| Step | Hyp | Ref
| Expression |
| 1 | | fucpropd.1 |
. . . 4
⊢ (𝜑 → (Homf
‘𝐴) =
(Homf ‘𝐵)) |
| 2 | | fucpropd.2 |
. . . 4
⊢ (𝜑 →
(compf‘𝐴) = (compf‘𝐵)) |
| 3 | | fucpropd.3 |
. . . 4
⊢ (𝜑 → (Homf
‘𝐶) =
(Homf ‘𝐷)) |
| 4 | | fucpropd.4 |
. . . 4
⊢ (𝜑 →
(compf‘𝐶) = (compf‘𝐷)) |
| 5 | | fucpropd.a |
. . . 4
⊢ (𝜑 → 𝐴 ∈ Cat) |
| 6 | | fucpropd.b |
. . . 4
⊢ (𝜑 → 𝐵 ∈ Cat) |
| 7 | | fucpropd.c |
. . . 4
⊢ (𝜑 → 𝐶 ∈ Cat) |
| 8 | | fucpropd.d |
. . . 4
⊢ (𝜑 → 𝐷 ∈ Cat) |
| 9 | 1, 2, 3, 4, 5, 6, 7, 8 | funcpropd 17947 |
. . 3
⊢ (𝜑 → (𝐴 Func 𝐶) = (𝐵 Func 𝐷)) |
| 10 | 9 | adantr 480 |
. . 3
⊢ ((𝜑 ∧ 𝑓 ∈ (𝐴 Func 𝐶)) → (𝐴 Func 𝐶) = (𝐵 Func 𝐷)) |
| 11 | | nfv 1914 |
. . . 4
⊢
Ⅎ𝑟(𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) |
| 12 | | nfcsb1v 3923 |
. . . . 5
⊢
Ⅎ𝑟⦋(1st ‘𝑓) / 𝑟⦌⦋(1st
‘𝑔) / 𝑠⦌{𝑎 ∈ X𝑥 ∈
(Base‘𝐵)((𝑟‘𝑥)(Hom ‘𝐷)(𝑠‘𝑥)) ∣ ∀𝑥 ∈ (Base‘𝐵)∀𝑦 ∈ (Base‘𝐵)∀ℎ ∈ (𝑥(Hom ‘𝐵)𝑦)((𝑎‘𝑦)(〈(𝑟‘𝑥), (𝑟‘𝑦)〉(comp‘𝐷)(𝑠‘𝑦))((𝑥(2nd ‘𝑓)𝑦)‘ℎ)) = (((𝑥(2nd ‘𝑔)𝑦)‘ℎ)(〈(𝑟‘𝑥), (𝑠‘𝑥)〉(comp‘𝐷)(𝑠‘𝑦))(𝑎‘𝑥))} |
| 13 | 12 | a1i 11 |
. . . 4
⊢ ((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) → Ⅎ𝑟⦋(1st ‘𝑓) / 𝑟⦌⦋(1st
‘𝑔) / 𝑠⦌{𝑎 ∈ X𝑥 ∈
(Base‘𝐵)((𝑟‘𝑥)(Hom ‘𝐷)(𝑠‘𝑥)) ∣ ∀𝑥 ∈ (Base‘𝐵)∀𝑦 ∈ (Base‘𝐵)∀ℎ ∈ (𝑥(Hom ‘𝐵)𝑦)((𝑎‘𝑦)(〈(𝑟‘𝑥), (𝑟‘𝑦)〉(comp‘𝐷)(𝑠‘𝑦))((𝑥(2nd ‘𝑓)𝑦)‘ℎ)) = (((𝑥(2nd ‘𝑔)𝑦)‘ℎ)(〈(𝑟‘𝑥), (𝑠‘𝑥)〉(comp‘𝐷)(𝑠‘𝑦))(𝑎‘𝑥))}) |
| 14 | | fvexd 6921 |
. . . 4
⊢ ((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) → (1st ‘𝑓) ∈ V) |
| 15 | | nfv 1914 |
. . . . . 6
⊢
Ⅎ𝑠((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st ‘𝑓)) |
| 16 | | nfcsb1v 3923 |
. . . . . . 7
⊢
Ⅎ𝑠⦋(1st ‘𝑔) / 𝑠⦌{𝑎 ∈ X𝑥 ∈ (Base‘𝐵)((𝑟‘𝑥)(Hom ‘𝐷)(𝑠‘𝑥)) ∣ ∀𝑥 ∈ (Base‘𝐵)∀𝑦 ∈ (Base‘𝐵)∀ℎ ∈ (𝑥(Hom ‘𝐵)𝑦)((𝑎‘𝑦)(〈(𝑟‘𝑥), (𝑟‘𝑦)〉(comp‘𝐷)(𝑠‘𝑦))((𝑥(2nd ‘𝑓)𝑦)‘ℎ)) = (((𝑥(2nd ‘𝑔)𝑦)‘ℎ)(〈(𝑟‘𝑥), (𝑠‘𝑥)〉(comp‘𝐷)(𝑠‘𝑦))(𝑎‘𝑥))} |
| 17 | 16 | a1i 11 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st ‘𝑓)) → Ⅎ𝑠⦋(1st ‘𝑔) / 𝑠⦌{𝑎 ∈ X𝑥 ∈ (Base‘𝐵)((𝑟‘𝑥)(Hom ‘𝐷)(𝑠‘𝑥)) ∣ ∀𝑥 ∈ (Base‘𝐵)∀𝑦 ∈ (Base‘𝐵)∀ℎ ∈ (𝑥(Hom ‘𝐵)𝑦)((𝑎‘𝑦)(〈(𝑟‘𝑥), (𝑟‘𝑦)〉(comp‘𝐷)(𝑠‘𝑦))((𝑥(2nd ‘𝑓)𝑦)‘ℎ)) = (((𝑥(2nd ‘𝑔)𝑦)‘ℎ)(〈(𝑟‘𝑥), (𝑠‘𝑥)〉(comp‘𝐷)(𝑠‘𝑦))(𝑎‘𝑥))}) |
| 18 | | fvexd 6921 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st ‘𝑓)) → (1st ‘𝑔) ∈ V) |
| 19 | | eqid 2737 |
. . . . . . . . . . 11
⊢
(Base‘𝐶) =
(Base‘𝐶) |
| 20 | | eqid 2737 |
. . . . . . . . . . 11
⊢ (Hom
‘𝐶) = (Hom
‘𝐶) |
| 21 | | eqid 2737 |
. . . . . . . . . . 11
⊢ (Hom
‘𝐷) = (Hom
‘𝐷) |
| 22 | 3 | ad4antr 732 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st ‘𝑓)) ∧ 𝑠 = (1st ‘𝑔)) ∧ 𝑥 ∈ (Base‘𝐴)) → (Homf
‘𝐶) =
(Homf ‘𝐷)) |
| 23 | | eqid 2737 |
. . . . . . . . . . . . 13
⊢
(Base‘𝐴) =
(Base‘𝐴) |
| 24 | | simplr 769 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st ‘𝑓)) ∧ 𝑠 = (1st ‘𝑔)) → 𝑟 = (1st ‘𝑓)) |
| 25 | | relfunc 17907 |
. . . . . . . . . . . . . . 15
