Users' Mathboxes Mathbox for Brendan Leahy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  matunitlindflem2 Structured version   Visualization version   GIF version

Theorem matunitlindflem2 35054
Description: One direction of matunitlindf 35055. (Contributed by Brendan Leahy, 2-Jun-2021.)
Assertion
Ref Expression
matunitlindflem2 ((((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ 𝐼 ≠ ∅) ∧ curry 𝑀 LIndF (𝑅 freeLMod 𝐼)) → ((𝐼 maDet 𝑅)‘𝑀) ∈ (Unit‘𝑅))

Proof of Theorem matunitlindflem2
Dummy variables 𝑓 𝑖 𝑗 𝑘 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2798 . . . . . . 7 (𝐼 Mat 𝑅) = (𝐼 Mat 𝑅)
2 eqid 2798 . . . . . . 7 (Base‘(𝐼 Mat 𝑅)) = (Base‘(𝐼 Mat 𝑅))
31, 2matrcl 21017 . . . . . 6 (𝑀 ∈ (Base‘(𝐼 Mat 𝑅)) → (𝐼 ∈ Fin ∧ 𝑅 ∈ V))
43simpld 498 . . . . 5 (𝑀 ∈ (Base‘(𝐼 Mat 𝑅)) → 𝐼 ∈ Fin)
54ad3antlr 730 . . . 4 ((((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ 𝐼 ≠ ∅) ∧ curry 𝑀 LIndF (𝑅 freeLMod 𝐼)) → 𝐼 ∈ Fin)
6 isfld 19504 . . . . . . 7 (𝑅 ∈ Field ↔ (𝑅 ∈ DivRing ∧ 𝑅 ∈ CRing))
76simplbi 501 . . . . . 6 (𝑅 ∈ Field → 𝑅 ∈ DivRing)
87anim1i 617 . . . . 5 ((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) → (𝑅 ∈ DivRing ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))))
94ad2antrl 727 . . . . . . . . . . . 12 ((𝑅 ∈ DivRing ∧ (𝑀 ∈ (Base‘(𝐼 Mat 𝑅)) ∧ 𝐼 ≠ ∅)) → 𝐼 ∈ Fin)
10 simpr 488 . . . . . . . . . . . . . . 15 ((𝑅 ∈ DivRing ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) → 𝑀 ∈ (Base‘(𝐼 Mat 𝑅)))
11 xpfi 8773 . . . . . . . . . . . . . . . . . . . . 21 ((𝐼 ∈ Fin ∧ 𝐼 ∈ Fin) → (𝐼 × 𝐼) ∈ Fin)
1211anidms 570 . . . . . . . . . . . . . . . . . . . 20 (𝐼 ∈ Fin → (𝐼 × 𝐼) ∈ Fin)
13 eqid 2798 . . . . . . . . . . . . . . . . . . . . 21 (𝑅 freeLMod (𝐼 × 𝐼)) = (𝑅 freeLMod (𝐼 × 𝐼))
14 eqid 2798 . . . . . . . . . . . . . . . . . . . . 21 (Base‘𝑅) = (Base‘𝑅)
1513, 14frlmfibas 20451 . . . . . . . . . . . . . . . . . . . 20 ((𝑅 ∈ DivRing ∧ (𝐼 × 𝐼) ∈ Fin) → ((Base‘𝑅) ↑m (𝐼 × 𝐼)) = (Base‘(𝑅 freeLMod (𝐼 × 𝐼))))
1612, 15sylan2 595 . . . . . . . . . . . . . . . . . . 19 ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) → ((Base‘𝑅) ↑m (𝐼 × 𝐼)) = (Base‘(𝑅 freeLMod (𝐼 × 𝐼))))
171, 13matbas 21018 . . . . . . . . . . . . . . . . . . . 20 ((𝐼 ∈ Fin ∧ 𝑅 ∈ DivRing) → (Base‘(𝑅 freeLMod (𝐼 × 𝐼))) = (Base‘(𝐼 Mat 𝑅)))
1817ancoms 462 . . . . . . . . . . . . . . . . . . 19 ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) → (Base‘(𝑅 freeLMod (𝐼 × 𝐼))) = (Base‘(𝐼 Mat 𝑅)))
1916, 18eqtrd 2833 . . . . . . . . . . . . . . . . . 18 ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) → ((Base‘𝑅) ↑m (𝐼 × 𝐼)) = (Base‘(𝐼 Mat 𝑅)))
2019eleq2d 2875 . . . . . . . . . . . . . . . . 17 ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) → (𝑀 ∈ ((Base‘𝑅) ↑m (𝐼 × 𝐼)) ↔ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))))
214, 20sylan2 595 . . . . . . . . . . . . . . . 16 ((𝑅 ∈ DivRing ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) → (𝑀 ∈ ((Base‘𝑅) ↑m (𝐼 × 𝐼)) ↔ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))))
22 fvex 6658 . . . . . . . . . . . . . . . . . 18 (Base‘𝑅) ∈ V
234, 4, 11syl2anc 587 . . . . . . . . . . . . . . . . . 18 (𝑀 ∈ (Base‘(𝐼 Mat 𝑅)) → (𝐼 × 𝐼) ∈ Fin)
24 elmapg 8402 . . . . . . . . . . . . . . . . . 18 (((Base‘𝑅) ∈ V ∧ (𝐼 × 𝐼) ∈ Fin) → (𝑀 ∈ ((Base‘𝑅) ↑m (𝐼 × 𝐼)) ↔ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)))
2522, 23, 24sylancr 590 . . . . . . . . . . . . . . . . 17 (𝑀 ∈ (Base‘(𝐼 Mat 𝑅)) → (𝑀 ∈ ((Base‘𝑅) ↑m (𝐼 × 𝐼)) ↔ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)))
2625adantl 485 . . . . . . . . . . . . . . . 16 ((𝑅 ∈ DivRing ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) → (𝑀 ∈ ((Base‘𝑅) ↑m (𝐼 × 𝐼)) ↔ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)))
2721, 26bitr3d 284 . . . . . . . . . . . . . . 15 ((𝑅 ∈ DivRing ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) → (𝑀 ∈ (Base‘(𝐼 Mat 𝑅)) ↔ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)))
2810, 27mpbid 235 . . . . . . . . . . . . . 14 ((𝑅 ∈ DivRing ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) → 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅))
2928adantrr 716 . . . . . . . . . . . . 13 ((𝑅 ∈ DivRing ∧ (𝑀 ∈ (Base‘(𝐼 Mat 𝑅)) ∧ 𝐼 ≠ ∅)) → 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅))
30 eldifsn 4680 . . . . . . . . . . . . . . . 16 (𝐼 ∈ (Fin ∖ {∅}) ↔ (𝐼 ∈ Fin ∧ 𝐼 ≠ ∅))
3130biimpri 231 . . . . . . . . . . . . . . 15 ((𝐼 ∈ Fin ∧ 𝐼 ≠ ∅) → 𝐼 ∈ (Fin ∖ {∅}))
324, 31sylan 583 . . . . . . . . . . . . . 14 ((𝑀 ∈ (Base‘(𝐼 Mat 𝑅)) ∧ 𝐼 ≠ ∅) → 𝐼 ∈ (Fin ∖ {∅}))
3332adantl 485 . . . . . . . . . . . . 13 ((𝑅 ∈ DivRing ∧ (𝑀 ∈ (Base‘(𝐼 Mat 𝑅)) ∧ 𝐼 ≠ ∅)) → 𝐼 ∈ (Fin ∖ {∅}))
34 curf 35035 . . . . . . . . . . . . . 14 ((𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅) ∧ 𝐼 ∈ (Fin ∖ {∅}) ∧ (Base‘𝑅) ∈ V) → curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼))
3522, 34mp3an3 1447 . . . . . . . . . . . . 13 ((𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅) ∧ 𝐼 ∈ (Fin ∖ {∅})) → curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼))
3629, 33, 35syl2anc 587 . . . . . . . . . . . 12 ((𝑅 ∈ DivRing ∧ (𝑀 ∈ (Base‘(𝐼 Mat 𝑅)) ∧ 𝐼 ≠ ∅)) → curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼))
379, 36jca 515 . . . . . . . . . . 11 ((𝑅 ∈ DivRing ∧ (𝑀 ∈ (Base‘(𝐼 Mat 𝑅)) ∧ 𝐼 ≠ ∅)) → (𝐼 ∈ Fin ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)))
3837ex 416 . . . . . . . . . 10 (𝑅 ∈ DivRing → ((𝑀 ∈ (Base‘(𝐼 Mat 𝑅)) ∧ 𝐼 ≠ ∅) → (𝐼 ∈ Fin ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼))))
3938imdistani 572 . . . . . . . . 9 ((𝑅 ∈ DivRing ∧ (𝑀 ∈ (Base‘(𝐼 Mat 𝑅)) ∧ 𝐼 ≠ ∅)) → (𝑅 ∈ DivRing ∧ (𝐼 ∈ Fin ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼))))
4039anassrs 471 . . . . . . . 8 (((𝑅 ∈ DivRing ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ 𝐼 ≠ ∅) → (𝑅 ∈ DivRing ∧ (𝐼 ∈ Fin ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼))))
41 anass 472 . . . . . . . 8 (((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) ↔ (𝑅 ∈ DivRing ∧ (𝐼 ∈ Fin ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼))))
4240, 41sylibr 237 . . . . . . 7 (((𝑅 ∈ DivRing ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ 𝐼 ≠ ∅) → ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)))
43 drngring 19502 . . . . . . . . . . . . 13 (𝑅 ∈ DivRing → 𝑅 ∈ Ring)
44 eqid 2798 . . . . . . . . . . . . . 14 (𝑅 unitVec 𝐼) = (𝑅 unitVec 𝐼)
45 eqid 2798 . . . . . . . . . . . . . 14 (𝑅 freeLMod 𝐼) = (𝑅 freeLMod 𝐼)
46 eqid 2798 . . . . . . . . . . . . . 14 (Base‘(𝑅 freeLMod 𝐼)) = (Base‘(𝑅 freeLMod 𝐼))
4744, 45, 46uvcff 20480 . . . . . . . . . . . . 13 ((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) → (𝑅 unitVec 𝐼):𝐼⟶(Base‘(𝑅 freeLMod 𝐼)))
4843, 47sylan 583 . . . . . . . . . . . 12 ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) → (𝑅 unitVec 𝐼):𝐼⟶(Base‘(𝑅 freeLMod 𝐼)))
4948ffvelrnda 6828 . . . . . . . . . . 11 (((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) ∧ 𝑖𝐼) → ((𝑅 unitVec 𝐼)‘𝑖) ∈ (Base‘(𝑅 freeLMod 𝐼)))
5049ad4ant14 751 . . . . . . . . . 10 (((((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) ∧ curry 𝑀 LIndF (𝑅 freeLMod 𝐼)) ∧ 𝑖𝐼) → ((𝑅 unitVec 𝐼)‘𝑖) ∈ (Base‘(𝑅 freeLMod 𝐼)))
51 ffn 6487 . . . . . . . . . . . . . . . 16 (curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼) → curry 𝑀 Fn 𝐼)
52 fnima 6450 . . . . . . . . . . . . . . . 16 (curry 𝑀 Fn 𝐼 → (curry 𝑀𝐼) = ran curry 𝑀)
