Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rexabslelem Structured version   Visualization version   GIF version

Theorem rexabslelem 40282
Description: An indexed set of absolute values of real numbers is bounded if and only if the original values are bounded above and below. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
rexabslelem.1 𝑥𝜑
rexabslelem.2 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
Assertion
Ref Expression
rexabslelem (𝜑 → (∃𝑦 ∈ ℝ ∀𝑥𝐴 (abs‘𝐵) ≤ 𝑦 ↔ (∃𝑤 ∈ ℝ ∀𝑥𝐴 𝐵𝑤 ∧ ∃𝑧 ∈ ℝ ∀𝑥𝐴 𝑧𝐵)))
Distinct variable groups:   𝑤,𝐴,𝑦,𝑧   𝑤,𝐵,𝑦,𝑧   𝜑,𝑤,𝑦,𝑧   𝑥,𝑤,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥)   𝐴(𝑥)   𝐵(𝑥)

Proof of Theorem rexabslelem
StepHypRef Expression
1 simp2 1167 . . . . . 6 ((𝜑𝑦 ∈ ℝ ∧ ∀𝑥𝐴 (abs‘𝐵) ≤ 𝑦) → 𝑦 ∈ ℝ)
2 rexabslelem.1 . . . . . . . 8 𝑥𝜑
3 nfv 2009 . . . . . . . 8 𝑥 𝑦 ∈ ℝ
4 nfra1 3088 . . . . . . . 8 𝑥𝑥𝐴 (abs‘𝐵) ≤ 𝑦
52, 3, 4nf3an 2000 . . . . . . 7 𝑥(𝜑𝑦 ∈ ℝ ∧ ∀𝑥𝐴 (abs‘𝐵) ≤ 𝑦)
6 rexabslelem.2 . . . . . . . . . 10 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
763ad2antl1 1236 . . . . . . . . 9 (((𝜑𝑦 ∈ ℝ ∧ ∀𝑥𝐴 (abs‘𝐵) ≤ 𝑦) ∧ 𝑥𝐴) → 𝐵 ∈ ℝ)
86recnd 10322 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → 𝐵 ∈ ℂ)
983ad2antl1 1236 . . . . . . . . . 10 (((𝜑𝑦 ∈ ℝ ∧ ∀𝑥𝐴 (abs‘𝐵) ≤ 𝑦) ∧ 𝑥𝐴) → 𝐵 ∈ ℂ)
109abscld 14460 . . . . . . . . 9 (((𝜑𝑦 ∈ ℝ ∧ ∀𝑥𝐴 (abs‘𝐵) ≤ 𝑦) ∧ 𝑥𝐴) → (abs‘𝐵) ∈ ℝ)
111adantr 472 . . . . . . . . 9 (((𝜑𝑦 ∈ ℝ ∧ ∀𝑥𝐴 (abs‘𝐵) ≤ 𝑦) ∧ 𝑥𝐴) → 𝑦 ∈ ℝ)
127leabsd 14438 . . . . . . . . 9 (((𝜑𝑦 ∈ ℝ ∧ ∀𝑥𝐴 (abs‘𝐵) ≤ 𝑦) ∧ 𝑥𝐴) → 𝐵 ≤ (abs‘𝐵))
13 rspa 3077 . . . . . . . . . 10 ((∀𝑥𝐴 (abs‘𝐵) ≤ 𝑦𝑥𝐴) → (abs‘𝐵) ≤ 𝑦)
14133ad2antl3 1238 . . . . . . . . 9 (((𝜑𝑦 ∈ ℝ ∧ ∀𝑥𝐴 (abs‘𝐵) ≤ 𝑦) ∧ 𝑥𝐴) → (abs‘𝐵) ≤ 𝑦)