⊢ Rel
(𝐴 Func 𝐶) |
| 26 | | simpllr 776 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st ‘𝑓)) ∧ 𝑠 = (1st ‘𝑔)) → (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) |
| 27 | 26 | simpld 494 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st ‘𝑓)) ∧ 𝑠 = (1st ‘𝑔)) → 𝑓 ∈ (𝐴 Func 𝐶)) |
| 28 | | 1st2ndbr 8067 |
. . . . . . . . . . . . . . 15
⊢ ((Rel
(𝐴 Func 𝐶) ∧ 𝑓 ∈ (𝐴 Func 𝐶)) → (1st ‘𝑓)(𝐴 Func 𝐶)(2nd ‘𝑓)) |
| 29 | 25, 27, 28 | sylancr 587 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st ‘𝑓)) ∧ 𝑠 = (1st ‘𝑔)) → (1st ‘𝑓)(𝐴 Func 𝐶)(2nd ‘𝑓)) |
| 30 | 24, 29 | eqbrtrd 5165 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st ‘𝑓)) ∧ 𝑠 = (1st ‘𝑔)) → 𝑟(𝐴 Func 𝐶)(2nd ‘𝑓)) |
| 31 | 23, 19, 30 | funcf1 17911 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st ‘𝑓)) ∧ 𝑠 = (1st ‘𝑔)) → 𝑟:(Base‘𝐴)⟶(Base‘𝐶)) |
| 32 | 31 | ffvelcdmda 7104 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st ‘𝑓)) ∧ 𝑠 = (1st ‘𝑔)) ∧ 𝑥 ∈ (Base‘𝐴)) → (𝑟‘𝑥) ∈ (Base‘𝐶)) |
| 33 | | simpr 484 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st ‘𝑓)) ∧ 𝑠 = (1st ‘𝑔)) → 𝑠 = (1st ‘𝑔)) |
| 34 | 26 | simprd 495 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st ‘𝑓)) ∧ 𝑠 = (1st ‘𝑔)) → 𝑔 ∈ (𝐴 Func 𝐶)) |
| 35 | | 1st2ndbr 8067 |
. . . . . . . . . . . . . . 15
⊢ ((Rel
(𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶)) → (1st ‘𝑔)(𝐴 Func 𝐶)(2nd ‘𝑔)) |
| 36 | 25, 34, 35 | sylancr 587 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st ‘𝑓)) ∧ 𝑠 = (1st ‘𝑔)) → (1st ‘𝑔)(𝐴 Func 𝐶)(2nd ‘𝑔)) |
| 37 | 33, 36 | eqbrtrd 5165 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st ‘𝑓)) ∧ 𝑠 = (1st ‘𝑔)) → 𝑠(𝐴 Func 𝐶)(2nd ‘𝑔)) |
| 38 | 23, 19, 37 | funcf1 17911 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st ‘𝑓)) ∧ 𝑠 = (1st ‘𝑔)) → 𝑠:(Base‘𝐴)⟶(Base‘𝐶)) |
| 39 | 38 | ffvelcdmda 7104 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st ‘𝑓)) ∧ 𝑠 = (1st ‘𝑔)) ∧ 𝑥 ∈ (Base‘𝐴)) → (𝑠‘𝑥) ∈ (Base‘𝐶)) |
| 40 | 19, 20, 21, 22, 32, 39 | homfeqval 17740 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st ‘𝑓)) ∧ 𝑠 = (1st ‘𝑔)) ∧ 𝑥 ∈ (Base‘𝐴)) → ((𝑟‘𝑥)(Hom ‘𝐶)(𝑠‘𝑥)) = ((𝑟‘𝑥)(Hom ‘𝐷)(𝑠‘𝑥))) |
| 41 | 40 | ixpeq2dva 8952 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st ‘𝑓)) ∧ 𝑠 = (1st ‘𝑔)) → X𝑥 ∈ (Base‘𝐴)((𝑟‘𝑥)(Hom ‘𝐶)(𝑠‘𝑥)) = X𝑥 ∈ (Base‘𝐴)((𝑟‘𝑥)(Hom ‘𝐷)(𝑠‘𝑥))) |
| 42 | 1 | homfeqbas 17739 |
. . . . . . . . . . 11
⊢ (𝜑 → (Base‘𝐴) = (Base‘𝐵)) |
| 43 | 42 | ad3antrrr 730 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st ‘𝑓)) ∧ 𝑠 = (1st ‘𝑔)) → (Base‘𝐴) = (Base‘𝐵)) |
| 44 | 43 | ixpeq1d 8949 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st ‘𝑓)) ∧ 𝑠 = (1st ‘𝑔)) → X𝑥 ∈ (Base‘𝐴)((𝑟‘𝑥)(Hom ‘𝐷)(𝑠‘𝑥)) = X𝑥 ∈ (Base‘𝐵)((𝑟‘𝑥)(Hom ‘𝐷)(𝑠‘𝑥))) |
| 45 | 41, 44 | eqtrd 2777 |
. . . . . . . 8
