Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rexabslelem Structured version   Visualization version   GIF version

Theorem rexabslelem 45421
Description: An indexed set of absolute values of real numbers is bounded if and only if the original values are bounded above and below. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
rexabslelem.1 𝑥𝜑
rexabslelem.2 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
Assertion
Ref Expression
rexabslelem (𝜑 → (∃𝑦 ∈ ℝ ∀𝑥𝐴 (abs‘𝐵) ≤ 𝑦 ↔ (∃𝑤 ∈ ℝ ∀𝑥𝐴 𝐵𝑤 ∧ ∃𝑧 ∈ ℝ ∀𝑥𝐴 𝑧𝐵)))
Distinct variable groups:   𝑤,𝐴,𝑦,𝑧   𝑤,𝐵,𝑦,𝑧   𝜑,𝑤,𝑦,𝑧   𝑥,𝑤,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥)   𝐴(𝑥)   𝐵(𝑥)

Proof of Theorem rexabslelem
StepHypRef Expression
1 simp2 1137 . . . . . 6 ((𝜑𝑦 ∈ ℝ ∧ ∀𝑥𝐴 (abs‘𝐵) ≤ 𝑦) → 𝑦 ∈ ℝ)
2 rexabslelem.1 . . . . . . . 8 𝑥𝜑
3 nfv 1914 . . . . . . . 8 𝑥 𝑦 ∈ ℝ
4 nfra1 3262 . . . . . . . 8 𝑥𝑥𝐴 (abs‘𝐵) ≤ 𝑦
52, 3, 4nf3an 1901 . . . . . . 7 𝑥(𝜑𝑦 ∈ ℝ ∧ ∀𝑥𝐴 (abs‘𝐵) ≤ 𝑦)
6 rexabslelem.2 . . . . . . . . . 10 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
763ad2antl1 1186 . . . . . . . . 9 (((𝜑𝑦 ∈ ℝ ∧ ∀𝑥𝐴 (abs‘𝐵) ≤ 𝑦) ∧ 𝑥𝐴) → 𝐵 ∈ ℝ)
86recnd 11209 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → 𝐵 ∈ ℂ)
983ad2antl1 1186 . . . . . . . . . 10 (((𝜑𝑦 ∈ ℝ ∧ ∀𝑥𝐴 (abs‘𝐵) ≤ 𝑦) ∧ 𝑥𝐴) → 𝐵 ∈ ℂ)
109abscld 15412 . . . . . . . . 9 (((𝜑𝑦 ∈ ℝ ∧ ∀𝑥𝐴 (abs‘𝐵) ≤ 𝑦) ∧ 𝑥𝐴) → (abs‘𝐵) ∈ ℝ)
111adantr 480 . . . . . . . . 9 (((𝜑𝑦 ∈ ℝ ∧ ∀𝑥𝐴 (abs‘𝐵) ≤ 𝑦) ∧ 𝑥𝐴) → 𝑦 ∈ ℝ)