5351, 52syl 17 . . . . . . . . . . . . . . 15 (curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼) → (curry 𝑀𝐼) = ran curry 𝑀)
5453adantl 485 . . . . . . . . . . . . . 14 (((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) → (curry 𝑀𝐼) = ran curry 𝑀)
5554fveq2d 6649 . . . . . . . . . . . . 13 (((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) → ((LSpan‘(𝑅 freeLMod 𝐼))‘(curry 𝑀𝐼)) = ((LSpan‘(𝑅 freeLMod 𝐼))‘ran curry 𝑀))
5655adantr 484 . . . . . . . . . . . 12 ((((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) ∧ curry 𝑀 LIndF (𝑅 freeLMod 𝐼)) → ((LSpan‘(𝑅 freeLMod 𝐼))‘(curry 𝑀𝐼)) = ((LSpan‘(𝑅 freeLMod 𝐼))‘ran curry 𝑀))
57 simplll 774 . . . . . . . . . . . . . 14 ((((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) ∧ curry 𝑀 LIndF (𝑅 freeLMod 𝐼)) → 𝑅 ∈ DivRing)
58 simpllr 775 . . . . . . . . . . . . . 14 ((((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) ∧ curry 𝑀 LIndF (𝑅 freeLMod 𝐼)) → 𝐼 ∈ Fin)
5945frlmlmod 20438 . . . . . . . . . . . . . . . . 17 ((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) → (𝑅 freeLMod 𝐼) ∈ LMod)
6043, 59sylan 583 . . . . . . . . . . . . . . . 16 ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) → (𝑅 freeLMod 𝐼) ∈ LMod)
6160adantr 484 . . . . . . . . . . . . . . 15 (((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) → (𝑅 freeLMod 𝐼) ∈ LMod)
62 lindfrn 20510 . . . . . . . . . . . . . . 15 (((𝑅 freeLMod 𝐼) ∈ LMod ∧ curry 𝑀 LIndF (𝑅 freeLMod 𝐼)) → ran curry 𝑀 ∈ (LIndS‘(𝑅 freeLMod 𝐼)))
6361, 62sylan 583 . . . . . . . . . . . . . 14 ((((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) ∧ curry 𝑀 LIndF (𝑅 freeLMod 𝐼)) → ran curry 𝑀 ∈ (LIndS‘(𝑅 freeLMod 𝐼)))
6445frlmsca 20442 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) → 𝑅 = (Scalar‘(𝑅 freeLMod 𝐼)))
65 drngnzr 20028 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑅 ∈ DivRing → 𝑅 ∈ NzRing)
6665adantr 484 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) → 𝑅 ∈ NzRing)
6764, 66eqeltrrd 2891 . . . . . . . . . . . . . . . . . . . . 21 ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) → (Scalar‘(𝑅 freeLMod 𝐼)) ∈ NzRing)
6860, 67jca 515 . . . . . . . . . . . . . . . . . . . 20 ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) → ((𝑅 freeLMod 𝐼) ∈ LMod ∧ (Scalar‘(𝑅 freeLMod 𝐼)) ∈ NzRing))
69 eqid 2798 . . . . . . . . . . . . . . . . . . . . . 22 (Scalar‘(𝑅 freeLMod 𝐼)) = (Scalar‘(𝑅 freeLMod 𝐼))
7046, 69lindff1 20509 . . . . . . . . . . . . . . . . . . . . 21 (((𝑅 freeLMod 𝐼) ∈ LMod ∧ (Scalar‘(𝑅 freeLMod 𝐼)) ∈ NzRing ∧ curry 𝑀 LIndF (𝑅 freeLMod 𝐼)) → curry 𝑀:dom curry 𝑀1-1→(Base‘(𝑅 freeLMod 𝐼)))
71703expa 1115 . . . . . . . . . . . . . . . . . . . 20 ((((𝑅 freeLMod 𝐼) ∈ LMod ∧ (Scalar‘(𝑅 freeLMod 𝐼)) ∈ NzRing) ∧ curry 𝑀 LIndF (𝑅 freeLMod 𝐼)) → curry 𝑀:dom curry 𝑀1-1→(Base‘(𝑅 freeLMod 𝐼)))
7268, 71sylan 583 . . . . . . . . . . . . . . . . . . 19 (((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) ∧ curry 𝑀 LIndF (𝑅 freeLMod 𝐼)) → curry 𝑀:dom curry 𝑀1-1→(Base‘(𝑅 freeLMod 𝐼)))
73 fdm 6495 . . . . . . . . . . . . . . . . . . 19 (curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼) → dom curry 𝑀 = 𝐼)
74 f1eq2 6545 . . . . . . . . . . . . . . . . . . . 20 (dom curry 𝑀 = 𝐼 → (curry 𝑀:dom curry 𝑀1-1→(Base‘(𝑅 freeLMod 𝐼)) ↔ curry 𝑀:𝐼1-1→(Base‘(𝑅 freeLMod 𝐼))))
7574biimpac 482 . . . . . . . . . . . . . . . . . . 19 ((curry 𝑀:dom curry 𝑀1-1→(Base‘(𝑅 freeLMod 𝐼)) ∧ dom curry 𝑀 = 𝐼) → curry 𝑀:𝐼1-1→(Base‘(𝑅 freeLMod 𝐼)))
7672, 73, 75syl2an 598 . . . . . . . . . . . . . . . . . 18 ((((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) ∧ curry 𝑀 LIndF (𝑅 freeLMod 𝐼)) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) → curry 𝑀:𝐼1-1→(Base‘(𝑅 freeLMod 𝐼)))
7776an32s 651 . . . . . . . . . . . . . . . . 17 ((((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) ∧ curry 𝑀 LIndF (𝑅 freeLMod 𝐼)) → curry 𝑀:𝐼1-1→(Base‘(𝑅 freeLMod 𝐼)))
78 f1f1orn 6601 . . . . . . . . . . . . . . . . 17 (curry 𝑀:𝐼1-1→(Base‘(𝑅 freeLMod 𝐼)) → curry 𝑀:𝐼1-1-onto→ran curry 𝑀)
7977, 78syl 17 . . . . . . . . . . . . . . . 16 ((((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) ∧ curry 𝑀 LIndF (𝑅 freeLMod 𝐼)) → curry 𝑀:𝐼1-1-onto→ran curry 𝑀)
80 f1oeng 8511 . . . . . . . . . . . . . . . 16 ((𝐼 ∈ Fin ∧ curry 𝑀:𝐼1-1-onto→ran curry 𝑀) → 𝐼 ≈ ran curry 𝑀)
8158, 79, 80syl2anc 587 . . . . . . . . . . . . . . 15 ((((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) ∧ curry 𝑀 LIndF (𝑅 freeLMod 𝐼)) → 𝐼 ≈ ran curry 𝑀)
8281ensymd 8543 . . . . . . . . . . . . . 14 ((((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) ∧ curry 𝑀 LIndF (𝑅 freeLMod 𝐼)) → ran curry 𝑀𝐼)
83 lindsenlbs 35052 . . . . . . . . . . . . . 14 (((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ ran curry 𝑀 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ ran curry 𝑀𝐼) → ran curry 𝑀 ∈ (LBasis‘(𝑅 freeLMod 𝐼)))
8457, 58, 63, 82, 83syl31anc 1370 . . . . . . . . . . . . 13 ((((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) ∧ curry 𝑀 LIndF (𝑅 freeLMod 𝐼)) → ran curry 𝑀 ∈ (LBasis‘(𝑅 freeLMod 𝐼)))
85 eqid 2798 . . . . . . . . . . . . . 14 (LBasis‘(𝑅 freeLMod 𝐼)) = (LBasis‘(𝑅 freeLMod 𝐼))
86 eqid 2798 . . . . . . . . . . . . . 14 (LSpan‘(𝑅 freeLMod 𝐼)) = (LSpan‘(𝑅 freeLMod 𝐼))
8746, 85, 86lbssp 19844 . . . . . . . . . . . . 13 (ran curry 𝑀 ∈ (LBasis‘(𝑅 freeLMod 𝐼)) → ((LSpan‘(𝑅 freeLMod 𝐼))‘ran curry 𝑀) = (Base‘(𝑅 freeLMod 𝐼)))
8884, 87syl 17 . . . . . . . . . . . 12 ((((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) ∧ curry 𝑀 LIndF (𝑅 freeLMod 𝐼)) → ((LSpan‘(𝑅 freeLMod 𝐼))‘ran curry 𝑀) = (Base‘(𝑅 freeLMod 𝐼)))
8956, 88eqtrd 2833 . . . . . . . . . . 11 ((((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) ∧ curry 𝑀 LIndF (𝑅 freeLMod 𝐼)) → ((LSpan‘(𝑅 freeLMod 𝐼))‘(curry 𝑀𝐼)) = (Base‘(𝑅 freeLMod 𝐼)))
9089adantr 484 . . . . . . . . . 10 (((((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) ∧ curry 𝑀 LIndF (𝑅 freeLMod 𝐼)) ∧ 𝑖𝐼) → ((LSpan‘(𝑅 freeLMod 𝐼))‘(curry 𝑀𝐼)) = (Base‘(𝑅 freeLMod 𝐼)))
9150, 90eleqtrrd 2893 . . . . . . . . 9 (((((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) ∧ curry 𝑀 LIndF (𝑅 freeLMod 𝐼)) ∧ 𝑖𝐼) → ((𝑅 unitVec 𝐼)‘𝑖) ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘(curry 𝑀𝐼)))
92 eqid 2798 . . . . . . . . . . . . 13 (Base‘(Scalar‘(𝑅 freeLMod 𝐼))) = (Base‘(Scalar‘(𝑅 freeLMod 𝐼)))
93 eqid 2798 . . . . . . . . . . . . 13 (0g‘(Scalar‘(𝑅 freeLMod 𝐼))) = (0g‘(Scalar‘(𝑅 freeLMod 𝐼)))
94 eqid 2798 . . . . . . . . . . . . 13 ( ·𝑠 ‘(𝑅 freeLMod 𝐼)) = ( ·𝑠 ‘(𝑅 freeLMod 𝐼))
9545, 14frlmfibas 20451 . . . . . . . . . . . . . . 15 ((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) → ((Base‘𝑅) ↑m 𝐼) = (Base‘(𝑅 freeLMod 𝐼)))
9695feq3d 6474 . . . . . . . . . . . . . 14 ((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) → (curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼) ↔ curry 𝑀:𝐼⟶(Base‘(𝑅 freeLMod 𝐼))))
9796biimpa 480 . . . . . . . . . . . . 13 (((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) → curry 𝑀:𝐼⟶(Base‘(𝑅 freeLMod 𝐼)))
9859adantr 484 . . . . . . . . . . . . 13 (((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) → (𝑅 freeLMod 𝐼) ∈ LMod)
99 simplr 768 . . . . . . . . . . . . 13 (((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) → 𝐼 ∈ Fin)
10086, 46, 92, 69, 93, 94, 97, 98, 99elfilspd 20492 . . . . . . . . . . . 12 (((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) → (((𝑅 unitVec 𝐼)‘𝑖) ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘(curry 𝑀𝐼)) ↔ ∃𝑛 ∈ ((Base‘(Scalar‘(𝑅 freeLMod 𝐼))) ↑m 𝐼)((𝑅 unitVec 𝐼)‘𝑖) = ((𝑅 freeLMod 𝐼) Σg (𝑛f ( ·𝑠 ‘(𝑅 freeLMod 𝐼))curry 𝑀))))
