → (𝑅 freeLMod 𝐼) ∈ LMod)
62 lindfrn 21859 . . . . . . . . . . . . . . 15 (((𝑅 freeLMod 𝐼) ∈ LMod ∧ curry 𝑀 LIndF (𝑅 freeLMod 𝐼)) → ran curry 𝑀 ∈ (LIndS‘(𝑅 freeLMod 𝐼)))
6361, 62sylan 580 . . . . . . . . . . . . . 14 ((((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) ∧ curry 𝑀 LIndF (𝑅 freeLMod 𝐼)) → ran curry 𝑀 ∈ (LIndS‘(𝑅 freeLMod 𝐼)))
6445frlmsca 21791 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) → 𝑅 = (Scalar‘(𝑅 freeLMod 𝐼)))
65 drngnzr 20765 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑅 ∈ DivRing → 𝑅 ∈ NzRing)
6665adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) → 𝑅 ∈ NzRing)
6764, 66eqeltrrd 2840 . . . . . . . . . . . . . . . . . . . . 21 ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) → (Scalar‘(𝑅 freeLMod 𝐼)) ∈ NzRing)
6860, 67jca 511 . . . . . . . . . . . . . . . . . . . 20 ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) → ((𝑅 freeLMod 𝐼) ∈ LMod ∧ (Scalar‘(𝑅 freeLMod 𝐼)) ∈ NzRing))
69 eqid 2735 . . . . . . . . . . . . . . . . . . . . . 22 (Scalar‘(𝑅 freeLMod 𝐼)) = (Scalar‘(𝑅 freeLMod 𝐼))
7046, 69lindff1 21858 . . . . . . . . . . . . . . . . . . . . 21 (((𝑅 freeLMod 𝐼) ∈ LMod ∧ (Scalar‘(𝑅 freeLMod 𝐼)) ∈ NzRing ∧ curry 𝑀 LIndF (𝑅 freeLMod 𝐼)) → curry 𝑀:dom curry 𝑀1-1→(Base‘(𝑅 freeLMod 𝐼)))
71703expa 1117 . . . . . . . . . . . . . . . . . . . 20 ((((𝑅 freeLMod 𝐼) ∈ LMod ∧ (Scalar‘(𝑅 freeLMod 𝐼)) ∈ NzRing) ∧ curry 𝑀 LIndF (𝑅 freeLMod 𝐼)) → curry 𝑀:dom curry 𝑀1-1→(Base‘(𝑅 freeLMod 𝐼)))
7268, 71sylan 580 . . . . . . . . . . . . . . . . . . 19 (((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) ∧ curry 𝑀 LIndF (𝑅 freeLMod 𝐼)) → curry 𝑀:dom curry 𝑀1-1→(Base‘(𝑅 freeLMod 𝐼)))
73 fdm 6746 . . . . . . . . . . . . . . . . . . 19 (curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼) → dom curry 𝑀 = 𝐼)
74 f1eq2 6801 . . . . . . . . . . . . . . . . . . . 20 (dom curry 𝑀 = 𝐼 → (curry 𝑀:dom curry 𝑀1-1→(Base‘(𝑅 freeLMod 𝐼)) ↔ curry 𝑀:𝐼1-1→(Base‘(𝑅 freeLMod 𝐼))))
7574biimpac 478 . . . . . . . . . . . . . . . . . . 19 ((curry 𝑀:dom curry 𝑀1-1→(Base‘(𝑅 freeLMod 𝐼)) ∧ dom curry 𝑀 = 𝐼) → curry 𝑀:𝐼1-1→(Base‘(𝑅 freeLMod 𝐼)))
7672, 73, 75syl2an 596 . . . . . . . . . . . . . . . . . 18 ((((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) ∧ curry 𝑀 LIndF (𝑅 freeLMod 𝐼)) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) → curry 𝑀:𝐼1-1→(Base‘(𝑅 freeLMod 𝐼)))
7776an32s 652 . . . . . . . . . . . . . . . . 17 ((((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) ∧ curry 𝑀 LIndF (𝑅 freeLMod 𝐼)) → curry 𝑀:𝐼1-1→(Base‘(𝑅 freeLMod 𝐼)))
78 f1f1orn 6860 . . . . . . . . . . . . . . . . 17 (curry 𝑀:𝐼1-1→(Base‘(𝑅 freeLMod 𝐼)) → curry 𝑀:𝐼1-1-onto→ran curry 𝑀)
7977, 78syl 17 . . . . . . . . . . . . . . . 16 ((((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) ∧ curry 𝑀 LIndF (𝑅 freeLMod 𝐼)) → curry 𝑀:𝐼1-1-onto→ran curry 𝑀)
80 f1oeng 9010 . . . . . . . . . . . . . . . 16 ((𝐼 ∈ Fin ∧ curry 𝑀:𝐼1-1-onto→ran curry 𝑀) → 𝐼 ≈ ran curry 𝑀)
8158, 79, 80syl2anc 584 . . . . . . . . . . . . . . 15 ((((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) ∧ curry 𝑀 LIndF (𝑅 freeLMod 𝐼)) → 𝐼 ≈ ran curry 𝑀)
8281ensymd 9044 . . . . . . . . . . . . . 14 ((((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) ∧ curry 𝑀 LIndF (𝑅 freeLMod 𝐼)) → ran curry 𝑀𝐼)
83 lindsenlbs 37602 . . . . . . . . . . . . . 14 (((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ ran curry 𝑀 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ ran curry 𝑀𝐼) → ran curry 𝑀 ∈ (LBasis‘(𝑅 freeLMod 𝐼)))
8457, 58, 63, 82, 83syl31anc 1372 . . . . . . . . . . . . 13 ((((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) ∧ curry 𝑀 LIndF (𝑅 freeLMod 𝐼)) → ran curry 𝑀 ∈ (LBasis‘(𝑅 freeLMod 𝐼)))
85 eqid 2735 . . . . . . . . . . . . . 14 (LBasis‘(𝑅 freeLMod 𝐼)) = (LBasis‘(𝑅 freeLMod 𝐼))
86 eqid 2735 . . . . . . . . . . . . . 14 (LSpan‘(𝑅 freeLMod 𝐼)) = (LSpan‘(𝑅 freeLMod 𝐼))
8746, 85, 86lbssp 21096 . . . . . . . . . . . . 13 (ran curry 𝑀 ∈ (LBasis‘(𝑅 freeLMod 𝐼)) → ((LSpan‘(𝑅 freeLMod 𝐼))‘ran curry 𝑀) = (Base‘(𝑅 freeLMod 𝐼)))
8884, 87syl 17 . . . . . . . . . . . 12 ((((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) ∧ curry 𝑀 LIndF (𝑅 freeLMod 𝐼)) → ((LSpan‘(𝑅 freeLMod 𝐼))‘ran curry 𝑀) = (Base‘(𝑅 freeLMod 𝐼)))
8956, 88eqtrd 2775 . . . . . . . . . . 11 ((((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) ∧ curry 𝑀 LIndF (𝑅 freeLMod 𝐼)) → ((LSpan‘(𝑅 freeLMod 𝐼))‘(curry 𝑀𝐼)) = (Base‘(𝑅 freeLMod 𝐼)))
9089adantr 480 . . . . . . . . . 10 (((((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) ∧ curry 𝑀 LIndF (𝑅 freeLMod 𝐼)) ∧ 𝑖𝐼) → ((LSpan‘(𝑅 freeLMod 𝐼))‘(curry 𝑀𝐼)) = (Base‘(𝑅 freeLMod 𝐼)))
9150, 90eleqtrrd 2842 . . . . . . . . 9 (((((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) ∧ curry 𝑀 LIndF (𝑅 freeLMod 𝐼)) ∧ 𝑖𝐼) → ((𝑅 unitVec 𝐼)‘𝑖) ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘(curry 𝑀𝐼)))
92 eqid 2735 . . . . . . . . . . . . 13 (Base‘(Scalar‘(𝑅 freeLMod 𝐼))) = (Base‘(Scalar‘(𝑅 freeLMod 𝐼)))
93 eqid 2735 . . . . . . . . . . . . 13 (0g‘(Scalar‘(𝑅 freeLMod 𝐼))) = (0g‘(Scalar‘(𝑅 freeLMod 𝐼)))
94 eqid 2735 . . . . . . . . . . . . 13 ( ·𝑠 ‘(𝑅 freeLMod 𝐼)) = ( ·𝑠 ‘(𝑅 freeLMod 𝐼))
9545, 14frlmfibas 21800 . . . . . . . . . . . . . . 15 ((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) → ((Base‘𝑅) ↑m 𝐼) = (Base‘(𝑅 freeLMod 𝐼)))
9695feq3d 6724 . . . . . . . . . . . . . 14 ((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) → (curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼) ↔ curry 𝑀:𝐼⟶(Base‘(𝑅 freeLMod 𝐼))))
9796biimpa 476 . . . . . . . . . . . . 13 (((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) → curry 𝑀:𝐼⟶(Base‘(𝑅 freeLMod 𝐼)))
9859adantr 480 . . . . . . . . . . . . 13 (((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) → (𝑅 freeLMod 𝐼) ∈ LMod)
99 simplr 769 . . . . . . . . . . . . 13 (((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) → 𝐼 ∈ Fin)
10086, 46, 92, 69, 93, 94, 97, 98, 99elfilspd 21841 . . . . . . . . . . . 12 (((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) → (((𝑅 unitVec 𝐼)‘𝑖) ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘(curry 𝑀𝐼)) ↔ ∃𝑛 ∈ ((Base‘(Scalar‘(𝑅 freeLMod 𝐼))) ↑m 𝐼)((𝑅 unitVec 𝐼)‘𝑖) = ((𝑅 freeLMod 𝐼) Σg (𝑛f ( ·𝑠 ‘(𝑅 freeLMod 𝐼))curry 𝑀))))
10145frlmsca 21791 . . . . . . . . . . . . . . . 16 ((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) → 𝑅 = (Scalar‘(𝑅 freeLMod 𝐼)))