⊢ ((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st ‘𝑓)) ∧ 𝑠 = (1st ‘𝑔)) → X𝑥 ∈ (Base‘𝐴)((𝑟‘𝑥)(Hom ‘𝐶)(𝑠‘𝑥)) = X𝑥 ∈ (Base‘𝐵)((𝑟‘𝑥)(Hom ‘𝐷)(𝑠‘𝑥))) |
| 46 | | fveq2 6906 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑧 → (𝑟‘𝑥) = (𝑟‘𝑧)) |
| 47 | | fveq2 6906 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑧 → (𝑠‘𝑥) = (𝑠‘𝑧)) |
| 48 | 46, 47 | oveq12d 7449 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑧 → ((𝑟‘𝑥)(Hom ‘𝐶)(𝑠‘𝑥)) = ((𝑟‘𝑧)(Hom ‘𝐶)(𝑠‘𝑧))) |
| 49 | 48 | cbvixpv 8955 |
. . . . . . . . . 10
⊢ X𝑥 ∈
(Base‘𝐴)((𝑟‘𝑥)(Hom ‘𝐶)(𝑠‘𝑥)) = X𝑧 ∈ (Base‘𝐴)((𝑟‘𝑧)(Hom ‘𝐶)(𝑠‘𝑧)) |
| 50 | 49 | eleq2i 2833 |
. . . . . . . . 9
⊢ (𝑎 ∈ X𝑥 ∈
(Base‘𝐴)((𝑟‘𝑥)(Hom ‘𝐶)(𝑠‘𝑥)) ↔ 𝑎 ∈ X𝑧 ∈ (Base‘𝐴)((𝑟‘𝑧)(Hom ‘𝐶)(𝑠‘𝑧))) |
| 51 | 43 | adantr 480 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st ‘𝑓)) ∧ 𝑠 = (1st ‘𝑔)) ∧ 𝑎 ∈ X𝑧 ∈ (Base‘𝐴)((𝑟‘𝑧)(Hom ‘𝐶)(𝑠‘𝑧))) → (Base‘𝐴) = (Base‘𝐵)) |
| 52 | 51 | adantr 480 |
. . . . . . . . . . 11
⊢
((((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st ‘𝑓)) ∧ 𝑠 = (1st ‘𝑔)) ∧ 𝑎 ∈ X𝑧 ∈ (Base‘𝐴)((𝑟‘𝑧)(Hom ‘𝐶)(𝑠‘𝑧))) ∧ 𝑥 ∈ (Base‘𝐴)) → (Base‘𝐴) = (Base‘𝐵)) |
| 53 | | eqid 2737 |
. . . . . . . . . . . . 13
⊢ (Hom
‘𝐴) = (Hom
‘𝐴) |
| 54 | | eqid 2737 |
. . . . . . . . . . . . 13
⊢ (Hom
‘𝐵) = (Hom
‘𝐵) |
| 55 | 1 | ad6antr 736 |
. . . . . . . . . . . . 13
⊢
(((((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st ‘𝑓)) ∧ 𝑠 = (1st ‘𝑔)) ∧ 𝑎 ∈ X𝑧 ∈ (Base‘𝐴)((𝑟‘𝑧)(Hom ‘𝐶)(𝑠‘𝑧))) ∧ 𝑥 ∈ (Base‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴)) → (Homf
‘𝐴) =
(Homf ‘𝐵)) |
| 56 | | simplr 769 |
. . . . . . . . . . . . 13
⊢
(((((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st ‘𝑓)) ∧ 𝑠 = (1st ‘𝑔)) ∧ 𝑎 ∈ X𝑧 ∈ (Base‘𝐴)((𝑟‘𝑧)(Hom ‘𝐶)(𝑠‘𝑧))) ∧ 𝑥 ∈ (Base‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴)) → 𝑥 ∈ (Base‘𝐴)) |
| 57 | | simpr 484 |
. . . . . . . . . . . . 13
⊢
(((((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st ‘𝑓)) ∧ 𝑠 = (1st ‘𝑔)) ∧ 𝑎 ∈ X𝑧 ∈ (Base‘𝐴)((𝑟‘𝑧)(Hom ‘𝐶)(𝑠‘𝑧))) ∧ 𝑥 ∈ (Base‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴)) → 𝑦 ∈ (Base‘𝐴)) |
| 58 | 23, 53, 54, 55, 56, 57 | homfeqval 17740 |
. . . . . . . . . . . 12
⊢
(((((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st ‘𝑓)) ∧ 𝑠 = (1st ‘𝑔)) ∧ 𝑎 ∈ X𝑧 ∈ (Base‘𝐴)((𝑟‘𝑧)(Hom ‘𝐶)(𝑠‘𝑧))) ∧ 𝑥 ∈ (Base‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴)) → (𝑥(Hom ‘𝐴)𝑦) = (𝑥(Hom ‘𝐵)𝑦)) |
| 59 | | eqid 2737 |
. . . . . . . . . . . . . 14
⊢
(comp‘𝐶) =
(comp‘𝐶) |
| 60 | | eqid 2737 |
. . . . . . . . . . . . . 14
⊢
(comp‘𝐷) =
(comp‘𝐷) |
| 61 | 3 | ad7antr 738 |
. . . . . . . . . . . . . 14
⊢
((((((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st ‘𝑓)) ∧ 𝑠 = (1st ‘𝑔)) ∧ 𝑎 ∈ X𝑧 ∈ (Base‘𝐴)((𝑟‘𝑧)(Hom ‘𝐶)(𝑠‘𝑧))) ∧ 𝑥 ∈ (Base‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴)) ∧ ℎ ∈ (𝑥(Hom ‘𝐴)𝑦)) → (Homf