10145frlmsca 20442 . . . . . . . . . . . . . . . 16 ((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) → 𝑅 = (Scalar‘(𝑅 freeLMod 𝐼)))
102101fveq2d 6649 . . . . . . . . . . . . . . 15 ((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) → (Base‘𝑅) = (Base‘(Scalar‘(𝑅 freeLMod 𝐼))))
103102oveq1d 7150 . . . . . . . . . . . . . 14 ((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) → ((Base‘𝑅) ↑m 𝐼) = ((Base‘(Scalar‘(𝑅 freeLMod 𝐼))) ↑m 𝐼))
104103adantr 484 . . . . . . . . . . . . 13 (((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) → ((Base‘𝑅) ↑m 𝐼) = ((Base‘(Scalar‘(𝑅 freeLMod 𝐼))) ↑m 𝐼))
105 elmapi 8411 . . . . . . . . . . . . . . 15 (𝑛 ∈ ((Base‘𝑅) ↑m 𝐼) → 𝑛:𝐼⟶(Base‘𝑅))
106 ffn 6487 . . . . . . . . . . . . . . . . . . . 20 (𝑛:𝐼⟶(Base‘𝑅) → 𝑛 Fn 𝐼)
107106adantl 485 . . . . . . . . . . . . . . . . . . 19 ((((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) ∧ 𝑛:𝐼⟶(Base‘𝑅)) → 𝑛 Fn 𝐼)
10851ad2antlr 726 . . . . . . . . . . . . . . . . . . 19 ((((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) ∧ 𝑛:𝐼⟶(Base‘𝑅)) → curry 𝑀 Fn 𝐼)
109 simpllr 775 . . . . . . . . . . . . . . . . . . 19 ((((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) ∧ 𝑛:𝐼⟶(Base‘𝑅)) → 𝐼 ∈ Fin)
110 inidm 4145 . . . . . . . . . . . . . . . . . . 19 (𝐼𝐼) = 𝐼
111 eqidd 2799 . . . . . . . . . . . . . . . . . . 19 (((((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) ∧ 𝑛:𝐼⟶(Base‘𝑅)) ∧ 𝑘𝐼) → (𝑛𝑘) = (𝑛𝑘))
112 eqidd 2799 . . . . . . . . . . . . . . . . . . 19 (((((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) ∧ 𝑛:𝐼⟶(Base‘𝑅)) ∧ 𝑘𝐼) → (curry 𝑀𝑘) = (curry 𝑀𝑘))
113107, 108, 109, 109, 110, 111, 112offval 7396 . . . . . . . . . . . . . . . . . 18 ((((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) ∧ 𝑛:𝐼⟶(Base‘𝑅)) → (𝑛f ( ·𝑠 ‘(𝑅 freeLMod 𝐼))curry 𝑀) = (𝑘𝐼 ↦ ((𝑛𝑘)( ·𝑠 ‘(𝑅 freeLMod 𝐼))(curry 𝑀𝑘))))
114 simp-4r 783 . . . . . . . . . . . . . . . . . . . . 21 (((((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) ∧ 𝑛:𝐼⟶(Base‘𝑅)) ∧ 𝑘𝐼) → 𝐼 ∈ Fin)
115 ffvelrn 6826 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑛:𝐼⟶(Base‘𝑅) ∧ 𝑘𝐼) → (𝑛𝑘) ∈ (Base‘𝑅))
116115adantll 713 . . . . . . . . . . . . . . . . . . . . 21 (((((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) ∧ 𝑛:𝐼⟶(Base‘𝑅)) ∧ 𝑘𝐼) → (𝑛𝑘) ∈ (Base‘𝑅))
117 ffvelrn 6826 . . . . . . . . . . . . . . . . . . . . . . 23 ((curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼) ∧ 𝑘𝐼) → (curry 𝑀𝑘) ∈ ((Base‘𝑅) ↑m 𝐼))
118117ad4ant24 753 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) ∧ 𝑛:𝐼⟶(Base‘𝑅)) ∧ 𝑘𝐼) → (curry 𝑀𝑘) ∈ ((Base‘𝑅) ↑m 𝐼))
11995ad3antrrr 729 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) ∧ 𝑛:𝐼⟶(Base‘𝑅)) ∧ 𝑘𝐼) → ((Base‘𝑅) ↑m 𝐼) = (Base‘(𝑅 freeLMod 𝐼)))
120118, 119eleqtrd 2892 . . . . . . . . . . . . . . . . . . . . 21 (((((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) ∧ 𝑛:𝐼⟶(Base‘𝑅)) ∧ 𝑘𝐼) → (curry 𝑀𝑘) ∈ (Base‘(𝑅 freeLMod 𝐼)))
121 eqid 2798 . . . . . . . . . . . . . . . . . . . . 21 (.r𝑅) = (.r𝑅)
12245, 46, 14, 114, 116, 120, 94, 121frlmvscafval 20455 . . . . . . . . . . . . . . . . . . . 20 (((((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) ∧ 𝑛:𝐼⟶(Base‘𝑅)) ∧ 𝑘𝐼) → ((𝑛𝑘)( ·𝑠 ‘(𝑅 freeLMod 𝐼))(curry 𝑀𝑘)) = ((𝐼 × {(𝑛𝑘)}) ∘f (.r𝑅)(curry 𝑀𝑘)))
123 fvex 6658 . . . . . . . . . . . . . . . . . . . . . 22 (𝑛𝑘) ∈ V
124 fnconstg 6541 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑛𝑘) ∈ V → (𝐼 × {(𝑛𝑘)}) Fn 𝐼)
125123, 124mp1i 13 . . . . . . . . . . . . . . . . . . . . 21 (((((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) ∧ 𝑛:𝐼⟶(Base‘𝑅)) ∧ 𝑘𝐼) → (𝐼 × {(𝑛𝑘)}) Fn 𝐼)
126 elmapfn 8412 . . . . . . . . . . . . . . . . . . . . . . 23 ((curry 𝑀𝑘) ∈ ((Base‘𝑅) ↑m 𝐼) → (curry 𝑀𝑘) Fn 𝐼)
127117, 126syl 17 . . . . . . . . . . . . . . . . . . . . . 22 ((curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼) ∧ 𝑘𝐼) → (curry 𝑀𝑘) Fn 𝐼)
128127ad4ant24 753 . . . . . . . . . . . . . . . . . . . . 21 (((((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) ∧ 𝑛:𝐼⟶(Base‘𝑅)) ∧ 𝑘𝐼) → (curry 𝑀𝑘) Fn 𝐼)
129123fvconst2 6943 . . . . . . . . . . . . . . . . . . . . . 22 (𝑗𝐼 → ((𝐼 × {(𝑛𝑘)})‘𝑗) = (𝑛𝑘))
130129adantl 485 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) ∧ 𝑛:𝐼⟶(Base‘𝑅)) ∧ 𝑘𝐼) ∧ 𝑗𝐼) → ((𝐼 × {(𝑛𝑘)})‘𝑗) = (𝑛𝑘))
131 eqidd 2799 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) ∧ 𝑛:𝐼⟶(Base‘𝑅)) ∧ 𝑘𝐼) ∧ 𝑗𝐼) → ((curry 𝑀𝑘)‘𝑗) = ((curry 𝑀𝑘)‘𝑗))
132125, 128, 114, 114, 110, 130, 131offval 7396 . . . . . . . . . . . . . . . . . . . 20 (((((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) ∧ 𝑛:𝐼⟶(Base‘𝑅)) ∧ 𝑘𝐼) → ((𝐼 × {(𝑛𝑘)}) ∘f (.r𝑅)(curry 𝑀𝑘)) = (𝑗𝐼 ↦ ((𝑛𝑘)(.r𝑅)((curry 𝑀𝑘)‘𝑗))))
133122, 132eqtrd 2833 . . . . . . . . . . . . . . . . . . 19 (((((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) ∧ 𝑛:𝐼⟶(Base‘𝑅)) ∧ 𝑘𝐼) → ((𝑛𝑘)( ·𝑠 ‘(𝑅 freeLMod 𝐼))(curry 𝑀𝑘)) = (𝑗𝐼 ↦ ((𝑛𝑘)(.r𝑅)((curry 𝑀𝑘)‘𝑗))))
134133mpteq2dva 5125 . . . . . . . . . . . . . . . . . 18 ((((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) ∧ 𝑛:𝐼⟶(Base‘𝑅)) → (𝑘𝐼 ↦ ((𝑛𝑘)( ·𝑠 ‘(𝑅 freeLMod 𝐼))(curry 𝑀𝑘))) = (𝑘𝐼 ↦ (𝑗𝐼 ↦ ((𝑛𝑘)(.r𝑅)((curry 𝑀𝑘)‘𝑗)))))
135113, 134eqtrd 2833 . . . . . . . . . . . . . . . . 17 ((((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) ∧ 𝑛:𝐼⟶(Base‘𝑅)) → (𝑛f ( ·𝑠 ‘(𝑅 freeLMod 𝐼))curry 𝑀) = (𝑘𝐼 ↦ (𝑗𝐼 ↦ ((𝑛𝑘)(.r𝑅)((curry 𝑀𝑘)‘𝑗)))))
136135oveq2d 7151 . . . . . . . . . . . . . . . 16 ((((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) ∧ 𝑛:𝐼⟶(Base‘𝑅)) → ((𝑅 freeLMod 𝐼) Σg (𝑛f ( ·𝑠 ‘(𝑅 freeLMod 𝐼))curry 𝑀)) = ((𝑅 freeLMod 𝐼) Σg (𝑘𝐼 ↦ (𝑗𝐼 ↦ ((𝑛𝑘)(.r𝑅)((curry 𝑀𝑘)‘𝑗))))))
137 eqid 2798 . . . . . . . . . . . . . . . . 17 (0g‘(𝑅 freeLMod 𝐼)) = (0g‘(𝑅 freeLMod 𝐼))
138 simplll 774 . . . . . . . . . . . . . . . . 17 ((((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) ∧ 𝑛:𝐼⟶(Base‘𝑅)) → 𝑅 ∈ Ring)
139 simp-5l 784 . . . . . . . . . . . . . . . . . . . 20 ((((((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) ∧ 𝑛:𝐼⟶(Base‘𝑅)) ∧ 𝑘𝐼) ∧ 𝑗𝐼) → 𝑅 ∈ Ring)
140115ad4ant23 752 . . . . . . . . . . . . . . . . . . . 20 ((((((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) ∧ 𝑛:𝐼⟶(Base‘𝑅)) ∧ 𝑘𝐼) ∧ 𝑗𝐼) → (𝑛𝑘) ∈ (Base‘𝑅))
141 simplr 768 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) ∧ 𝑛:𝐼⟶(Base‘𝑅)) → curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼))
142 elmapi 8411 . . . . . . . . . . . . . . . . . . . . . . 23 ((curry 𝑀𝑘) ∈ ((Base‘𝑅) ↑m 𝐼) → (curry 𝑀𝑘):𝐼⟶(Base‘𝑅))
143117, 142syl 17 . . . . . . . . . . . . . . . . . . . . . 22 ((curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼) ∧ 𝑘𝐼) → (curry 𝑀𝑘):𝐼⟶(Base‘𝑅))
144143ffvelrnda 6828 . . . . . . . . . . . . . . . . . . . . 21 (((curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼) ∧ 𝑘𝐼) ∧ 𝑗𝐼) → ((curry 𝑀𝑘)‘𝑗) ∈ (Base‘𝑅))
145141, 144sylanl1 679 . . . . . . . . . . . . . . . . . . . 20 ((((((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) ∧ 𝑛:𝐼⟶(Base‘𝑅)) ∧ 𝑘𝐼) ∧ 𝑗𝐼) → ((curry 𝑀𝑘)‘𝑗) ∈ (Base‘𝑅))
14614, 121ringcl 19307 . . . . . . . . . . . . . . . . . . . 20 ((𝑅 ∈ Ring ∧ (𝑛𝑘) ∈ (Base‘𝑅) ∧ ((curry 𝑀𝑘)‘𝑗) ∈ (Base‘𝑅)) → ((𝑛𝑘)(.r𝑅)((curry 𝑀𝑘)‘𝑗)) ∈ (Base‘𝑅))
147139, 140, 145, 146syl3anc 1368 . . . . . . . . . . . . . . . . . . 19 ((((((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) ∧ 𝑛:𝐼⟶(Base‘𝑅)) ∧ 𝑘𝐼) ∧ 𝑗𝐼) → ((𝑛𝑘)(.r𝑅)((curry 𝑀𝑘)‘𝑗)) ∈ (Base‘𝑅))