102101fveq2d 6911 . . . . . . . . . . . . . . 15 ((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) → (Base‘𝑅) = (Base‘(Scalar‘(𝑅 freeLMod 𝐼))))
103102oveq1d 7446 . . . . . . . . . . . . . 14 ((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) → ((Base‘𝑅) ↑m 𝐼) = ((Base‘(Scalar‘(𝑅 freeLMod 𝐼))) ↑m 𝐼))
104103adantr 480 . . . . . . . . . . . . 13 (((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) → ((Base‘𝑅) ↑m 𝐼) = ((Base‘(Scalar‘(𝑅 freeLMod 𝐼))) ↑m 𝐼))
105 elmapi 8888 . . . . . . . . . . . . . . 15 (𝑛 ∈ ((Base‘𝑅) ↑m 𝐼) → 𝑛:𝐼⟶(Base‘𝑅))
106 ffn 6737 . . . . . . . . . . . . . . . . . . . 20 (𝑛:𝐼⟶(Base‘𝑅) → 𝑛 Fn 𝐼)
107106adantl 481 . . . . . . . . . . . . . . . . . . 19 ((((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) ∧ 𝑛:𝐼⟶(Base‘𝑅)) → 𝑛 Fn 𝐼)
10851ad2antlr 727 . . . . . . . . . . . . . . . . . . 19 ((((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) ∧ 𝑛:𝐼⟶(Base‘𝑅)) → curry 𝑀 Fn 𝐼)
109 simpllr 776 . . . . . . . . . . . . . . . . . . 19 ((((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) ∧ 𝑛:𝐼⟶(Base‘𝑅)) → 𝐼 ∈ Fin)
110 inidm 4235 . . . . . . . . . . . . . . . . . . 19 (𝐼𝐼) = 𝐼
111 eqidd 2736 . . . . . . . . . . . . . . . . . . 19 (((((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) ∧ 𝑛:𝐼⟶(Base‘𝑅)) ∧ 𝑘𝐼) → (𝑛𝑘) = (𝑛𝑘))
112 eqidd 2736 . . . . . . . . . . . . . . . . . . 19 (((((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) ∧ 𝑛:𝐼⟶(Base‘𝑅)) ∧ 𝑘𝐼) → (curry 𝑀𝑘) = (curry 𝑀𝑘))
113107, 108, 109, 109, 110, 111, 112offval 7706 . . . . . . . . . . . . . . . . . 18 ((((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) ∧ 𝑛:𝐼⟶(Base‘𝑅)) → (𝑛f ( ·𝑠 ‘(𝑅 freeLMod 𝐼))curry 𝑀) = (𝑘𝐼 ↦ ((𝑛𝑘)( ·𝑠 ‘(𝑅 freeLMod 𝐼))(curry 𝑀𝑘))))
114 simp-4r 784 . . . . . . . . . . . . . . . . . . . . 21 (((((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) ∧ 𝑛:𝐼⟶(Base‘𝑅)) ∧ 𝑘𝐼) → 𝐼 ∈ Fin)
115 ffvelcdm 7101 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑛:𝐼⟶(Base‘𝑅) ∧ 𝑘𝐼) → (𝑛𝑘) ∈ (Base‘𝑅))
116115adantll 714 . . . . . . . . . . . . . . . . . . . . 21 (((((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) ∧ 𝑛:𝐼⟶(Base‘𝑅)) ∧ 𝑘𝐼) → (𝑛𝑘) ∈ (Base‘𝑅))
117 ffvelcdm 7101 . . . . . . . . . . . . . . . . . . . . . . 23 ((curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼) ∧ 𝑘𝐼) → (curry 𝑀𝑘) ∈ ((Base‘𝑅) ↑m 𝐼))
118117ad4ant24 754 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) ∧ 𝑛:𝐼⟶(Base‘𝑅)) ∧ 𝑘𝐼) → (curry 𝑀𝑘) ∈ ((Base‘𝑅) ↑m 𝐼))
11995ad3antrrr 730 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) ∧ 𝑛:𝐼⟶(Base‘𝑅)) ∧ 𝑘𝐼) → ((Base‘𝑅) ↑m 𝐼) = (Base‘(𝑅 freeLMod 𝐼)))
120118, 119eleqtrd 2841 . . . . . . . . . . . . . . . . . . . . 21 (((((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) ∧ 𝑛:𝐼⟶(Base‘𝑅)) ∧ 𝑘𝐼) → (curry 𝑀𝑘) ∈ (Base‘(𝑅 freeLMod 𝐼)))
121 eqid 2735 . . . . . . . . . . . . . . . . . . . . 21 (.r𝑅) = (.r𝑅)
12245, 46, 14, 114, 116, 120, 94, 121frlmvscafval 21804 . . . . . . . . . . . . . . . . . . . 20 (((((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) ∧ 𝑛:𝐼⟶(Base‘𝑅)) ∧ 𝑘𝐼) → ((𝑛𝑘)( ·𝑠 ‘(𝑅 freeLMod 𝐼))(curry 𝑀𝑘)) = ((𝐼 × {(𝑛𝑘)}) ∘f (.r𝑅)(curry 𝑀𝑘)))
123 fvex 6920 . . . . . . . . . . . . . . . . . . . . . 22 (𝑛𝑘) ∈ V
124 fnconstg 6797 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑛𝑘) ∈ V → (𝐼 × {(𝑛𝑘)}) Fn 𝐼)
125123, 124mp1i 13 . . . . . . . . . . . . . . . . . . . . 21 (((((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) ∧ 𝑛:𝐼⟶(Base‘𝑅)) ∧ 𝑘𝐼) → (𝐼 × {(𝑛𝑘)}) Fn 𝐼)
126 elmapfn 8904 . . . . . . . . . . . . . . . . . . . . . . 23 ((curry 𝑀𝑘) ∈ ((Base‘𝑅) ↑m 𝐼) → (curry 𝑀𝑘) Fn 𝐼)
127117, 126syl 17 . . . . . . . . . . . . . . . . . . . . . 22 ((curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼) ∧ 𝑘𝐼) → (curry 𝑀𝑘) Fn 𝐼)
128127ad4ant24 754 . . . . . . . . . . . . . . . . . . . . 21 (((((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) ∧ 𝑛:𝐼⟶(Base‘𝑅)) ∧ 𝑘𝐼) → (curry 𝑀𝑘) Fn 𝐼)
129123fvconst2 7224 . . . . . . . . . . . . . . . . . . . . . 22 (𝑗𝐼 → ((𝐼 × {(𝑛𝑘)})‘𝑗) = (𝑛𝑘))
130129adantl 481 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) ∧ 𝑛:𝐼⟶(Base‘𝑅)) ∧ 𝑘𝐼) ∧ 𝑗𝐼) → ((𝐼 × {(𝑛𝑘)})‘𝑗) = (𝑛𝑘))
131 eqidd 2736 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) ∧ 𝑛:𝐼⟶(Base‘𝑅)) ∧ 𝑘𝐼) ∧ 𝑗𝐼) → ((curry 𝑀𝑘)‘𝑗) = ((curry 𝑀𝑘)‘𝑗))
132125, 128, 114, 114, 110, 130, 131offval 7706 . . . . . . . . . . . . . . . . . . . 20 (((((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) ∧ 𝑛:𝐼⟶(Base‘𝑅)) ∧ 𝑘𝐼) → ((𝐼 × {(𝑛𝑘)}) ∘f (.r𝑅)(curry 𝑀𝑘)) = (𝑗𝐼 ↦ ((𝑛𝑘)(.r𝑅)((curry 𝑀𝑘)‘𝑗))))
133122, 132eqtrd 2775 . . . . . . . . . . . . . . . . . . 19 (((((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) ∧ 𝑛:𝐼⟶(Base‘𝑅)) ∧ 𝑘𝐼) → ((𝑛𝑘)( ·𝑠 ‘(𝑅 freeLMod 𝐼))(curry 𝑀𝑘)) = (𝑗𝐼 ↦ ((𝑛𝑘)(.r𝑅)((curry 𝑀𝑘)‘𝑗))))
134133mpteq2dva 5248 . . . . . . . . . . . . . . . . . 18 ((((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) ∧ 𝑛:𝐼⟶(Base‘𝑅)) → (𝑘𝐼 ↦ ((𝑛𝑘)( ·𝑠 ‘(𝑅 freeLMod 𝐼))(curry 𝑀𝑘))) = (𝑘𝐼 ↦ (𝑗𝐼 ↦ ((𝑛𝑘)(.r𝑅)((curry 𝑀𝑘)‘𝑗)))))
135113, 134eqtrd 2775 . . . . . . . . . . . . . . . . 17 ((((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) ∧ 𝑛:𝐼⟶(Base‘𝑅)) → (𝑛f ( ·𝑠 ‘(𝑅 freeLMod 𝐼))curry 𝑀) = (𝑘𝐼 ↦ (𝑗𝐼 ↦ ((𝑛𝑘)(.r𝑅)((curry 𝑀𝑘)‘𝑗)))))
136135oveq2d 7447 . . . . . . . . . . . . . . . 16 ((((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) ∧ 𝑛:𝐼⟶(Base‘𝑅)) → ((𝑅 freeLMod 𝐼) Σg (𝑛f ( ·𝑠 ‘(𝑅 freeLMod 𝐼))curry 𝑀)) = ((𝑅 freeLMod 𝐼) Σg (𝑘𝐼 ↦ (𝑗𝐼 ↦ ((𝑛𝑘)(.r𝑅)((curry 𝑀𝑘)‘𝑗))))))
137 eqid 2735 . . . . . . . . . . . . . . . . 17 (0g‘(𝑅 freeLMod 𝐼)) = (0g‘(𝑅 freeLMod 𝐼))
138 simplll 775 . . . . . . . . . . . . . . . . 17 ((((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) ∧ 𝑛:𝐼⟶(Base‘𝑅)) → 𝑅 ∈ Ring)
139 simp-5l 785 . . . . . . . . . . . . . . . . . . . 20 ((((((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) ∧ 𝑛:𝐼⟶(Base‘𝑅)) ∧ 𝑘𝐼) ∧ 𝑗𝐼) → 𝑅 ∈ Ring)
140115ad4ant23 753 . . . . . . . . . . . . . . . . . . . 20 ((((((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) ∧ 𝑛:𝐼⟶(Base‘𝑅)) ∧ 𝑘𝐼) ∧ 𝑗𝐼) → (𝑛𝑘) ∈ (Base‘𝑅))
141 simplr 769 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) ∧ 𝑛:𝐼⟶(Base‘𝑅)) → curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼))
142 elmapi 8888 . . . . . . . . . . . . . . . . . . . . . . 23 ((curry 𝑀𝑘) ∈ ((Base‘𝑅) ↑m 𝐼) → (curry 𝑀𝑘):𝐼⟶(Base‘𝑅))
143117, 142syl 17 . . . . . . . . . . . . . . . . . . . . . 22 ((curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼) ∧ 𝑘𝐼) → (curry 𝑀𝑘):𝐼⟶(Base‘𝑅))