127leabsd 15388 . . . . . . . . 9 (((𝜑𝑦 ∈ ℝ ∧ ∀𝑥𝐴 (abs‘𝐵) ≤ 𝑦) ∧ 𝑥𝐴) → 𝐵 ≤ (abs‘𝐵))
13 rspa 3227 . . . . . . . . . 10 ((∀𝑥𝐴 (abs‘𝐵) ≤ 𝑦𝑥𝐴) → (abs‘𝐵) ≤ 𝑦)
14133ad2antl3 1188 . . . . . . . . 9 (((𝜑𝑦 ∈ ℝ ∧ ∀𝑥𝐴 (abs‘𝐵) ≤ 𝑦) ∧ 𝑥𝐴) → (abs‘𝐵) ≤ 𝑦)
157, 10, 11, 12, 14letrd 11338 . . . . . . . 8 (((𝜑𝑦 ∈ ℝ ∧ ∀𝑥𝐴 (abs‘𝐵) ≤ 𝑦) ∧ 𝑥𝐴) → 𝐵𝑦)
1615ex 412 . . . . . . 7 ((𝜑𝑦 ∈ ℝ ∧ ∀𝑥𝐴 (abs‘𝐵) ≤ 𝑦) → (𝑥𝐴𝐵𝑦))
175, 16ralrimi 3236 . . . . . 6 ((𝜑𝑦 ∈ ℝ ∧ ∀𝑥𝐴 (abs‘𝐵) ≤ 𝑦) → ∀𝑥𝐴 𝐵𝑦)
18 brralrspcev 5170 . . . . . 6 ((𝑦 ∈ ℝ ∧ ∀𝑥𝐴 𝐵𝑦) → ∃𝑤 ∈ ℝ ∀𝑥𝐴 𝐵𝑤)
191, 17, 18syl2anc 584 . . . . 5 ((𝜑𝑦 ∈ ℝ ∧ ∀𝑥𝐴 (abs‘𝐵) ≤ 𝑦) → ∃𝑤 ∈ ℝ ∀𝑥𝐴 𝐵𝑤)
201renegcld 11612 . . . . . 6 ((𝜑𝑦 ∈ ℝ ∧ ∀𝑥𝐴 (abs‘𝐵) ≤ 𝑦) → -𝑦 ∈ ℝ)
216adantlr 715 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) → 𝐵 ∈ ℝ)
22 simplr 768 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) → 𝑦 ∈ ℝ)
23 absle 15289 . . . . . . . . . . . 12 ((𝐵 ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((abs‘𝐵) ≤ 𝑦 ↔ (-𝑦𝐵𝐵𝑦)))
2421, 22, 23syl2anc 584 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) → ((abs‘𝐵) ≤ 𝑦 ↔ (-𝑦𝐵𝐵𝑦)))
25243adantl3 1169 . . . . . . . . . 10 (((𝜑𝑦 ∈ ℝ ∧ ∀𝑥𝐴 (abs‘𝐵) ≤ 𝑦) ∧ 𝑥𝐴) → ((abs‘𝐵) ≤ 𝑦 ↔ (-𝑦𝐵𝐵𝑦)))
2614, 25mpbid 232 . . . . . . . . 9 (((𝜑𝑦 ∈ ℝ ∧ ∀𝑥𝐴 (abs‘𝐵) ≤ 𝑦) ∧ 𝑥𝐴) → (-𝑦𝐵𝐵𝑦))
2726simpld 494 . . . . . . . 8 (((𝜑𝑦 ∈ ℝ ∧ ∀𝑥𝐴 (abs‘𝐵) ≤ 𝑦) ∧ 𝑥𝐴) → -𝑦𝐵)
2827ex 412 . . . . . . 7 ((𝜑𝑦 ∈ ℝ ∧ ∀𝑥𝐴 (abs‘𝐵) ≤ 𝑦) → (𝑥𝐴 → -𝑦𝐵))
295, 28ralrimi 3236 . . . . . 6 ((𝜑𝑦 ∈ ℝ ∧ ∀𝑥𝐴 (abs‘𝐵) ≤ 𝑦) → ∀𝑥𝐴 -𝑦𝐵)