‘𝐶) =
(Homf ‘𝐷)) |
| 62 | 4 | ad7antr 738 |
. . . . . . . . . . . . . 14
⊢
((((((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st ‘𝑓)) ∧ 𝑠 = (1st ‘𝑔)) ∧ 𝑎 ∈ X𝑧 ∈ (Base‘𝐴)((𝑟‘𝑧)(Hom ‘𝐶)(𝑠‘𝑧))) ∧ 𝑥 ∈ (Base‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴)) ∧ ℎ ∈ (𝑥(Hom ‘𝐴)𝑦)) →
(compf‘𝐶) = (compf‘𝐷)) |
| 63 | 32 | ad5ant13 757 |
. . . . . . . . . . . . . 14
⊢
((((((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st ‘𝑓)) ∧ 𝑠 = (1st ‘𝑔)) ∧ 𝑎 ∈ X𝑧 ∈ (Base‘𝐴)((𝑟‘𝑧)(Hom ‘𝐶)(𝑠‘𝑧))) ∧ 𝑥 ∈ (Base‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴)) ∧ ℎ ∈ (𝑥(Hom ‘𝐴)𝑦)) → (𝑟‘𝑥) ∈ (Base‘𝐶)) |
| 64 | 31 | ad2antrr 726 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st ‘𝑓)) ∧ 𝑠 = (1st ‘𝑔)) ∧ 𝑎 ∈ X𝑧 ∈ (Base‘𝐴)((𝑟‘𝑧)(Hom ‘𝐶)(𝑠‘𝑧))) ∧ 𝑥 ∈ (Base‘𝐴)) → 𝑟:(Base‘𝐴)⟶(Base‘𝐶)) |
| 65 | 64 | ffvelcdmda 7104 |
. . . . . . . . . . . . . . 15
⊢
(((((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st ‘𝑓)) ∧ 𝑠 = (1st ‘𝑔)) ∧ 𝑎 ∈ X𝑧 ∈ (Base‘𝐴)((𝑟‘𝑧)(Hom ‘𝐶)(𝑠‘𝑧))) ∧ 𝑥 ∈ (Base‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴)) → (𝑟‘𝑦) ∈ (Base‘𝐶)) |
| 66 | 65 | adantr 480 |
. . . . . . . . . . . . . 14
⊢
((((((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st ‘𝑓)) ∧ 𝑠 = (1st ‘𝑔)) ∧ 𝑎 ∈ X𝑧 ∈ (Base‘𝐴)((𝑟‘𝑧)(Hom ‘𝐶)(𝑠‘𝑧))) ∧ 𝑥 ∈ (Base‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴)) ∧ ℎ ∈ (𝑥(Hom ‘𝐴)𝑦)) → (𝑟‘𝑦) ∈ (Base‘𝐶)) |
| 67 | 38 | ad2antrr 726 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st ‘𝑓)) ∧ 𝑠 = (1st ‘𝑔)) ∧ 𝑎 ∈ X𝑧 ∈ (Base‘𝐴)((𝑟‘𝑧)(Hom ‘𝐶)(𝑠‘𝑧))) ∧ 𝑥 ∈ (Base‘𝐴)) → 𝑠:(Base‘𝐴)⟶(Base‘𝐶)) |
| 68 | 67 | ffvelcdmda 7104 |
. . . . . . . . . . . . . . 15
⊢
(((((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st ‘𝑓)) ∧ 𝑠 = (1st ‘𝑔)) ∧ 𝑎 ∈ X𝑧 ∈ (Base‘𝐴)((𝑟‘𝑧)(Hom ‘𝐶)(𝑠‘𝑧))) ∧ 𝑥 ∈ (Base‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴)) → (𝑠‘𝑦) ∈ (Base‘𝐶)) |
| 69 | 68 | adantr 480 |
. . . . . . . . . . . . . 14
⊢
((((((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st ‘𝑓)) ∧ 𝑠 = (1st ‘𝑔)) ∧ 𝑎 ∈ X𝑧 ∈ (Base‘𝐴)((𝑟‘𝑧)(Hom ‘𝐶)(𝑠‘𝑧))) ∧ 𝑥 ∈ (Base‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴)) ∧ ℎ ∈ (𝑥(Hom ‘𝐴)𝑦)) → (𝑠‘𝑦) ∈ (Base‘𝐶)) |
| 70 | 30 | ad3antrrr 730 |
. . . . . . . . . . . . . . . 16
⊢
(((((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st ‘𝑓)) ∧ 𝑠 = (1st ‘𝑔)) ∧ 𝑎 ∈ X𝑧 ∈ (Base‘𝐴)((𝑟‘𝑧)(Hom ‘𝐶)(𝑠‘𝑧))) ∧ 𝑥 ∈ (Base‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴)) → 𝑟(𝐴 Func 𝐶)(2nd ‘𝑓)) |
| 71 | 23, 53, 20, 70, 56, 57 | funcf2 17913 |
. . . . . . . . . . . . . . 15
⊢
(((((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st ‘𝑓)) ∧ 𝑠 = (1st ‘𝑔)) ∧ 𝑎 ∈ X𝑧 ∈ (Base‘𝐴)((𝑟‘𝑧)(Hom ‘𝐶)(𝑠‘𝑧))) ∧ 𝑥 ∈ (Base‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴)) → (𝑥(2nd ‘𝑓)𝑦):(𝑥(Hom ‘𝐴)𝑦)⟶((𝑟‘𝑥)(Hom ‘𝐶)(𝑟‘𝑦))) |