144143ffvelcdmda 7104 . . . . . . . . . . . . . . . . . . . . 21 (((curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼) ∧ 𝑘𝐼) ∧ 𝑗𝐼) → ((curry 𝑀𝑘)‘𝑗) ∈ (Base‘𝑅))
145141, 144sylanl1 680 . . . . . . . . . . . . . . . . . . . 20 ((((((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) ∧ 𝑛:𝐼⟶(Base‘𝑅)) ∧ 𝑘𝐼) ∧ 𝑗𝐼) → ((curry 𝑀𝑘)‘𝑗) ∈ (Base‘𝑅))
14614, 121ringcl 20268 . . . . . . . . . . . . . . . . . . . 20 ((𝑅 ∈ Ring ∧ (𝑛𝑘) ∈ (Base‘𝑅) ∧ ((curry 𝑀𝑘)‘𝑗) ∈ (Base‘𝑅)) → ((𝑛𝑘)(.r𝑅)((curry 𝑀𝑘)‘𝑗)) ∈ (Base‘𝑅))
147139, 140, 145, 146syl3anc 1370 . . . . . . . . . . . . . . . . . . 19 ((((((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) ∧ 𝑛:𝐼⟶(Base‘𝑅)) ∧ 𝑘𝐼) ∧ 𝑗𝐼) → ((𝑛𝑘)(.r𝑅)((curry 𝑀𝑘)‘𝑗)) ∈ (Base‘𝑅))
148147fmpttd 7135 . . . . . . . . . . . . . . . . . 18 (((((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) ∧ 𝑛:𝐼⟶(Base‘𝑅)) ∧ 𝑘𝐼) → (𝑗𝐼 ↦ ((𝑛𝑘)(.r𝑅)((curry 𝑀𝑘)‘𝑗))):𝐼⟶(Base‘𝑅))
149 elmapg 8878 . . . . . . . . . . . . . . . . . . . . . 22 (((Base‘𝑅) ∈ V ∧ 𝐼 ∈ Fin) → ((𝑗𝐼 ↦ ((𝑛𝑘)(.r𝑅)((curry 𝑀𝑘)‘𝑗))) ∈ ((Base‘𝑅) ↑m 𝐼) ↔ (𝑗𝐼 ↦ ((𝑛𝑘)(.r𝑅)((curry 𝑀𝑘)‘𝑗))):𝐼⟶(Base‘𝑅)))
15022, 149mpan 690 . . . . . . . . . . . . . . . . . . . . 21 (𝐼 ∈ Fin → ((𝑗𝐼 ↦ ((𝑛𝑘)(.r𝑅)((curry 𝑀𝑘)‘𝑗))) ∈ ((Base‘𝑅) ↑m 𝐼) ↔ (𝑗𝐼 ↦ ((𝑛𝑘)(.r𝑅)((curry 𝑀𝑘)‘𝑗))):𝐼⟶(Base‘𝑅)))
151150adantl 481 . . . . . . . . . . . . . . . . . . . 20 ((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) → ((𝑗𝐼 ↦ ((𝑛𝑘)(.r𝑅)((curry 𝑀𝑘)‘𝑗))) ∈ ((Base‘𝑅) ↑m 𝐼) ↔ (𝑗𝐼 ↦ ((𝑛𝑘)(.r𝑅)((curry 𝑀𝑘)‘𝑗))):𝐼⟶(Base‘𝑅)))
15295eleq2d 2825 . . . . . . . . . . . . . . . . . . . 20 ((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) → ((𝑗𝐼 ↦ ((𝑛𝑘)(.r𝑅)((curry 𝑀𝑘)‘𝑗))) ∈ ((Base‘𝑅) ↑m 𝐼) ↔ (𝑗𝐼 ↦ ((𝑛𝑘)(.r𝑅)((curry 𝑀𝑘)‘𝑗))) ∈ (Base‘(𝑅 freeLMod 𝐼))))
153151, 152bitr3d 281 . . . . . . . . . . . . . . . . . . 19 ((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) → ((𝑗𝐼 ↦ ((𝑛𝑘)(.r𝑅)((curry 𝑀𝑘)‘𝑗))):𝐼⟶(Base‘𝑅) ↔ (𝑗𝐼 ↦ ((𝑛𝑘)(.r𝑅)((curry 𝑀𝑘)‘𝑗))) ∈ (Base‘(𝑅 freeLMod 𝐼))))
154153ad3antrrr 730 . . . . . . . . . . . . . . . . . 18 (((((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) ∧ 𝑛:𝐼⟶(Base‘𝑅)) ∧ 𝑘𝐼) → ((𝑗𝐼 ↦ ((𝑛𝑘)(.r𝑅)((curry 𝑀𝑘)‘𝑗))):𝐼⟶(Base‘𝑅) ↔ (𝑗𝐼 ↦ ((𝑛𝑘)(.r𝑅)((curry 𝑀𝑘)‘𝑗))) ∈ (Base‘(𝑅 freeLMod 𝐼))))
155148, 154mpbid 232 . . . . . . . . . . . . . . . . 17 (((((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) ∧ 𝑛:𝐼⟶(Base‘𝑅)) ∧ 𝑘𝐼) → (𝑗𝐼 ↦ ((𝑛𝑘)(.r𝑅)((curry 𝑀𝑘)‘𝑗))) ∈ (Base‘(𝑅 freeLMod 𝐼)))
156 mptexg 7241 . . . . . . . . . . . . . . . . . . . . 21 (𝐼 ∈ Fin → (𝑗𝐼 ↦ ((𝑛𝑘)(.r𝑅)((curry 𝑀𝑘)‘𝑗))) ∈ V)
157156ralrimivw 3148 . . . . . . . . . . . . . . . . . . . 20 (𝐼 ∈ Fin → ∀𝑘𝐼 (𝑗𝐼 ↦ ((𝑛𝑘)(.r𝑅)((curry 𝑀𝑘)‘𝑗))) ∈ V)
158 eqid 2735 . . . . . . . . . . . . . . . . . . . . 21 (𝑘𝐼 ↦ (𝑗𝐼 ↦ ((𝑛𝑘)(.r𝑅)((curry 𝑀𝑘)‘𝑗)))) = (𝑘𝐼 ↦ (𝑗𝐼 ↦ ((𝑛𝑘)(.r𝑅)((curry 𝑀𝑘)‘𝑗))))
159158fnmpt 6709 . . . . . . . . . . . . . . . . . . . 20 (∀𝑘𝐼 (𝑗𝐼 ↦ ((𝑛𝑘)(.r𝑅)((curry 𝑀𝑘)‘𝑗))) ∈ V → (𝑘𝐼 ↦ (𝑗𝐼 ↦ ((𝑛𝑘)(.r𝑅)((curry 𝑀𝑘)‘𝑗)))) Fn 𝐼)
160157, 159syl 17 . . . . . . . . . . . . . . . . . . 19 (𝐼 ∈ Fin → (𝑘𝐼 ↦ (𝑗𝐼 ↦ ((𝑛𝑘)(.r𝑅)((curry 𝑀𝑘)‘𝑗)))) Fn 𝐼)
161 id 22 . . . . . . . . . . . . . . . . . . 19 (𝐼 ∈ Fin → 𝐼 ∈ Fin)
162 fvexd 6922 . . . . . . . . . . . . . . . . . . 19 (𝐼 ∈ Fin → (0g‘(𝑅 freeLMod 𝐼)) ∈ V)
163160, 161, 162fndmfifsupp 9416 . . . . . . . . . . . . . . . . . 18 (𝐼 ∈ Fin → (𝑘𝐼 ↦ (𝑗𝐼 ↦ ((𝑛𝑘)(.r𝑅)((curry 𝑀𝑘)‘𝑗)))) finSupp (0g‘(𝑅 freeLMod 𝐼)))
164163ad3antlr 731 . . . . . . . . . . . . . . . . 17 ((((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) ∧ 𝑛:𝐼⟶(Base‘𝑅)) → (𝑘𝐼 ↦ (𝑗𝐼 ↦ ((𝑛𝑘)(.r𝑅)((curry 𝑀𝑘)‘𝑗)))) finSupp (0g‘(𝑅 freeLMod 𝐼)))
16545, 46, 137, 109, 109, 138, 155, 164frlmgsum 21810 . . . . . . . . . . . . . . . 16 ((((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) ∧ 𝑛:𝐼⟶(Base‘𝑅)) → ((𝑅 freeLMod 𝐼) Σg (𝑘𝐼 ↦ (𝑗𝐼 ↦ ((𝑛𝑘)(.r𝑅)((curry 𝑀𝑘)‘𝑗))))) = (𝑗𝐼 ↦ (𝑅 Σg (𝑘𝐼 ↦ ((𝑛𝑘)(.r𝑅)((curry 𝑀𝑘)‘𝑗))))))
166136, 165eqtr2d 2776 . . . . . . . . . . . . . . 15 ((((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) ∧ 𝑛:𝐼⟶(Base‘𝑅)) → (𝑗𝐼 ↦ (𝑅 Σg (𝑘𝐼 ↦ ((𝑛𝑘)(.r𝑅)((curry 𝑀𝑘)‘𝑗))))) = ((𝑅 freeLMod 𝐼) Σg (𝑛f ( ·𝑠 ‘(𝑅 freeLMod 𝐼))curry 𝑀)))
167105, 166sylan2 593 . . . . . . . . . . . . . 14 ((((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) ∧ 𝑛 ∈ ((Base‘𝑅) ↑m 𝐼)) → (𝑗𝐼 ↦ (𝑅 Σg (𝑘𝐼 ↦ ((𝑛𝑘)(.r𝑅)((curry 𝑀𝑘)‘𝑗))))) = ((𝑅 freeLMod 𝐼) Σg (𝑛f ( ·𝑠 ‘(𝑅 freeLMod 𝐼))curry 𝑀)))
168167eqeq2d 2746 . . . . . . . . . . . . 13 ((((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) ∧ 𝑛 ∈ ((Base‘𝑅) ↑m 𝐼)) → (((𝑅 unitVec 𝐼)‘𝑖) = (𝑗𝐼 ↦ (𝑅 Σg (𝑘𝐼 ↦ ((𝑛𝑘)(.r𝑅)((curry 𝑀𝑘)‘𝑗))))) ↔ ((𝑅 unitVec 𝐼)‘𝑖) = ((𝑅 freeLMod 𝐼) Σg (𝑛f ( ·𝑠 ‘(𝑅 freeLMod 𝐼))curry 𝑀))))
169104, 168rexeqbidva 3331 . . . . . . . . . . . 12 (((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) → (∃𝑛 ∈ ((Base‘𝑅) ↑m 𝐼)((𝑅 unitVec 𝐼)‘𝑖) = (𝑗𝐼 ↦ (𝑅 Σg (𝑘𝐼 ↦ ((𝑛𝑘)(.r𝑅)((curry 𝑀𝑘)‘𝑗))))) ↔ ∃𝑛 ∈ ((Base‘(Scalar‘(𝑅 freeLMod 𝐼))) ↑m 𝐼)((𝑅 unitVec 𝐼)‘𝑖) = ((𝑅 freeLMod 𝐼) Σg (𝑛f ( ·𝑠 ‘(𝑅 freeLMod 𝐼))curry 𝑀))))
170100, 169bitr4d 282 . . . . . . . . . . 11 (((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) → (((𝑅 unitVec 𝐼)‘𝑖) ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘(curry 𝑀𝐼)) ↔ ∃𝑛 ∈ ((Base‘𝑅) ↑m 𝐼)((𝑅 unitVec 𝐼)‘𝑖) = (𝑗𝐼 ↦ (𝑅 Σg (𝑘𝐼 ↦ ((𝑛𝑘)(.r𝑅)((curry 𝑀𝑘)‘𝑗)))))))
17143, 170sylanl1 680 . . . . . . . . . 10 (((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) → (((𝑅 unitVec 𝐼)‘𝑖) ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘(curry 𝑀𝐼)) ↔ ∃𝑛 ∈ ((Base‘𝑅) ↑m 𝐼)((𝑅 unitVec 𝐼)‘𝑖) = (𝑗𝐼 ↦ (𝑅 Σg (𝑘𝐼 ↦ ((𝑛𝑘)(.r𝑅)((curry 𝑀𝑘)‘𝑗)))))))
172171ad2antrr 726 . . . . . . . . 9 (((((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) ∧ curry 𝑀 LIndF (𝑅 freeLMod 𝐼)) ∧ 𝑖𝐼) → (((𝑅 unitVec 𝐼)‘𝑖) ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘(curry 𝑀𝐼)) ↔ ∃𝑛 ∈ ((Base‘𝑅) ↑m 𝐼)((𝑅 unitVec 𝐼)‘𝑖) = (𝑗𝐼 ↦ (𝑅 Σg (𝑘𝐼 ↦ ((𝑛𝑘)(.r𝑅)((curry 𝑀𝑘)‘𝑗)))))))
17391, 172mpbid 232 . . . . . . . 8 (((((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) ∧ curry 𝑀 LIndF (𝑅 freeLMod 𝐼)) ∧ 𝑖𝐼) → ∃𝑛 ∈ ((Base‘𝑅) ↑m 𝐼)((𝑅 unitVec 𝐼)‘𝑖) = (𝑗𝐼 ↦ (𝑅 Σg (𝑘𝐼 ↦ ((𝑛𝑘)(.r𝑅)((curry 𝑀𝑘)‘𝑗))))))
174173ralrimiva 3144 . . . . . . 7 ((((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) ∧ curry 𝑀 LIndF (𝑅 freeLMod 𝐼)) → ∀𝑖𝐼𝑛 ∈ ((Base‘𝑅) ↑m 𝐼)((𝑅 unitVec 𝐼)‘𝑖) = (𝑗𝐼 ↦ (𝑅 Σg (𝑘𝐼 ↦ ((𝑛𝑘)(.r𝑅)((curry 𝑀𝑘)‘𝑗))))))