30 breq1 5113 . . . . . . . 8 (𝑧 = -𝑦 → (𝑧𝐵 ↔ -𝑦𝐵))
3130ralbidv 3157 . . . . . . 7 (𝑧 = -𝑦 → (∀𝑥𝐴 𝑧𝐵 ↔ ∀𝑥𝐴 -𝑦𝐵))
3231rspcev 3591 . . . . . 6 ((-𝑦 ∈ ℝ ∧ ∀𝑥𝐴 -𝑦𝐵) → ∃𝑧 ∈ ℝ ∀𝑥𝐴 𝑧𝐵)
3320, 29, 32syl2anc 584 . . . . 5 ((𝜑𝑦 ∈ ℝ ∧ ∀𝑥𝐴 (abs‘𝐵) ≤ 𝑦) → ∃𝑧 ∈ ℝ ∀𝑥𝐴 𝑧𝐵)
3419, 33jca 511 . . . 4 ((𝜑𝑦 ∈ ℝ ∧ ∀𝑥𝐴 (abs‘𝐵) ≤ 𝑦) → (∃𝑤 ∈ ℝ ∀𝑥𝐴 𝐵𝑤 ∧ ∃𝑧 ∈ ℝ ∀𝑥𝐴 𝑧𝐵))
35343exp 1119 . . 3 (𝜑 → (𝑦 ∈ ℝ → (∀𝑥𝐴 (abs‘𝐵) ≤ 𝑦 → (∃𝑤 ∈ ℝ ∀𝑥𝐴 𝐵𝑤 ∧ ∃𝑧 ∈ ℝ ∀𝑥𝐴 𝑧𝐵))))
3635rexlimdv 3133 . 2 (𝜑 → (∃𝑦 ∈ ℝ ∀𝑥𝐴 (abs‘𝐵) ≤ 𝑦 → (∃𝑤 ∈ ℝ ∀𝑥𝐴 𝐵𝑤 ∧ ∃𝑧 ∈ ℝ ∀𝑥𝐴 𝑧𝐵)))
37 renegcl 11492 . . . . . . . . . . . . . 14 (𝑧 ∈ ℝ → -𝑧 ∈ ℝ)
3837adantl 481 . . . . . . . . . . . . 13 ((𝑤 ∈ ℝ ∧ 𝑧 ∈ ℝ) → -𝑧 ∈ ℝ)
39 simpl 482 . . . . . . . . . . . . 13 ((𝑤 ∈ ℝ ∧ 𝑧 ∈ ℝ) → 𝑤 ∈ ℝ)
4038, 39ifcld 4538 . . . . . . . . . . . 12 ((𝑤 ∈ ℝ ∧ 𝑧 ∈ ℝ) → if(𝑤 ≤ -𝑧, -𝑧, 𝑤) ∈ ℝ)
4140ad5ant24 760 . . . . . . . . . . 11 (((((𝜑𝑤 ∈ ℝ) ∧ ∀𝑥𝐴 𝐵𝑤) ∧ 𝑧 ∈ ℝ) ∧ ∀𝑥𝐴 𝑧𝐵) → if(𝑤 ≤ -𝑧, -𝑧, 𝑤) ∈ ℝ)
42 nfv 1914 . . . . . . . . . . . . . . . 16 𝑥 𝑤 ∈ ℝ
432, 42nfan 1899 . . . . . . . . . . . . . . 15 𝑥(𝜑𝑤 ∈ ℝ)
44 nfra1 3262 . . . . . . . . . . . . . . 15 𝑥𝑥𝐴 𝐵𝑤
4543, 44nfan 1899 . . . . . . . . . . . . . 14 𝑥((𝜑𝑤 ∈ ℝ) ∧ ∀𝑥𝐴 𝐵𝑤)
46 nfv 1914 . . . . . . . . . . . . . 14 𝑥 𝑧 ∈ ℝ
4745, 46nfan 1899 . . . . . . . . . . . . 13 𝑥(((𝜑𝑤 ∈ ℝ) ∧ ∀𝑥𝐴 𝐵𝑤) ∧ 𝑧 ∈ ℝ)
48 nfra1 3262 . . . . . . . . . . . . 13 𝑥𝑥𝐴 𝑧𝐵
4947, 48nfan 1899 . . . . . . . . . . . 12 𝑥((((𝜑𝑤 ∈ ℝ) ∧ ∀𝑥𝐴 𝐵𝑤) ∧ 𝑧 ∈ ℝ) ∧ ∀𝑥𝐴 𝑧𝐵)