157, 10, 11, 12, 14letrd 10448 . . . . . . . 8 (((𝜑𝑦 ∈ ℝ ∧ ∀𝑥𝐴 (abs‘𝐵) ≤ 𝑦) ∧ 𝑥𝐴) → 𝐵𝑦)
1615ex 401 . . . . . . 7 ((𝜑𝑦 ∈ ℝ ∧ ∀𝑥𝐴 (abs‘𝐵) ≤ 𝑦) → (𝑥𝐴𝐵𝑦))
175, 16ralrimi 3104 . . . . . 6 ((𝜑𝑦 ∈ ℝ ∧ ∀𝑥𝐴 (abs‘𝐵) ≤ 𝑦) → ∀𝑥𝐴 𝐵𝑦)
18 brralrspcev 4869 . . . . . 6 ((𝑦 ∈ ℝ ∧ ∀𝑥𝐴 𝐵𝑦) → ∃𝑤 ∈ ℝ ∀𝑥𝐴 𝐵𝑤)
191, 17, 18syl2anc 579 . . . . 5 ((𝜑𝑦 ∈ ℝ ∧ ∀𝑥𝐴 (abs‘𝐵) ≤ 𝑦) → ∃𝑤 ∈ ℝ ∀𝑥𝐴 𝐵𝑤)
201renegcld 10711 . . . . . 6 ((𝜑𝑦 ∈ ℝ ∧ ∀𝑥𝐴 (abs‘𝐵) ≤ 𝑦) → -𝑦 ∈ ℝ)
216adantlr 706 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) → 𝐵 ∈ ℝ)
22 simplr 785 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) → 𝑦 ∈ ℝ)
23 absle 14340 . . . . . . . . . . . 12 ((𝐵 ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((abs‘𝐵) ≤ 𝑦 ↔ (-𝑦𝐵𝐵𝑦)))
2421, 22, 23syl2anc 579 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) → ((abs‘𝐵) ≤ 𝑦 ↔ (-𝑦𝐵𝐵𝑦)))
25243adantl3 1209 . . . . . . . . . 10 (((𝜑𝑦 ∈ ℝ ∧ ∀𝑥𝐴 (abs‘𝐵) ≤ 𝑦) ∧ 𝑥𝐴) → ((abs‘𝐵) ≤ 𝑦 ↔ (-𝑦𝐵𝐵𝑦)))
2614, 25mpbid 223 . . . . . . . . 9 (((𝜑𝑦 ∈ ℝ ∧ ∀𝑥𝐴 (abs‘𝐵) ≤ 𝑦) ∧ 𝑥𝐴) → (-𝑦𝐵𝐵𝑦))
2726simpld 488 . . . . . . . 8 (((𝜑𝑦 ∈ ℝ ∧ ∀𝑥𝐴 (abs‘𝐵) ≤ 𝑦) ∧ 𝑥𝐴) → -𝑦𝐵)
2827ex 401 . . . . . . 7 ((𝜑𝑦 ∈ ℝ ∧ ∀𝑥𝐴 (abs‘𝐵) ≤ 𝑦) → (𝑥𝐴 → -𝑦𝐵))
295, 28ralrimi 3104 . . . . . 6 ((𝜑𝑦 ∈ ℝ ∧ ∀𝑥𝐴 (abs‘𝐵) ≤ 𝑦) → ∀𝑥𝐴 -𝑦𝐵)
30 breq1 4812 . . . . . . . 8 (𝑧 = -𝑦 → (𝑧𝐵 ↔ -𝑦𝐵))
3130ralbidv 3133 . . . . . . 7 (𝑧 = -𝑦 → (∀𝑥𝐴 𝑧𝐵 ↔ ∀𝑥𝐴 -𝑦𝐵))
3231rspcev 3461 . . . . . 6 ((-𝑦 ∈ ℝ ∧ ∀𝑥𝐴 -𝑦𝐵) → ∃𝑧 ∈ ℝ ∀𝑥𝐴 𝑧𝐵)
3320, 29, 32syl2anc 579 . . . . 5 ((𝜑𝑦 ∈ ℝ ∧ ∀𝑥𝐴 (abs‘𝐵) ≤ 𝑦) → ∃𝑧 ∈ ℝ ∀𝑥𝐴 𝑧𝐵)
3419, 33jca 507 . . . 4 ((𝜑𝑦 ∈ ℝ ∧ ∀𝑥𝐴 (abs‘𝐵) ≤ 𝑦) → (∃𝑤 ∈ ℝ ∀𝑥𝐴 𝐵𝑤 ∧ ∃𝑧 ∈ ℝ ∀𝑥𝐴 𝑧𝐵))
35343exp 1148 . . 3 (𝜑 → (𝑦 ∈ ℝ → (∀𝑥𝐴 (abs‘𝐵) ≤ 𝑦 → (∃𝑤 ∈ ℝ ∀𝑥𝐴 𝐵𝑤 ∧ ∃𝑧 ∈ ℝ ∀𝑥𝐴 𝑧𝐵))))
