Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rexabslelem Structured version   Visualization version   GIF version

Theorem rexabslelem 42466
Description: An indexed set of absolute values of real numbers is bounded if and only if the original values are bounded above and below. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
rexabslelem.1 𝑥𝜑
rexabslelem.2 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
Assertion
Ref Expression
rexabslelem (𝜑 → (∃𝑦 ∈ ℝ ∀𝑥𝐴 (abs‘𝐵) ≤ 𝑦 ↔ (∃𝑤 ∈ ℝ ∀𝑥𝐴 𝐵𝑤 ∧ ∃𝑧 ∈ ℝ ∀𝑥𝐴 𝑧𝐵)))
Distinct variable groups:   𝑤,𝐴,𝑦,𝑧   𝑤,𝐵,𝑦,𝑧   𝜑,𝑤,𝑦,𝑧   𝑥,𝑤,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥)   𝐴(𝑥)   𝐵(𝑥)

Proof of Theorem rexabslelem
StepHypRef Expression
1 simp2 1134 . . . . . 6 ((𝜑𝑦 ∈ ℝ ∧ ∀𝑥𝐴 (abs‘𝐵) ≤ 𝑦) → 𝑦 ∈ ℝ)
2 rexabslelem.1 . . . . . . . 8 𝑥𝜑
3 nfv 1915 . . . . . . . 8 𝑥 𝑦 ∈ ℝ
4 nfra1 3147 . . . . . . . 8 𝑥𝑥𝐴 (abs‘𝐵) ≤ 𝑦
52, 3, 4nf3an 1902 . . . . . . 7 𝑥(𝜑𝑦 ∈ ℝ ∧ ∀𝑥𝐴 (abs‘𝐵) ≤ 𝑦)
6 rexabslelem.2 . . . . . . . . . 10 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
763ad2antl1 1182 . . . . . . . . 9 (((𝜑𝑦 ∈ ℝ ∧ ∀𝑥𝐴 (abs‘𝐵) ≤ 𝑦) ∧ 𝑥𝐴) → 𝐵 ∈ ℝ)
86recnd 10720 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → 𝐵 ∈ ℂ)
983ad2antl1 1182 . . . . . . . . . 10 (((𝜑𝑦 ∈ ℝ ∧ ∀𝑥𝐴 (abs‘𝐵) ≤ 𝑦) ∧ 𝑥𝐴) → 𝐵 ∈ ℂ)
109abscld 14857 . . . . . . . . 9 (((𝜑𝑦 ∈ ℝ ∧ ∀𝑥𝐴 (abs‘𝐵) ≤ 𝑦) ∧ 𝑥𝐴) → (abs‘𝐵) ∈ ℝ)
111adantr 484 . . . . . . . . 9 (((𝜑𝑦 ∈ ℝ ∧ ∀𝑥𝐴 (abs‘𝐵) ≤ 𝑦) ∧ 𝑥𝐴) → 𝑦 ∈ ℝ)
127leabsd 14835 . . . . . . . . 9 (((𝜑𝑦 ∈ ℝ ∧ ∀𝑥𝐴 (abs‘𝐵) ≤ 𝑦) ∧ 𝑥𝐴) → 𝐵 ≤ (abs‘𝐵))
13 rspa 3135 . . . . . . . . . 10 ((∀𝑥𝐴 (abs‘𝐵) ≤ 𝑦𝑥𝐴) → (abs‘𝐵) ≤ 𝑦)
14133ad2antl3 1184 . . . . . . . . 9 (((𝜑𝑦 ∈ ℝ ∧ ∀𝑥𝐴 (abs‘𝐵) ≤ 𝑦) ∧ 𝑥𝐴) → (abs‘𝐵) ≤ 𝑦)