5040ad5ant23 759 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑤 ∈ ℝ) ∧ 𝑧 ∈ ℝ) ∧ ∀𝑥𝐴 𝑧𝐵) ∧ 𝑥𝐴) → if(𝑤 ≤ -𝑧, -𝑧, 𝑤) ∈ ℝ)
5150renegcld 11612 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑤 ∈ ℝ) ∧ 𝑧 ∈ ℝ) ∧ ∀𝑥𝐴 𝑧𝐵) ∧ 𝑥𝐴) → -if(𝑤 ≤ -𝑧, -𝑧, 𝑤) ∈ ℝ)
52 simpllr 775 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑤 ∈ ℝ) ∧ 𝑧 ∈ ℝ) ∧ ∀𝑥𝐴 𝑧𝐵) ∧ 𝑥𝐴) → 𝑧 ∈ ℝ)
536ad5ant15 758 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑤 ∈ ℝ) ∧ 𝑧 ∈ ℝ) ∧ ∀𝑥𝐴 𝑧𝐵) ∧ 𝑥𝐴) → 𝐵 ∈ ℝ)
54 max2 13154 . . . . . . . . . . . . . . . . . . . . 21 ((𝑤 ∈ ℝ ∧ -𝑧 ∈ ℝ) → -𝑧 ≤ if(𝑤 ≤ -𝑧, -𝑧, 𝑤))
5539, 38, 54syl2anc 584 . . . . . . . . . . . . . . . . . . . 20 ((𝑤 ∈ ℝ ∧ 𝑧 ∈ ℝ) → -𝑧 ≤ if(𝑤 ≤ -𝑧, -𝑧, 𝑤))
5638, 40lenegd 11764 . . . . . . . . . . . . . . . . . . . 20 ((𝑤 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (-𝑧 ≤ if(𝑤 ≤ -𝑧, -𝑧, 𝑤) ↔ -if(𝑤 ≤ -𝑧, -𝑧, 𝑤) ≤ --𝑧))
5755, 56mpbid 232 . . . . . . . . . . . . . . . . . . 19 ((𝑤 ∈ ℝ ∧ 𝑧 ∈ ℝ) → -if(𝑤 ≤ -𝑧, -𝑧, 𝑤) ≤ --𝑧)
58 recn 11165 . . . . . . . . . . . . . . . . . . . . 21 (𝑧 ∈ ℝ → 𝑧 ∈ ℂ)
5958adantl 481 . . . . . . . . . . . . . . . . . . . 20 ((𝑤 ∈ ℝ ∧ 𝑧 ∈ ℝ) → 𝑧 ∈ ℂ)
6059negnegd 11531 . . . . . . . . . . . . . . . . . . 19 ((𝑤 ∈ ℝ ∧ 𝑧 ∈ ℝ) → --𝑧 = 𝑧)
6157, 60breqtrd 5136 . . . . . . . . . . . . . . . . . 18 ((𝑤 ∈ ℝ ∧ 𝑧 ∈ ℝ) → -if(𝑤 ≤ -𝑧, -𝑧, 𝑤) ≤ 𝑧)
6261ad5ant23 759 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑤 ∈ ℝ) ∧ 𝑧 ∈ ℝ) ∧ ∀𝑥𝐴 𝑧𝐵) ∧ 𝑥𝐴) → -if(𝑤 ≤ -𝑧, -𝑧, 𝑤) ≤ 𝑧)