3635rexlimdv 3177 . 2 (𝜑 → (∃𝑦 ∈ ℝ ∀𝑥𝐴 (abs‘𝐵) ≤ 𝑦 → (∃𝑤 ∈ ℝ ∀𝑥𝐴 𝐵𝑤 ∧ ∃𝑧 ∈ ℝ ∀𝑥𝐴 𝑧𝐵)))
37 renegcl 10598 . . . . . . . . . . . . . 14 (𝑧 ∈ ℝ → -𝑧 ∈ ℝ)
3837adantl 473 . . . . . . . . . . . . 13 ((𝑤 ∈ ℝ ∧ 𝑧 ∈ ℝ) → -𝑧 ∈ ℝ)
39 simpl 474 . . . . . . . . . . . . 13 ((𝑤 ∈ ℝ ∧ 𝑧 ∈ ℝ) → 𝑤 ∈ ℝ)
4038, 39ifcld 4288 . . . . . . . . . . . 12 ((𝑤 ∈ ℝ ∧ 𝑧 ∈ ℝ) → if(𝑤 ≤ -𝑧, -𝑧, 𝑤) ∈ ℝ)
4140ad5ant24 775 . . . . . . . . . . 11 (((((𝜑𝑤 ∈ ℝ) ∧ ∀𝑥𝐴 𝐵𝑤) ∧ 𝑧 ∈ ℝ) ∧ ∀𝑥𝐴 𝑧𝐵) → if(𝑤 ≤ -𝑧, -𝑧, 𝑤) ∈ ℝ)
42 nfv 2009 . . . . . . . . . . . . . . . 16 𝑥 𝑤 ∈ ℝ
432, 42nfan 1998 . . . . . . . . . . . . . . 15 𝑥(𝜑𝑤 ∈ ℝ)
44 nfra1 3088 . . . . . . . . . . . . . . 15 𝑥𝑥𝐴 𝐵𝑤
4543, 44nfan 1998 . . . . . . . . . . . . . 14 𝑥((𝜑𝑤 ∈ ℝ) ∧ ∀𝑥𝐴 𝐵𝑤)
46 nfv 2009 . . . . . . . . . . . . . 14 𝑥 𝑧 ∈ ℝ
4745, 46nfan 1998 . . . . . . . . . . . . 13 𝑥(((𝜑𝑤 ∈ ℝ) ∧ ∀𝑥𝐴 𝐵𝑤) ∧ 𝑧 ∈ ℝ)
48 nfra1 3088 . . . . . . . . . . . . 13 𝑥𝑥𝐴 𝑧𝐵
4947, 48nfan 1998 . . . . . . . . . . . 12 𝑥((((𝜑𝑤 ∈ ℝ) ∧ ∀𝑥𝐴 𝐵𝑤) ∧ 𝑧 ∈ ℝ) ∧ ∀𝑥𝐴 𝑧𝐵)
5040ad5ant23 773 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑤 ∈ ℝ) ∧ 𝑧 ∈ ℝ) ∧ ∀𝑥𝐴 𝑧𝐵) ∧ 𝑥𝐴) → if(𝑤 ≤ -𝑧, -𝑧, 𝑤) ∈ ℝ)
5150renegcld 10711 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑤 ∈ ℝ) ∧ 𝑧 ∈ ℝ) ∧ ∀𝑥𝐴 𝑧𝐵) ∧ 𝑥𝐴) → -if(𝑤 ≤ -𝑧, -𝑧, 𝑤) ∈ ℝ)
52 simpllr 793 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑤 ∈ ℝ) ∧ 𝑧 ∈ ℝ) ∧ ∀𝑥𝐴 𝑧𝐵) ∧ 𝑥𝐴) → 𝑧 ∈ ℝ)
536ad5ant15 771 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑤 ∈ ℝ) ∧ 𝑧 ∈ ℝ) ∧ ∀𝑥𝐴 𝑧𝐵) ∧ 𝑥𝐴) → 𝐵 ∈ ℝ)
54 max2 12220 . . . . . . . . . . . . . . . . . . . . 21 ((𝑤 ∈ ℝ ∧ -𝑧 ∈ ℝ) → -𝑧 ≤ if(𝑤 ≤ -𝑧, -𝑧, 𝑤))
5539, 38, 54syl2anc 579 . . . . . . . . . . . . . . . . . . . 20 ((𝑤 ∈ ℝ ∧ 𝑧 ∈ ℝ) → -𝑧 ≤ if(𝑤 ≤ -𝑧, -𝑧, 𝑤))