17542, 174sylan 580 . . . . . 6 ((((𝑅 ∈ DivRing ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ 𝐼 ≠ ∅) ∧ curry 𝑀 LIndF (𝑅 freeLMod 𝐼)) → ∀𝑖𝐼𝑛 ∈ ((Base‘𝑅) ↑m 𝐼)((𝑅 unitVec 𝐼)‘𝑖) = (𝑗𝐼 ↦ (𝑅 Σg (𝑘𝐼 ↦ ((𝑛𝑘)(.r𝑅)((curry 𝑀𝑘)‘𝑗))))))
17610, 21mpbird 257 . . . . . . . . 9 ((𝑅 ∈ DivRing ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) → 𝑀 ∈ ((Base‘𝑅) ↑m (𝐼 × 𝐼)))
177 elmapfn 8904 . . . . . . . . 9 (𝑀 ∈ ((Base‘𝑅) ↑m (𝐼 × 𝐼)) → 𝑀 Fn (𝐼 × 𝐼))
178176, 177syl 17 . . . . . . . 8 ((𝑅 ∈ DivRing ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) → 𝑀 Fn (𝐼 × 𝐼))
1794adantl 481 . . . . . . . 8 ((𝑅 ∈ DivRing ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) → 𝐼 ∈ Fin)
180 an32 646 . . . . . . . . . . . . . . . . . . 19 (((𝑀 Fn (𝐼 × 𝐼) ∧ 𝑗𝐼) ∧ 𝑘𝐼) ↔ ((𝑀 Fn (𝐼 × 𝐼) ∧ 𝑘𝐼) ∧ 𝑗𝐼))
181 df-3an 1088 . . . . . . . . . . . . . . . . . . 19 ((𝑀 Fn (𝐼 × 𝐼) ∧ 𝑘𝐼𝑗𝐼) ↔ ((𝑀 Fn (𝐼 × 𝐼) ∧ 𝑘𝐼) ∧ 𝑗𝐼))
182180, 181bitr4i 278 . . . . . . . . . . . . . . . . . 18 (((𝑀 Fn (𝐼 × 𝐼) ∧ 𝑗𝐼) ∧ 𝑘𝐼) ↔ (𝑀 Fn (𝐼 × 𝐼) ∧ 𝑘𝐼𝑗𝐼))
183 curfv 37587 . . . . . . . . . . . . . . . . . 18 (((𝑀 Fn (𝐼 × 𝐼) ∧ 𝑘𝐼𝑗𝐼) ∧ 𝐼 ∈ Fin) → ((curry 𝑀𝑘)‘𝑗) = (𝑘𝑀𝑗))
184182, 183sylanb 581 . . . . . . . . . . . . . . . . 17 ((((𝑀 Fn (𝐼 × 𝐼) ∧ 𝑗𝐼) ∧ 𝑘𝐼) ∧ 𝐼 ∈ Fin) → ((curry 𝑀𝑘)‘𝑗) = (𝑘𝑀𝑗))
185184an32s 652 . . . . . . . . . . . . . . . 16 ((((𝑀 Fn (𝐼 × 𝐼) ∧ 𝑗𝐼) ∧ 𝐼 ∈ Fin) ∧ 𝑘𝐼) → ((curry 𝑀𝑘)‘𝑗) = (𝑘𝑀𝑗))
186185oveq2d 7447 . . . . . . . . . . . . . . 15 ((((𝑀 Fn (𝐼 × 𝐼) ∧ 𝑗𝐼) ∧ 𝐼 ∈ Fin) ∧ 𝑘𝐼) → ((𝑛𝑘)(.r𝑅)((curry 𝑀𝑘)‘𝑗)) = ((𝑛𝑘)(.r𝑅)(𝑘𝑀𝑗)))
187186mpteq2dva 5248 . . . . . . . . . . . . . 14 (((𝑀 Fn (𝐼 × 𝐼) ∧ 𝑗𝐼) ∧ 𝐼 ∈ Fin) → (𝑘𝐼 ↦ ((𝑛𝑘)(.r𝑅)((curry 𝑀𝑘)‘𝑗))) = (𝑘𝐼 ↦ ((𝑛𝑘)(.r𝑅)(𝑘𝑀𝑗))))
188187an32s 652 . . . . . . . . . . . . 13 (((𝑀 Fn (𝐼 × 𝐼) ∧ 𝐼 ∈ Fin) ∧ 𝑗𝐼) → (𝑘𝐼 ↦ ((𝑛𝑘)(.r𝑅)((curry 𝑀𝑘)‘𝑗))) = (𝑘𝐼 ↦ ((𝑛𝑘)(.r𝑅)(𝑘𝑀𝑗))))
189188oveq2d 7447 . . . . . . . . . . . 12 (((𝑀 Fn (𝐼 × 𝐼) ∧ 𝐼 ∈ Fin) ∧ 𝑗𝐼) → (𝑅 Σg (𝑘𝐼 ↦ ((𝑛𝑘)(.r𝑅)((curry 𝑀𝑘)‘𝑗)))) = (𝑅 Σg (𝑘𝐼 ↦ ((𝑛𝑘)(.r𝑅)(𝑘𝑀𝑗)))))
190189mpteq2dva 5248 . . . . . . . . . . 11 ((𝑀 Fn (𝐼 × 𝐼) ∧ 𝐼 ∈ Fin) → (𝑗𝐼 ↦ (𝑅 Σg (𝑘𝐼 ↦ ((𝑛𝑘)(.r𝑅)((curry 𝑀𝑘)‘𝑗))))) = (𝑗𝐼 ↦ (𝑅 Σg (𝑘𝐼 ↦ ((𝑛𝑘)(.r𝑅)(𝑘𝑀𝑗))))))
191190eqeq2d 2746 . . . . . . . . . 10 ((𝑀 Fn (𝐼 × 𝐼) ∧ 𝐼 ∈ Fin) → (((𝑅 unitVec 𝐼)‘𝑖) = (𝑗𝐼 ↦ (𝑅 Σg (𝑘𝐼 ↦ ((𝑛𝑘)(.r𝑅)((curry 𝑀𝑘)‘𝑗))))) ↔ ((𝑅 unitVec 𝐼)‘𝑖) = (𝑗𝐼 ↦ (𝑅 Σg (𝑘𝐼 ↦ ((𝑛𝑘)(.r𝑅)(𝑘𝑀𝑗)))))))
192191rexbidv 3177 . . . . . . . . 9 ((𝑀 Fn (𝐼 × 𝐼) ∧ 𝐼 ∈ Fin) → (∃𝑛 ∈ ((Base‘𝑅) ↑m 𝐼)((𝑅 unitVec 𝐼)‘𝑖) = (𝑗𝐼 ↦ (𝑅 Σg (𝑘𝐼 ↦ ((𝑛𝑘)(.r𝑅)((curry 𝑀𝑘)‘𝑗))))) ↔ ∃𝑛 ∈ ((Base‘𝑅) ↑m 𝐼)((𝑅 unitVec 𝐼)‘𝑖) = (𝑗𝐼 ↦ (𝑅 Σg (𝑘𝐼 ↦ ((𝑛𝑘)(.r𝑅)(𝑘𝑀𝑗)))))))
193192ralbidv 3176 . . . . . . . 8 ((𝑀 Fn (𝐼 × 𝐼) ∧ 𝐼 ∈ Fin) → (∀𝑖𝐼𝑛 ∈ ((Base‘𝑅) ↑m 𝐼)((𝑅 unitVec 𝐼)‘𝑖) = (𝑗𝐼 ↦ (𝑅 Σg (𝑘𝐼 ↦ ((𝑛𝑘)(.r𝑅)((curry 𝑀𝑘)‘𝑗))))) ↔ ∀𝑖𝐼𝑛 ∈ ((Base‘𝑅) ↑m 𝐼)((𝑅 unitVec 𝐼)‘𝑖) = (𝑗𝐼 ↦ (𝑅 Σg (𝑘𝐼 ↦ ((𝑛𝑘)(.r𝑅)(𝑘𝑀𝑗)))))))
194178, 179, 193syl2anc 584 . . . . . . 7 ((𝑅 ∈ DivRing ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) → (∀𝑖𝐼𝑛 ∈ ((Base‘𝑅) ↑m 𝐼)((𝑅 unitVec 𝐼)‘𝑖) = (𝑗𝐼 ↦ (𝑅 Σg (𝑘𝐼 ↦ ((𝑛𝑘)(.r𝑅)((curry 𝑀𝑘)‘𝑗))))) ↔ ∀𝑖𝐼𝑛 ∈ ((Base‘𝑅) ↑m 𝐼)((𝑅 unitVec 𝐼)‘𝑖) = (𝑗𝐼 ↦ (𝑅 Σg (𝑘𝐼 ↦ ((𝑛𝑘)(.r𝑅)(𝑘𝑀𝑗)))))))
195194ad2antrr 726 . . . . . 6 ((((𝑅 ∈ DivRing ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ 𝐼 ≠ ∅) ∧ curry 𝑀 LIndF (𝑅 freeLMod 𝐼)) → (∀𝑖𝐼𝑛 ∈ ((Base‘𝑅) ↑m 𝐼)((𝑅 unitVec 𝐼)‘𝑖) = (𝑗𝐼 ↦ (𝑅 Σg (𝑘𝐼 ↦ ((𝑛𝑘)(.r𝑅)((curry 𝑀𝑘)‘𝑗))))) ↔ ∀𝑖𝐼𝑛 ∈ ((Base‘𝑅) ↑m 𝐼)((𝑅 unitVec 𝐼)‘𝑖) = (𝑗𝐼 ↦ (𝑅 Σg (𝑘𝐼 ↦ ((𝑛𝑘)(.r𝑅)(𝑘𝑀𝑗)))))))
196175, 195mpbid 232 . . . . 5 ((((𝑅 ∈ DivRing ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ 𝐼 ≠ ∅) ∧ curry 𝑀 LIndF (𝑅 freeLMod 𝐼)) → ∀𝑖𝐼𝑛 ∈ ((Base‘𝑅) ↑m 𝐼)((𝑅 unitVec 𝐼)‘𝑖) = (𝑗𝐼 ↦ (𝑅 Σg (𝑘𝐼 ↦ ((𝑛𝑘)(.r𝑅)(𝑘𝑀𝑗))))))
1978, 196sylanl1 680 . . . 4 ((((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ 𝐼 ≠ ∅) ∧ curry 𝑀 LIndF (𝑅 freeLMod 𝐼)) → ∀𝑖𝐼𝑛 ∈ ((Base‘𝑅) ↑m 𝐼)((𝑅 unitVec 𝐼)‘𝑖) = (𝑗𝐼 ↦ (𝑅 Σg (𝑘𝐼 ↦ ((𝑛𝑘)(.r𝑅)(𝑘𝑀𝑗))))))
198 fveq1 6906 . . . . . . . . . . 11 (𝑛 = (𝑓𝑖) → (𝑛𝑘) = ((𝑓𝑖)‘𝑘))
199 uncov 37588 . . . . . . . . . . . 12 ((𝑖 ∈ V ∧ 𝑘 ∈ V) → (𝑖uncurry 𝑓𝑘) = ((𝑓𝑖)‘𝑘))
200199el2v 3485 . . . . . . . . . . 11 (𝑖uncurry 𝑓𝑘) = ((𝑓𝑖)‘𝑘)
201198, 200eqtr4di 2793 . . . . . . . . . 10 (𝑛 = (𝑓𝑖) → (𝑛𝑘) = (𝑖uncurry 𝑓𝑘))
202201oveq1d 7446 . . . . . . . . 9 (𝑛 = (𝑓𝑖) → ((𝑛𝑘)(.r𝑅)(𝑘𝑀𝑗)) = ((𝑖uncurry 𝑓𝑘)(.r𝑅)(𝑘𝑀𝑗)))
203202mpteq2dv 5250 . . . . . . . 8 (𝑛 = (𝑓𝑖) → (𝑘𝐼 ↦ ((𝑛𝑘)(.r𝑅)(𝑘𝑀𝑗))) = (𝑘𝐼 ↦ ((𝑖uncurry 𝑓𝑘)(.r𝑅)(𝑘𝑀𝑗))))
204203oveq2d 7447 . . . . . . 7 (𝑛 = (𝑓𝑖) → (𝑅 Σg (𝑘𝐼 ↦ ((𝑛𝑘)(.r𝑅)(𝑘𝑀𝑗)))) = (𝑅 Σg (𝑘𝐼 ↦ ((𝑖uncurry 𝑓𝑘)(.r𝑅)(𝑘𝑀𝑗)))))
205204mpteq2dv 5250 . . . . . 6 (𝑛 = (𝑓𝑖) → (𝑗𝐼 ↦ (𝑅 Σg (𝑘𝐼 ↦ ((𝑛𝑘)(.r𝑅)(𝑘𝑀𝑗))))) = (𝑗𝐼 ↦ (𝑅 Σg (𝑘𝐼 ↦ ((𝑖uncurry 𝑓𝑘)(.r𝑅)(𝑘𝑀𝑗))))))
206205eqeq2d 2746 . . . . 5 (𝑛 = (𝑓𝑖) → (((𝑅 unitVec 𝐼)‘𝑖) = (𝑗𝐼 ↦ (𝑅 Σg (𝑘𝐼 ↦ ((𝑛𝑘)(.r𝑅)(𝑘𝑀𝑗))))) ↔ ((𝑅 unitVec 𝐼)‘𝑖) = (𝑗𝐼 ↦ (𝑅 Σg (𝑘𝐼 ↦ ((𝑖uncurry 𝑓𝑘)(.r𝑅)(𝑘𝑀𝑗)))))))
207206ac6sfi 9318 . . . 4 ((𝐼 ∈ Fin ∧ ∀𝑖𝐼𝑛 ∈ ((Base‘𝑅) ↑m 𝐼)((𝑅 unitVec 𝐼)‘𝑖) = (𝑗𝐼 ↦ (𝑅 Σg (𝑘𝐼 ↦ ((𝑛𝑘)(.r𝑅)(𝑘𝑀𝑗)))))) → ∃𝑓(𝑓:𝐼⟶((Base‘𝑅) ↑m 𝐼) ∧ ∀𝑖𝐼 ((𝑅 unitVec 𝐼)‘𝑖) = (𝑗𝐼 ↦ (𝑅 Σg (𝑘𝐼 ↦ ((𝑖uncurry 𝑓𝑘)(.r𝑅)(𝑘𝑀𝑗)))))))
2085, 197, 207syl2anc 584 . . 3 ((((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ 𝐼 ≠ ∅) ∧ curry 𝑀 LIndF (𝑅 freeLMod 𝐼)) → ∃𝑓(𝑓:𝐼⟶((Base‘𝑅) ↑m 𝐼) ∧ ∀𝑖𝐼 ((𝑅 unitVec 𝐼)‘𝑖) = (𝑗𝐼 ↦ (𝑅 Σg (𝑘𝐼 ↦ ((𝑖uncurry 𝑓𝑘)(.r𝑅)(𝑘𝑀𝑗)))))))
209 uncf 37586 . . . . . . 7 (𝑓:𝐼⟶((Base‘𝑅) ↑m 𝐼) → uncurry 𝑓:(𝐼 × 𝐼)⟶(Base‘𝑅))
21013, 14frlmfibas 21800 . . . . . . . . . . . . . . . 16 ((𝑅 ∈ Field ∧ (𝐼 × 𝐼) ∈ Fin) → ((Base‘𝑅) ↑m (𝐼 × 𝐼)) = (Base‘(𝑅 freeLMod (𝐼 × 𝐼))))
21112, 210sylan2 593 . . . . . . . . . . . . . . 15 ((𝑅 ∈ Field ∧ 𝐼 ∈ Fin) → ((Base‘𝑅) ↑m (𝐼 × 𝐼)) = (Base‘(𝑅 freeLMod (𝐼 × 𝐼))))
2121, 13matbas 22433 . . . . . . . . . . . . . . . 16 ((𝐼 ∈ Fin ∧ 𝑅 ∈ Field) → (Base‘(𝑅 freeLMod (𝐼 × 𝐼))) = (Base‘(𝐼 Mat 𝑅)))
213212ancoms 458 . . . . . . . . . . . . . . 15 ((𝑅 ∈ Field ∧ 𝐼 ∈ Fin) → (Base‘(𝑅 freeLMod (𝐼 × 𝐼))) = (Base‘(𝐼 Mat 𝑅)))
214211, 213eqtrd 2775 . . . . . . . . . . . . . 14 ((𝑅 ∈ Field ∧ 𝐼 ∈ Fin) → ((Base‘𝑅) ↑m (𝐼 × 𝐼)) = (Base‘(𝐼 Mat 𝑅)))
2154, 214sylan2 593 . . . . . . . . . . . . 13 ((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) → ((Base‘𝑅) ↑m (𝐼 × 𝐼)) = (Base‘(𝐼 Mat 𝑅)))
216215eleq2d 2825 . . . . . . . . . . . 12 ((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) → (uncurry 𝑓 ∈ ((Base‘𝑅) ↑m (𝐼 × 𝐼)) ↔ uncurry 𝑓 ∈ (Base‘(𝐼 Mat 𝑅))))
217 elmapg 8878 . . . . . . . . . . . . . 14 (((Base‘𝑅) ∈ V ∧ (𝐼 × 𝐼) ∈ Fin) → (uncurry 𝑓 ∈ ((Base‘𝑅) ↑m (𝐼 × 𝐼)) ↔ uncurry 𝑓:(𝐼 × 𝐼)⟶(Base‘𝑅)))