148147fmpttd 6856 . . . . . . . . . . . . . . . . . 18 (((((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) ∧ 𝑛:𝐼⟶(Base‘𝑅)) ∧ 𝑘𝐼) → (𝑗𝐼 ↦ ((𝑛𝑘)(.r𝑅)((curry 𝑀𝑘)‘𝑗))):𝐼⟶(Base‘𝑅))
149 elmapg 8402 . . . . . . . . . . . . . . . . . . . . . 22 (((Base‘𝑅) ∈ V ∧ 𝐼 ∈ Fin) → ((𝑗𝐼 ↦ ((𝑛𝑘)(.r𝑅)((curry 𝑀𝑘)‘𝑗))) ∈ ((Base‘𝑅) ↑m 𝐼) ↔ (𝑗𝐼 ↦ ((𝑛𝑘)(.r𝑅)((curry 𝑀𝑘)‘𝑗))):𝐼⟶(Base‘𝑅)))
15022, 149mpan 689 . . . . . . . . . . . . . . . . . . . . 21 (𝐼 ∈ Fin → ((𝑗𝐼 ↦ ((𝑛𝑘)(.r𝑅)((curry 𝑀𝑘)‘𝑗))) ∈ ((Base‘𝑅) ↑m 𝐼) ↔ (𝑗𝐼 ↦ ((𝑛𝑘)(.r𝑅)((curry 𝑀𝑘)‘𝑗))):𝐼⟶(Base‘𝑅)))
151150adantl 485 . . . . . . . . . . . . . . . . . . . 20 ((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) → ((𝑗𝐼 ↦ ((𝑛𝑘)(.r𝑅)((curry 𝑀𝑘)‘𝑗))) ∈ ((Base‘𝑅) ↑m 𝐼) ↔ (𝑗𝐼 ↦ ((𝑛𝑘)(.r𝑅)((curry 𝑀𝑘)‘𝑗))):𝐼⟶(Base‘𝑅)))
15295eleq2d 2875 . . . . . . . . . . . . . . . . . . . 20 ((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) → ((𝑗𝐼 ↦ ((𝑛𝑘)(.r𝑅)((curry 𝑀𝑘)‘𝑗))) ∈ ((Base‘𝑅) ↑m 𝐼) ↔ (𝑗𝐼 ↦ ((𝑛𝑘)(.r𝑅)((curry 𝑀𝑘)‘𝑗))) ∈ (Base‘(𝑅 freeLMod 𝐼))))
153151, 152bitr3d 284 . . . . . . . . . . . . . . . . . . 19 ((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) → ((𝑗𝐼 ↦ ((𝑛𝑘)(.r𝑅)((curry 𝑀𝑘)‘𝑗))):𝐼⟶(Base‘𝑅) ↔ (𝑗𝐼 ↦ ((𝑛𝑘)(.r𝑅)((curry 𝑀𝑘)‘𝑗))) ∈ (Base‘(𝑅 freeLMod 𝐼))))
154153ad3antrrr 729 . . . . . . . . . . . . . . . . . 18 (((((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) ∧ 𝑛:𝐼⟶(Base‘𝑅)) ∧ 𝑘𝐼) → ((𝑗𝐼 ↦ ((𝑛𝑘)(.r𝑅)((curry 𝑀𝑘)‘𝑗))):𝐼⟶(Base‘𝑅) ↔ (𝑗𝐼 ↦ ((𝑛𝑘)(.r𝑅)((curry 𝑀𝑘)‘𝑗))) ∈ (Base‘(𝑅 freeLMod 𝐼))))
155148, 154mpbid 235 . . . . . . . . . . . . . . . . 17 (((((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) ∧ 𝑛:𝐼⟶(Base‘𝑅)) ∧ 𝑘𝐼) → (𝑗𝐼 ↦ ((𝑛𝑘)(.r𝑅)((curry 𝑀𝑘)‘𝑗))) ∈ (Base‘(𝑅 freeLMod 𝐼)))
156 mptexg 6961 . . . . . . . . . . . . . . . . . . . . 21 (𝐼 ∈ Fin → (𝑗𝐼 ↦ ((𝑛𝑘)(.r𝑅)((curry 𝑀𝑘)‘𝑗))) ∈ V)
157156ralrimivw 3150 . . . . . . . . . . . . . . . . . . . 20 (𝐼 ∈ Fin → ∀𝑘𝐼 (𝑗𝐼 ↦ ((𝑛𝑘)(.r𝑅)((curry 𝑀𝑘)‘𝑗))) ∈ V)
158 eqid 2798 . . . . . . . . . . . . . . . . . . . . 21 (𝑘𝐼 ↦ (𝑗𝐼 ↦ ((𝑛𝑘)(.r𝑅)((curry 𝑀𝑘)‘𝑗)))) = (𝑘𝐼 ↦ (𝑗𝐼 ↦ ((𝑛𝑘)(.r𝑅)((curry 𝑀𝑘)‘𝑗))))
159158fnmpt 6460 . . . . . . . . . . . . . . . . . . . 20 (∀𝑘𝐼 (𝑗𝐼 ↦ ((𝑛𝑘)(.r𝑅)((curry 𝑀𝑘)‘𝑗))) ∈ V → (𝑘𝐼 ↦ (𝑗𝐼 ↦ ((𝑛𝑘)(.r𝑅)((curry 𝑀𝑘)‘𝑗)))) Fn 𝐼)
160157, 159syl 17 . . . . . . . . . . . . . . . . . . 19 (𝐼 ∈ Fin → (𝑘𝐼 ↦ (𝑗𝐼 ↦ ((𝑛𝑘)(.r𝑅)((curry 𝑀𝑘)‘𝑗)))) Fn 𝐼)
161 id 22 . . . . . . . . . . . . . . . . . . 19 (𝐼 ∈ Fin → 𝐼 ∈ Fin)
162 fvexd 6660 . . . . . . . . . . . . . . . . . . 19 (𝐼 ∈ Fin → (0g‘(𝑅 freeLMod 𝐼)) ∈ V)
163160, 161, 162fndmfifsupp 8830 . . . . . . . . . . . . . . . . . 18 (𝐼 ∈ Fin → (𝑘𝐼 ↦ (𝑗𝐼 ↦ ((𝑛𝑘)(.r𝑅)((curry 𝑀𝑘)‘𝑗)))) finSupp (0g‘(𝑅 freeLMod 𝐼)))
164163ad3antlr 730 . . . . . . . . . . . . . . . . 17 ((((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) ∧ 𝑛:𝐼⟶(Base‘𝑅)) → (𝑘𝐼 ↦ (𝑗𝐼 ↦ ((𝑛𝑘)(.r𝑅)((curry 𝑀𝑘)‘𝑗)))) finSupp (0g‘(𝑅 freeLMod 𝐼)))
16545, 46, 137, 109, 109, 138, 155, 164frlmgsum 20461 . . . . . . . . . . . . . . . 16 ((((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) ∧ 𝑛:𝐼⟶(Base‘𝑅)) → ((𝑅 freeLMod 𝐼) Σg (𝑘𝐼 ↦ (𝑗𝐼 ↦ ((𝑛𝑘)(.r𝑅)((curry 𝑀𝑘)‘𝑗))))) = (𝑗𝐼 ↦ (𝑅 Σg (𝑘𝐼 ↦ ((𝑛𝑘)(.r𝑅)((curry 𝑀𝑘)‘𝑗))))))
166136, 165eqtr2d 2834 . . . . . . . . . . . . . . 15 ((((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) ∧ 𝑛:𝐼⟶(Base‘𝑅)) → (𝑗𝐼 ↦ (𝑅 Σg (𝑘𝐼 ↦ ((𝑛𝑘)(.r𝑅)((curry 𝑀𝑘)‘𝑗))))) = ((𝑅 freeLMod 𝐼) Σg (𝑛f ( ·𝑠 ‘(𝑅 freeLMod 𝐼))curry 𝑀)))
167105, 166sylan2 595 . . . . . . . . . . . . . 14 ((((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) ∧ 𝑛 ∈ ((Base‘𝑅) ↑m 𝐼)) → (𝑗𝐼 ↦ (𝑅 Σg (𝑘𝐼 ↦ ((𝑛𝑘)(.r𝑅)((curry 𝑀𝑘)‘𝑗))))) = ((𝑅 freeLMod 𝐼) Σg (𝑛f ( ·𝑠 ‘(𝑅 freeLMod 𝐼))curry 𝑀)))
168167eqeq2d 2809 . . . . . . . . . . . . 13 ((((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) ∧ 𝑛 ∈ ((Base‘𝑅) ↑m 𝐼)) → (((𝑅 unitVec 𝐼)‘𝑖) = (𝑗𝐼 ↦ (𝑅 Σg (𝑘𝐼 ↦ ((𝑛𝑘)(.r𝑅)((curry 𝑀𝑘)‘𝑗))))) ↔ ((𝑅 unitVec 𝐼)‘𝑖) = ((𝑅 freeLMod 𝐼) Σg (𝑛f ( ·𝑠 ‘(𝑅 freeLMod 𝐼))curry 𝑀))))
169104, 168rexeqbidva 3371 . . . . . . . . . . . 12 (((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) → (∃𝑛 ∈ ((Base‘𝑅) ↑m 𝐼)((𝑅 unitVec 𝐼)‘𝑖) = (𝑗𝐼 ↦ (𝑅 Σg (𝑘𝐼 ↦ ((𝑛𝑘)(.r𝑅)((curry 𝑀𝑘)‘𝑗))))) ↔ ∃𝑛 ∈ ((Base‘(Scalar‘(𝑅 freeLMod 𝐼))) ↑m 𝐼)((𝑅 unitVec 𝐼)‘𝑖) = ((𝑅 freeLMod 𝐼) Σg (𝑛f ( ·𝑠 ‘(𝑅 freeLMod 𝐼))curry 𝑀))))
170100, 169bitr4d 285 . . . . . . . . . . 11 (((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) → (((𝑅 unitVec 𝐼)‘𝑖) ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘(curry 𝑀𝐼)) ↔ ∃𝑛 ∈ ((Base‘𝑅) ↑m 𝐼)((𝑅 unitVec 𝐼)‘𝑖) = (𝑗𝐼 ↦ (𝑅 Σg (𝑘𝐼 ↦ ((𝑛𝑘)(.r𝑅)((curry 𝑀𝑘)‘𝑗)))))))
17143, 170sylanl1 679 . . . . . . . . . 10 (((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) → (((𝑅 unitVec 𝐼)‘𝑖) ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘(curry 𝑀𝐼)) ↔ ∃𝑛 ∈ ((Base‘𝑅) ↑m 𝐼)((𝑅 unitVec 𝐼)‘𝑖) = (𝑗𝐼 ↦ (𝑅 Σg (𝑘𝐼 ↦ ((𝑛𝑘)(.r𝑅)((curry 𝑀𝑘)‘𝑗)))))))
172171ad2antrr 725 . . . . . . . . 9 (((((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) ∧ curry 𝑀 LIndF (𝑅 freeLMod 𝐼)) ∧ 𝑖𝐼) → (((𝑅 unitVec 𝐼)‘𝑖) ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘(curry 𝑀𝐼)) ↔ ∃𝑛 ∈ ((Base‘𝑅) ↑m 𝐼)((𝑅 unitVec 𝐼)‘𝑖) = (𝑗𝐼 ↦ (𝑅 Σg (𝑘𝐼 ↦ ((𝑛𝑘)(.r𝑅)((curry 𝑀𝑘)‘𝑗)))))))
17391, 172mpbid 235 . . . . . . . 8 (((((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) ∧ curry 𝑀 LIndF (𝑅 freeLMod 𝐼)) ∧ 𝑖𝐼) → ∃𝑛 ∈ ((Base‘𝑅) ↑m 𝐼)((𝑅 unitVec 𝐼)‘𝑖) = (𝑗𝐼 ↦ (𝑅 Σg (𝑘𝐼 ↦ ((𝑛𝑘)(.r𝑅)((curry 𝑀𝑘)‘𝑗))))))
174173ralrimiva 3149 . . . . . . 7 ((((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) ∧ curry 𝑀 LIndF (𝑅 freeLMod 𝐼)) → ∀𝑖𝐼𝑛 ∈ ((Base‘𝑅) ↑m 𝐼)((𝑅 unitVec 𝐼)‘𝑖) = (𝑗𝐼 ↦ (𝑅 Σg (𝑘𝐼 ↦ ((𝑛𝑘)(.r𝑅)((curry 𝑀𝑘)‘𝑗))))))
17542, 174sylan 583 . . . . . 6 ((((𝑅 ∈ DivRing ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ 𝐼 ≠ ∅) ∧ curry 𝑀 LIndF (𝑅 freeLMod 𝐼)) → ∀𝑖𝐼𝑛 ∈ ((Base‘𝑅) ↑m 𝐼)((𝑅 unitVec 𝐼)‘𝑖) = (𝑗𝐼 ↦ (𝑅 Σg (𝑘𝐼 ↦ ((𝑛𝑘)(.r𝑅)((curry 𝑀𝑘)‘𝑗))))))
17610, 21mpbird 260 . . . . . . . . 9 ((𝑅 ∈ DivRing ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) → 𝑀 ∈ ((Base‘𝑅) ↑m (𝐼 × 𝐼)))
177 elmapfn 8412 . . . . . . . . 9 (𝑀 ∈ ((Base‘𝑅) ↑m (𝐼 × 𝐼)) → 𝑀 Fn (𝐼 × 𝐼))
178176, 177syl 17 . . . . . . . 8 ((𝑅 ∈ DivRing ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) → 𝑀 Fn (𝐼 × 𝐼))
1794adantl 485 . . . . . . . 8 ((𝑅 ∈ DivRing ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) → 𝐼 ∈ Fin)
180 an32 645 . . . . . . . . . . . . . . . . . . 19 (((𝑀 Fn (𝐼 × 𝐼) ∧ 𝑗𝐼) ∧ 𝑘𝐼) ↔ ((𝑀 Fn (𝐼 × 𝐼) ∧ 𝑘𝐼) ∧ 𝑗𝐼))
181 df-3an 1086 . . . . . . . . . . . . . . . . . . 19 ((𝑀 Fn (𝐼 × 𝐼) ∧ 𝑘𝐼𝑗𝐼) ↔ ((𝑀 Fn (𝐼 × 𝐼) ∧ 𝑘𝐼) ∧ 𝑗𝐼))
182180, 181bitr4i 281 . . . . . . . . . . . . . . . . . 18 (((𝑀 Fn (𝐼 × 𝐼) ∧ 𝑗𝐼) ∧ 𝑘𝐼) ↔ (𝑀 Fn (𝐼 × 𝐼) ∧ 𝑘𝐼𝑗𝐼))
183 curfv 35037 . . . . . . . . . . . . . . . . . 18 (((𝑀 Fn (𝐼 × 𝐼) ∧ 𝑘𝐼𝑗𝐼) ∧ 𝐼 ∈ Fin) → ((curry 𝑀𝑘)‘𝑗) = (𝑘𝑀𝑗))
184182, 183sylanb 584 . . . . . . . . . . . . . . . . 17 ((((𝑀 Fn (𝐼 × 𝐼) ∧ 𝑗𝐼) ∧ 𝑘𝐼) ∧ 𝐼 ∈ Fin) → ((curry 𝑀𝑘)‘𝑗) = (𝑘𝑀𝑗))
185184an32s 651 . . . . . . . . . . . . . . . 16 ((((𝑀 Fn (𝐼 × 𝐼) ∧ 𝑗𝐼) ∧ 𝐼 ∈ Fin) ∧ 𝑘𝐼) → ((curry 𝑀𝑘)‘𝑗) = (𝑘𝑀𝑗))
186185oveq2d 7151 . . . . . . . . . . . . . . 15 ((((𝑀 Fn (𝐼 × 𝐼) ∧ 𝑗𝐼) ∧ 𝐼 ∈ Fin) ∧ 𝑘𝐼) → ((𝑛𝑘)(.r𝑅)((curry 𝑀𝑘)‘𝑗)) = ((𝑛𝑘)(.r𝑅)(𝑘𝑀𝑗)))
187186mpteq2dva 5125 . . . . . . . . . . . . . 14 (((𝑀 Fn (𝐼 × 𝐼) ∧ 𝑗𝐼) ∧ 𝐼 ∈ Fin) → (𝑘𝐼 ↦ ((𝑛𝑘)(.r𝑅)((curry 𝑀𝑘)‘𝑗))) = (𝑘𝐼 ↦ ((𝑛𝑘)(.r𝑅)(𝑘𝑀𝑗))))
188187an32s 651 . . . . . . . . . . . . 13 (((𝑀 Fn (𝐼 × 𝐼) ∧ 𝐼 ∈ Fin) ∧ 𝑗𝐼) → (𝑘𝐼 ↦ ((𝑛𝑘)(.r𝑅)((curry 𝑀𝑘)‘𝑗))) = (𝑘𝐼 ↦ ((𝑛𝑘)(.r𝑅)(𝑘𝑀𝑗))))
189188oveq2d 7151 . . . . . . . . . . . 12 (((𝑀 Fn (𝐼 × 𝐼) ∧ 𝐼 ∈ Fin) ∧ 𝑗𝐼) → (𝑅 Σg (𝑘𝐼 ↦ ((𝑛𝑘)(.r𝑅)((curry 𝑀𝑘)‘𝑗)))) = (𝑅 Σg (𝑘𝐼 ↦ ((𝑛𝑘)(.r𝑅)(𝑘𝑀𝑗)))))