157, 10, 11, 12, 14letrd 10848 . . . . . . . 8 (((𝜑𝑦 ∈ ℝ ∧ ∀𝑥𝐴 (abs‘𝐵) ≤ 𝑦) ∧ 𝑥𝐴) → 𝐵𝑦)
1615ex 416 . . . . . . 7 ((𝜑𝑦 ∈ ℝ ∧ ∀𝑥𝐴 (abs‘𝐵) ≤ 𝑦) → (𝑥𝐴𝐵𝑦))
175, 16ralrimi 3144 . . . . . 6 ((𝜑𝑦 ∈ ℝ ∧ ∀𝑥𝐴 (abs‘𝐵) ≤ 𝑦) → ∀𝑥𝐴 𝐵𝑦)
18 brralrspcev 5096 . . . . . 6 ((𝑦 ∈ ℝ ∧ ∀𝑥𝐴 𝐵𝑦) → ∃𝑤 ∈ ℝ ∀𝑥𝐴 𝐵𝑤)
191, 17, 18syl2anc 587 . . . . 5 ((𝜑𝑦 ∈ ℝ ∧ ∀𝑥𝐴 (abs‘𝐵) ≤ 𝑦) → ∃𝑤 ∈ ℝ ∀𝑥𝐴 𝐵𝑤)
201renegcld 11118 . . . . . 6 ((𝜑𝑦 ∈ ℝ ∧ ∀𝑥𝐴 (abs‘𝐵) ≤ 𝑦) → -𝑦 ∈ ℝ)
216adantlr 714 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) → 𝐵 ∈ ℝ)
22 simplr 768 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) → 𝑦 ∈ ℝ)
23 absle 14736 . . . . . . . . . . . 12 ((𝐵 ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((abs‘𝐵) ≤ 𝑦 ↔ (-𝑦𝐵𝐵𝑦)))
2421, 22, 23syl2anc 587 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) → ((abs‘𝐵) ≤ 𝑦 ↔ (-𝑦𝐵𝐵𝑦)))
25243adantl3 1165 . . . . . . . . . 10 (((𝜑𝑦 ∈ ℝ ∧ ∀𝑥𝐴 (abs‘𝐵) ≤ 𝑦) ∧ 𝑥𝐴) → ((abs‘𝐵) ≤ 𝑦 ↔ (-𝑦𝐵𝐵𝑦)))
2614, 25mpbid 235 . . . . . . . . 9 (((𝜑𝑦 ∈ ℝ ∧ ∀𝑥𝐴 (abs‘𝐵) ≤ 𝑦) ∧ 𝑥𝐴) → (-𝑦𝐵𝐵𝑦))
2726simpld 498 . . . . . . . 8 (((𝜑𝑦 ∈ ℝ ∧ ∀𝑥𝐴 (abs‘𝐵) ≤ 𝑦) ∧ 𝑥𝐴) → -𝑦𝐵)
2827ex 416 . . . . . . 7 ((𝜑𝑦 ∈ ℝ ∧ ∀𝑥𝐴 (abs‘𝐵) ≤ 𝑦) → (𝑥𝐴 → -𝑦𝐵))
295, 28ralrimi 3144 . . . . . 6 ((𝜑𝑦 ∈ ℝ ∧ ∀𝑥𝐴 (abs‘𝐵) ≤ 𝑦) → ∀𝑥𝐴 -𝑦𝐵)
30 breq1 5039 . . . . . . . 8 (𝑧 = -𝑦 → (𝑧𝐵 ↔ -𝑦𝐵))
3130ralbidv 3126 . . . . . . 7 (𝑧 = -𝑦 → (∀𝑥𝐴 𝑧𝐵 ↔ ∀𝑥𝐴 -𝑦𝐵))
3231rspcev 3543 . . . . . 6 ((-𝑦 ∈ ℝ ∧ ∀𝑥𝐴 -𝑦𝐵) → ∃𝑧 ∈ ℝ ∀𝑥𝐴 𝑧𝐵)
3320, 29, 32syl2anc 587 . . . . 5 ((𝜑𝑦 ∈ ℝ ∧ ∀𝑥𝐴 (abs‘𝐵) ≤ 𝑦) → ∃𝑧 ∈ ℝ ∀𝑥𝐴 𝑧𝐵)
3419, 33jca 515 . . . 4 ((𝜑𝑦 ∈ ℝ ∧ ∀𝑥𝐴 (abs‘𝐵) ≤ 𝑦) → (∃𝑤 ∈ ℝ ∀𝑥𝐴 𝐵𝑤 ∧ ∃𝑧 ∈ ℝ ∀𝑥𝐴 𝑧𝐵))
35343exp 1116 . . 3 (𝜑 → (𝑦 ∈ ℝ → (∀𝑥𝐴 (abs‘𝐵) ≤ 𝑦 → (∃𝑤 ∈ ℝ ∀𝑥𝐴 𝐵𝑤 ∧ ∃𝑧 ∈ ℝ ∀𝑥𝐴 𝑧𝐵))))