| 72 | 71 | ffvelcdmda 7104 |
. . . . . . . . . . . . . 14
⊢
((((((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st ‘𝑓)) ∧ 𝑠 = (1st ‘𝑔)) ∧ 𝑎 ∈ X𝑧 ∈ (Base‘𝐴)((𝑟‘𝑧)(Hom ‘𝐶)(𝑠‘𝑧))) ∧ 𝑥 ∈ (Base‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴)) ∧ ℎ ∈ (𝑥(Hom ‘𝐴)𝑦)) → ((𝑥(2nd ‘𝑓)𝑦)‘ℎ) ∈ ((𝑟‘𝑥)(Hom ‘𝐶)(𝑟‘𝑦))) |
| 73 | | fveq2 6906 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑧 = 𝑦 → (𝑟‘𝑧) = (𝑟‘𝑦)) |
| 74 | | fveq2 6906 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑧 = 𝑦 → (𝑠‘𝑧) = (𝑠‘𝑦)) |
| 75 | 73, 74 | oveq12d 7449 |
. . . . . . . . . . . . . . . 16
⊢ (𝑧 = 𝑦 → ((𝑟‘𝑧)(Hom ‘𝐶)(𝑠‘𝑧)) = ((𝑟‘𝑦)(Hom ‘𝐶)(𝑠‘𝑦))) |
| 76 | 75 | fvixp 8942 |
. . . . . . . . . . . . . . 15
⊢ ((𝑎 ∈ X𝑧 ∈
(Base‘𝐴)((𝑟‘𝑧)(Hom ‘𝐶)(𝑠‘𝑧)) ∧ 𝑦 ∈ (Base‘𝐴)) → (𝑎‘𝑦) ∈ ((𝑟‘𝑦)(Hom ‘𝐶)(𝑠‘𝑦))) |
| 77 | 76 | ad5ant24 761 |
. . . . . . . . . . . . . 14
⊢
((((((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st ‘𝑓)) ∧ 𝑠 = (1st ‘𝑔)) ∧ 𝑎 ∈ X𝑧 ∈ (Base‘𝐴)((𝑟‘𝑧)(Hom ‘𝐶)(𝑠‘𝑧))) ∧ 𝑥 ∈ (Base‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴)) ∧ ℎ ∈ (𝑥(Hom ‘𝐴)𝑦)) → (𝑎‘𝑦) ∈ ((𝑟‘𝑦)(Hom ‘𝐶)(𝑠‘𝑦))) |
| 78 | 19, 20, 59, 60, 61, 62, 63, 66, 69, 72, 77 | comfeqval 17751 |
. . . . . . . . . . . . 13
⊢
((((((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st ‘𝑓)) ∧ 𝑠 = (1st ‘𝑔)) ∧ 𝑎 ∈ X𝑧 ∈ (Base‘𝐴)((𝑟‘𝑧)(Hom ‘𝐶)(𝑠‘𝑧))) ∧ 𝑥 ∈ (Base‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴)) ∧ ℎ ∈ (𝑥(Hom ‘𝐴)𝑦)) → ((𝑎‘𝑦)(〈(𝑟‘𝑥), (𝑟‘𝑦)〉(comp‘𝐶)(𝑠‘𝑦))((𝑥(2nd ‘𝑓)𝑦)‘ℎ)) = ((𝑎‘𝑦)(〈(𝑟‘𝑥), (𝑟‘𝑦)〉(comp‘𝐷)(𝑠‘𝑦))((𝑥(2nd ‘𝑓)𝑦)‘ℎ))) |
| 79 | 39 | ad5ant13 757 |
. . . . . . . . . . . . . 14
⊢
((((((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st ‘𝑓)) ∧ 𝑠 = (1st ‘𝑔)) ∧ 𝑎 ∈ X𝑧 ∈ (Base‘𝐴)((𝑟‘𝑧)(Hom ‘𝐶)(𝑠‘𝑧))) ∧ 𝑥 ∈ (Base‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴)) ∧ ℎ ∈ (𝑥(Hom ‘𝐴)𝑦)) → (𝑠‘𝑥) ∈ (Base‘𝐶)) |
| 80 | | fveq2 6906 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑧 = 𝑥 → (𝑟‘𝑧) = (𝑟‘𝑥)) |
| 81 | | fveq2 6906 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑧 = 𝑥 → (𝑠‘𝑧) = (𝑠‘𝑥)) |
| 82 | 80, 81 | oveq12d 7449 |
. . . . . . . . . . . . . . . 16
⊢ (𝑧 = 𝑥 → ((𝑟‘𝑧)(Hom ‘𝐶)(𝑠‘𝑧)) = ((𝑟‘𝑥)(Hom ‘𝐶)(𝑠‘𝑥))) |
| 83 | 82 | fvixp 8942 |
. . . . . . . . . . . . . . 15
⊢ ((𝑎 ∈ X𝑧 ∈
(Base‘𝐴)((𝑟‘𝑧)(Hom ‘𝐶)(𝑠‘𝑧)) ∧ 𝑥 ∈ (Base‘𝐴)) → (𝑎‘𝑥) ∈ ((𝑟‘𝑥)(Hom ‘𝐶)(𝑠‘𝑥))) |
| 84 | 83 | ad5ant23 760 |
. . . . . . . . . . . . . 14
⊢
((((((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st ‘𝑓)) ∧ 𝑠 = (1st ‘𝑔)) ∧ 𝑎 ∈ X𝑧 ∈ (Base‘𝐴)((𝑟‘𝑧)(Hom ‘𝐶)(𝑠‘𝑧))) ∧ 𝑥 ∈ (Base‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴)) ∧ ℎ ∈ (𝑥(Hom ‘𝐴)𝑦)) → (𝑎‘𝑥) ∈ ((𝑟‘𝑥)(Hom ‘𝐶)(𝑠‘𝑥))) |
| 85 | 37 | ad3antrrr 730 |
. . . . . . . . . . . . . . . 16
⊢