190189mpteq2dva 5125 . . . . . . . . . . 11 ((𝑀 Fn (𝐼 × 𝐼) ∧ 𝐼 ∈ Fin) → (𝑗𝐼 ↦ (𝑅 Σg (𝑘𝐼 ↦ ((𝑛𝑘)(.r𝑅)((curry 𝑀𝑘)‘𝑗))))) = (𝑗𝐼 ↦ (𝑅 Σg (𝑘𝐼 ↦ ((𝑛𝑘)(.r𝑅)(𝑘𝑀𝑗))))))
191190eqeq2d 2809 . . . . . . . . . 10 ((𝑀 Fn (𝐼 × 𝐼) ∧ 𝐼 ∈ Fin) → (((𝑅 unitVec 𝐼)‘𝑖) = (𝑗𝐼 ↦ (𝑅 Σg (𝑘𝐼 ↦ ((𝑛𝑘)(.r𝑅)((curry 𝑀𝑘)‘𝑗))))) ↔ ((𝑅 unitVec 𝐼)‘𝑖) = (𝑗𝐼 ↦ (𝑅 Σg (𝑘𝐼 ↦ ((𝑛𝑘)(.r𝑅)(𝑘𝑀𝑗)))))))
192191rexbidv 3256 . . . . . . . . 9 ((𝑀 Fn (𝐼 × 𝐼) ∧ 𝐼 ∈ Fin) → (∃𝑛 ∈ ((Base‘𝑅) ↑m 𝐼)((𝑅 unitVec 𝐼)‘𝑖) = (𝑗𝐼 ↦ (𝑅 Σg (𝑘𝐼 ↦ ((𝑛𝑘)(.r𝑅)((curry 𝑀𝑘)‘𝑗))))) ↔ ∃𝑛 ∈ ((Base‘𝑅) ↑m 𝐼)((𝑅 unitVec 𝐼)‘𝑖) = (𝑗𝐼 ↦ (𝑅 Σg (𝑘𝐼 ↦ ((𝑛𝑘)(.r𝑅)(𝑘𝑀𝑗)))))))
193192ralbidv 3162 . . . . . . . 8 ((𝑀 Fn (𝐼 × 𝐼) ∧ 𝐼 ∈ Fin) → (∀𝑖𝐼𝑛 ∈ ((Base‘𝑅) ↑m 𝐼)((𝑅 unitVec 𝐼)‘𝑖) = (𝑗𝐼 ↦ (𝑅 Σg (𝑘𝐼 ↦ ((𝑛𝑘)(.r𝑅)((curry 𝑀𝑘)‘𝑗))))) ↔ ∀𝑖𝐼𝑛 ∈ ((Base‘𝑅) ↑m 𝐼)((𝑅 unitVec 𝐼)‘𝑖) = (𝑗𝐼 ↦ (𝑅 Σg (𝑘𝐼 ↦ ((𝑛𝑘)(.r𝑅)(𝑘𝑀𝑗)))))))
194178, 179, 193syl2anc 587 . . . . . . 7 ((𝑅 ∈ DivRing ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) → (∀𝑖𝐼𝑛 ∈ ((Base‘𝑅) ↑m 𝐼)((𝑅 unitVec 𝐼)‘𝑖) = (𝑗𝐼 ↦ (𝑅 Σg (𝑘𝐼 ↦ ((𝑛𝑘)(.r𝑅)((curry 𝑀𝑘)‘𝑗))))) ↔ ∀𝑖𝐼𝑛 ∈ ((Base‘𝑅) ↑m 𝐼)((𝑅 unitVec 𝐼)‘𝑖) = (𝑗𝐼 ↦ (𝑅 Σg (𝑘𝐼 ↦ ((𝑛𝑘)(.r𝑅)(𝑘𝑀𝑗)))))))
195194ad2antrr 725 . . . . . 6 ((((𝑅 ∈ DivRing ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ 𝐼 ≠ ∅) ∧ curry 𝑀 LIndF (𝑅 freeLMod 𝐼)) → (∀𝑖𝐼𝑛 ∈ ((Base‘𝑅) ↑m 𝐼)((𝑅 unitVec 𝐼)‘𝑖) = (𝑗𝐼 ↦ (𝑅 Σg (𝑘𝐼 ↦ ((𝑛𝑘)(.r𝑅)((curry 𝑀𝑘)‘𝑗))))) ↔ ∀𝑖𝐼𝑛 ∈ ((Base‘𝑅) ↑m 𝐼)((𝑅 unitVec 𝐼)‘𝑖) = (𝑗𝐼 ↦ (𝑅 Σg (𝑘𝐼 ↦ ((𝑛𝑘)(.r𝑅)(𝑘𝑀𝑗)))))))
196175, 195mpbid 235 . . . . 5 ((((𝑅 ∈ DivRing ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ 𝐼 ≠ ∅) ∧ curry 𝑀 LIndF (𝑅 freeLMod 𝐼)) → ∀𝑖𝐼𝑛 ∈ ((Base‘𝑅) ↑m 𝐼)((𝑅 unitVec 𝐼)‘𝑖) = (𝑗𝐼 ↦ (𝑅 Σg (𝑘𝐼 ↦ ((𝑛𝑘)(.r𝑅)(𝑘𝑀𝑗))))))
1978, 196sylanl1 679 . . . 4 ((((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ 𝐼 ≠ ∅) ∧ curry 𝑀 LIndF (𝑅 freeLMod 𝐼)) → ∀𝑖𝐼𝑛 ∈ ((Base‘𝑅) ↑m 𝐼)((𝑅 unitVec 𝐼)‘𝑖) = (𝑗𝐼 ↦ (𝑅 Σg (𝑘𝐼 ↦ ((𝑛𝑘)(.r𝑅)(𝑘𝑀𝑗))))))
198 fveq1 6644 . . . . . . . . . . 11 (𝑛 = (𝑓𝑖) → (𝑛𝑘) = ((𝑓𝑖)‘𝑘))
199 uncov 35038 . . . . . . . . . . . 12 ((𝑖 ∈ V ∧ 𝑘 ∈ V) → (𝑖uncurry 𝑓𝑘) = ((𝑓𝑖)‘𝑘))
200199el2v 3448 . . . . . . . . . . 11 (𝑖uncurry 𝑓𝑘) = ((𝑓𝑖)‘𝑘)
201198, 200eqtr4di 2851 . . . . . . . . . 10 (𝑛 = (𝑓𝑖) → (𝑛𝑘) = (𝑖uncurry 𝑓𝑘))
202201oveq1d 7150 . . . . . . . . 9 (𝑛 = (𝑓𝑖) → ((𝑛𝑘)(.r𝑅)(𝑘𝑀𝑗)) = ((𝑖uncurry 𝑓𝑘)(.r𝑅)(𝑘𝑀𝑗)))
203202mpteq2dv 5126 . . . . . . . 8 (𝑛 = (𝑓𝑖) → (𝑘𝐼 ↦ ((𝑛𝑘)(.r𝑅)(𝑘𝑀𝑗))) = (𝑘𝐼 ↦ ((𝑖uncurry 𝑓𝑘)(.r𝑅)(𝑘𝑀𝑗))))
204203oveq2d 7151 . . . . . . 7 (𝑛 = (𝑓𝑖) → (𝑅 Σg (𝑘𝐼 ↦ ((𝑛𝑘)(.r𝑅)(𝑘𝑀𝑗)))) = (𝑅 Σg (𝑘𝐼 ↦ ((𝑖uncurry 𝑓𝑘)(.r𝑅)(𝑘𝑀𝑗)))))
205204mpteq2dv 5126 . . . . . 6 (𝑛 = (𝑓𝑖) → (𝑗𝐼 ↦ (𝑅 Σg (𝑘𝐼 ↦ ((𝑛𝑘)(.r𝑅)(𝑘𝑀𝑗))))) = (𝑗𝐼 ↦ (𝑅 Σg (𝑘𝐼 ↦ ((𝑖uncurry 𝑓𝑘)(.r𝑅)(𝑘𝑀𝑗))))))
206205eqeq2d 2809 . . . . 5 (𝑛 = (𝑓𝑖) → (((𝑅 unitVec 𝐼)‘𝑖) = (𝑗𝐼 ↦ (𝑅 Σg (𝑘𝐼 ↦ ((𝑛𝑘)(.r𝑅)(𝑘𝑀𝑗))))) ↔ ((𝑅 unitVec 𝐼)‘𝑖) = (𝑗𝐼 ↦ (𝑅 Σg (𝑘𝐼 ↦ ((𝑖uncurry 𝑓𝑘)(.r𝑅)(𝑘𝑀𝑗)))))))
207206ac6sfi 8746 . . . 4 ((𝐼 ∈ Fin ∧ ∀𝑖𝐼𝑛 ∈ ((Base‘𝑅) ↑m 𝐼)((𝑅 unitVec 𝐼)‘𝑖) = (𝑗𝐼 ↦ (𝑅 Σg (𝑘𝐼 ↦ ((𝑛𝑘)(.r𝑅)(𝑘𝑀𝑗)))))) → ∃𝑓(𝑓:𝐼⟶((Base‘𝑅) ↑m 𝐼) ∧ ∀𝑖𝐼 ((𝑅 unitVec 𝐼)‘𝑖) = (𝑗𝐼 ↦ (𝑅 Σg (𝑘𝐼 ↦ ((𝑖uncurry 𝑓𝑘)(.r𝑅)(𝑘𝑀𝑗)))))))
2085, 197, 207syl2anc 587 . . 3 ((((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ 𝐼 ≠ ∅) ∧ curry 𝑀 LIndF (𝑅 freeLMod 𝐼)) → ∃𝑓(𝑓:𝐼⟶((Base‘𝑅) ↑m 𝐼) ∧ ∀𝑖𝐼 ((𝑅 unitVec 𝐼)‘𝑖) = (𝑗𝐼 ↦ (𝑅 Σg (𝑘𝐼 ↦ ((𝑖uncurry 𝑓𝑘)(.r𝑅)(𝑘𝑀𝑗)))))))
209 uncf 35036 . . . . . . 7 (𝑓:𝐼⟶((Base‘𝑅) ↑m 𝐼) → uncurry 𝑓:(𝐼 × 𝐼)⟶(Base‘𝑅))
21013, 14frlmfibas 20451 . . . . . . . . . . . . . . . 16 ((𝑅 ∈ Field ∧ (𝐼 × 𝐼) ∈ Fin) → ((Base‘𝑅) ↑m (𝐼 × 𝐼)) = (Base‘(𝑅 freeLMod (𝐼 × 𝐼))))
21112, 210sylan2 595 . . . . . . . . . . . . . . 15 ((𝑅 ∈ Field ∧ 𝐼 ∈ Fin) → ((Base‘𝑅) ↑m (𝐼 × 𝐼)) = (Base‘(𝑅 freeLMod (𝐼 × 𝐼))))
2121, 13matbas 21018 . . . . . . . . . . . . . . . 16 ((𝐼 ∈ Fin ∧ 𝑅 ∈ Field) → (Base‘(𝑅 freeLMod (𝐼 × 𝐼))) = (Base‘(𝐼 Mat 𝑅)))
213212ancoms 462 . . . . . . . . . . . . . . 15 ((𝑅 ∈ Field ∧ 𝐼 ∈ Fin) → (Base‘(𝑅 freeLMod (𝐼 × 𝐼))) = (Base‘(𝐼 Mat 𝑅)))
214211, 213eqtrd 2833 . . . . . . . . . . . . . 14 ((𝑅 ∈ Field ∧ 𝐼 ∈ Fin) → ((Base‘𝑅) ↑m (𝐼 × 𝐼)) = (Base‘(𝐼 Mat 𝑅)))
2154, 214sylan2 595 . . . . . . . . . . . . 13 ((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) → ((Base‘𝑅) ↑m (𝐼 × 𝐼)) = (Base‘(𝐼 Mat 𝑅)))
216215eleq2d 2875 . . . . . . . . . . . 12 ((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) → (uncurry 𝑓 ∈ ((Base‘𝑅) ↑m (𝐼 × 𝐼)) ↔ uncurry 𝑓 ∈ (Base‘(𝐼 Mat 𝑅))))
217 elmapg 8402 . . . . . . . . . . . . . 14 (((Base‘𝑅) ∈ V ∧ (𝐼 × 𝐼) ∈ Fin) → (uncurry 𝑓 ∈ ((Base‘𝑅) ↑m (𝐼 × 𝐼)) ↔ uncurry 𝑓:(𝐼 × 𝐼)⟶(Base‘𝑅)))
21822, 23, 217sylancr 590 . . . . . . . . . . . . 13 (𝑀 ∈ (Base‘(𝐼 Mat 𝑅)) → (uncurry 𝑓 ∈ ((Base‘𝑅) ↑m (𝐼 × 𝐼)) ↔ uncurry 𝑓:(𝐼 × 𝐼)⟶(Base‘𝑅)))
219218adantl 485 . . . . . . . . . . . 12 ((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) → (uncurry 𝑓 ∈ ((Base‘𝑅) ↑m (𝐼 × 𝐼)) ↔ uncurry 𝑓:(𝐼 × 𝐼)⟶(Base‘𝑅)))
220216, 219bitr3d 284 . . . . . . . . . . 11 ((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) → (uncurry 𝑓 ∈ (Base‘(𝐼 Mat 𝑅)) ↔ uncurry 𝑓:(𝐼 × 𝐼)⟶(Base‘𝑅)))
221220biimpar 481 . . . . . . . . . 10 (((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ uncurry 𝑓:(𝐼 × 𝐼)⟶(Base‘𝑅)) → uncurry 𝑓 ∈ (Base‘(𝐼 Mat 𝑅)))
222221adantr 484 . . . . . . . . 9 ((((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ uncurry 𝑓:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ ∀𝑖𝐼 ((𝑅 unitVec 𝐼)‘𝑖) = (𝑗𝐼 ↦ (𝑅 Σg (𝑘𝐼 ↦ ((𝑖uncurry 𝑓𝑘)(.r𝑅)(𝑘𝑀𝑗)))))) → uncurry 𝑓 ∈ (Base‘(𝐼 Mat 𝑅)))
223 nfv 1915 . . . . . . . . . . . . . 14 𝑗(((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ uncurry 𝑓:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝑖𝐼)
224 nfmpt1 5128 . . . . . . . . . . . . . . 15 𝑗(𝑗𝐼 ↦ (𝑅 Σg (𝑘𝐼 ↦ ((𝑖uncurry 𝑓𝑘)(.r𝑅)(𝑘𝑀𝑗)))))
225224nfeq2 2972 . . . . . . . . . . . . . 14 𝑗((𝑅 unitVec 𝐼)‘𝑖) = (𝑗𝐼 ↦ (𝑅 Σg (𝑘𝐼 ↦ ((𝑖uncurry 𝑓𝑘)(.r𝑅)(𝑘𝑀𝑗)))))
226 fveq1 6644 . . . . . . . . . . . . . . . . 17 (((𝑅 unitVec 𝐼)‘𝑖) = (𝑗𝐼 ↦ (𝑅 Σg (𝑘𝐼 ↦ ((𝑖uncurry 𝑓𝑘)(.r𝑅)(𝑘𝑀𝑗))))) → (((𝑅 unitVec 𝐼)‘𝑖)‘𝑗) = ((𝑗𝐼 ↦ (𝑅 Σg (𝑘𝐼 ↦ ((𝑖uncurry 𝑓𝑘)(.r𝑅)(𝑘𝑀𝑗)))))‘𝑗))
2277, 43syl 17 . . . . . . . . . . . . . . . . . . . . 21 (𝑅 ∈ Field → 𝑅 ∈ Ring)
228227, 4anim12i 615 . . . . . . . . . . . . . . . . . . . 20 ((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) → (𝑅 ∈ Ring ∧ 𝐼 ∈ Fin))
229228adantr 484 . . . . . . . . . . . . . . . . . . 19 (((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ uncurry 𝑓:(𝐼 × 𝐼)⟶(Base‘𝑅)) → (𝑅 ∈ Ring ∧ 𝐼 ∈ Fin))
230 equcom 2025 . . . . . . . . . . . . . . . . . . . . 21 (𝑖 = 𝑗𝑗 = 𝑖)
231 ifbi 4446 . . . . . . . . . . . . . . . . . . . . 21 ((𝑖 = 𝑗𝑗 = 𝑖) → if(𝑖 = 𝑗, (1r𝑅), (0g𝑅)) = if(𝑗 = 𝑖, (1r𝑅), (0g𝑅)))
232230, 231ax-mp 5 . . . . . . . . . . . . . . . . . . . 20 if(𝑖 = 𝑗, (1r𝑅), (0g𝑅)) = if(𝑗 = 𝑖, (1r𝑅), (0g𝑅))
233 eqid 2798 . . . . . . . . . . . . . . . . . . . . 21 (1r𝑅) = (1r𝑅)
234 eqid 2798 . . . . . . . . . . . . . . . . . . . . 21 (0g𝑅) = (0g𝑅)
235 simpllr 775 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) ∧ 𝑖𝐼) ∧ 𝑗𝐼) → 𝐼 ∈ Fin)
236 simplll 774 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) ∧ 𝑖𝐼) ∧ 𝑗𝐼) → 𝑅 ∈ Ring)
237 simplr 768 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) ∧ 𝑖𝐼) ∧ 𝑗𝐼) → 𝑖𝐼)
238 simpr 488 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) ∧ 𝑖𝐼) ∧ 𝑗𝐼) → 𝑗𝐼)
239 eqid 2798 . . . . . . . . . . . . . . . . . . . . 21 (1r‘(𝐼 Mat 𝑅)) = (1r‘(𝐼 Mat 𝑅))
2401, 233, 234, 235, 236, 237, 238, 239mat1ov 21053 . . . . . . . . . . . . . . . . . . . 20 ((((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) ∧ 𝑖𝐼) ∧ 𝑗𝐼) → (𝑖(1r‘(𝐼 Mat 𝑅))𝑗) = if(𝑖 = 𝑗, (1r𝑅), (0g𝑅)))