21822, 23, 217sylancr 587 . . . . . . . . . . . . 13 (𝑀 ∈ (Base‘(𝐼 Mat 𝑅)) → (uncurry 𝑓 ∈ ((Base‘𝑅) ↑m (𝐼 × 𝐼)) ↔ uncurry 𝑓:(𝐼 × 𝐼)⟶(Base‘𝑅)))
219218adantl 481 . . . . . . . . . . . 12 ((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) → (uncurry 𝑓 ∈ ((Base‘𝑅) ↑m (𝐼 × 𝐼)) ↔ uncurry 𝑓:(𝐼 × 𝐼)⟶(Base‘𝑅)))
220216, 219bitr3d 281 . . . . . . . . . . 11 ((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) → (uncurry 𝑓 ∈ (Base‘(𝐼 Mat 𝑅)) ↔ uncurry 𝑓:(𝐼 × 𝐼)⟶(Base‘𝑅)))
221220biimpar 477 . . . . . . . . . 10 (((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ uncurry 𝑓:(𝐼 × 𝐼)⟶(Base‘𝑅)) → uncurry 𝑓 ∈ (Base‘(𝐼 Mat 𝑅)))
222221adantr 480 . . . . . . . . 9 ((((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ uncurry 𝑓:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ ∀𝑖𝐼 ((𝑅 unitVec 𝐼)‘𝑖) = (𝑗𝐼 ↦ (𝑅 Σg (𝑘𝐼 ↦ ((𝑖uncurry 𝑓𝑘)(.r𝑅)(𝑘𝑀𝑗)))))) → uncurry 𝑓 ∈ (Base‘(𝐼 Mat 𝑅)))
223 nfv 1912 . . . . . . . . . . . . . 14 𝑗(((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ uncurry 𝑓:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝑖𝐼)
224 nfmpt1 5256 . . . . . . . . . . . . . . 15 𝑗(𝑗𝐼 ↦ (𝑅 Σg (𝑘𝐼 ↦ ((𝑖uncurry 𝑓𝑘)(.r𝑅)(𝑘𝑀𝑗)))))
225224nfeq2 2921 . . . . . . . . . . . . . 14 𝑗((𝑅 unitVec 𝐼)‘𝑖) = (𝑗𝐼 ↦ (𝑅 Σg (𝑘𝐼 ↦ ((𝑖uncurry 𝑓𝑘)(.r𝑅)(𝑘𝑀𝑗)))))
226 fveq1 6906 . . . . . . . . . . . . . . . . 17 (((𝑅 unitVec 𝐼)‘𝑖) = (𝑗𝐼 ↦ (𝑅 Σg (𝑘𝐼 ↦ ((𝑖uncurry 𝑓𝑘)(.r𝑅)(𝑘𝑀𝑗))))) → (((𝑅 unitVec 𝐼)‘𝑖)‘𝑗) = ((𝑗𝐼 ↦ (𝑅 Σg (𝑘𝐼 ↦ ((𝑖uncurry 𝑓𝑘)(.r𝑅)(𝑘𝑀𝑗)))))‘𝑗))
2277, 43syl 17 . . . . . . . . . . . . . . . . . . . . 21 (𝑅 ∈ Field → 𝑅 ∈ Ring)
228227, 4anim12i 613 . . . . . . . . . . . . . . . . . . . 20 ((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) → (𝑅 ∈ Ring ∧ 𝐼 ∈ Fin))
229228adantr 480 . . . . . . . . . . . . . . . . . . 19 (((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ uncurry 𝑓:(𝐼 × 𝐼)⟶(Base‘𝑅)) → (𝑅 ∈ Ring ∧ 𝐼 ∈ Fin))
230 equcom 2015 . . . . . . . . . . . . . . . . . . . . 21 (𝑖 = 𝑗𝑗 = 𝑖)
231 ifbi 4553 . . . . . . . . . . . . . . . . . . . . 21 ((𝑖 = 𝑗𝑗 = 𝑖) → if(𝑖 = 𝑗, (1r𝑅), (0g𝑅)) = if(𝑗 = 𝑖, (1r𝑅), (0g𝑅)))
232230, 231ax-mp 5 . . . . . . . . . . . . . . . . . . . 20 if(𝑖 = 𝑗, (1r𝑅), (0g𝑅)) = if(𝑗 = 𝑖, (1r𝑅), (0g𝑅))
233 eqid 2735 . . . . . . . . . . . . . . . . . . . . 21 (1r𝑅) = (1r𝑅)
234 eqid 2735 . . . . . . . . . . . . . . . . . . . . 21 (0g𝑅) = (0g𝑅)
235 simpllr 776 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) ∧ 𝑖𝐼) ∧ 𝑗𝐼) → 𝐼 ∈ Fin)
236 simplll 775 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) ∧ 𝑖𝐼) ∧ 𝑗𝐼) → 𝑅 ∈ Ring)
237 simplr 769 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) ∧ 𝑖𝐼) ∧ 𝑗𝐼) → 𝑖𝐼)
238 simpr 484 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) ∧ 𝑖𝐼) ∧ 𝑗𝐼) → 𝑗𝐼)
239 eqid 2735 . . . . . . . . . . . . . . . . . . . . 21 (1r‘(𝐼 Mat 𝑅)) = (1r‘(𝐼 Mat 𝑅))
2401, 233, 234, 235, 236, 237, 238, 239mat1ov 22470 . . . . . . . . . . . . . . . . . . . 20 ((((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) ∧ 𝑖𝐼) ∧ 𝑗𝐼) → (𝑖(1r‘(𝐼 Mat 𝑅))𝑗) = if(𝑖 = 𝑗, (1r𝑅), (0g𝑅)))
241 df-3an 1088 . . . . . . . . . . . . . . . . . . . . 21 ((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin ∧ 𝑖𝐼) ↔ ((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) ∧ 𝑖𝐼))
24244, 233, 234uvcvval 21824 . . . . . . . . . . . . . . . . . . . . 21 (((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin ∧ 𝑖𝐼) ∧ 𝑗𝐼) → (((𝑅 unitVec 𝐼)‘𝑖)‘𝑗) = if(𝑗 = 𝑖, (1r𝑅), (0g𝑅)))
243241, 242sylanbr 582 . . . . . . . . . . . . . . . . . . . 20 ((((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) ∧ 𝑖𝐼) ∧ 𝑗𝐼) → (((𝑅 unitVec 𝐼)‘𝑖)‘𝑗) = if(𝑗 = 𝑖, (1r𝑅), (0g𝑅)))
244232, 240, 2433eqtr4a 2801 . . . . . . . . . . . . . . . . . . 19 ((((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) ∧ 𝑖𝐼) ∧ 𝑗𝐼) → (𝑖(1r‘(𝐼 Mat 𝑅))𝑗) = (((𝑅 unitVec 𝐼)‘𝑖)‘𝑗))
245229, 244sylanl1 680 . . . . . . . . . . . . . . . . . 18 (((((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ uncurry 𝑓:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝑖𝐼) ∧ 𝑗𝐼) → (𝑖(1r‘(𝐼 Mat 𝑅))𝑗) = (((𝑅 unitVec 𝐼)‘𝑖)‘𝑗))
246 ovex 7464 . . . . . . . . . . . . . . . . . . . . 21 (𝑅 Σg (𝑘𝐼 ↦ ((𝑖uncurry 𝑓𝑘)(.r𝑅)(𝑘𝑀𝑗)))) ∈ V
247 eqid 2735 . . . . . . . . . . . . . . . . . . . . . 22 (𝑗𝐼 ↦ (𝑅 Σg (𝑘𝐼 ↦ ((𝑖uncurry 𝑓𝑘)(.r𝑅)(𝑘𝑀𝑗))))) = (𝑗𝐼 ↦ (𝑅 Σg (𝑘𝐼 ↦ ((𝑖uncurry 𝑓𝑘)(.r𝑅)(𝑘𝑀𝑗)))))
248247fvmpt2 7027 . . . . . . . . . . . . . . . . . . . . 21 ((𝑗𝐼 ∧ (𝑅 Σg (𝑘𝐼 ↦ ((𝑖uncurry 𝑓𝑘)(.r𝑅)(𝑘𝑀𝑗)))) ∈ V) → ((𝑗𝐼 ↦ (𝑅 Σg (𝑘𝐼 ↦ ((𝑖uncurry 𝑓𝑘)(.r𝑅)(𝑘𝑀𝑗)))))‘𝑗) = (𝑅 Σg (𝑘𝐼 ↦ ((𝑖uncurry 𝑓𝑘)(.r𝑅)(𝑘𝑀𝑗)))))
249246, 248mpan2 691 . . . . . . . . . . . . . . . . . . . 20 (𝑗𝐼 → ((𝑗𝐼 ↦ (𝑅 Σg (𝑘𝐼 ↦ ((𝑖uncurry 𝑓𝑘)(.r𝑅)(𝑘𝑀𝑗)))))‘𝑗) = (𝑅 Σg (𝑘𝐼 ↦ ((𝑖uncurry 𝑓𝑘)(.r𝑅)(𝑘𝑀𝑗)))))
250249adantl 481 . . . . . . . . . . . . . . . . . . 19 (((((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ uncurry 𝑓:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝑖𝐼) ∧ 𝑗𝐼) → ((𝑗𝐼 ↦ (𝑅 Σg (𝑘𝐼 ↦ ((𝑖uncurry 𝑓𝑘)(.r𝑅)(𝑘𝑀𝑗)))))‘𝑗) = (𝑅 Σg (𝑘𝐼 ↦ ((𝑖uncurry 𝑓𝑘)(.r𝑅)(𝑘𝑀𝑗)))))
251 eqid 2735 . . . . . . . . . . . . . . . . . . . 20 (𝑅 maMul ⟨𝐼, 𝐼, 𝐼⟩) = (𝑅 maMul ⟨𝐼, 𝐼, 𝐼⟩)
252 simp-4l 783 . . . . . . . . . . . . . . . . . . . 20 (((((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ uncurry 𝑓:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝑖𝐼) ∧ 𝑗𝐼) → 𝑅 ∈ Field)
2534ad4antlr 733 . . . . . . . . . . . . . . . . . . . 20 (((((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ uncurry 𝑓:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝑖𝐼) ∧ 𝑗𝐼) → 𝐼 ∈ Fin)
254218biimpar 477 . . . . . . . . . . . . . . . . . . . . 21 ((𝑀 ∈ (Base‘(𝐼 Mat 𝑅)) ∧ uncurry 𝑓:(𝐼 × 𝐼)⟶(Base‘𝑅)) → uncurry 𝑓 ∈ ((Base‘𝑅) ↑m (𝐼 × 𝐼)))
255254ad5ant23 760 . . . . . . . . . . . . . . . . . . . 20 (((((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ uncurry 𝑓:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝑖𝐼) ∧ 𝑗𝐼) → uncurry 𝑓 ∈ ((Base‘𝑅) ↑m (𝐼 × 𝐼)))
256 simpr 484 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) → 𝑀 ∈ (Base‘(𝐼 Mat 𝑅)))
257256, 215eleqtrrd 2842 . . . . . . . . . . . . . . . . . . . . 21 ((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) → 𝑀 ∈ ((Base‘𝑅) ↑m (𝐼 × 𝐼)))
258257ad3antrrr 730 . . . . . . . . . . . . . . . . . . . 20 (((((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ uncurry 𝑓:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝑖𝐼) ∧ 𝑗𝐼) → 𝑀 ∈ ((Base‘𝑅) ↑m (𝐼 × 𝐼)))