(((((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st ‘𝑓)) ∧ 𝑠 = (1st ‘𝑔)) ∧ 𝑎 ∈ X𝑧 ∈ (Base‘𝐴)((𝑟‘𝑧)(Hom ‘𝐶)(𝑠‘𝑧))) ∧ 𝑥 ∈ (Base‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴)) → 𝑠(𝐴 Func 𝐶)(2nd ‘𝑔)) |
| 86 | 23, 53, 20, 85, 56, 57 | funcf2 17913 |
. . . . . . . . . . . . . . 15
⊢
(((((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st ‘𝑓)) ∧ 𝑠 = (1st ‘𝑔)) ∧ 𝑎 ∈ X𝑧 ∈ (Base‘𝐴)((𝑟‘𝑧)(Hom ‘𝐶)(𝑠‘𝑧))) ∧ 𝑥 ∈ (Base‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴)) → (𝑥(2nd ‘𝑔)𝑦):(𝑥(Hom ‘𝐴)𝑦)⟶((𝑠‘𝑥)(Hom ‘𝐶)(𝑠‘𝑦))) |
| 87 | 86 | ffvelcdmda 7104 |
. . . . . . . . . . . . . 14
⊢
((((((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st ‘𝑓)) ∧ 𝑠 = (1st ‘𝑔)) ∧ 𝑎 ∈ X𝑧 ∈ (Base‘𝐴)((𝑟‘𝑧)(Hom ‘𝐶)(𝑠‘𝑧))) ∧ 𝑥 ∈ (Base‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴)) ∧ ℎ ∈ (𝑥(Hom ‘𝐴)𝑦)) → ((𝑥(2nd ‘𝑔)𝑦)‘ℎ) ∈ ((𝑠‘𝑥)(Hom ‘𝐶)(𝑠‘𝑦))) |
| 88 | 19, 20, 59, 60, 61, 62, 63, 79, 69, 84, 87 | comfeqval 17751 |
. . . . . . . . . . . . 13
⊢
((((((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st ‘𝑓)) ∧ 𝑠 = (1st ‘𝑔)) ∧ 𝑎 ∈ X𝑧 ∈ (Base‘𝐴)((𝑟‘𝑧)(Hom ‘𝐶)(𝑠‘𝑧))) ∧ 𝑥 ∈ (Base‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴)) ∧ ℎ ∈ (𝑥(Hom ‘𝐴)𝑦)) → (((𝑥(2nd ‘𝑔)𝑦)‘ℎ)(〈(𝑟‘𝑥), (𝑠‘𝑥)〉(comp‘𝐶)(𝑠‘𝑦))(𝑎‘𝑥)) = (((𝑥(2nd ‘𝑔)𝑦)‘ℎ)(〈(𝑟‘𝑥), (𝑠‘𝑥)〉(comp‘𝐷)(𝑠‘𝑦))(𝑎‘𝑥))) |
| 89 | 78, 88 | eqeq12d 2753 |
. . . . . . . . . . . 12
⊢
((((((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st ‘𝑓)) ∧ 𝑠 = (1st ‘𝑔)) ∧ 𝑎 ∈ X𝑧 ∈ (Base‘𝐴)((𝑟‘𝑧)(Hom ‘𝐶)(𝑠‘𝑧))) ∧ 𝑥 ∈ (Base‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴)) ∧ ℎ ∈ (𝑥(Hom ‘𝐴)𝑦)) → (((𝑎‘𝑦)(〈(𝑟‘𝑥), (𝑟‘𝑦)〉(comp‘𝐶)(𝑠‘𝑦))((𝑥(2nd ‘𝑓)𝑦)‘ℎ)) = (((𝑥(2nd ‘𝑔)𝑦)‘ℎ)(〈(𝑟‘𝑥), (𝑠‘𝑥)〉(comp‘𝐶)(𝑠‘𝑦))(𝑎‘𝑥)) ↔ ((𝑎‘𝑦)(〈(𝑟‘𝑥), (𝑟‘𝑦)〉(comp‘𝐷)(𝑠‘𝑦))((𝑥(2nd ‘𝑓)𝑦)‘ℎ)) = (((𝑥(2nd ‘𝑔)𝑦)‘ℎ)(〈(𝑟‘𝑥), (𝑠‘𝑥)〉(comp‘𝐷)(𝑠‘𝑦))(𝑎‘𝑥)))) |
| 90 | 58, 89 | raleqbidva 3332 |
. . . . . . . . . . 11
⊢
(((((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st ‘𝑓)) ∧ 𝑠 = (1st ‘𝑔)) ∧ 𝑎 ∈ X𝑧 ∈ (Base‘𝐴)((𝑟‘𝑧)(Hom ‘𝐶)(𝑠‘𝑧))) ∧ 𝑥 ∈ (Base‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴)) → (∀ℎ ∈ (𝑥(Hom ‘𝐴)𝑦)((𝑎‘𝑦)(〈(𝑟‘𝑥), (𝑟‘𝑦)〉(comp‘𝐶)(𝑠‘𝑦))((𝑥(2nd ‘𝑓)𝑦)‘ℎ)) = (((𝑥(2nd ‘𝑔)𝑦)‘ℎ)(〈(𝑟‘𝑥), (𝑠‘𝑥)〉(comp‘𝐶)(𝑠‘𝑦))(𝑎‘𝑥)) ↔ ∀ℎ ∈ (𝑥(Hom ‘𝐵)𝑦)((𝑎‘𝑦)(〈(𝑟‘𝑥), (𝑟‘𝑦)〉(comp‘𝐷)(𝑠‘𝑦))((𝑥(2nd ‘𝑓)𝑦)‘ℎ)) = (((𝑥(2nd ‘𝑔)𝑦)‘ℎ)(〈(𝑟‘𝑥), (𝑠‘𝑥)〉(comp‘𝐷)(𝑠‘𝑦))(𝑎‘𝑥)))) |
| 91 | 52, 90 | raleqbidva 3332 |
. . . . . . . . . 10
⊢
((((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st ‘𝑓)) ∧ 𝑠 = (1st ‘𝑔)) ∧ 𝑎 ∈ X𝑧 ∈ (Base‘𝐴)((𝑟‘𝑧)(Hom ‘𝐶)(𝑠‘𝑧))) ∧ 𝑥 ∈ (Base‘𝐴)) → (∀𝑦 ∈ (Base‘𝐴)∀ℎ ∈ (𝑥(Hom ‘𝐴)𝑦)((𝑎‘𝑦)(〈(𝑟‘𝑥), (𝑟‘𝑦)〉(comp‘𝐶)(𝑠‘𝑦))((𝑥(2nd ‘𝑓)𝑦)‘ℎ)) = (((𝑥(2nd ‘𝑔)𝑦)‘ℎ)(〈(𝑟‘𝑥), (𝑠‘𝑥)〉(comp‘𝐶)(𝑠‘𝑦))(𝑎‘𝑥)) ↔ ∀𝑦 ∈ (Base‘𝐵)∀ℎ ∈ (𝑥(Hom ‘𝐵)𝑦)((𝑎‘𝑦)(〈(𝑟‘𝑥), (𝑟‘𝑦)〉(comp‘𝐷)(𝑠‘𝑦))((𝑥(2nd ‘𝑓)𝑦)‘ℎ)) = (((𝑥(2nd ‘𝑔)𝑦)‘ℎ)(〈(𝑟‘𝑥), (𝑠‘𝑥)〉(comp‘𝐷)(𝑠‘𝑦))(𝑎‘𝑥)))) |