3635rexlimdv 3207 . 2 (𝜑 → (∃𝑦 ∈ ℝ ∀𝑥𝐴 (abs‘𝐵) ≤ 𝑦 → (∃𝑤 ∈ ℝ ∀𝑥𝐴 𝐵𝑤 ∧ ∃𝑧 ∈ ℝ ∀𝑥𝐴 𝑧𝐵)))
37 renegcl 11000 . . . . . . . . . . . . . 14 (𝑧 ∈ ℝ → -𝑧 ∈ ℝ)
3837adantl 485 . . . . . . . . . . . . 13 ((𝑤 ∈ ℝ ∧ 𝑧 ∈ ℝ) → -𝑧 ∈ ℝ)
39 simpl 486 . . . . . . . . . . . . 13 ((𝑤 ∈ ℝ ∧ 𝑧 ∈ ℝ) → 𝑤 ∈ ℝ)
4038, 39ifcld 4469 . . . . . . . . . . . 12 ((𝑤 ∈ ℝ ∧ 𝑧 ∈ ℝ) → if(𝑤 ≤ -𝑧, -𝑧, 𝑤) ∈ ℝ)
4140ad5ant24 760 . . . . . . . . . . 11 (((((𝜑𝑤 ∈ ℝ) ∧ ∀𝑥𝐴 𝐵𝑤) ∧ 𝑧 ∈ ℝ) ∧ ∀𝑥𝐴 𝑧𝐵) → if(𝑤 ≤ -𝑧, -𝑧, 𝑤) ∈ ℝ)
42 nfv 1915 . . . . . . . . . . . . . . . 16 𝑥 𝑤 ∈ ℝ
432, 42nfan 1900 . . . . . . . . . . . . . . 15 𝑥(𝜑𝑤 ∈ ℝ)
44 nfra1 3147 . . . . . . . . . . . . . . 15 𝑥𝑥𝐴 𝐵𝑤
4543, 44nfan 1900 . . . . . . . . . . . . . 14 𝑥((𝜑𝑤 ∈ ℝ) ∧ ∀𝑥𝐴 𝐵𝑤)
46 nfv 1915 . . . . . . . . . . . . . 14 𝑥 𝑧 ∈ ℝ
4745, 46nfan 1900 . . . . . . . . . . . . 13 𝑥(((𝜑𝑤 ∈ ℝ) ∧ ∀𝑥𝐴 𝐵𝑤) ∧ 𝑧 ∈ ℝ)
48 nfra1 3147 . . . . . . . . . . . . 13 𝑥𝑥𝐴 𝑧𝐵
4947, 48nfan 1900 . . . . . . . . . . . 12 𝑥((((𝜑𝑤 ∈ ℝ) ∧ ∀𝑥𝐴 𝐵𝑤) ∧ 𝑧 ∈ ℝ) ∧ ∀𝑥𝐴 𝑧𝐵)
5040ad5ant23 759 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑤 ∈ ℝ) ∧ 𝑧 ∈ ℝ) ∧ ∀𝑥𝐴 𝑧𝐵) ∧ 𝑥𝐴) → if(𝑤 ≤ -𝑧, -𝑧, 𝑤) ∈ ℝ)
5150renegcld 11118 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑤 ∈ ℝ) ∧ 𝑧 ∈ ℝ) ∧ ∀𝑥𝐴 𝑧𝐵) ∧ 𝑥𝐴) → -if(𝑤 ≤ -𝑧, -𝑧, 𝑤) ∈ ℝ)
52 simpllr 775 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑤 ∈ ℝ) ∧ 𝑧 ∈ ℝ) ∧ ∀𝑥𝐴 𝑧𝐵) ∧ 𝑥𝐴) → 𝑧 ∈ ℝ)
536ad5ant15 758 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑤 ∈ ℝ) ∧ 𝑧 ∈ ℝ) ∧ ∀𝑥𝐴 𝑧𝐵) ∧ 𝑥𝐴) → 𝐵 ∈ ℝ)
54 max2 12634 . . . . . . . . . . . . . . . . . . . . 21 ((𝑤 ∈ ℝ ∧ -𝑧 ∈ ℝ) → -𝑧 ≤ if(𝑤 ≤ -𝑧, -𝑧, 𝑤))
5539, 38, 54syl2anc 587 . . . . . . . . . . . . . . . . . . . 20 ((𝑤 ∈ ℝ ∧ 𝑧 ∈ ℝ) → -𝑧 ≤ if(𝑤 ≤ -𝑧, -𝑧, 𝑤))