259 simplr 769 . . . . . . . . . . . . . . . . . . . 20 (((((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ uncurry 𝑓:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝑖𝐼) ∧ 𝑗𝐼) → 𝑖𝐼)
260 simpr 484 . . . . . . . . . . . . . . . . . . . 20 (((((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ uncurry 𝑓:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝑖𝐼) ∧ 𝑗𝐼) → 𝑗𝐼)
261251, 14, 121, 252, 253, 253, 253, 255, 258, 259, 260mamufv 22414 . . . . . . . . . . . . . . . . . . 19 (((((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ uncurry 𝑓:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝑖𝐼) ∧ 𝑗𝐼) → (𝑖(uncurry 𝑓(𝑅 maMul ⟨𝐼, 𝐼, 𝐼⟩)𝑀)𝑗) = (𝑅 Σg (𝑘𝐼 ↦ ((𝑖uncurry 𝑓𝑘)(.r𝑅)(𝑘𝑀𝑗)))))
2621, 251matmulr 22460 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐼 ∈ Fin ∧ 𝑅 ∈ Field) → (𝑅 maMul ⟨𝐼, 𝐼, 𝐼⟩) = (.r‘(𝐼 Mat 𝑅)))
263262ancoms 458 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑅 ∈ Field ∧ 𝐼 ∈ Fin) → (𝑅 maMul ⟨𝐼, 𝐼, 𝐼⟩) = (.r‘(𝐼 Mat 𝑅)))
264263oveqd 7448 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑅 ∈ Field ∧ 𝐼 ∈ Fin) → (uncurry 𝑓(𝑅 maMul ⟨𝐼, 𝐼, 𝐼⟩)𝑀) = (uncurry 𝑓(.r‘(𝐼 Mat 𝑅))𝑀))
265264oveqd 7448 . . . . . . . . . . . . . . . . . . . . 21 ((𝑅 ∈ Field ∧ 𝐼 ∈ Fin) → (𝑖(uncurry 𝑓(𝑅 maMul ⟨𝐼, 𝐼, 𝐼⟩)𝑀)𝑗) = (𝑖(uncurry 𝑓(.r‘(𝐼 Mat 𝑅))𝑀)𝑗))
2664, 265sylan2 593 . . . . . . . . . . . . . . . . . . . 20 ((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) → (𝑖(uncurry 𝑓(𝑅 maMul ⟨𝐼, 𝐼, 𝐼⟩)𝑀)𝑗) = (𝑖(uncurry 𝑓(.r‘(𝐼 Mat 𝑅))𝑀)𝑗))
267266ad3antrrr 730 . . . . . . . . . . . . . . . . . . 19 (((((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ uncurry 𝑓:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝑖𝐼) ∧ 𝑗𝐼) → (𝑖(uncurry 𝑓(𝑅 maMul ⟨𝐼, 𝐼, 𝐼⟩)𝑀)𝑗) = (𝑖(uncurry 𝑓(.r‘(𝐼 Mat 𝑅))𝑀)𝑗))
268250, 261, 2673eqtr2rd 2782 . . . . . . . . . . . . . . . . . 18 (((((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ uncurry 𝑓:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝑖𝐼) ∧ 𝑗𝐼) → (𝑖(uncurry 𝑓(.r‘(𝐼 Mat 𝑅))𝑀)𝑗) = ((𝑗𝐼 ↦ (𝑅 Σg (𝑘𝐼 ↦ ((𝑖uncurry 𝑓𝑘)(.r𝑅)(𝑘𝑀𝑗)))))‘𝑗))
269245, 268eqeq12d 2751 . . . . . . . . . . . . . . . . 17 (((((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ uncurry 𝑓:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝑖𝐼) ∧ 𝑗𝐼) → ((𝑖(1r‘(𝐼 Mat 𝑅))𝑗) = (𝑖(uncurry 𝑓(.r‘(𝐼 Mat 𝑅))𝑀)𝑗) ↔ (((𝑅 unitVec 𝐼)‘𝑖)‘𝑗) = ((𝑗𝐼 ↦ (𝑅 Σg (𝑘𝐼 ↦ ((𝑖uncurry 𝑓𝑘)(.r𝑅)(𝑘𝑀𝑗)))))‘𝑗)))
270226, 269imbitrrid 246 . . . . . . . . . . . . . . . 16 (((((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ uncurry 𝑓:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝑖𝐼) ∧ 𝑗𝐼) → (((𝑅 unitVec 𝐼)‘𝑖) = (𝑗𝐼 ↦ (𝑅 Σg (𝑘𝐼 ↦ ((𝑖uncurry 𝑓𝑘)(.r𝑅)(𝑘𝑀𝑗))))) → (𝑖(1r‘(𝐼 Mat 𝑅))𝑗) = (𝑖(uncurry 𝑓(.r‘(𝐼 Mat 𝑅))𝑀)𝑗)))
271270ex 412 . . . . . . . . . . . . . . 15 ((((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ uncurry 𝑓:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝑖𝐼) → (𝑗𝐼 → (((𝑅 unitVec 𝐼)‘𝑖) = (𝑗𝐼 ↦ (𝑅 Σg (𝑘𝐼 ↦ ((𝑖uncurry 𝑓𝑘)(.r𝑅)(𝑘𝑀𝑗))))) → (𝑖(1r‘(𝐼 Mat 𝑅))𝑗) = (𝑖(uncurry 𝑓(.r‘(𝐼 Mat 𝑅))𝑀)𝑗))))
272271com23 86 . . . . . . . . . . . . . 14 ((((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ uncurry 𝑓:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝑖𝐼) → (((𝑅 unitVec 𝐼)‘𝑖) = (𝑗𝐼 ↦ (𝑅 Σg (𝑘𝐼 ↦ ((𝑖uncurry 𝑓𝑘)(.r𝑅)(𝑘𝑀𝑗))))) → (𝑗𝐼 → (𝑖(1r‘(𝐼 Mat 𝑅))𝑗) = (𝑖(uncurry 𝑓(.r‘(𝐼 Mat 𝑅))𝑀)𝑗))))
273223, 225, 272ralrimd 3262 . . . . . . . . . . . . 13 ((((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ uncurry 𝑓:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝑖𝐼) → (((𝑅 unitVec 𝐼)‘𝑖) = (𝑗𝐼 ↦ (𝑅 Σg (𝑘𝐼 ↦ ((𝑖uncurry 𝑓𝑘)(.r𝑅)(𝑘𝑀𝑗))))) → ∀𝑗𝐼 (𝑖(1r‘(𝐼 Mat 𝑅))𝑗) = (𝑖(uncurry 𝑓(.r‘(𝐼 Mat 𝑅))𝑀)𝑗)))
274273ralimdva 3165 . . . . . . . . . . . 12 (((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ uncurry 𝑓:(𝐼 × 𝐼)⟶(Base‘𝑅)) → (∀𝑖𝐼 ((𝑅 unitVec 𝐼)‘𝑖) = (𝑗𝐼 ↦ (𝑅 Σg (𝑘𝐼 ↦ ((𝑖uncurry 𝑓𝑘)(.r𝑅)(𝑘𝑀𝑗))))) → ∀𝑖𝐼𝑗𝐼 (𝑖(1r‘(𝐼 Mat 𝑅))𝑗) = (𝑖(uncurry 𝑓(.r‘(𝐼 Mat 𝑅))𝑀)𝑗)))
2751, 2, 239mat1bas 22471 . . . . . . . . . . . . . . . . 17 ((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) → (1r‘(𝐼 Mat 𝑅)) ∈ (Base‘(𝐼 Mat 𝑅)))
27613, 14frlmfibas 21800 . . . . . . . . . . . . . . . . . . 19 ((𝑅 ∈ Ring ∧ (𝐼 × 𝐼) ∈ Fin) → ((Base‘𝑅) ↑m (𝐼 × 𝐼)) = (Base‘(𝑅 freeLMod (𝐼 × 𝐼))))
27712, 276sylan2 593 . . . . . . . . . . . . . . . . . 18 ((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) → ((Base‘𝑅) ↑m (𝐼 × 𝐼)) = (Base‘(𝑅 freeLMod (𝐼 × 𝐼))))
2781, 13matbas 22433 . . . . . . . . . . . . . . . . . . 19 ((𝐼 ∈ Fin ∧ 𝑅 ∈ Ring) → (Base‘(𝑅 freeLMod (𝐼 × 𝐼))) = (Base‘(𝐼 Mat 𝑅)))
279278ancoms 458 . . . . . . . . . . . . . . . . . 18 ((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) → (Base‘(𝑅 freeLMod (𝐼 × 𝐼))) = (Base‘(𝐼 Mat 𝑅)))
280277, 279eqtrd 2775 . . . . . . . . . . . . . . . . 17 ((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) → ((Base‘𝑅) ↑m (𝐼 × 𝐼)) = (Base‘(𝐼 Mat 𝑅)))
281275, 280eleqtrrd 2842 . . . . . . . . . . . . . . . 16 ((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) → (1r‘(𝐼 Mat 𝑅)) ∈ ((Base‘𝑅) ↑m (𝐼 × 𝐼)))
282 elmapfn 8904 . . . . . . . . . . . . . . . 16 ((1r‘(𝐼 Mat 𝑅)) ∈ ((Base‘𝑅) ↑m (𝐼 × 𝐼)) → (1r‘(𝐼 Mat 𝑅)) Fn (𝐼 × 𝐼))
283281, 282syl 17 . . . . . . . . . . . . . . 15 ((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) → (1r‘(𝐼 Mat 𝑅)) Fn (𝐼 × 𝐼))
284227, 4, 283syl2an 596 . . . . . . . . . . . . . 14 ((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) → (1r‘(𝐼 Mat 𝑅)) Fn (𝐼 × 𝐼))
285284adantr 480 . . . . . . . . . . . . 13 (((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ uncurry 𝑓:(𝐼 × 𝐼)⟶(Base‘𝑅)) → (1r‘(𝐼 Mat 𝑅)) Fn (𝐼 × 𝐼))
2861matring 22465 . . . . . . . . . . . . . . . . . 18 ((𝐼 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝐼 Mat 𝑅) ∈ Ring)
2874, 227, 286syl2anr 597 . . . . . . . . . . . . . . . . 17 ((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) → (𝐼 Mat 𝑅) ∈ Ring)
288287adantr 480 . . . . . . . . . . . . . . . 16 (((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ uncurry 𝑓:(𝐼 × 𝐼)⟶(Base‘𝑅)) → (𝐼 Mat 𝑅) ∈ Ring)
289 simplr 769 . . . . . . . . . . . . . . . 16 (((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ uncurry 𝑓:(𝐼 × 𝐼)⟶(Base‘𝑅)) → 𝑀 ∈ (Base‘(𝐼 Mat 𝑅)))
290 eqid 2735 . . . . . . . . . . . . . . . . 17 (.r‘(𝐼 Mat 𝑅)) = (.r‘(𝐼 Mat 𝑅))
2912, 290ringcl 20268 . . . . . . . . . . . . . . . 16 (((𝐼 Mat 𝑅) ∈ Ring ∧ uncurry 𝑓 ∈ (Base‘(𝐼 Mat 𝑅)) ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) → (uncurry 𝑓(.r‘(𝐼 Mat 𝑅))𝑀) ∈ (Base‘(𝐼 Mat 𝑅)))