5638, 40lenegd 10860 . . . . . . . . . . . . . . . . . . . 20 ((𝑤 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (-𝑧 ≤ if(𝑤 ≤ -𝑧, -𝑧, 𝑤) ↔ -if(𝑤 ≤ -𝑧, -𝑧, 𝑤) ≤ --𝑧))
5755, 56mpbid 223 . . . . . . . . . . . . . . . . . . 19 ((𝑤 ∈ ℝ ∧ 𝑧 ∈ ℝ) → -if(𝑤 ≤ -𝑧, -𝑧, 𝑤) ≤ --𝑧)
58 recn 10279 . . . . . . . . . . . . . . . . . . . . 21 (𝑧 ∈ ℝ → 𝑧 ∈ ℂ)
5958adantl 473 . . . . . . . . . . . . . . . . . . . 20 ((𝑤 ∈ ℝ ∧ 𝑧 ∈ ℝ) → 𝑧 ∈ ℂ)
6059negnegd 10637 . . . . . . . . . . . . . . . . . . 19 ((𝑤 ∈ ℝ ∧ 𝑧 ∈ ℝ) → --𝑧 = 𝑧)
6157, 60breqtrd 4835 . . . . . . . . . . . . . . . . . 18 ((𝑤 ∈ ℝ ∧ 𝑧 ∈ ℝ) → -if(𝑤 ≤ -𝑧, -𝑧, 𝑤) ≤ 𝑧)
6261ad5ant23 773 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑤 ∈ ℝ) ∧ 𝑧 ∈ ℝ) ∧ ∀𝑥𝐴 𝑧𝐵) ∧ 𝑥𝐴) → -if(𝑤 ≤ -𝑧, -𝑧, 𝑤) ≤ 𝑧)
63 rspa 3077 . . . . . . . . . . . . . . . . . 18 ((∀𝑥𝐴 𝑧𝐵𝑥𝐴) → 𝑧𝐵)
6463adantll 705 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑤 ∈ ℝ) ∧ 𝑧 ∈ ℝ) ∧ ∀𝑥𝐴 𝑧𝐵) ∧ 𝑥𝐴) → 𝑧𝐵)
6551, 52, 53, 62, 64letrd 10448 . . . . . . . . . . . . . . . 16 (((((𝜑𝑤 ∈ ℝ) ∧ 𝑧 ∈ ℝ) ∧ ∀𝑥𝐴 𝑧𝐵) ∧ 𝑥𝐴) → -if(𝑤 ≤ -𝑧, -𝑧, 𝑤) ≤ 𝐵)
6665adantl3r 756 . . . . . . . . . . . . . . 15 ((((((𝜑𝑤 ∈ ℝ) ∧ ∀𝑥𝐴 𝐵𝑤) ∧ 𝑧 ∈ ℝ) ∧ ∀𝑥𝐴 𝑧𝐵) ∧ 𝑥𝐴) → -if(𝑤 ≤ -𝑧, -𝑧, 𝑤) ≤ 𝐵)
676ad5ant15 771 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑤 ∈ ℝ) ∧ ∀𝑥𝐴 𝐵𝑤) ∧ 𝑧 ∈ ℝ) ∧ 𝑥𝐴) → 𝐵 ∈ ℝ)
68 simp-4r 803 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑤 ∈ ℝ) ∧ ∀𝑥𝐴 𝐵𝑤) ∧ 𝑧 ∈ ℝ) ∧ 𝑥𝐴) → 𝑤 ∈ ℝ)
6940ad5ant24 775 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑤 ∈ ℝ) ∧ ∀𝑥𝐴 𝐵𝑤) ∧ 𝑧 ∈ ℝ) ∧ 𝑥𝐴) → if(𝑤 ≤ -𝑧, -𝑧, 𝑤) ∈ ℝ)
70 rspa 3077 . . . . . . . . . . . . . . . . . 18 ((∀𝑥𝐴 𝐵𝑤𝑥𝐴) → 𝐵𝑤)