5638, 40lenegd 11270 . . . . . . . . . . . . . . . . . . . 20 ((𝑤 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (-𝑧 ≤ if(𝑤 ≤ -𝑧, -𝑧, 𝑤) ↔ -if(𝑤 ≤ -𝑧, -𝑧, 𝑤) ≤ --𝑧))
5755, 56mpbid 235 . . . . . . . . . . . . . . . . . . 19 ((𝑤 ∈ ℝ ∧ 𝑧 ∈ ℝ) → -if(𝑤 ≤ -𝑧, -𝑧, 𝑤) ≤ --𝑧)
58 recn 10678 . . . . . . . . . . . . . . . . . . . . 21 (𝑧 ∈ ℝ → 𝑧 ∈ ℂ)
5958adantl 485 . . . . . . . . . . . . . . . . . . . 20 ((𝑤 ∈ ℝ ∧ 𝑧 ∈ ℝ) → 𝑧 ∈ ℂ)
6059negnegd 11039 . . . . . . . . . . . . . . . . . . 19 ((𝑤 ∈ ℝ ∧ 𝑧 ∈ ℝ) → --𝑧 = 𝑧)
6157, 60breqtrd 5062 . . . . . . . . . . . . . . . . . 18 ((𝑤 ∈ ℝ ∧ 𝑧 ∈ ℝ) → -if(𝑤 ≤ -𝑧, -𝑧, 𝑤) ≤ 𝑧)
6261ad5ant23 759 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑤 ∈ ℝ) ∧ 𝑧 ∈ ℝ) ∧ ∀𝑥𝐴 𝑧𝐵) ∧ 𝑥𝐴) → -if(𝑤 ≤ -𝑧, -𝑧, 𝑤) ≤ 𝑧)
63 rspa 3135 . . . . . . . . . . . . . . . . . 18 ((∀𝑥𝐴 𝑧𝐵𝑥𝐴) → 𝑧𝐵)
6463adantll 713 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑤 ∈ ℝ) ∧ 𝑧 ∈ ℝ) ∧ ∀𝑥𝐴 𝑧𝐵) ∧ 𝑥𝐴) → 𝑧𝐵)
6551, 52, 53, 62, 64letrd 10848 . . . . . . . . . . . . . . . 16 (((((𝜑𝑤 ∈ ℝ) ∧ 𝑧 ∈ ℝ) ∧ ∀𝑥𝐴 𝑧𝐵) ∧ 𝑥𝐴) → -if(𝑤 ≤ -𝑧, -𝑧, 𝑤) ≤ 𝐵)
6665adantl3r 749 . . . . . . . . . . . . . . 15 ((((((𝜑𝑤 ∈ ℝ) ∧ ∀𝑥𝐴 𝐵𝑤) ∧ 𝑧 ∈ ℝ) ∧ ∀𝑥𝐴 𝑧𝐵) ∧ 𝑥𝐴) → -if(𝑤 ≤ -𝑧, -𝑧, 𝑤) ≤ 𝐵)
676ad5ant15 758 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑤 ∈ ℝ) ∧ ∀𝑥𝐴 𝐵𝑤) ∧ 𝑧 ∈ ℝ) ∧ 𝑥𝐴) → 𝐵 ∈ ℝ)
68 simp-4r 783 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑤 ∈ ℝ) ∧ ∀𝑥𝐴 𝐵𝑤) ∧ 𝑧 ∈ ℝ) ∧ 𝑥𝐴) → 𝑤 ∈ ℝ)
6940ad5ant24 760 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑤 ∈ ℝ) ∧ ∀𝑥𝐴 𝐵𝑤) ∧ 𝑧 ∈ ℝ) ∧ 𝑥𝐴) → if(𝑤 ≤ -𝑧, -𝑧, 𝑤) ∈ ℝ)
70 rspa 3135 . . . . . . . . . . . . . . . . . 18 ((∀𝑥𝐴 𝐵𝑤𝑥𝐴) → 𝐵𝑤)