241 df-3an 1086 . . . . . . . . . . . . . . . . . . . . 21 ((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin ∧ 𝑖𝐼) ↔ ((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) ∧ 𝑖𝐼))
24244, 233, 234uvcvval 20475 . . . . . . . . . . . . . . . . . . . . 21 (((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin ∧ 𝑖𝐼) ∧ 𝑗𝐼) → (((𝑅 unitVec 𝐼)‘𝑖)‘𝑗) = if(𝑗 = 𝑖, (1r𝑅), (0g𝑅)))
243241, 242sylanbr 585 . . . . . . . . . . . . . . . . . . . 20 ((((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) ∧ 𝑖𝐼) ∧ 𝑗𝐼) → (((𝑅 unitVec 𝐼)‘𝑖)‘𝑗) = if(𝑗 = 𝑖, (1r𝑅), (0g𝑅)))
244232, 240, 2433eqtr4a 2859 . . . . . . . . . . . . . . . . . . 19 ((((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) ∧ 𝑖𝐼) ∧ 𝑗𝐼) → (𝑖(1r‘(𝐼 Mat 𝑅))𝑗) = (((𝑅 unitVec 𝐼)‘𝑖)‘𝑗))
245229, 244sylanl1 679 . . . . . . . . . . . . . . . . . 18 (((((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ uncurry 𝑓:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝑖𝐼) ∧ 𝑗𝐼) → (𝑖(1r‘(𝐼 Mat 𝑅))𝑗) = (((𝑅 unitVec 𝐼)‘𝑖)‘𝑗))
246 ovex 7168 . . . . . . . . . . . . . . . . . . . . 21 (𝑅 Σg (𝑘𝐼 ↦ ((𝑖uncurry 𝑓𝑘)(.r𝑅)(𝑘𝑀𝑗)))) ∈ V
247 eqid 2798 . . . . . . . . . . . . . . . . . . . . . 22 (𝑗𝐼 ↦ (𝑅 Σg (𝑘𝐼 ↦ ((𝑖uncurry 𝑓𝑘)(.r𝑅)(𝑘𝑀𝑗))))) = (𝑗𝐼 ↦ (𝑅 Σg (𝑘𝐼 ↦ ((𝑖uncurry 𝑓𝑘)(.r𝑅)(𝑘𝑀𝑗)))))
248247fvmpt2 6756 . . . . . . . . . . . . . . . . . . . . 21 ((𝑗𝐼 ∧ (𝑅 Σg (𝑘𝐼 ↦ ((𝑖uncurry 𝑓𝑘)(.r𝑅)(𝑘𝑀𝑗)))) ∈ V) → ((𝑗𝐼 ↦ (𝑅 Σg (𝑘𝐼 ↦ ((𝑖uncurry 𝑓𝑘)(.r𝑅)(𝑘𝑀𝑗)))))‘𝑗) = (𝑅 Σg (𝑘𝐼 ↦ ((𝑖uncurry 𝑓𝑘)(.r𝑅)(𝑘𝑀𝑗)))))
249246, 248mpan2 690 . . . . . . . . . . . . . . . . . . . 20 (𝑗𝐼 → ((𝑗𝐼 ↦ (𝑅 Σg (𝑘𝐼 ↦ ((𝑖uncurry 𝑓𝑘)(.r𝑅)(𝑘𝑀𝑗)))))‘𝑗) = (𝑅 Σg (𝑘𝐼 ↦ ((𝑖uncurry 𝑓𝑘)(.r𝑅)(𝑘𝑀𝑗)))))
250249adantl 485 . . . . . . . . . . . . . . . . . . 19 (((((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ uncurry 𝑓:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝑖𝐼) ∧ 𝑗𝐼) → ((𝑗𝐼 ↦ (𝑅 Σg (𝑘𝐼 ↦ ((𝑖uncurry 𝑓𝑘)(.r𝑅)(𝑘𝑀𝑗)))))‘𝑗) = (𝑅 Σg (𝑘𝐼 ↦ ((𝑖uncurry 𝑓𝑘)(.r𝑅)(𝑘𝑀𝑗)))))
251 eqid 2798 . . . . . . . . . . . . . . . . . . . 20 (𝑅 maMul ⟨𝐼, 𝐼, 𝐼⟩) = (𝑅 maMul ⟨𝐼, 𝐼, 𝐼⟩)
252 simp-4l 782 . . . . . . . . . . . . . . . . . . . 20 (((((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ uncurry 𝑓:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝑖𝐼) ∧ 𝑗𝐼) → 𝑅 ∈ Field)
2534ad4antlr 732 . . . . . . . . . . . . . . . . . . . 20 (((((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ uncurry 𝑓:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝑖𝐼) ∧ 𝑗𝐼) → 𝐼 ∈ Fin)
254218biimpar 481 . . . . . . . . . . . . . . . . . . . . 21 ((𝑀 ∈ (Base‘(𝐼 Mat 𝑅)) ∧ uncurry 𝑓:(𝐼 × 𝐼)⟶(Base‘𝑅)) → uncurry 𝑓 ∈ ((Base‘𝑅) ↑m (𝐼 × 𝐼)))
255254ad5ant23 759 . . . . . . . . . . . . . . . . . . . 20 (((((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ uncurry 𝑓:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝑖𝐼) ∧ 𝑗𝐼) → uncurry 𝑓 ∈ ((Base‘𝑅) ↑m (𝐼 × 𝐼)))
256 simpr 488 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) → 𝑀 ∈ (Base‘(𝐼 Mat 𝑅)))
257256, 215eleqtrrd 2893 . . . . . . . . . . . . . . . . . . . . 21 ((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) → 𝑀 ∈ ((Base‘𝑅) ↑m (𝐼 × 𝐼)))
258257ad3antrrr 729 . . . . . . . . . . . . . . . . . . . 20 (((((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ uncurry 𝑓:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝑖𝐼) ∧ 𝑗𝐼) → 𝑀 ∈ ((Base‘𝑅) ↑m (𝐼 × 𝐼)))
259 simplr 768 . . . . . . . . . . . . . . . . . . . 20 (((((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ uncurry 𝑓:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝑖𝐼) ∧ 𝑗𝐼) → 𝑖𝐼)
260 simpr 488 . . . . . . . . . . . . . . . . . . . 20 (((((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ uncurry 𝑓:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝑖𝐼) ∧ 𝑗𝐼) → 𝑗𝐼)
261251, 14, 121, 252, 253, 253, 253, 255, 258, 259, 260mamufv 20994 . . . . . . . . . . . . . . . . . . 19 (((((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ uncurry 𝑓:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝑖𝐼) ∧ 𝑗𝐼) → (𝑖(uncurry 𝑓(𝑅 maMul ⟨𝐼, 𝐼, 𝐼⟩)𝑀)𝑗) = (𝑅 Σg (𝑘𝐼 ↦ ((𝑖uncurry 𝑓𝑘)(.r𝑅)(𝑘𝑀𝑗)))))
2621, 251matmulr 21043 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐼 ∈ Fin ∧ 𝑅 ∈ Field) → (𝑅 maMul ⟨𝐼, 𝐼, 𝐼⟩) = (.r‘(𝐼 Mat 𝑅)))
263262ancoms 462 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑅 ∈ Field ∧ 𝐼 ∈ Fin) → (𝑅 maMul ⟨𝐼, 𝐼, 𝐼⟩) = (.r‘(𝐼 Mat 𝑅)))
264263oveqd 7152 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑅 ∈ Field ∧ 𝐼 ∈ Fin) → (uncurry 𝑓(𝑅 maMul ⟨𝐼, 𝐼, 𝐼⟩)𝑀) = (uncurry 𝑓(.r‘(𝐼 Mat 𝑅))𝑀))
265264oveqd 7152 . . . . . . . . . . . . . . . . . . . . 21 ((𝑅 ∈ Field ∧ 𝐼 ∈ Fin) → (𝑖(uncurry 𝑓(𝑅 maMul ⟨𝐼, 𝐼, 𝐼⟩)𝑀)𝑗) = (𝑖(uncurry 𝑓(.r‘(𝐼 Mat 𝑅))𝑀)𝑗))
2664, 265sylan2 595 . . . . . . . . . . . . . . . . . . . 20 ((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) → (𝑖(uncurry 𝑓(𝑅 maMul ⟨𝐼, 𝐼, 𝐼⟩)𝑀)𝑗) = (𝑖(uncurry 𝑓(.r‘(𝐼 Mat 𝑅))𝑀)𝑗))
267266ad3antrrr 729 . . . . . . . . . . . . . . . . . . 19 (((((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ uncurry 𝑓:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝑖𝐼) ∧ 𝑗𝐼) → (𝑖(uncurry 𝑓(𝑅 maMul ⟨𝐼, 𝐼, 𝐼⟩)𝑀)𝑗) = (𝑖(uncurry 𝑓(.r‘(𝐼 Mat 𝑅))𝑀)𝑗))
268250, 261, 2673eqtr2rd 2840 . . . . . . . . . . . . . . . . . 18 (((((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ uncurry 𝑓:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝑖𝐼) ∧ 𝑗𝐼) → (𝑖(uncurry 𝑓(.r‘(𝐼 Mat 𝑅))𝑀)𝑗) = ((𝑗𝐼 ↦ (𝑅 Σg (𝑘𝐼 ↦ ((𝑖uncurry 𝑓𝑘)(.r𝑅)(𝑘𝑀𝑗)))))‘𝑗))
269245, 268eqeq12d 2814 . . . . . . . . . . . . . . . . 17 (((((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ uncurry 𝑓:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝑖𝐼) ∧ 𝑗𝐼) → ((𝑖(1r‘(𝐼 Mat 𝑅))𝑗) = (𝑖(uncurry 𝑓(.r‘(𝐼 Mat 𝑅))𝑀)𝑗) ↔ (((𝑅 unitVec 𝐼)‘𝑖)‘𝑗) = ((𝑗𝐼 ↦ (𝑅 Σg (𝑘𝐼 ↦ ((𝑖uncurry 𝑓𝑘)(.r𝑅)(𝑘𝑀𝑗)))))‘𝑗)))
270226, 269syl5ibr 249 . . . . . . . . . . . . . . . 16 (((((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ uncurry 𝑓:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝑖𝐼) ∧ 𝑗𝐼) → (((𝑅 unitVec 𝐼)‘𝑖) = (𝑗𝐼 ↦ (𝑅 Σg (𝑘𝐼 ↦ ((𝑖uncurry 𝑓𝑘)(.r𝑅)(𝑘𝑀𝑗))))) → (𝑖(1r‘(𝐼 Mat 𝑅))𝑗) = (𝑖(uncurry 𝑓(.r‘(𝐼 Mat 𝑅))𝑀)𝑗)))
271270ex 416 . . . . . . . . . . . . . . 15 ((((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ uncurry 𝑓:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝑖𝐼) → (𝑗𝐼 → (((𝑅 unitVec 𝐼)‘𝑖) = (𝑗𝐼 ↦ (𝑅 Σg (𝑘𝐼 ↦ ((𝑖uncurry 𝑓𝑘)(.r𝑅)(𝑘𝑀𝑗))))) → (𝑖(1r‘(𝐼 Mat 𝑅))𝑗) = (𝑖(uncurry 𝑓(.r‘(𝐼 Mat 𝑅))𝑀)𝑗))))
272271com23 86 . . . . . . . . . . . . . 14 ((((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ uncurry 𝑓:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝑖𝐼) → (((𝑅 unitVec 𝐼)‘𝑖) = (𝑗𝐼 ↦ (𝑅 Σg (𝑘𝐼 ↦ ((𝑖uncurry 𝑓𝑘)(.r𝑅)(𝑘𝑀𝑗))))) → (𝑗𝐼 → (𝑖(1r‘(𝐼 Mat 𝑅))𝑗) = (𝑖(uncurry 𝑓(.r‘(𝐼 Mat 𝑅))𝑀)𝑗))))
273223, 225, 272ralrimd 3182 . . . . . . . . . . . . 13 ((((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ uncurry 𝑓:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝑖𝐼) → (((𝑅 unitVec 𝐼)‘𝑖) = (𝑗𝐼 ↦ (𝑅 Σg (𝑘𝐼 ↦ ((𝑖uncurry 𝑓𝑘)(.r𝑅)(𝑘𝑀𝑗))))) → ∀𝑗𝐼 (𝑖(1r‘(𝐼 Mat 𝑅))𝑗) = (𝑖(uncurry 𝑓(.r‘(𝐼 Mat 𝑅))𝑀)𝑗)))
274273ralimdva 3144 . . . . . . . . . . . 12 (((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ uncurry 𝑓:(𝐼 × 𝐼)⟶(Base‘𝑅)) → (∀𝑖𝐼 ((𝑅 unitVec 𝐼)‘𝑖) = (𝑗𝐼 ↦ (𝑅 Σg (𝑘𝐼 ↦ ((𝑖uncurry 𝑓𝑘)(.r𝑅)(𝑘𝑀𝑗))))) → ∀𝑖𝐼𝑗𝐼 (𝑖(1r‘(𝐼 Mat 𝑅))𝑗) = (𝑖(uncurry 𝑓(.r‘(𝐼 Mat 𝑅))𝑀)𝑗)))
2751, 2, 239mat1bas 21054 . . . . . . . . . . . . . . . . 17 ((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) → (1r‘(𝐼 Mat 𝑅)) ∈ (Base‘(𝐼 Mat 𝑅)))