63 rspa 3227 . . . . . . . . . . . . . . . . . 18 ((∀𝑥𝐴 𝑧𝐵𝑥𝐴) → 𝑧𝐵)
6463adantll 714 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑤 ∈ ℝ) ∧ 𝑧 ∈ ℝ) ∧ ∀𝑥𝐴 𝑧𝐵) ∧ 𝑥𝐴) → 𝑧𝐵)
6551, 52, 53, 62, 64letrd 11338 . . . . . . . . . . . . . . . 16 (((((𝜑𝑤 ∈ ℝ) ∧ 𝑧 ∈ ℝ) ∧ ∀𝑥𝐴 𝑧𝐵) ∧ 𝑥𝐴) → -if(𝑤 ≤ -𝑧, -𝑧, 𝑤) ≤ 𝐵)
6665adantl3r 750 . . . . . . . . . . . . . . 15 ((((((𝜑𝑤 ∈ ℝ) ∧ ∀𝑥𝐴 𝐵𝑤) ∧ 𝑧 ∈ ℝ) ∧ ∀𝑥𝐴 𝑧𝐵) ∧ 𝑥𝐴) → -if(𝑤 ≤ -𝑧, -𝑧, 𝑤) ≤ 𝐵)
676ad5ant15 758 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑤 ∈ ℝ) ∧ ∀𝑥𝐴 𝐵𝑤) ∧ 𝑧 ∈ ℝ) ∧ 𝑥𝐴) → 𝐵 ∈ ℝ)
68 simp-4r 783 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑤 ∈ ℝ) ∧ ∀𝑥𝐴 𝐵𝑤) ∧ 𝑧 ∈ ℝ) ∧ 𝑥𝐴) → 𝑤 ∈ ℝ)
6940ad5ant24 760 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑤 ∈ ℝ) ∧ ∀𝑥𝐴 𝐵𝑤) ∧ 𝑧 ∈ ℝ) ∧ 𝑥𝐴) → if(𝑤 ≤ -𝑧, -𝑧, 𝑤) ∈ ℝ)
70 rspa 3227 . . . . . . . . . . . . . . . . . 18 ((∀𝑥𝐴 𝐵𝑤𝑥𝐴) → 𝐵𝑤)
7170ad4ant24 754 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑤 ∈ ℝ) ∧ ∀𝑥𝐴 𝐵𝑤) ∧ 𝑧 ∈ ℝ) ∧ 𝑥𝐴) → 𝐵𝑤)
72 max1 13152 . . . . . . . . . . . . . . . . . . 19 ((𝑤 ∈ ℝ ∧ -𝑧 ∈ ℝ) → 𝑤 ≤ if(𝑤 ≤ -𝑧, -𝑧, 𝑤))
7339, 38, 72syl2anc 584 . . . . . . . . . . . . . . . . . 18 ((𝑤 ∈ ℝ ∧ 𝑧 ∈ ℝ) → 𝑤 ≤ if(𝑤 ≤ -𝑧, -𝑧, 𝑤))
7473ad5ant24 760 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑤 ∈ ℝ) ∧ ∀𝑥𝐴 𝐵𝑤) ∧ 𝑧 ∈ ℝ) ∧ 𝑥𝐴) → 𝑤 ≤ if(𝑤 ≤ -𝑧, -𝑧, 𝑤))
7567, 68, 69, 71, 74letrd 11338 . . . . . . . . . . . . . . . 16 (((((𝜑𝑤 ∈ ℝ) ∧ ∀𝑥𝐴 𝐵𝑤) ∧ 𝑧 ∈ ℝ) ∧ 𝑥𝐴) → 𝐵 ≤ if(𝑤 ≤ -𝑧, -𝑧, 𝑤))