7170ad4ant24 753 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑤 ∈ ℝ) ∧ ∀𝑥𝐴 𝐵𝑤) ∧ 𝑧 ∈ ℝ) ∧ 𝑥𝐴) → 𝐵𝑤)
72 max1 12632 . . . . . . . . . . . . . . . . . . 19 ((𝑤 ∈ ℝ ∧ -𝑧 ∈ ℝ) → 𝑤 ≤ if(𝑤 ≤ -𝑧, -𝑧, 𝑤))
7339, 38, 72syl2anc 587 . . . . . . . . . . . . . . . . . 18 ((𝑤 ∈ ℝ ∧ 𝑧 ∈ ℝ) → 𝑤 ≤ if(𝑤 ≤ -𝑧, -𝑧, 𝑤))
7473ad5ant24 760 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑤 ∈ ℝ) ∧ ∀𝑥𝐴 𝐵𝑤) ∧ 𝑧 ∈ ℝ) ∧ 𝑥𝐴) → 𝑤 ≤ if(𝑤 ≤ -𝑧, -𝑧, 𝑤))
7567, 68, 69, 71, 74letrd 10848 . . . . . . . . . . . . . . . 16 (((((𝜑𝑤 ∈ ℝ) ∧ ∀𝑥𝐴 𝐵𝑤) ∧ 𝑧 ∈ ℝ) ∧ 𝑥𝐴) → 𝐵 ≤ if(𝑤 ≤ -𝑧, -𝑧, 𝑤))
7675adantlr 714 . . . . . . . . . . . . . . 15 ((((((𝜑𝑤 ∈ ℝ) ∧ ∀𝑥𝐴 𝐵𝑤) ∧ 𝑧 ∈ ℝ) ∧ ∀𝑥𝐴 𝑧𝐵) ∧ 𝑥𝐴) → 𝐵 ≤ if(𝑤 ≤ -𝑧, -𝑧, 𝑤))
7766, 76jca 515 . . . . . . . . . . . . . 14 ((((((𝜑𝑤 ∈ ℝ) ∧ ∀𝑥𝐴 𝐵𝑤) ∧ 𝑧 ∈ ℝ) ∧ ∀𝑥𝐴 𝑧𝐵) ∧ 𝑥𝐴) → (-if(𝑤 ≤ -𝑧, -𝑧, 𝑤) ≤ 𝐵𝐵 ≤ if(𝑤 ≤ -𝑧, -𝑧, 𝑤)))
786adantlr 714 . . . . . . . . . . . . . . . . 17 (((𝜑𝑤 ∈ ℝ) ∧ 𝑥𝐴) → 𝐵 ∈ ℝ)
79783adant2 1128 . . . . . . . . . . . . . . . 16 (((𝜑𝑤 ∈ ℝ) ∧ 𝑧 ∈ ℝ ∧ 𝑥𝐴) → 𝐵 ∈ ℝ)
8040adantll 713 . . . . . . . . . . . . . . . . 17 (((𝜑𝑤 ∈ ℝ) ∧ 𝑧 ∈ ℝ) → if(𝑤 ≤ -𝑧, -𝑧, 𝑤) ∈ ℝ)
81803adant3 1129 . . . . . . . . . . . . . . . 16 (((𝜑𝑤 ∈ ℝ) ∧ 𝑧 ∈ ℝ ∧ 𝑥𝐴) → if(𝑤 ≤ -𝑧, -𝑧, 𝑤) ∈ ℝ)
8279, 81absled 14851 . . . . . . . . . . . . . . 15 (((𝜑𝑤 ∈ ℝ) ∧ 𝑧 ∈ ℝ ∧ 𝑥𝐴) → ((abs‘𝐵) ≤ if(𝑤 ≤ -𝑧, -𝑧, 𝑤) ↔ (-if(𝑤 ≤ -𝑧, -𝑧, 𝑤) ≤ 𝐵𝐵 ≤ if(𝑤 ≤ -𝑧, -𝑧, 𝑤))))
8382ad5ant135 1365 . . . . . . . . . . . . . 14 ((((((𝜑𝑤 ∈ ℝ) ∧ ∀𝑥𝐴 𝐵𝑤) ∧ 𝑧 ∈ ℝ) ∧ ∀𝑥𝐴 𝑧𝐵) ∧ 𝑥𝐴) → ((abs‘𝐵) ≤ if(𝑤 ≤ -𝑧, -𝑧, 𝑤) ↔ (-if(𝑤 ≤ -𝑧, -𝑧, 𝑤) ≤ 𝐵𝐵 ≤ if(𝑤 ≤ -𝑧, -𝑧, 𝑤))))
8477, 83mpbird 260 . . . . . . . . . . . . 13 ((((((𝜑𝑤 ∈ ℝ) ∧ ∀𝑥𝐴 𝐵𝑤) ∧ 𝑧 ∈ ℝ) ∧ ∀𝑥𝐴 𝑧𝐵) ∧ 𝑥𝐴) → (abs‘𝐵) ≤ if(𝑤 ≤ -𝑧, -𝑧, 𝑤))