7170ad4ant24 763 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑤 ∈ ℝ) ∧ ∀𝑥𝐴 𝐵𝑤) ∧ 𝑧 ∈ ℝ) ∧ 𝑥𝐴) → 𝐵𝑤)
72 max1 12218 . . . . . . . . . . . . . . . . . . 19 ((𝑤 ∈ ℝ ∧ -𝑧 ∈ ℝ) → 𝑤 ≤ if(𝑤 ≤ -𝑧, -𝑧, 𝑤))
7339, 38, 72syl2anc 579 . . . . . . . . . . . . . . . . . 18 ((𝑤 ∈ ℝ ∧ 𝑧 ∈ ℝ) → 𝑤 ≤ if(𝑤 ≤ -𝑧, -𝑧, 𝑤))
7473ad5ant24 775 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑤 ∈ ℝ) ∧ ∀𝑥𝐴 𝐵𝑤) ∧ 𝑧 ∈ ℝ) ∧ 𝑥𝐴) → 𝑤 ≤ if(𝑤 ≤ -𝑧, -𝑧, 𝑤))
7567, 68, 69, 71, 74letrd 10448 . . . . . . . . . . . . . . . 16 (((((𝜑𝑤 ∈ ℝ) ∧ ∀𝑥𝐴 𝐵𝑤) ∧ 𝑧 ∈ ℝ) ∧ 𝑥𝐴) → 𝐵 ≤ if(𝑤 ≤ -𝑧, -𝑧, 𝑤))
7675adantlr 706 . . . . . . . . . . . . . . 15 ((((((𝜑𝑤 ∈ ℝ) ∧ ∀𝑥𝐴 𝐵𝑤) ∧ 𝑧 ∈ ℝ) ∧ ∀𝑥𝐴 𝑧𝐵) ∧ 𝑥𝐴) → 𝐵 ≤ if(𝑤 ≤ -𝑧, -𝑧, 𝑤))
7766, 76jca 507 . . . . . . . . . . . . . 14 ((((((𝜑𝑤 ∈ ℝ) ∧ ∀𝑥𝐴 𝐵𝑤) ∧ 𝑧 ∈ ℝ) ∧ ∀𝑥𝐴 𝑧𝐵) ∧ 𝑥𝐴) → (-if(𝑤 ≤ -𝑧, -𝑧, 𝑤) ≤ 𝐵𝐵 ≤ if(𝑤 ≤ -𝑧, -𝑧, 𝑤)))
786adantlr 706 . . . . . . . . . . . . . . . . 17 (((𝜑𝑤 ∈ ℝ) ∧ 𝑥𝐴) → 𝐵 ∈ ℝ)
79783adant2 1161 . . . . . . . . . . . . . . . 16 (((𝜑𝑤 ∈ ℝ) ∧ 𝑧 ∈ ℝ ∧ 𝑥𝐴) → 𝐵 ∈ ℝ)
8040adantll 705 . . . . . . . . . . . . . . . . 17 (((𝜑𝑤 ∈ ℝ) ∧ 𝑧 ∈ ℝ) → if(𝑤 ≤ -𝑧, -𝑧, 𝑤) ∈ ℝ)
81803adant3 1162 . . . . . . . . . . . . . . . 16 (((𝜑𝑤 ∈ ℝ) ∧ 𝑧 ∈ ℝ ∧ 𝑥𝐴) → if(𝑤 ≤ -𝑧, -𝑧, 𝑤) ∈ ℝ)
8279, 81absled 14454 . . . . . . . . . . . . . . 15 (((𝜑𝑤 ∈ ℝ) ∧ 𝑧 ∈ ℝ ∧ 𝑥𝐴) → ((abs‘𝐵) ≤ if(𝑤 ≤ -𝑧, -𝑧, 𝑤) ↔ (-if(𝑤 ≤ -𝑧, -𝑧, 𝑤) ≤ 𝐵𝐵 ≤ if(𝑤 ≤ -𝑧, -𝑧, 𝑤))))
8382ad5ant135 1484 . . . . . . . . . . . . . 14 ((((((𝜑𝑤 ∈ ℝ) ∧ ∀𝑥𝐴 𝐵𝑤) ∧ 𝑧 ∈ ℝ) ∧ ∀𝑥𝐴 𝑧𝐵) ∧ 𝑥𝐴) → ((abs‘𝐵) ≤ if(𝑤 ≤ -𝑧, -𝑧, 𝑤) ↔ (-if(𝑤 ≤ -𝑧, -𝑧, 𝑤) ≤ 𝐵𝐵 ≤ if(𝑤 ≤ -𝑧, -𝑧, 𝑤))))
8477, 83mpbird 248 . . . . . . . . . . . . 13 ((((((𝜑𝑤 ∈ ℝ) ∧ ∀𝑥𝐴 𝐵𝑤) ∧ 𝑧 ∈ ℝ) ∧ ∀𝑥𝐴 𝑧𝐵) ∧ 𝑥𝐴) → (abs‘𝐵) ≤ if(𝑤 ≤ -𝑧, -𝑧, 𝑤))