27613, 14frlmfibas 20451 . . . . . . . . . . . . . . . . . . 19 ((𝑅 ∈ Ring ∧ (𝐼 × 𝐼) ∈ Fin) → ((Base‘𝑅) ↑m (𝐼 × 𝐼)) = (Base‘(𝑅 freeLMod (𝐼 × 𝐼))))
27712, 276sylan2 595 . . . . . . . . . . . . . . . . . 18 ((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) → ((Base‘𝑅) ↑m (𝐼 × 𝐼)) = (Base‘(𝑅 freeLMod (𝐼 × 𝐼))))
2781, 13matbas 21018 . . . . . . . . . . . . . . . . . . 19 ((𝐼 ∈ Fin ∧ 𝑅 ∈ Ring) → (Base‘(𝑅 freeLMod (𝐼 × 𝐼))) = (Base‘(𝐼 Mat 𝑅)))
279278ancoms 462 . . . . . . . . . . . . . . . . . 18 ((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) → (Base‘(𝑅 freeLMod (𝐼 × 𝐼))) = (Base‘(𝐼 Mat 𝑅)))
280277, 279eqtrd 2833 . . . . . . . . . . . . . . . . 17 ((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) → ((Base‘𝑅) ↑m (𝐼 × 𝐼)) = (Base‘(𝐼 Mat 𝑅)))
281275, 280eleqtrrd 2893 . . . . . . . . . . . . . . . 16 ((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) → (1r‘(𝐼 Mat 𝑅)) ∈ ((Base‘𝑅) ↑m (𝐼 × 𝐼)))
282 elmapfn 8412 . . . . . . . . . . . . . . . 16 ((1r‘(𝐼 Mat 𝑅)) ∈ ((Base‘𝑅) ↑m (𝐼 × 𝐼)) → (1r‘(𝐼 Mat 𝑅)) Fn (𝐼 × 𝐼))
283281, 282syl 17 . . . . . . . . . . . . . . 15 ((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) → (1r‘(𝐼 Mat 𝑅)) Fn (𝐼 × 𝐼))
284227, 4, 283syl2an 598 . . . . . . . . . . . . . 14 ((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) → (1r‘(𝐼 Mat 𝑅)) Fn (𝐼 × 𝐼))
285284adantr 484 . . . . . . . . . . . . 13 (((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ uncurry 𝑓:(𝐼 × 𝐼)⟶(Base‘𝑅)) → (1r‘(𝐼 Mat 𝑅)) Fn (𝐼 × 𝐼))
2861matring 21048 . . . . . . . . . . . . . . . . . 18 ((𝐼 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝐼 Mat 𝑅) ∈ Ring)
2874, 227, 286syl2anr 599 . . . . . . . . . . . . . . . . 17 ((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) → (𝐼 Mat 𝑅) ∈ Ring)
288287adantr 484 . . . . . . . . . . . . . . . 16 (((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ uncurry 𝑓:(𝐼 × 𝐼)⟶(Base‘𝑅)) → (𝐼 Mat 𝑅) ∈ Ring)
289 simplr 768 . . . . . . . . . . . . . . . 16 (((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ uncurry 𝑓:(𝐼 × 𝐼)⟶(Base‘𝑅)) → 𝑀 ∈ (Base‘(𝐼 Mat 𝑅)))
290 eqid 2798 . . . . . . . . . . . . . . . . 17 (.r‘(𝐼 Mat 𝑅)) = (.r‘(𝐼 Mat 𝑅))
2912, 290ringcl 19307 . . . . . . . . . . . . . . . 16 (((𝐼 Mat 𝑅) ∈ Ring ∧ uncurry 𝑓 ∈ (Base‘(𝐼 Mat 𝑅)) ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) → (uncurry 𝑓(.r‘(𝐼 Mat 𝑅))𝑀) ∈ (Base‘(𝐼 Mat 𝑅)))
292288, 221, 289, 291syl3anc 1368 . . . . . . . . . . . . . . 15 (((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ uncurry 𝑓:(𝐼 × 𝐼)⟶(Base‘𝑅)) → (uncurry 𝑓(.r‘(𝐼 Mat 𝑅))𝑀) ∈ (Base‘(𝐼 Mat 𝑅)))
293215adantr 484 . . . . . . . . . . . . . . 15 (((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ uncurry 𝑓:(𝐼 × 𝐼)⟶(Base‘𝑅)) → ((Base‘𝑅) ↑m (𝐼 × 𝐼)) = (Base‘(𝐼 Mat 𝑅)))
294292, 293eleqtrrd 2893 . . . . . . . . . . . . . 14 (((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ uncurry 𝑓:(𝐼 × 𝐼)⟶(Base‘𝑅)) → (uncurry 𝑓(.r‘(𝐼 Mat 𝑅))𝑀) ∈ ((Base‘𝑅) ↑m (𝐼 × 𝐼)))
295 elmapfn 8412 . . . . . . . . . . . . . 14 ((uncurry 𝑓(.r‘(𝐼 Mat 𝑅))𝑀) ∈ ((Base‘𝑅) ↑m (𝐼 × 𝐼)) → (uncurry 𝑓(.r‘(𝐼 Mat 𝑅))𝑀) Fn (𝐼 × 𝐼))
296294, 295syl 17 . . . . . . . . . . . . 13 (((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ uncurry 𝑓:(𝐼 × 𝐼)⟶(Base‘𝑅)) → (uncurry 𝑓(.r‘(𝐼 Mat 𝑅))𝑀) Fn (𝐼 × 𝐼))
297 eqfnov2 7260 . . . . . . . . . . . . 13 (((1r‘(𝐼 Mat 𝑅)) Fn (𝐼 × 𝐼) ∧ (uncurry 𝑓(.r‘(𝐼 Mat 𝑅))𝑀) Fn (𝐼 × 𝐼)) → ((1r‘(𝐼 Mat 𝑅)) = (uncurry 𝑓(.r‘(𝐼 Mat 𝑅))𝑀) ↔ ∀𝑖𝐼𝑗𝐼 (𝑖(1r‘(𝐼 Mat 𝑅))𝑗) = (𝑖(uncurry 𝑓(.r‘(𝐼 Mat 𝑅))𝑀)𝑗)))
298285, 296, 297syl2anc 587 . . . . . . . . . . . 12 (((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ uncurry 𝑓:(𝐼 × 𝐼)⟶(Base‘𝑅)) → ((1r‘(𝐼 Mat 𝑅)) = (uncurry 𝑓(.r‘(𝐼 Mat 𝑅))𝑀) ↔ ∀𝑖𝐼𝑗𝐼 (𝑖(1r‘(𝐼 Mat 𝑅))𝑗) = (𝑖(uncurry 𝑓(.r‘(𝐼 Mat 𝑅))𝑀)𝑗)))
299274, 298sylibrd 262 . . . . . . . . . . 11 (((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ uncurry 𝑓:(𝐼 × 𝐼)⟶(Base‘𝑅)) → (∀𝑖𝐼 ((𝑅 unitVec 𝐼)‘𝑖) = (𝑗𝐼 ↦ (𝑅 Σg (𝑘𝐼 ↦ ((𝑖uncurry 𝑓𝑘)(.r𝑅)(𝑘𝑀𝑗))))) → (1r‘(𝐼 Mat 𝑅)) = (uncurry 𝑓(.r‘(𝐼 Mat 𝑅))𝑀)))
300299imp 410 . . . . . . . . . 10 ((((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ uncurry 𝑓:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ ∀𝑖𝐼 ((𝑅 unitVec 𝐼)‘𝑖) = (𝑗𝐼 ↦ (𝑅 Σg (𝑘𝐼 ↦ ((𝑖uncurry 𝑓𝑘)(.r𝑅)(𝑘𝑀𝑗)))))) → (1r‘(𝐼 Mat 𝑅)) = (uncurry 𝑓(.r‘(𝐼 Mat 𝑅))𝑀))
301300eqcomd 2804 . . . . . . . . 9 ((((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ uncurry 𝑓:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ ∀𝑖𝐼 ((𝑅 unitVec 𝐼)‘𝑖) = (𝑗𝐼 ↦ (𝑅 Σg (𝑘𝐼 ↦ ((𝑖uncurry 𝑓𝑘)(.r𝑅)(𝑘𝑀𝑗)))))) → (uncurry 𝑓(.r‘(𝐼 Mat 𝑅))𝑀) = (1r‘(𝐼 Mat 𝑅)))
302 oveq1 7142 . . . . . . . . . . 11 (𝑛 = uncurry 𝑓 → (𝑛(.r‘(𝐼 Mat 𝑅))𝑀) = (uncurry 𝑓(.r‘(𝐼 Mat 𝑅))𝑀))
303302eqeq1d 2800 . . . . . . . . . 10 (𝑛 = uncurry 𝑓 → ((𝑛(.r‘(𝐼 Mat 𝑅))𝑀) = (1r‘(𝐼 Mat 𝑅)) ↔ (uncurry 𝑓(.r‘(𝐼 Mat 𝑅))𝑀) = (1r‘(𝐼 Mat 𝑅))))
304303rspcev 3571 . . . . . . . . 9 ((uncurry 𝑓 ∈ (Base‘(𝐼 Mat 𝑅)) ∧ (uncurry 𝑓(.r‘(𝐼 Mat 𝑅))𝑀) = (1r‘(𝐼 Mat 𝑅))) → ∃𝑛 ∈ (Base‘(𝐼 Mat 𝑅))(𝑛(.r‘(𝐼 Mat 𝑅))𝑀) = (1r‘(𝐼 Mat 𝑅)))
305222, 301, 304syl2anc 587 . . . . . . . 8 ((((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ uncurry 𝑓:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ ∀𝑖𝐼 ((𝑅 unitVec 𝐼)‘𝑖) = (𝑗𝐼 ↦ (𝑅 Σg (𝑘𝐼 ↦ ((𝑖uncurry 𝑓𝑘)(.r𝑅)(𝑘𝑀𝑗)))))) → ∃𝑛 ∈ (Base‘(𝐼 Mat 𝑅))(𝑛(.r‘(𝐼 Mat 𝑅))𝑀) = (1r‘(𝐼 Mat 𝑅)))
306305expl 461 . . . . . . 7 ((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) → ((uncurry 𝑓:(𝐼 × 𝐼)⟶(Base‘𝑅) ∧ ∀𝑖𝐼 ((𝑅 unitVec 𝐼)‘𝑖) = (𝑗𝐼 ↦ (𝑅 Σg (𝑘𝐼 ↦ ((𝑖uncurry 𝑓𝑘)(.r𝑅)(𝑘𝑀𝑗)))))) → ∃𝑛 ∈ (Base‘(𝐼 Mat 𝑅))(𝑛(.r‘(𝐼 Mat 𝑅))𝑀) = (1r‘(𝐼 Mat 𝑅))))
307209, 306sylani 606 . . . . . 6 ((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) → ((𝑓:𝐼⟶((Base‘𝑅) ↑m 𝐼) ∧ ∀𝑖𝐼 ((𝑅 unitVec 𝐼)‘𝑖) = (𝑗𝐼 ↦ (𝑅 Σg (𝑘𝐼 ↦ ((𝑖uncurry 𝑓𝑘)(.r𝑅)(𝑘𝑀𝑗)))))) → ∃𝑛 ∈ (Base‘(𝐼 Mat 𝑅))(𝑛(.r‘(𝐼 Mat 𝑅))𝑀) = (1r‘(𝐼 Mat 𝑅))))
308307exlimdv 1934 . . . . 5 ((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) → (∃𝑓(𝑓:𝐼⟶((Base‘𝑅) ↑m 𝐼) ∧ ∀𝑖𝐼 ((𝑅 unitVec 𝐼)‘𝑖) = (𝑗𝐼 ↦ (𝑅 Σg (𝑘𝐼 ↦ ((𝑖uncurry 𝑓𝑘)(.r𝑅)(𝑘𝑀𝑗)))))) → ∃𝑛 ∈ (Base‘(𝐼 Mat 𝑅))(𝑛(.r‘(𝐼 Mat 𝑅))𝑀) = (1r‘(𝐼 Mat 𝑅))))
309308imp 410 . . . 4 (((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ ∃𝑓(𝑓:𝐼⟶((Base‘𝑅) ↑m 𝐼) ∧ ∀𝑖𝐼 ((𝑅 unitVec 𝐼)‘𝑖) = (𝑗𝐼 ↦ (𝑅 Σg (𝑘𝐼 ↦ ((𝑖uncurry 𝑓𝑘)(.r𝑅)(𝑘𝑀𝑗))))))) → ∃𝑛 ∈ (Base‘(𝐼 Mat 𝑅))(𝑛(.r‘(𝐼 Mat 𝑅))𝑀) = (1r‘(𝐼 Mat 𝑅)))
310309adantlr 714 . . 3 ((((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ 𝐼 ≠ ∅) ∧ ∃𝑓(𝑓:𝐼⟶((Base‘𝑅) ↑m 𝐼) ∧ ∀𝑖𝐼 ((𝑅 unitVec 𝐼)‘𝑖) = (𝑗𝐼 ↦ (𝑅 Σg (𝑘𝐼 ↦ ((𝑖uncurry 𝑓𝑘)(.r𝑅)(𝑘𝑀𝑗))))))) → ∃𝑛 ∈ (Base‘(𝐼 Mat 𝑅))(𝑛(.r‘(𝐼 Mat 𝑅))𝑀) = (1r‘(𝐼 Mat 𝑅)))
311208, 310syldan 594 . 2 ((((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ 𝐼 ≠ ∅) ∧ curry 𝑀 LIndF (𝑅 freeLMod 𝐼)) → ∃𝑛 ∈ (Base‘(𝐼 Mat 𝑅))(𝑛(.r‘(𝐼 Mat 𝑅))𝑀) = (1r‘(𝐼 Mat 𝑅)))
3126simprbi 500 . . . 4 (𝑅 ∈ Field → 𝑅 ∈ CRing)
313 eqid 2798 . . . . . . . . . 10 (𝐼 maDet 𝑅) = (𝐼 maDet 𝑅)
314313, 1, 2, 14mdetcl 21201 . . . . . . . . 9 ((𝑅 ∈ CRing ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) → ((𝐼 maDet 𝑅)‘𝑀) ∈ (Base‘𝑅))
315313, 1, 2, 14mdetcl 21201 . . . . . . . . 9 ((𝑅 ∈ CRing ∧ 𝑛 ∈ (Base‘(𝐼 Mat 𝑅))) → ((𝐼 maDet 𝑅)‘𝑛) ∈ (Base‘𝑅))
316 eqid 2798 . . . . . . . . . 10 (∥r𝑅) = (∥r𝑅)
31714, 316, 121dvdsrmul 19394 . . . . . . . . 9 ((((𝐼 maDet 𝑅)‘𝑀) ∈ (Base‘𝑅) ∧ ((𝐼 maDet 𝑅)‘𝑛) ∈ (Base‘𝑅)) → ((𝐼 maDet 𝑅)‘𝑀)(∥r𝑅)(((𝐼 maDet 𝑅)‘𝑛)(.r𝑅)((𝐼 maDet 𝑅)‘𝑀)))
318314, 315, 317syl2an 598 . . . . . . . 8 (((𝑅 ∈ CRing ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ (𝑅 ∈ CRing ∧ 𝑛 ∈ (Base‘(𝐼 Mat 𝑅)))) → ((𝐼 maDet 𝑅)‘𝑀)(∥r𝑅)(((𝐼 maDet 𝑅)‘𝑛)(.r𝑅)((𝐼 maDet 𝑅)‘𝑀)))