8584ex 416 . . . . . . . . . . . 12 (((((𝜑𝑤 ∈ ℝ) ∧ ∀𝑥𝐴 𝐵𝑤) ∧ 𝑧 ∈ ℝ) ∧ ∀𝑥𝐴 𝑧𝐵) → (𝑥𝐴 → (abs‘𝐵) ≤ if(𝑤 ≤ -𝑧, -𝑧, 𝑤)))
8649, 85ralrimi 3144 . . . . . . . . . . 11 (((((𝜑𝑤 ∈ ℝ) ∧ ∀𝑥𝐴 𝐵𝑤) ∧ 𝑧 ∈ ℝ) ∧ ∀𝑥𝐴 𝑧𝐵) → ∀𝑥𝐴 (abs‘𝐵) ≤ if(𝑤 ≤ -𝑧, -𝑧, 𝑤))
87 brralrspcev 5096 . . . . . . . . . . 11 ((if(𝑤 ≤ -𝑧, -𝑧, 𝑤) ∈ ℝ ∧ ∀𝑥𝐴 (abs‘𝐵) ≤ if(𝑤 ≤ -𝑧, -𝑧, 𝑤)) → ∃𝑦 ∈ ℝ ∀𝑥𝐴 (abs‘𝐵) ≤ 𝑦)
8841, 86, 87syl2anc 587 . . . . . . . . . 10 (((((𝜑𝑤 ∈ ℝ) ∧ ∀𝑥𝐴 𝐵𝑤) ∧ 𝑧 ∈ ℝ) ∧ ∀𝑥𝐴 𝑧𝐵) → ∃𝑦 ∈ ℝ ∀𝑥𝐴 (abs‘𝐵) ≤ 𝑦)
8988exp31 423 . . . . . . . . 9 (((𝜑𝑤 ∈ ℝ) ∧ ∀𝑥𝐴 𝐵𝑤) → (𝑧 ∈ ℝ → (∀𝑥𝐴 𝑧𝐵 → ∃𝑦 ∈ ℝ ∀𝑥𝐴 (abs‘𝐵) ≤ 𝑦)))
9089exp31 423 . . . . . . . 8 (𝜑 → (𝑤 ∈ ℝ → (∀𝑥𝐴 𝐵𝑤 → (𝑧 ∈ ℝ → (∀𝑥𝐴 𝑧𝐵 → ∃𝑦 ∈ ℝ ∀𝑥𝐴 (abs‘𝐵) ≤ 𝑦)))))
9190rexlimdv 3207 . . . . . . 7 (𝜑 → (∃𝑤 ∈ ℝ ∀𝑥𝐴 𝐵𝑤 → (𝑧 ∈ ℝ → (∀𝑥𝐴 𝑧𝐵 → ∃𝑦 ∈ ℝ ∀𝑥𝐴 (abs‘𝐵) ≤ 𝑦))))
9291imp 410 . . . . . 6 ((𝜑 ∧ ∃𝑤 ∈ ℝ ∀𝑥𝐴 𝐵𝑤) → (𝑧 ∈ ℝ → (∀𝑥𝐴 𝑧𝐵 → ∃𝑦 ∈ ℝ ∀𝑥𝐴 (abs‘𝐵) ≤ 𝑦)))
9392rexlimdv 3207 . . . . 5 ((𝜑 ∧ ∃𝑤 ∈ ℝ ∀𝑥𝐴 𝐵𝑤) → (∃𝑧 ∈ ℝ ∀𝑥𝐴 𝑧𝐵 → ∃𝑦 ∈ ℝ ∀𝑥𝐴 (abs‘𝐵) ≤ 𝑦))
9493imp 410 . . . 4 (((𝜑 ∧ ∃𝑤 ∈ ℝ ∀𝑥𝐴 𝐵𝑤) ∧ ∃𝑧 ∈ ℝ ∀𝑥𝐴 𝑧𝐵) → ∃𝑦 ∈ ℝ ∀𝑥𝐴 (abs‘𝐵) ≤ 𝑦)
9594anasss 470 . . 3 ((𝜑 ∧ (∃𝑤 ∈ ℝ ∀𝑥𝐴 𝐵𝑤 ∧ ∃𝑧 ∈ ℝ ∀𝑥𝐴 𝑧𝐵)) → ∃𝑦 ∈ ℝ ∀𝑥𝐴 (abs‘𝐵) ≤ 𝑦)
9695ex 416 . 2 (𝜑 → ((∃𝑤 ∈ ℝ ∀𝑥𝐴 𝐵𝑤 ∧ ∃𝑧 ∈ ℝ ∀𝑥𝐴 𝑧𝐵) → ∃𝑦 ∈ ℝ ∀𝑥𝐴 (abs‘𝐵) ≤ 𝑦))
9736, 96impbid 215 1 (𝜑 → (∃𝑦 ∈ ℝ ∀𝑥𝐴 (abs‘𝐵) ≤ 𝑦 ↔ (∃𝑤 ∈ ℝ ∀𝑥𝐴 𝐵𝑤 ∧ ∃𝑧 ∈ ℝ ∀𝑥𝐴 𝑧𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wnf 1785  wcel 2111  wral 3070  wrex 3071  ifcif 4423   class class class wbr 5036  cfv 6340  cc 10586  cr 10587  cle 10727  -cneg 10922  abscabs 14654