8584ex 401 . . . . . . . . . . . 12 (((((𝜑𝑤 ∈ ℝ) ∧ ∀𝑥𝐴 𝐵𝑤) ∧ 𝑧 ∈ ℝ) ∧ ∀𝑥𝐴 𝑧𝐵) → (𝑥𝐴 → (abs‘𝐵) ≤ if(𝑤 ≤ -𝑧, -𝑧, 𝑤)))
8649, 85ralrimi 3104 . . . . . . . . . . 11 (((((𝜑𝑤 ∈ ℝ) ∧ ∀𝑥𝐴 𝐵𝑤) ∧ 𝑧 ∈ ℝ) ∧ ∀𝑥𝐴 𝑧𝐵) → ∀𝑥𝐴 (abs‘𝐵) ≤ if(𝑤 ≤ -𝑧, -𝑧, 𝑤))
87 brralrspcev 4869 . . . . . . . . . . 11 ((if(𝑤 ≤ -𝑧, -𝑧, 𝑤) ∈ ℝ ∧ ∀𝑥𝐴 (abs‘𝐵) ≤ if(𝑤 ≤ -𝑧, -𝑧, 𝑤)) → ∃𝑦 ∈ ℝ ∀𝑥𝐴 (abs‘𝐵) ≤ 𝑦)
8841, 86, 87syl2anc 579 . . . . . . . . . 10 (((((𝜑𝑤 ∈ ℝ) ∧ ∀𝑥𝐴 𝐵𝑤) ∧ 𝑧 ∈ ℝ) ∧ ∀𝑥𝐴 𝑧𝐵) → ∃𝑦 ∈ ℝ ∀𝑥𝐴 (abs‘𝐵) ≤ 𝑦)
8988exp31 410 . . . . . . . . 9 (((𝜑𝑤 ∈ ℝ) ∧ ∀𝑥𝐴 𝐵𝑤) → (𝑧 ∈ ℝ → (∀𝑥𝐴 𝑧𝐵 → ∃𝑦 ∈ ℝ ∀𝑥𝐴 (abs‘𝐵) ≤ 𝑦)))
9089exp31 410 . . . . . . . 8 (𝜑 → (𝑤 ∈ ℝ → (∀𝑥𝐴 𝐵𝑤 → (𝑧 ∈ ℝ → (∀𝑥𝐴 𝑧𝐵 → ∃𝑦 ∈ ℝ ∀𝑥𝐴 (abs‘𝐵) ≤ 𝑦)))))
9190rexlimdv 3177 . . . . . . 7 (𝜑 → (∃𝑤 ∈ ℝ ∀𝑥𝐴 𝐵𝑤 → (𝑧 ∈ ℝ → (∀𝑥𝐴 𝑧𝐵 → ∃𝑦 ∈ ℝ ∀𝑥𝐴 (abs‘𝐵) ≤ 𝑦))))
9291imp 395 . . . . . 6 ((𝜑 ∧ ∃𝑤 ∈ ℝ ∀𝑥𝐴 𝐵𝑤) → (𝑧 ∈ ℝ → (∀𝑥𝐴 𝑧𝐵 → ∃𝑦 ∈ ℝ ∀𝑥𝐴 (abs‘𝐵) ≤ 𝑦)))
9392rexlimdv 3177 . . . . 5 ((𝜑 ∧ ∃𝑤 ∈ ℝ ∀𝑥𝐴 𝐵𝑤) → (∃𝑧 ∈ ℝ ∀𝑥𝐴 𝑧𝐵 → ∃𝑦 ∈ ℝ ∀𝑥𝐴 (abs‘𝐵) ≤ 𝑦))
9493imp 395 . . . 4 (((𝜑 ∧ ∃𝑤 ∈ ℝ ∀𝑥𝐴 𝐵𝑤) ∧ ∃𝑧 ∈ ℝ ∀𝑥𝐴 𝑧𝐵) → ∃𝑦 ∈ ℝ ∀𝑥𝐴 (abs‘𝐵) ≤ 𝑦)
9594anasss 458 . . 3 ((𝜑 ∧ (∃𝑤 ∈ ℝ ∀𝑥𝐴 𝐵𝑤 ∧ ∃𝑧 ∈ ℝ ∀𝑥𝐴 𝑧𝐵)) → ∃𝑦 ∈ ℝ ∀𝑥𝐴 (abs‘𝐵) ≤ 𝑦)
9695ex 401 . 2 (𝜑 → ((∃𝑤 ∈ ℝ ∀𝑥𝐴 𝐵𝑤 ∧ ∃𝑧 ∈ ℝ ∀𝑥𝐴 𝑧𝐵) → ∃𝑦 ∈ ℝ ∀𝑥𝐴 (abs‘𝐵) ≤ 𝑦))
9736, 96impbid 203 1 (𝜑 → (∃𝑦 ∈ ℝ ∀𝑥𝐴 (abs‘𝐵) ≤ 𝑦 ↔ (∃𝑤 ∈ ℝ ∀𝑥𝐴 𝐵𝑤 ∧ ∃𝑧 ∈ ℝ ∀𝑥𝐴 𝑧𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 197  wa 384  w3a 1107   = wceq 1652  wnf 1878  wcel 2155  wral 3055  wrex 3056  ifcif 4243   class class class wbr 4809  cfv 6068  cc 10187  cr 10188  cle 10329  -cneg 10521  abscabs 14259