292288, 221, 289, 291syl3anc 1370 . . . . . . . . . . . . . . 15 (((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ uncurry 𝑓:(𝐼 × 𝐼)⟶(Base‘𝑅)) → (uncurry 𝑓(.r‘(𝐼 Mat 𝑅))𝑀) ∈ (Base‘(𝐼 Mat 𝑅)))
293215adantr 480 . . . . . . . . . . . . . . 15 (((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ uncurry 𝑓:(𝐼 × 𝐼)⟶(Base‘𝑅)) → ((Base‘𝑅) ↑m (𝐼 × 𝐼)) = (Base‘(𝐼 Mat 𝑅)))
294292, 293eleqtrrd 2842 . . . . . . . . . . . . . 14 (((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ uncurry 𝑓:(𝐼 × 𝐼)⟶(Base‘𝑅)) → (uncurry 𝑓(.r‘(𝐼 Mat 𝑅))𝑀) ∈ ((Base‘𝑅) ↑m (𝐼 × 𝐼)))
295 elmapfn 8904 . . . . . . . . . . . . . 14 ((uncurry 𝑓(.r‘(𝐼 Mat 𝑅))𝑀) ∈ ((Base‘𝑅) ↑m (𝐼 × 𝐼)) → (uncurry 𝑓(.r‘(𝐼 Mat 𝑅))𝑀) Fn (𝐼 × 𝐼))
296294, 295syl 17 . . . . . . . . . . . . 13 (((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ uncurry 𝑓:(𝐼 × 𝐼)⟶(Base‘𝑅)) → (uncurry 𝑓(.r‘(𝐼 Mat 𝑅))𝑀) Fn (𝐼 × 𝐼))
297 eqfnov2 7563 . . . . . . . . . . . . 13 (((1r‘(𝐼 Mat 𝑅)) Fn (𝐼 × 𝐼) ∧ (uncurry 𝑓(.r‘(𝐼 Mat 𝑅))𝑀) Fn (𝐼 × 𝐼)) → ((1r‘(𝐼 Mat 𝑅)) = (uncurry 𝑓(.r‘(𝐼 Mat 𝑅))𝑀) ↔ ∀𝑖𝐼𝑗𝐼 (𝑖(1r‘(𝐼 Mat 𝑅))𝑗) = (𝑖(uncurry 𝑓(.r‘(𝐼 Mat 𝑅))𝑀)𝑗)))
298285, 296, 297syl2anc 584 . . . . . . . . . . . 12 (((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ uncurry 𝑓:(𝐼 × 𝐼)⟶(Base‘𝑅)) → ((1r‘(𝐼 Mat 𝑅)) = (uncurry 𝑓(.r‘(𝐼 Mat 𝑅))𝑀) ↔ ∀𝑖𝐼𝑗𝐼 (𝑖(1r‘(𝐼 Mat 𝑅))𝑗) = (𝑖(uncurry 𝑓(.r‘(𝐼 Mat 𝑅))𝑀)𝑗)))
299274, 298sylibrd 259 . . . . . . . . . . 11 (((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ uncurry 𝑓:(𝐼 × 𝐼)⟶(Base‘𝑅)) → (∀𝑖𝐼 ((𝑅 unitVec 𝐼)‘𝑖) = (𝑗𝐼 ↦ (𝑅 Σg (𝑘𝐼 ↦ ((𝑖uncurry 𝑓𝑘)(.r𝑅)(𝑘𝑀𝑗))))) → (1r‘(𝐼 Mat 𝑅)) = (uncurry 𝑓(.r‘(𝐼 Mat 𝑅))𝑀)))
300299imp 406 . . . . . . . . . 10 ((((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ uncurry 𝑓:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ ∀𝑖𝐼 ((𝑅 unitVec 𝐼)‘𝑖) = (𝑗𝐼 ↦ (𝑅 Σg (𝑘𝐼 ↦ ((𝑖uncurry 𝑓𝑘)(.r𝑅)(𝑘𝑀𝑗)))))) → (1r‘(𝐼 Mat 𝑅)) = (uncurry 𝑓(.r‘(𝐼 Mat 𝑅))𝑀))
301300eqcomd 2741 . . . . . . . . 9 ((((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ uncurry 𝑓:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ ∀𝑖𝐼 ((𝑅 unitVec 𝐼)‘𝑖) = (𝑗𝐼 ↦ (𝑅 Σg (𝑘𝐼 ↦ ((𝑖uncurry 𝑓𝑘)(.r𝑅)(𝑘𝑀𝑗)))))) → (uncurry 𝑓(.r‘(𝐼 Mat 𝑅))𝑀) = (1r‘(𝐼 Mat 𝑅)))
302 oveq1 7438 . . . . . . . . . . 11 (𝑛 = uncurry 𝑓 → (𝑛(.r‘(𝐼 Mat 𝑅))𝑀) = (uncurry 𝑓(.r‘(𝐼 Mat 𝑅))𝑀))
303302eqeq1d 2737 . . . . . . . . . 10 (𝑛 = uncurry 𝑓 → ((𝑛(.r‘(𝐼 Mat 𝑅))𝑀) = (1r‘(𝐼 Mat 𝑅)) ↔ (uncurry 𝑓(.r‘(𝐼 Mat 𝑅))𝑀) = (1r‘(𝐼 Mat 𝑅))))
304303rspcev 3622 . . . . . . . . 9 ((uncurry 𝑓 ∈ (Base‘(𝐼 Mat 𝑅)) ∧ (uncurry 𝑓(.r‘(𝐼 Mat 𝑅))𝑀) = (1r‘(𝐼 Mat 𝑅))) → ∃𝑛 ∈ (Base‘(𝐼 Mat 𝑅))(𝑛(.r‘(𝐼 Mat 𝑅))𝑀) = (1r‘(𝐼 Mat 𝑅)))
305222, 301, 304syl2anc 584 . . . . . . . 8 ((((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ uncurry 𝑓:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ ∀𝑖𝐼 ((𝑅 unitVec 𝐼)‘𝑖) = (𝑗𝐼 ↦ (𝑅 Σg (𝑘𝐼 ↦ ((𝑖uncurry 𝑓𝑘)(.r𝑅)(𝑘𝑀𝑗)))))) → ∃𝑛 ∈ (Base‘(𝐼 Mat 𝑅))(𝑛(.r‘(𝐼 Mat 𝑅))𝑀) = (1r‘(𝐼 Mat 𝑅)))
306305expl 457 . . . . . . 7 ((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) → ((uncurry 𝑓:(𝐼 × 𝐼)⟶(Base‘𝑅) ∧ ∀𝑖𝐼 ((𝑅 unitVec 𝐼)‘𝑖) = (𝑗𝐼 ↦ (𝑅 Σg (𝑘𝐼 ↦ ((𝑖uncurry 𝑓𝑘)(.r𝑅)(𝑘𝑀𝑗)))))) → ∃𝑛 ∈ (Base‘(𝐼 Mat 𝑅))(𝑛(.r‘(𝐼 Mat 𝑅))𝑀) = (1r‘(𝐼 Mat 𝑅))))
307209, 306sylani 604 . . . . . 6 ((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) → ((𝑓:𝐼⟶((Base‘𝑅) ↑m 𝐼) ∧ ∀𝑖𝐼 ((𝑅 unitVec 𝐼)‘𝑖) = (𝑗𝐼 ↦ (𝑅 Σg (𝑘𝐼 ↦ ((𝑖uncurry 𝑓𝑘)(.r𝑅)(𝑘𝑀𝑗)))))) → ∃𝑛 ∈ (Base‘(𝐼 Mat 𝑅))(𝑛(.r‘(𝐼 Mat 𝑅))𝑀) = (1r‘(𝐼 Mat 𝑅))))
308307exlimdv 1931 . . . . 5 ((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) → (∃𝑓(𝑓:𝐼⟶((Base‘𝑅) ↑m 𝐼) ∧ ∀𝑖𝐼 ((𝑅 unitVec 𝐼)‘𝑖) = (𝑗𝐼 ↦ (𝑅 Σg (𝑘𝐼 ↦ ((𝑖uncurry 𝑓𝑘)(.r𝑅)(𝑘𝑀𝑗)))))) → ∃𝑛 ∈ (Base‘(𝐼 Mat 𝑅))(𝑛(.r‘(𝐼 Mat 𝑅))𝑀) = (1r‘(𝐼 Mat 𝑅))))
309308imp 406 . . . 4 (((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ ∃𝑓(𝑓:𝐼⟶((Base‘𝑅) ↑m 𝐼) ∧ ∀𝑖𝐼 ((𝑅 unitVec 𝐼)‘𝑖) = (𝑗𝐼 ↦ (𝑅 Σg (𝑘𝐼 ↦ ((𝑖uncurry 𝑓𝑘)(.r𝑅)(𝑘𝑀𝑗))))))) → ∃𝑛 ∈ (Base‘(𝐼 Mat 𝑅))(𝑛(.r‘(𝐼 Mat 𝑅))𝑀) = (1r‘(𝐼 Mat 𝑅)))
310309adantlr 715 . . 3 ((((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ 𝐼 ≠ ∅) ∧ ∃𝑓(𝑓:𝐼⟶((Base‘𝑅) ↑m 𝐼) ∧ ∀𝑖𝐼 ((𝑅 unitVec 𝐼)‘𝑖) = (𝑗𝐼 ↦ (𝑅 Σg (𝑘𝐼 ↦ ((𝑖uncurry 𝑓𝑘)(.r𝑅)(𝑘𝑀𝑗))))))) → ∃𝑛 ∈ (Base‘(𝐼 Mat 𝑅))(𝑛(.r‘(𝐼 Mat 𝑅))𝑀) = (1r‘(𝐼 Mat 𝑅)))
311208, 310syldan 591 . 2 ((((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ 𝐼 ≠ ∅) ∧ curry 𝑀 LIndF (𝑅 freeLMod 𝐼)) → ∃𝑛 ∈ (Base‘(𝐼 Mat 𝑅))(𝑛(.r‘(𝐼 Mat 𝑅))𝑀) = (1r‘(𝐼 Mat 𝑅)))
3126simprbi 496 . . . 4 (𝑅 ∈ Field → 𝑅 ∈ CRing)
313 eqid 2735 . . . . . . . . . 10 (𝐼 maDet 𝑅) = (𝐼 maDet 𝑅)
314313, 1, 2, 14mdetcl 22618 . . . . . . . . 9 ((𝑅 ∈ CRing ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) → ((𝐼 maDet 𝑅)‘𝑀) ∈ (Base‘𝑅))
315313, 1, 2, 14mdetcl 22618 . . . . . . . . 9 ((𝑅 ∈ CRing ∧ 𝑛 ∈ (Base‘(𝐼 Mat 𝑅))) → ((𝐼 maDet 𝑅)‘𝑛) ∈ (Base‘𝑅))
316 eqid 2735 . . . . . . . . . 10 (∥r𝑅) = (∥r𝑅)
31714, 316, 121dvdsrmul 20381 . . . . . . . . 9 ((((𝐼 maDet 𝑅)‘𝑀) ∈ (Base‘𝑅) ∧ ((𝐼 maDet 𝑅)‘𝑛) ∈ (Base‘𝑅)) → ((𝐼 maDet 𝑅)‘𝑀)(∥r𝑅)(((𝐼 maDet 𝑅)‘𝑛)(.r𝑅)((𝐼 maDet 𝑅)‘𝑀)))
318314, 315, 317syl2an 596 . . . . . . . 8 (((𝑅 ∈ CRing ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ (𝑅 ∈ CRing ∧ 𝑛 ∈ (Base‘(𝐼 Mat 𝑅)))) → ((𝐼 maDet 𝑅)‘𝑀)(∥r𝑅)(((𝐼 maDet 𝑅)‘𝑛)(.r𝑅)((𝐼 maDet 𝑅)‘𝑀)))
319318anandis 678 . . . . . . 7 ((𝑅 ∈ CRing ∧ (𝑀 ∈ (Base‘(𝐼 Mat 𝑅)) ∧ 𝑛 ∈ (Base‘(𝐼 Mat 𝑅)))) → ((𝐼 maDet 𝑅)‘𝑀)(∥r𝑅)(((𝐼 maDet 𝑅)‘𝑛)(.r𝑅)((𝐼 maDet 𝑅)‘𝑀)))
320319anassrs 467 . . . . . 6 (((𝑅 ∈ CRing ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ 𝑛 ∈ (Base‘(𝐼 Mat 𝑅))) → ((𝐼 maDet 𝑅)‘𝑀)(∥r𝑅)(((𝐼 maDet 𝑅)‘𝑛)(.r𝑅)((𝐼 maDet 𝑅)‘𝑀)))
321320adantrr 717 . . . . 5 (((𝑅 ∈ CRing ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ (𝑛 ∈ (Base‘(𝐼 Mat 𝑅)) ∧ (𝑛(.r‘(𝐼 Mat 𝑅))𝑀) = (1r‘(𝐼 Mat 𝑅)))) → ((𝐼 maDet 𝑅)‘𝑀)(∥r𝑅)(((𝐼 maDet 𝑅)‘𝑛)(.r𝑅)((𝐼 maDet 𝑅)‘𝑀)))
322 fveq2 6907 . . . . . . . . 9 ((𝑛(.r‘(𝐼 Mat 𝑅))𝑀) = (1r‘(𝐼 Mat 𝑅)) → ((𝐼 maDet 𝑅)‘(𝑛(.r‘(𝐼 Mat 𝑅))𝑀)) = ((𝐼 maDet 𝑅)‘(1r‘(𝐼 Mat 𝑅))))
3231, 2, 313, 121, 290mdetmul 22645 . . . . . . . . . . . 12 ((𝑅 ∈ CRing ∧ 𝑛 ∈ (Base‘(𝐼 Mat 𝑅)) ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) → ((𝐼 maDet 𝑅)‘(𝑛(.r‘(𝐼 Mat 𝑅))𝑀)) = (((𝐼 maDet 𝑅)‘𝑛)(.r𝑅)((𝐼 maDet 𝑅)‘𝑀)))
3243233expa 1117 . . . . . . . . . . 11 (((𝑅 ∈ CRing ∧ 𝑛 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) → ((𝐼 maDet 𝑅)‘(𝑛(.r‘(𝐼 Mat 𝑅))𝑀)) = (((𝐼 maDet 𝑅)‘𝑛)(.r𝑅)((𝐼 maDet 𝑅)‘𝑀)))