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-sep 5173  ax-nul 5180  ax-pow 5238  ax-pr 5302  ax-un 7465  ax-cnex 10644  ax-resscn 10645  ax-1cn 10646  ax-icn 10647  ax-addcl 10648  ax-addrcl 10649  ax-mulcl 10650  ax-mulrcl 10651  ax-mulcom 10652  ax-addass 10653  ax-mulass 10654  ax-distr 10655  ax-i2m1 10656  ax-1ne0 10657  ax-1rid 10658  ax-rnegex 10659  ax-rrecex 10660  ax-cnre 10661  ax-pre-lttri 10662  ax-pre-lttrn 10663  ax-pre-ltadd 10664  ax-pre-mulgt0 10665  ax-pre-sup 10666
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-nel 3056  df-ral 3075  df-rex 3076  df-reu 3077  df-rmo 3078  df-rab 3079  df-v 3411  df-sbc 3699  df-csb 3808  df-dif 3863  df-un 3865  df-in 3867  df-ss 3877  df-pss 3879  df-nul 4228  df-if 4424  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4802  df-iun 4888  df-br 5037  df-opab 5099  df-mpt 5117  df-tr 5143  df-id 5434  df-eprel 5439  df-po 5447  df-so 5448  df-fr 5487  df-we 5489  df-xp 5534  df-rel 5535  df-cnv 5536  df-co 5537  df-dm 5538  df-rn 5539  df-res 5540  df-ima 5541  df-pred 6131  df-ord 6177  df-on 6178  df-lim 6179  df-suc 6180  df-iota 6299  df-fun 6342  df-fn 6343  df-f 6344  df-f1 6345  df-fo 6346  df-f1o 6347  df-fv 6348  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7586  df-2nd 7700  df-wrecs 7963  df-recs 8024  df-rdg 8062  df-er 8305  df-en 8541  df-dom 8542  df-sdom 8543  df-sup 8952  df-pnf 10728  df-mnf 10729  df-xr 10730  df-ltxr 10731  df-le 10732  df-sub 10923  df-neg 10924  df-div 11349  df-nn 11688  df-2 11750  df-3 11751  df-n0 11948  df-z 12034  df-uz 12296  df-rp 12444  df-seq 13432  df-exp 13493  df-cj 14519  df-re 14520  df-im 14521  df-sqrt 14655  df-abs 14656
This theorem is referenced by:  rexabsle  42467
  Copyright terms: Public domain W3C validator