7675adantlr 715 . . . . . . . . . . . . . . 15 ((((((𝜑𝑤 ∈ ℝ) ∧ ∀𝑥𝐴 𝐵𝑤) ∧ 𝑧 ∈ ℝ) ∧ ∀𝑥𝐴 𝑧𝐵) ∧ 𝑥𝐴) → 𝐵 ≤ if(𝑤 ≤ -𝑧, -𝑧, 𝑤))
7766, 76jca 511 . . . . . . . . . . . . . 14 ((((((𝜑𝑤 ∈ ℝ) ∧ ∀𝑥𝐴 𝐵𝑤) ∧ 𝑧 ∈ ℝ) ∧ ∀𝑥𝐴 𝑧𝐵) ∧ 𝑥𝐴) → (-if(𝑤 ≤ -𝑧, -𝑧, 𝑤) ≤ 𝐵𝐵 ≤ if(𝑤 ≤ -𝑧, -𝑧, 𝑤)))
786adantlr 715 . . . . . . . . . . . . . . . . 17 (((𝜑𝑤 ∈ ℝ) ∧ 𝑥𝐴) → 𝐵 ∈ ℝ)
79783adant2 1131 . . . . . . . . . . . . . . . 16 (((𝜑𝑤 ∈ ℝ) ∧ 𝑧 ∈ ℝ ∧ 𝑥𝐴) → 𝐵 ∈ ℝ)
8040adantll 714 . . . . . . . . . . . . . . . . 17 (((𝜑𝑤 ∈ ℝ) ∧ 𝑧 ∈ ℝ) → if(𝑤 ≤ -𝑧, -𝑧, 𝑤) ∈ ℝ)
81803adant3 1132 . . . . . . . . . . . . . . . 16 (((𝜑𝑤 ∈ ℝ) ∧ 𝑧 ∈ ℝ ∧ 𝑥𝐴) → if(𝑤 ≤ -𝑧, -𝑧, 𝑤) ∈ ℝ)
8279, 81absled 15406 . . . . . . . . . . . . . . 15 (((𝜑𝑤 ∈ ℝ) ∧ 𝑧 ∈ ℝ ∧ 𝑥𝐴) → ((abs‘𝐵) ≤ if(𝑤 ≤ -𝑧, -𝑧, 𝑤) ↔ (-if(𝑤 ≤ -𝑧, -𝑧, 𝑤) ≤ 𝐵𝐵 ≤ if(𝑤 ≤ -𝑧, -𝑧, 𝑤))))
8382ad5ant135 1370 . . . . . . . . . . . . . 14 ((((((𝜑𝑤 ∈ ℝ) ∧ ∀𝑥𝐴 𝐵𝑤) ∧ 𝑧 ∈ ℝ) ∧ ∀𝑥𝐴 𝑧𝐵) ∧ 𝑥𝐴) → ((abs‘𝐵) ≤ if(𝑤 ≤ -𝑧, -𝑧, 𝑤) ↔ (-if(𝑤 ≤ -𝑧, -𝑧, 𝑤) ≤ 𝐵𝐵 ≤ if(𝑤 ≤ -𝑧, -𝑧, 𝑤))))
8477, 83mpbird 257 . . . . . . . . . . . . 13 ((((((𝜑𝑤 ∈ ℝ) ∧ ∀𝑥𝐴 𝐵𝑤) ∧ 𝑧 ∈ ℝ) ∧ ∀𝑥𝐴 𝑧𝐵) ∧ 𝑥𝐴) → (abs‘𝐵) ≤ if(𝑤 ≤ -𝑧, -𝑧, 𝑤))
8584ex 412 . . . . . . . . . . . 12 (((((𝜑𝑤 ∈ ℝ) ∧ ∀𝑥𝐴 𝐵𝑤) ∧ 𝑧 ∈ ℝ) ∧ ∀𝑥𝐴 𝑧𝐵) → (𝑥𝐴 → (abs‘𝐵) ≤ if(𝑤 ≤ -𝑧, -𝑧, 𝑤)))
8649, 85ralrimi 3236 . . . . . . . . . . 11 (((((𝜑𝑤 ∈ ℝ) ∧ ∀𝑥𝐴 𝐵𝑤) ∧ 𝑧 ∈ ℝ) ∧ ∀𝑥𝐴 𝑧𝐵) → ∀𝑥𝐴 (abs‘𝐵) ≤ if(𝑤 ≤ -𝑧, -𝑧, 𝑤))
87 brralrspcev 5170 . . . . . . . . . . 11 ((if(𝑤 ≤ -𝑧, -𝑧, 𝑤) ∈ ℝ ∧ ∀𝑥𝐴 (abs‘𝐵) ≤ if(𝑤 ≤ -𝑧, -𝑧, 𝑤)) → ∃𝑦 ∈ ℝ ∀𝑥𝐴 (abs‘𝐵) ≤ 𝑦)