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-sep 4941  ax-nul 4949  ax-pow 5001  ax-pr 5062  ax-un 7147  ax-cnex 10245  ax-resscn 10246  ax-1cn 10247  ax-icn 10248  ax-addcl 10249  ax-addrcl 10250  ax-mulcl 10251  ax-mulrcl 10252  ax-mulcom 10253  ax-addass 10254  ax-mulass 10255  ax-distr 10256  ax-i2m1 10257  ax-1ne0 10258  ax-1rid 10259  ax-rnegex 10260  ax-rrecex 10261  ax-cnre 10262  ax-pre-lttri 10263  ax-pre-lttrn 10264  ax-pre-ltadd 10265  ax-pre-mulgt0 10266  ax-pre-sup 10267
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-nel 3041  df-ral 3060  df-rex 3061  df-reu 3062  df-rmo 3063  df-rab 3064  df-v 3352  df-sbc 3597  df-csb 3692  df-dif 3735  df-un 3737  df-in 3739  df-ss 3746  df-pss 3748  df-nul 4080  df-if 4244  df-pw 4317  df-sn 4335  df-pr 4337  df-tp 4339  df-op 4341  df-uni 4595  df-iun 4678  df-br 4810  df-opab 4872  df-mpt 4889  df-tr 4912  df-id 5185  df-eprel 5190  df-po 5198  df-so 5199  df-fr 5236  df-we 5238  df-xp 5283  df-rel 5284  df-cnv 5285  df-co 5286  df-dm 5287  df-rn 5288  df-res 5289  df-ima 5290  df-pred 5865  df-ord 5911  df-on 5912  df-lim 5913  df-suc 5914  df-iota 6031  df-fun 6070  df-fn 6071  df-f 6072  df-f1 6073  df-fo 6074  df-f1o 6075  df-fv 6076  df-riota 6803  df-ov 6845  df-oprab 6846  df-mpt2 6847  df-om 7264  df-2nd 7367  df-wrecs 7610  df-recs 7672  df-rdg 7710  df-er 7947  df-en 8161  df-dom 8162  df-sdom 8163  df-sup 8555  df-pnf 10330  df-mnf 10331  df-xr 10332  df-ltxr 10333  df-le 10334  df-sub 10522  df-neg 10523  df-div 10939  df-nn 11275  df-2 11335  df-3 11336  df-n0 11539  df-z 11625  df-uz 11887  df-rp 12029  df-seq 13009  df-exp 13068  df-cj 14124  df-re 14125  df-im 14126  df-sqrt 14260  df-abs 14261
This theorem is referenced by:  rexabsle  40283
  Copyright terms: Public domain W3C validator