319318anandis 677 . . . . . . 7 ((𝑅 ∈ CRing ∧ (𝑀 ∈ (Base‘(𝐼 Mat 𝑅)) ∧ 𝑛 ∈ (Base‘(𝐼 Mat 𝑅)))) → ((𝐼 maDet 𝑅)‘𝑀)(∥r𝑅)(((𝐼 maDet 𝑅)‘𝑛)(.r𝑅)((𝐼 maDet 𝑅)‘𝑀)))
320319anassrs 471 . . . . . 6 (((𝑅 ∈ CRing ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ 𝑛 ∈ (Base‘(𝐼 Mat 𝑅))) → ((𝐼 maDet 𝑅)‘𝑀)(∥r𝑅)(((𝐼 maDet 𝑅)‘𝑛)(.r𝑅)((𝐼 maDet 𝑅)‘𝑀)))
321320adantrr 716 . . . . 5 (((𝑅 ∈ CRing ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ (𝑛 ∈ (Base‘(𝐼 Mat 𝑅)) ∧ (𝑛(.r‘(𝐼 Mat 𝑅))𝑀) = (1r‘(𝐼 Mat 𝑅)))) → ((𝐼 maDet 𝑅)‘𝑀)(∥r𝑅)(((𝐼 maDet 𝑅)‘𝑛)(.r𝑅)((𝐼 maDet 𝑅)‘𝑀)))
322 fveq2 6645 . . . . . . . . 9 ((𝑛(.r‘(𝐼 Mat 𝑅))𝑀) = (1r‘(𝐼 Mat 𝑅)) → ((𝐼 maDet 𝑅)‘(𝑛(.r‘(𝐼 Mat 𝑅))𝑀)) = ((𝐼 maDet 𝑅)‘(1r‘(𝐼 Mat 𝑅))))
3231, 2, 313, 121, 290mdetmul 21228 . . . . . . . . . . . 12 ((𝑅 ∈ CRing ∧ 𝑛 ∈ (Base‘(𝐼 Mat 𝑅)) ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) → ((𝐼 maDet 𝑅)‘(𝑛(.r‘(𝐼 Mat 𝑅))𝑀)) = (((𝐼 maDet 𝑅)‘𝑛)(.r𝑅)((𝐼 maDet 𝑅)‘𝑀)))
3243233expa 1115 . . . . . . . . . . 11 (((𝑅 ∈ CRing ∧ 𝑛 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) → ((𝐼 maDet 𝑅)‘(𝑛(.r‘(𝐼 Mat 𝑅))𝑀)) = (((𝐼 maDet 𝑅)‘𝑛)(.r𝑅)((𝐼 maDet 𝑅)‘𝑀)))
325324an32s 651 . . . . . . . . . 10 (((𝑅 ∈ CRing ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ 𝑛 ∈ (Base‘(𝐼 Mat 𝑅))) → ((𝐼 maDet 𝑅)‘(𝑛(.r‘(𝐼 Mat 𝑅))𝑀)) = (((𝐼 maDet 𝑅)‘𝑛)(.r𝑅)((𝐼 maDet 𝑅)‘𝑀)))
326313, 1, 239, 233mdet1 21206 . . . . . . . . . . . 12 ((𝑅 ∈ CRing ∧ 𝐼 ∈ Fin) → ((𝐼 maDet 𝑅)‘(1r‘(𝐼 Mat 𝑅))) = (1r𝑅))
3274, 326sylan2 595 . . . . . . . . . . 11 ((𝑅 ∈ CRing ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) → ((𝐼 maDet 𝑅)‘(1r‘(𝐼 Mat 𝑅))) = (1r𝑅))
328327adantr 484 . . . . . . . . . 10 (((𝑅 ∈ CRing ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ 𝑛 ∈ (Base‘(𝐼 Mat 𝑅))) → ((𝐼 maDet 𝑅)‘(1r‘(𝐼 Mat 𝑅))) = (1r𝑅))
329325, 328eqeq12d 2814 . . . . . . . . 9 (((𝑅 ∈ CRing ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ 𝑛 ∈ (Base‘(𝐼 Mat 𝑅))) → (((𝐼 maDet 𝑅)‘(𝑛(.r‘(𝐼 Mat 𝑅))𝑀)) = ((𝐼 maDet 𝑅)‘(1r‘(𝐼 Mat 𝑅))) ↔ (((𝐼 maDet 𝑅)‘𝑛)(.r𝑅)((𝐼 maDet 𝑅)‘𝑀)) = (1r𝑅)))
330322, 329syl5ib 247 . . . . . . . 8 (((𝑅 ∈ CRing ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ 𝑛 ∈ (Base‘(𝐼 Mat 𝑅))) → ((𝑛(.r‘(𝐼 Mat 𝑅))𝑀) = (1r‘(𝐼 Mat 𝑅)) → (((𝐼 maDet 𝑅)‘𝑛)(.r𝑅)((𝐼 maDet 𝑅)‘𝑀)) = (1r𝑅)))
331330impr 458 . . . . . . 7 (((𝑅 ∈ CRing ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ (𝑛 ∈ (Base‘(𝐼 Mat 𝑅)) ∧ (𝑛(.r‘(𝐼 Mat 𝑅))𝑀) = (1r‘(𝐼 Mat 𝑅)))) → (((𝐼 maDet 𝑅)‘𝑛)(.r𝑅)((𝐼 maDet 𝑅)‘𝑀)) = (1r𝑅))
332331breq2d 5042 . . . . . 6 (((𝑅 ∈ CRing ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ (𝑛 ∈ (Base‘(𝐼 Mat 𝑅)) ∧ (𝑛(.r‘(𝐼 Mat 𝑅))𝑀) = (1r‘(𝐼 Mat 𝑅)))) → (((𝐼 maDet 𝑅)‘𝑀)(∥r𝑅)(((𝐼 maDet 𝑅)‘𝑛)(.r𝑅)((𝐼 maDet 𝑅)‘𝑀)) ↔ ((𝐼 maDet 𝑅)‘𝑀)(∥r𝑅)(1r𝑅)))
333 eqid 2798 . . . . . . . 8 (Unit‘𝑅) = (Unit‘𝑅)
334333, 233, 316crngunit 19408 . . . . . . 7 (𝑅 ∈ CRing → (((𝐼 maDet 𝑅)‘𝑀) ∈ (Unit‘𝑅) ↔ ((𝐼 maDet 𝑅)‘𝑀)(∥r𝑅)(1r𝑅)))
335334ad2antrr 725 . . . . . 6 (((𝑅 ∈ CRing ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ (𝑛 ∈ (Base‘(𝐼 Mat 𝑅)) ∧ (𝑛(.r‘(𝐼 Mat 𝑅))𝑀) = (1r‘(𝐼 Mat 𝑅)))) → (((𝐼 maDet 𝑅)‘𝑀) ∈ (Unit‘𝑅) ↔ ((𝐼 maDet 𝑅)‘𝑀)(∥r𝑅)(1r𝑅)))
336332, 335bitr4d 285 . . . . 5 (((𝑅 ∈ CRing ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ (𝑛 ∈ (Base‘(𝐼 Mat 𝑅)) ∧ (𝑛(.r‘(𝐼 Mat 𝑅))𝑀) = (1r‘(𝐼 Mat 𝑅)))) → (((𝐼 maDet 𝑅)‘𝑀)(∥r𝑅)(((𝐼 maDet 𝑅)‘𝑛)(.r𝑅)((𝐼 maDet 𝑅)‘𝑀)) ↔ ((𝐼 maDet 𝑅)‘𝑀) ∈ (Unit‘𝑅)))
337321, 336mpbid 235 . . . 4 (((𝑅 ∈ CRing ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ (𝑛 ∈ (Base‘(𝐼 Mat 𝑅)) ∧ (𝑛(.r‘(𝐼 Mat 𝑅))𝑀) = (1r‘(𝐼 Mat 𝑅)))) → ((𝐼 maDet 𝑅)‘𝑀) ∈ (Unit‘𝑅))
338312, 337sylanl1 679 . . 3 (((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ (𝑛 ∈ (Base‘(𝐼 Mat 𝑅)) ∧ (𝑛(.r‘(𝐼 Mat 𝑅))𝑀) = (1r‘(𝐼 Mat 𝑅)))) → ((𝐼 maDet 𝑅)‘𝑀) ∈ (Unit‘𝑅))
339338ad4ant14 751 . 2 (((((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ 𝐼 ≠ ∅) ∧ curry 𝑀 LIndF (𝑅 freeLMod 𝐼)) ∧ (𝑛 ∈ (Base‘(𝐼 Mat 𝑅)) ∧ (𝑛(.r‘(𝐼 Mat 𝑅))𝑀) = (1r‘(𝐼 Mat 𝑅)))) → ((𝐼 maDet 𝑅)‘𝑀) ∈ (Unit‘𝑅))
340311, 339rexlimddv 3250 1 ((((𝑅 ∈ Field ∧ 𝑀 ∈ (Base‘(𝐼 Mat 𝑅))) ∧ 𝐼 ≠ ∅) ∧ curry 𝑀 LIndF (𝑅 freeLMod 𝐼)) → ((𝐼 maDet 𝑅)‘𝑀) ∈ (Unit‘𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wex 1781  wcel 2111  wne 2987  wral 3106  wrex 3107  Vcvv 3441  cdif 3878  c0 4243  ifcif 4425  {csn 4525  cotp 4533   class class class wbr 5030  cmpt 5110   × cxp 5517  dom cdm 5519  ran crn 5520  cima 5522   Fn wfn 6319  wf 6320  1-1wf1 6321  1-1-ontowf1o 6323  cfv 6324  (class class class)co 7135  f cof 7387  curry ccur 7914  uncurry cunc 7915  m cmap 8389  cen 8489  Fincfn 8492   finSupp cfsupp 8817  Basecbs 16475  .rcmulr 16558  Scalarcsca 16560   ·𝑠 cvsca 16561  0gc0g 16705   Σg cgsu 16706  1rcur 19244  Ringcrg 19290  CRingccrg 19291  rcdsr 19384  Unitcui 19385  DivRingcdr 19495  Fieldcfield 19496  LModclmod 19627  LSpanclspn 19736  LBasisclbs 19839  NzRingcnzr 20023   freeLMod cfrlm 20435   unitVec cuvc 20471   LIndF clindf 20493  LIndSclinds 20494   maMul cmmul 20990   Mat cmat 21012   maDet cmdat 21189
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-addf 10605  ax-mulf 10606
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-xor 1503  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-ot 4534  df-uni 4801  df-int 4839  df-iun 4883  df-iin 4884  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-se 5479  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-isom 6333  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-of 7389  df-om 7561  df-1st 7671  df-2nd 7672  df-supp 7814  df-tpos 7875  df-cur 7916  df-unc 7917  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-2o 8086  df-oadd 8089  df-er 8272  df-map 8391  df-pm 8392  df-ixp 8445  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-fsupp 8818  df-sup 8890  df-oi 8958  df-card 9352  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-xnn0 11956  df-z 11970  df-dec 12087  df-uz 12232  df-rp 12378  df-fz 12886  df-fzo 13029  df-seq 13365  df-exp 13426  df-hash 13687  df-word 13858  df-lsw 13906  df-concat 13914  df-s1 13941  df-substr 13994  df-pfx 14024  df-splice 14103  df-reverse 14112  df-s2 14201  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-mulr 16571  df-starv 16572  df-sca 16573  df-vsca 16574  df-ip 16575  df-tset 16576  df-ple 16577  df-ds 16579  df-unif 16580  df-hom 16581  df-cco 16582  df-0g 16707  df-gsum 16708  df-prds 16713  df-pws 16715  df-mre 16849  df-mrc 16850  df-mri 16851  df-acs 16852  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-mhm 17948  df-submnd 17949  df-efmnd 18026  df-grp 18098  df-minusg 18099  df-sbg 18100  df-mulg 18217  df-subg 18268  df-ghm 18348  df-gim 18391  df-cntz 18439  df-oppg 18466  df-symg 18488  df-pmtr 18562  df-psgn 18611  df-evpm 18612  df-cmn 18900  df-abl 18901  df-mgp 19233  df-ur 19245  df-srg 19249  df-ring 19292  df-cring 19293  df-oppr 19369  df-dvdsr 19387  df-unit 19388  df-invr 19418  df-dvr 19429  df-rnghom 19463  df-drng 19497  df-field 19498  df-subrg 19526  df-lmod 19629  df-lss 19697  df-lsp 19737  df-lmhm 19787  df-lbs 19840  df-lvec 19868  df-sra 19937  df-rgmod 19938  df-nzr 20024  df-cnfld 20092  df-zring 20164  df-zrh 20197  df-dsmm 20421  df-frlm 20436  df-uvc 20472  df-lindf 20495  df-linds 20496  df-mamu 20991  df-mat 21013  df-mdet 21190
This theorem is referenced by:  matunitlindf  35055
  Copyright terms: Public domain W3C validator