| 92 | 51, 91 | raleqbidva 3332 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st ‘𝑓)) ∧ 𝑠 = (1st ‘𝑔)) ∧ 𝑎 ∈ X𝑧 ∈ (Base‘𝐴)((𝑟‘𝑧)(Hom ‘𝐶)(𝑠‘𝑧))) → (∀𝑥 ∈ (Base‘𝐴)∀𝑦 ∈ (Base‘𝐴)∀ℎ ∈ (𝑥(Hom ‘𝐴)𝑦)((𝑎‘𝑦)(〈(𝑟‘𝑥), (𝑟‘𝑦)〉(comp‘𝐶)(𝑠‘𝑦))((𝑥(2nd ‘𝑓)𝑦)‘ℎ)) = (((𝑥(2nd ‘𝑔)𝑦)‘ℎ)(〈(𝑟‘𝑥), (𝑠‘𝑥)〉(comp‘𝐶)(𝑠‘𝑦))(𝑎‘𝑥)) ↔ ∀𝑥 ∈ (Base‘𝐵)∀𝑦 ∈ (Base‘𝐵)∀ℎ ∈ (𝑥(Hom ‘𝐵)𝑦)((𝑎‘𝑦)(〈(𝑟‘𝑥), (𝑟‘𝑦)〉(comp‘𝐷)(𝑠‘𝑦))((𝑥(2nd ‘𝑓)𝑦)‘ℎ)) = (((𝑥(2nd ‘𝑔)𝑦)‘ℎ)(〈(𝑟‘𝑥), (𝑠‘𝑥)〉(comp‘𝐷)(𝑠‘𝑦))(𝑎‘𝑥)))) |
| 93 | 50, 92 | sylan2b 594 |
. . . . . . . 8
⊢
(((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st ‘𝑓)) ∧ 𝑠 = (1st ‘𝑔)) ∧ 𝑎 ∈ X𝑥 ∈ (Base‘𝐴)((𝑟‘𝑥)(Hom ‘𝐶)(𝑠‘𝑥))) → (∀𝑥 ∈ (Base‘𝐴)∀𝑦 ∈ (Base‘𝐴)∀ℎ ∈ (𝑥(Hom ‘𝐴)𝑦)((𝑎‘𝑦)(〈(𝑟‘𝑥), (𝑟‘𝑦)〉(comp‘𝐶)(𝑠‘𝑦))((𝑥(2nd ‘𝑓)𝑦)‘ℎ)) = (((𝑥(2nd ‘𝑔)𝑦)‘ℎ)(〈(𝑟‘𝑥), (𝑠‘𝑥)〉(comp‘𝐶)(𝑠‘𝑦))(𝑎‘𝑥)) ↔ ∀𝑥 ∈ (Base‘𝐵)∀𝑦 ∈ (Base‘𝐵)∀ℎ ∈ (𝑥(Hom ‘𝐵)𝑦)((𝑎‘𝑦)(〈(𝑟‘𝑥), (𝑟‘𝑦)〉(comp‘𝐷)(𝑠‘𝑦))((𝑥(2nd ‘𝑓)𝑦)‘ℎ)) = (((𝑥(2nd ‘𝑔)𝑦)‘ℎ)(〈(𝑟‘𝑥), (𝑠‘𝑥)〉(comp‘𝐷)(𝑠‘𝑦))(𝑎‘𝑥)))) |
| 94 | 45, 93 | rabeqbidva 3453 |
. . . . . . 7
⊢ ((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st ‘𝑓)) ∧ 𝑠 = (1st ‘𝑔)) → {𝑎 ∈ X𝑥 ∈ (Base‘𝐴)((𝑟‘𝑥)(Hom ‘𝐶)(𝑠‘𝑥)) ∣ ∀𝑥 ∈ (Base‘𝐴)∀𝑦 ∈ (Base‘𝐴)∀ℎ ∈ (𝑥(Hom ‘𝐴)𝑦)((𝑎‘𝑦)(〈(𝑟‘𝑥), (𝑟‘𝑦)〉(comp‘𝐶)(𝑠‘𝑦))((𝑥(2nd ‘𝑓)𝑦)‘ℎ)) = (((𝑥(2nd ‘𝑔)𝑦)‘ℎ)(〈(𝑟‘𝑥), (𝑠‘𝑥)〉(comp‘𝐶)(𝑠‘𝑦))(𝑎‘𝑥))} = {𝑎 ∈ X𝑥 ∈ (Base‘𝐵)((𝑟‘𝑥)(Hom ‘𝐷)(𝑠‘𝑥)) ∣ ∀𝑥 ∈ (Base‘𝐵)∀𝑦 ∈ (Base‘𝐵)∀ℎ ∈ (𝑥(Hom ‘𝐵)𝑦)((𝑎‘𝑦)(〈(𝑟‘𝑥), (𝑟‘𝑦)〉(comp‘𝐷)(𝑠‘𝑦))((𝑥(2nd ‘𝑓)𝑦)‘ℎ)) = (((𝑥(2nd ‘𝑔)𝑦)‘ℎ)(〈(𝑟‘𝑥), (𝑠‘𝑥)〉(comp‘𝐷)(𝑠‘𝑦))(𝑎‘𝑥))}) |
| 95 | | csbeq1a 3913 |
. . . . . . . 8
⊢ (𝑠 = (1st ‘𝑔) → {𝑎 ∈ X𝑥 ∈ (Base‘𝐵)((𝑟‘𝑥)(Hom ‘𝐷)(𝑠‘𝑥)) ∣ ∀𝑥 ∈ (Base‘𝐵)∀𝑦 ∈ (Base‘𝐵)∀ℎ ∈ (𝑥(Hom ‘𝐵)𝑦)((𝑎‘𝑦)(〈(𝑟‘𝑥), (𝑟‘𝑦)〉(comp‘𝐷)(𝑠‘𝑦))((𝑥(2nd ‘𝑓)𝑦)‘ℎ)) = (((𝑥(2nd ‘𝑔)𝑦)‘ℎ)(〈(𝑟‘𝑥), (𝑠‘𝑥)〉(comp‘𝐷)(𝑠‘𝑦))(𝑎‘𝑥))} = ⦋(1st
‘𝑔) / 𝑠⦌{𝑎 ∈ X𝑥 ∈
(Base‘𝐵)((𝑟‘𝑥)(Hom ‘𝐷)(𝑠‘𝑥)) ∣ ∀𝑥 ∈ (Base‘𝐵)∀𝑦 ∈ (Base‘𝐵)∀ℎ ∈ (𝑥(Hom ‘𝐵)𝑦)((𝑎‘𝑦)(〈(𝑟‘𝑥), (𝑟‘𝑦)〉(comp‘𝐷)(𝑠‘𝑦))((𝑥(2nd ‘𝑓)𝑦)‘ℎ)) = (((𝑥(2nd ‘𝑔)𝑦)‘ℎ)(〈(𝑟‘𝑥), (𝑠‘𝑥)〉(comp‘𝐷)(𝑠‘𝑦))(𝑎‘𝑥))}) |
| 96 | 95 | adantl 481 |
. . . . . . 7
⊢ ((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st ‘𝑓)) ∧ 𝑠 = (1st ‘𝑔)) → {𝑎 ∈ X𝑥 ∈ (Base‘𝐵)((𝑟‘𝑥)(Hom ‘𝐷)(𝑠‘𝑥)) ∣ ∀𝑥 ∈ (Base‘𝐵)∀𝑦 ∈ (Base‘𝐵)∀ℎ ∈ (𝑥(Hom ‘𝐵)𝑦)((𝑎‘𝑦)(〈(𝑟‘𝑥), (𝑟‘𝑦)〉(comp‘𝐷)(𝑠‘𝑦))((𝑥(2nd ‘𝑓)𝑦)‘ℎ)) = (((𝑥(2nd ‘𝑔)𝑦)‘ℎ)(〈(𝑟‘𝑥), (𝑠‘𝑥)〉(comp‘𝐷)(𝑠‘𝑦))(𝑎‘𝑥))} = ⦋(1st
‘𝑔) / 𝑠⦌{𝑎 ∈ X𝑥 ∈
(Base‘𝐵)((𝑟‘𝑥)(Hom ‘𝐷)(𝑠‘𝑥)) ∣ ∀𝑥 ∈ (Base‘𝐵)∀𝑦 ∈ (Base‘𝐵)∀ℎ ∈ (𝑥(Hom ‘𝐵)𝑦)((𝑎‘𝑦)(〈(𝑟‘𝑥), (𝑟‘𝑦)〉(comp‘𝐷)(𝑠‘𝑦))((𝑥(2nd ‘𝑓)𝑦)‘ℎ)) = (((𝑥(2nd ‘𝑔)𝑦)‘ℎ)(〈(𝑟‘𝑥), (𝑠‘𝑥)〉(comp‘𝐷)(𝑠‘𝑦))(𝑎‘𝑥))}) |
| 97 | 94, 96 | eqtrd 2777 |
. . . . . 6
⊢ ((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st ‘𝑓)) ∧ 𝑠 = (1st ‘𝑔)) → {𝑎 ∈ X𝑥 ∈ (Base‘𝐴)((𝑟‘𝑥)(Hom ‘𝐶)(𝑠‘𝑥)) ∣ ∀𝑥 ∈ (Base‘𝐴)∀𝑦 ∈ (Base‘𝐴)∀ℎ ∈ (𝑥(Hom ‘𝐴)𝑦)((𝑎‘𝑦)(〈(𝑟‘𝑥), (𝑟‘𝑦)〉(comp‘𝐶)(𝑠‘𝑦))((𝑥(2nd ‘𝑓)𝑦)‘ℎ)) = (((𝑥(2nd ‘𝑔)𝑦)‘ℎ)(〈(𝑟‘𝑥), (𝑠‘𝑥)〉(comp‘𝐶)(𝑠‘𝑦))(𝑎‘𝑥))} = ⦋(1st