325324an32s 652 . . . . . . . . . 10 (((𝑅 ∈ CRing ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ 𝑛 ∈ (Base‘(𝐼 Mat 𝑅))) → ((𝐼 maDet 𝑅)‘(𝑛(.r‘(𝐼 Mat 𝑅))𝑀)) = (((𝐼 maDet 𝑅)‘𝑛)(.r𝑅)((𝐼 maDet 𝑅)‘𝑀)))
326313, 1, 239, 233mdet1 22623 . . . . . . . . . . . 12 ((𝑅 ∈ CRing ∧ 𝐼 ∈ Fin) → ((𝐼 maDet 𝑅)‘(1r‘(𝐼 Mat 𝑅))) = (1r𝑅))
3274, 326sylan2 593 . . . . . . . . . . 11 ((𝑅 ∈ CRing ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) → ((𝐼 maDet 𝑅)‘(1r‘(𝐼 Mat 𝑅))) = (1r𝑅))
328327adantr 480 . . . . . . . . . 10 (((𝑅 ∈ CRing ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ 𝑛 ∈ (Base‘(𝐼 Mat 𝑅))) → ((𝐼 maDet 𝑅)‘(1r‘(𝐼 Mat 𝑅))) = (1r𝑅))
329325, 328eqeq12d 2751 . . . . . . . . 9 (((𝑅 ∈ CRing ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ 𝑛 ∈ (Base‘(𝐼 Mat 𝑅))) → (((𝐼 maDet 𝑅)‘(𝑛(.r‘(𝐼 Mat 𝑅))𝑀)) = ((𝐼 maDet 𝑅)‘(1r‘(𝐼 Mat 𝑅))) ↔ (((𝐼 maDet 𝑅)‘𝑛)(.r𝑅)((𝐼 maDet 𝑅)‘𝑀)) = (1r𝑅)))
330322, 329imbitrid 244 . . . . . . . 8 (((𝑅 ∈ CRing ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ 𝑛 ∈ (Base‘(𝐼 Mat 𝑅))) → ((𝑛(.r‘(𝐼 Mat 𝑅))𝑀) = (1r‘(𝐼 Mat 𝑅)) → (((𝐼 maDet 𝑅)‘𝑛)(.r𝑅)((𝐼 maDet 𝑅)‘𝑀)) = (1r𝑅)))
331330impr 454 . . . . . . 7 (((𝑅 ∈ CRing ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ (𝑛 ∈ (Base‘(𝐼 Mat 𝑅)) ∧ (𝑛(.r‘(𝐼 Mat 𝑅))𝑀) = (1r‘(𝐼 Mat 𝑅)))) → (((𝐼 maDet 𝑅)‘𝑛)(.r𝑅)((𝐼 maDet 𝑅)‘𝑀)) = (1r𝑅))
332331breq2d 5160 . . . . . 6 (((𝑅 ∈ CRing ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ (𝑛 ∈ (Base‘(𝐼 Mat 𝑅)) ∧ (𝑛(.r‘(𝐼 Mat 𝑅))𝑀) = (1r‘(𝐼 Mat 𝑅)))) → (((𝐼 maDet 𝑅)‘𝑀)(∥r𝑅)(((𝐼 maDet 𝑅)‘𝑛)(.r𝑅)((𝐼 maDet 𝑅)‘𝑀)) ↔ ((𝐼 maDet 𝑅)‘𝑀)(∥r𝑅)(1r𝑅)))
333 eqid 2735 . . . . . . . 8 (Unit‘𝑅) = (Unit‘𝑅)
334333, 233, 316crngunit 20395 . . . . . . 7 (𝑅 ∈ CRing → (((𝐼 maDet 𝑅)‘𝑀) ∈ (Unit‘𝑅) ↔ ((𝐼 maDet 𝑅)‘𝑀)(∥r𝑅)(1r𝑅)))
335334ad2antrr 726 . . . . . 6 (((𝑅 ∈ CRing ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ (𝑛 ∈ (Base‘(𝐼 Mat 𝑅)) ∧ (𝑛(.r‘(𝐼 Mat 𝑅))𝑀) = (1r‘(𝐼 Mat 𝑅)))) → (((𝐼 maDet 𝑅)‘𝑀) ∈ (Unit‘𝑅) ↔ ((𝐼 maDet 𝑅)‘𝑀)(∥r𝑅)(1r𝑅)))
336332, 335bitr4d 282 . . . . 5 (((𝑅 ∈ CRing ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ (𝑛 ∈ (Base‘(𝐼 Mat 𝑅)) ∧ (𝑛(.r‘(𝐼 Mat 𝑅))𝑀) = (1r‘(𝐼 Mat 𝑅)))) → (((𝐼 maDet 𝑅)‘𝑀)(∥r𝑅)(((𝐼 maDet 𝑅)‘𝑛)(.r𝑅)((𝐼 maDet 𝑅)‘𝑀)) ↔ ((𝐼 maDet 𝑅)‘𝑀) ∈ (Unit‘𝑅)))
337321, 336mpbid 232 . . . 4 (((𝑅 ∈ CRing ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ (𝑛 ∈ (Base‘(𝐼 Mat 𝑅)) ∧ (𝑛(.r‘(𝐼 Mat 𝑅))𝑀) = (1r‘(𝐼 Mat 𝑅)))) → ((𝐼 maDet 𝑅)‘𝑀) ∈ (Unit‘𝑅))
338312, 337sylanl1 680 . . 3 (((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ (𝑛 ∈ (Base‘(𝐼 Mat 𝑅)) ∧ (𝑛(.r‘(𝐼 Mat 𝑅))𝑀) = (1r‘(𝐼 Mat 𝑅)))) → ((𝐼 maDet 𝑅)‘𝑀) ∈ (Unit‘𝑅))
339338ad4ant14 752 . 2 (((((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ 𝐼 ≠ ∅) ∧ curry 𝑀 LIndF (𝑅 freeLMod 𝐼)) ∧ (𝑛 ∈ (Base‘(𝐼 Mat 𝑅)) ∧ (𝑛(.r‘(𝐼 Mat 𝑅))𝑀) = (1r‘(𝐼 Mat 𝑅)))) → ((𝐼 maDet 𝑅)‘𝑀) ∈ (Unit‘𝑅))
340311, 339rexlimddv 3159 1 ((((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ 𝐼 ≠ ∅) ∧ curry 𝑀 LIndF (𝑅 freeLMod 𝐼)) → ((𝐼 maDet 𝑅)‘𝑀) ∈ (Unit‘𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1537  wex 1776  wcel 2106  wne 2938  wral 3059  wrex 3068  Vcvv 3478  cdif 3960  c0 4339  ifcif 4531  {csn 4631  cotp 4639   class class class wbr 5148  cmpt 5231   × cxp 5687  dom cdm 5689  ran crn 5690  cima 5692   Fn wfn 6558  wf 6559  1-1wf1 6560  1-1-ontowf1o 6562  cfv 6563  (class class class)co 7431  f cof 7695  curry ccur 8289  uncurry cunc 8290  m cmap 8865  cen 8981  Fincfn 8984   finSupp cfsupp 9399  Basecbs 17245  .rcmulr 17299  Scalarcsca 17301   ·𝑠 cvsca 17302  0gc0g 17486   Σg cgsu 17487  1rcur 20199  Ringcrg 20251  CRingccrg 20252  rcdsr 20371  Unitcui 20372  NzRingcnzr 20529  DivRingcdr 20746  Fieldcfield 20747  LModclmod 20875  LSpanclspn 20987  LBasisclbs 21091   freeLMod cfrlm 21784   unitVec cuvc 21820   LIndF clindf 21842  LIndSclinds 21843   maMul cmmul 22410   Mat cmat 22427   maDet cmdat 22606
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-addf 11232  ax-mulf 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-xor 1509  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-tp 4636  df-op 4638  df-ot 4640  df-uni 4913  df-int 4952  df-iun 4998  df-iin 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-se 5642  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-isom 6572  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-om 7888  df-1st 8013  df-2nd 8014  df-supp 8185  df-tpos 8250  df-cur 8291  df-unc 8292  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-2o 8506  df-er 8744  df-map 8867  df-pm 8868  df-ixp 8937  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-fsupp 9400  df-sup 9480  df-oi 9548  df-card 9977  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-7 12332  df-8 12333  df-9 12334  df-n0 12525  df-xnn0 12598  df-z 12612  df-dec 12732  df-uz 12877  df-rp 13033  df-fz 13545  df-fzo 13692  df-seq 14040  df-exp 14100  df-hash 14367  df-word 14550  df-lsw 14598  df-concat 14606  df-s1 14631  df-substr 14676  df-pfx 14706  df-splice 14785  df-reverse 14794  df-s2 14884  df-struct 17181  df-sets 17198  df-slot 17216  df-ndx 17228  df-base 17246  df-ress 17275  df-plusg 17311  df-mulr 17312  df-starv 17313  df-sca 17314  df-vsca 17315  df-ip 17316  df-tset 17317  df-ple 17318  df-ds 17320  df-unif 17321  df-hom 17322  df-cco 17323  df-0g 17488  df-gsum 17489  df-prds 17494  df-pws 17496  df-mre 17631  df-mrc 17632  df-mri 17633  df-acs 17634  df-mgm 18666  df-sgrp 18745  df-mnd 18761  df-mhm 18809  df-submnd 18810  df-efmnd 18895  df-grp 18967  df-minusg 18968  df-sbg 18969  df-mulg 19099  df-subg 19154  df-ghm 19244  df-gim 19290  df-cntz 19348  df-oppg 19377  df-symg 19402  df-pmtr 19475  df-psgn 19524  df-evpm 19525  df-cmn 19815  df-abl 19816  df-mgp 20153  df-rng 20171  df-ur 20200  df-srg 20205  df-ring 20253  df-cring 20254  df-oppr 20351  df-dvdsr 20374  df-unit 20375  df-invr 20405  df-dvr 20418  df-rhm 20489  df-nzr 20530  df-subrng 20563  df-subrg 20587  df-drng 20748  df-field 20749  df-lmod 20877  df-lss 20948  df-lsp 20988  df-lmhm 21039  df-lbs 21092  df-lvec 21120  df-sra 21190  df-rgmod 21191  df-cnfld 21383  df-zring 21476  df-zrh 21532  df-dsmm 21770  df-frlm 21785  df-uvc 21821  df-lindf 21844  df-linds 21845  df-mamu 22411  df-mat 22428  df-mdet 22607
This theorem is referenced by:  matunitlindf  37605
  Copyright terms: Public domain W3C validator