8841, 86, 87syl2anc 584 . . . . . . . . . 10 (((((𝜑𝑤 ∈ ℝ) ∧ ∀𝑥𝐴 𝐵𝑤) ∧ 𝑧 ∈ ℝ) ∧ ∀𝑥𝐴 𝑧𝐵) → ∃𝑦 ∈ ℝ ∀𝑥𝐴 (abs‘𝐵) ≤ 𝑦)
8988exp31 419 . . . . . . . . 9 (((𝜑𝑤 ∈ ℝ) ∧ ∀𝑥𝐴 𝐵𝑤) → (𝑧 ∈ ℝ → (∀𝑥𝐴 𝑧𝐵 → ∃𝑦 ∈ ℝ ∀𝑥𝐴 (abs‘𝐵) ≤ 𝑦)))
9089exp31 419 . . . . . . . 8 (𝜑 → (𝑤 ∈ ℝ → (∀𝑥𝐴 𝐵𝑤 → (𝑧 ∈ ℝ → (∀𝑥𝐴 𝑧𝐵 → ∃𝑦 ∈ ℝ ∀𝑥𝐴 (abs‘𝐵) ≤ 𝑦)))))
9190rexlimdv 3133 . . . . . . 7 (𝜑 → (∃𝑤 ∈ ℝ ∀𝑥𝐴 𝐵𝑤 → (𝑧 ∈ ℝ → (∀𝑥𝐴 𝑧𝐵 → ∃𝑦 ∈ ℝ ∀𝑥𝐴 (abs‘𝐵) ≤ 𝑦))))
9291imp 406 . . . . . 6 ((𝜑 ∧ ∃𝑤 ∈ ℝ ∀𝑥𝐴 𝐵𝑤) → (𝑧 ∈ ℝ → (∀𝑥𝐴 𝑧𝐵 → ∃𝑦 ∈ ℝ ∀𝑥𝐴 (abs‘𝐵) ≤ 𝑦)))
9392rexlimdv 3133 . . . . 5 ((𝜑 ∧ ∃𝑤 ∈ ℝ ∀𝑥𝐴 𝐵𝑤) → (∃𝑧 ∈ ℝ ∀𝑥𝐴 𝑧𝐵 → ∃𝑦 ∈ ℝ ∀𝑥𝐴 (abs‘𝐵) ≤ 𝑦))
9493imp 406 . . . 4 (((𝜑 ∧ ∃𝑤 ∈ ℝ ∀𝑥𝐴 𝐵𝑤) ∧ ∃𝑧 ∈ ℝ ∀𝑥𝐴 𝑧𝐵) → ∃𝑦 ∈ ℝ ∀𝑥𝐴 (abs‘𝐵) ≤ 𝑦)
9594anasss 466 . . 3 ((𝜑 ∧ (∃𝑤 ∈ ℝ ∀𝑥𝐴 𝐵𝑤 ∧ ∃𝑧 ∈ ℝ ∀𝑥𝐴 𝑧𝐵)) → ∃𝑦 ∈ ℝ ∀𝑥𝐴 (abs‘𝐵) ≤ 𝑦)
9695ex 412 . 2 (𝜑 → ((∃𝑤 ∈ ℝ ∀𝑥𝐴 𝐵𝑤 ∧ ∃𝑧 ∈ ℝ ∀𝑥𝐴 𝑧𝐵) → ∃𝑦 ∈ ℝ ∀𝑥𝐴 (abs‘𝐵) ≤ 𝑦))
9736, 96impbid 212 1 (𝜑 → (∃𝑦 ∈ ℝ ∀𝑥𝐴 (abs‘𝐵) ≤ 𝑦 ↔ (∃𝑤 ∈ ℝ ∀𝑥𝐴 𝐵𝑤 ∧ ∃𝑧 ∈ ℝ ∀𝑥𝐴 𝑧𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wnf 1783  wcel 2109  wral 3045  wrex 3054  ifcif 4491   class class class wbr 5110  cfv 6514  cc 11073  cr 11074  cle 11216  -cneg 11413  abscabs 15207
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-sup 9400  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-n0 12450  df-z 12537  df-uz 12801  df-rp 12959  df-seq 13974  df-exp 14034  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209
This theorem is referenced by:  rexabsle  45422
  Copyright terms: Public domain W3C validator