‘𝑔) / 𝑠⦌{𝑎 ∈ X𝑥 ∈
(Base‘𝐵)((𝑟‘𝑥)(Hom ‘𝐷)(𝑠‘𝑥)) ∣ ∀𝑥 ∈ (Base‘𝐵)∀𝑦 ∈ (Base‘𝐵)∀ℎ ∈ (𝑥(Hom ‘𝐵)𝑦)((𝑎‘𝑦)(〈(𝑟‘𝑥), (𝑟‘𝑦)〉(comp‘𝐷)(𝑠‘𝑦))((𝑥(2nd ‘𝑓)𝑦)‘ℎ)) = (((𝑥(2nd ‘𝑔)𝑦)‘ℎ)(〈(𝑟‘𝑥), (𝑠‘𝑥)〉(comp‘𝐷)(𝑠‘𝑦))(𝑎‘𝑥))}) |
| 98 | 15, 17, 18, 97 | csbiedf 3929 |
. . . . 5
⊢ (((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st ‘𝑓)) → ⦋(1st
‘𝑔) / 𝑠⦌{𝑎 ∈ X𝑥 ∈
(Base‘𝐴)((𝑟‘𝑥)(Hom ‘𝐶)(𝑠‘𝑥)) ∣ ∀𝑥 ∈ (Base‘𝐴)∀𝑦 ∈ (Base‘𝐴)∀ℎ ∈ (𝑥(Hom ‘𝐴)𝑦)((𝑎‘𝑦)(〈(𝑟‘𝑥), (𝑟‘𝑦)〉(comp‘𝐶)(𝑠‘𝑦))((𝑥(2nd ‘𝑓)𝑦)‘ℎ)) = (((𝑥(2nd ‘𝑔)𝑦)‘ℎ)(〈(𝑟‘𝑥), (𝑠‘𝑥)〉(comp‘𝐶)(𝑠‘𝑦))(𝑎‘𝑥))} = ⦋(1st
‘𝑔) / 𝑠⦌{𝑎 ∈ X𝑥 ∈
(Base‘𝐵)((𝑟‘𝑥)(Hom ‘𝐷)(𝑠‘𝑥)) ∣ ∀𝑥 ∈ (Base‘𝐵)∀𝑦 ∈ (Base‘𝐵)∀ℎ ∈ (𝑥(Hom ‘𝐵)𝑦)((𝑎‘𝑦)(〈(𝑟‘𝑥), (𝑟‘𝑦)〉(comp‘𝐷)(𝑠‘𝑦))((𝑥(2nd ‘𝑓)𝑦)‘ℎ)) = (((𝑥(2nd ‘𝑔)𝑦)‘ℎ)(〈(𝑟‘𝑥), (𝑠‘𝑥)〉(comp‘𝐷)(𝑠‘𝑦))(𝑎‘𝑥))}) |
| 99 | | csbeq1a 3913 |
. . . . . 6
⊢ (𝑟 = (1st ‘𝑓) →
⦋(1st ‘𝑔) / 𝑠⦌{𝑎 ∈ X𝑥 ∈ (Base‘𝐵)((𝑟‘𝑥)(Hom ‘𝐷)(𝑠‘𝑥)) ∣ ∀𝑥 ∈ (Base‘𝐵)∀𝑦 ∈ (Base‘𝐵)∀ℎ ∈ (𝑥(Hom ‘𝐵)𝑦)((𝑎‘𝑦)(〈(𝑟‘𝑥), (𝑟‘𝑦)〉(comp‘𝐷)(𝑠‘𝑦))((𝑥(2nd ‘𝑓)𝑦)‘ℎ)) = (((𝑥(2nd ‘𝑔)𝑦)‘ℎ)(〈(𝑟‘𝑥), (𝑠‘𝑥)〉(comp‘𝐷)(𝑠‘𝑦))(𝑎‘𝑥))} = ⦋(1st
‘𝑓) / 𝑟⦌⦋(1st
‘𝑔) / 𝑠⦌{𝑎 ∈ X𝑥 ∈
(Base‘𝐵)((𝑟‘𝑥)(Hom ‘𝐷)(𝑠‘𝑥)) ∣ ∀𝑥 ∈ (Base‘𝐵)∀𝑦 ∈ (Base‘𝐵)∀ℎ ∈ (𝑥(Hom ‘𝐵)𝑦)((𝑎‘𝑦)(〈(𝑟‘𝑥), (𝑟‘𝑦)〉(comp‘𝐷)(𝑠‘𝑦))((𝑥(2nd ‘𝑓)𝑦)‘ℎ)) = (((𝑥(2nd ‘𝑔)𝑦)‘ℎ)(〈(𝑟‘𝑥), (𝑠‘𝑥)〉(comp‘𝐷)(𝑠‘𝑦))(𝑎‘𝑥))}) |
| 100 | 99 | adantl 481 |
. . . . 5
⊢ (((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st ‘𝑓)) → ⦋(1st
‘𝑔) / 𝑠⦌{𝑎 ∈ X𝑥 ∈
(Base‘𝐵)((𝑟‘𝑥)(Hom ‘𝐷)(𝑠‘𝑥)) ∣ ∀𝑥 ∈ (Base‘𝐵)∀𝑦 ∈ (Base‘𝐵)∀ℎ ∈ (𝑥(Hom ‘𝐵)𝑦)((𝑎‘𝑦)(〈(𝑟‘𝑥), (𝑟‘𝑦)〉(comp‘𝐷)(𝑠‘𝑦))((𝑥(2nd ‘𝑓)𝑦)‘ℎ)) = (((𝑥(2nd ‘𝑔)𝑦)‘ℎ)(〈(𝑟‘𝑥), (𝑠‘𝑥)〉(comp‘𝐷)(𝑠‘𝑦))(𝑎‘𝑥))} = ⦋(1st
‘𝑓) / 𝑟⦌⦋(1st
‘𝑔) / 𝑠⦌{𝑎 ∈ X𝑥 ∈
(Base‘𝐵)((𝑟‘𝑥)(Hom ‘𝐷)(𝑠‘𝑥)) ∣ ∀𝑥 ∈ (Base‘𝐵)∀𝑦 ∈ (Base‘𝐵)∀ℎ ∈ (𝑥(Hom ‘𝐵)𝑦)((𝑎‘𝑦)(〈(𝑟‘𝑥), (𝑟‘𝑦)〉(comp‘𝐷)(𝑠‘𝑦))((𝑥(2nd ‘𝑓)𝑦)‘ℎ)) = (((𝑥(2nd ‘𝑔)𝑦)‘ℎ)(〈(𝑟‘𝑥), (𝑠‘𝑥)〉(comp‘𝐷)(𝑠‘𝑦))(𝑎‘𝑥))}) |
| 101 | 98, 100 | eqtrd 2777 |
. . . 4
⊢ (((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st ‘𝑓)) → ⦋(1st
‘𝑔) / 𝑠⦌{𝑎 ∈ X𝑥 ∈
(Base‘𝐴)((𝑟‘𝑥)(Hom ‘𝐶)(𝑠‘𝑥)) ∣ ∀𝑥 ∈ (Base‘𝐴)∀𝑦 ∈ (Base‘𝐴)∀ℎ ∈ (𝑥(Hom ‘𝐴)𝑦)((𝑎‘𝑦)(〈(𝑟‘𝑥), (𝑟‘𝑦)〉(comp‘𝐶)(𝑠‘𝑦))((𝑥(2nd ‘𝑓)𝑦)‘ℎ)) = (((𝑥(2nd ‘𝑔)𝑦)‘ℎ)(〈(𝑟‘𝑥), (𝑠‘𝑥)〉(comp‘𝐶)(𝑠‘𝑦))(𝑎‘𝑥))} = ⦋(1st
‘𝑓) / 𝑟⦌⦋(1st
‘𝑔) / 𝑠⦌{𝑎 ∈ X𝑥 ∈
(Base‘𝐵)((𝑟‘𝑥)(Hom ‘𝐷)(𝑠‘𝑥)) ∣ ∀𝑥 ∈ (Base‘𝐵)∀𝑦 ∈ (Base‘𝐵)∀ℎ ∈ (𝑥(Hom ‘𝐵)𝑦)((𝑎‘𝑦)(〈(𝑟‘𝑥), (𝑟‘𝑦)〉(comp‘𝐷)(𝑠‘𝑦))((𝑥(2nd ‘𝑓)𝑦)‘ℎ)) = (((𝑥(2nd ‘𝑔)𝑦)‘ℎ)(〈(𝑟‘𝑥), (𝑠‘𝑥)〉(comp‘𝐷)(𝑠‘𝑦))(𝑎‘𝑥))}) |
| 102 | 11, 13, 14, 101 | csbiedf 3929 |
. . 3
⊢ ((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) → ⦋(1st
‘𝑓) / 𝑟⦌⦋(1st
‘𝑔) / 𝑠⦌{𝑎 ∈ X𝑥 ∈
(Base‘𝐴)((𝑟‘𝑥)(Hom ‘𝐶)(𝑠‘𝑥)) ∣ ∀𝑥 ∈ (Base‘𝐴)∀𝑦 ∈ (Base‘𝐴)∀ℎ ∈ (𝑥(Hom ‘𝐴)𝑦)((𝑎‘𝑦)(〈(𝑟‘𝑥), (𝑟‘𝑦)〉(comp‘𝐶)(𝑠‘𝑦))((𝑥(2nd ‘𝑓)𝑦)‘ℎ)) = (((𝑥(2nd ‘𝑔)𝑦)‘ℎ)(〈(𝑟‘𝑥), (𝑠‘𝑥)〉(comp‘𝐶)(𝑠‘𝑦))(𝑎‘𝑥))} = ⦋(1st
‘𝑓) / 𝑟⦌⦋(1st
‘𝑔) / 𝑠⦌{𝑎 ∈ X𝑥 ∈
(Base‘𝐵)((𝑟‘𝑥)(Hom ‘𝐷)(𝑠‘𝑥)) ∣ ∀𝑥 ∈ (Base‘𝐵)∀𝑦 ∈ (Base‘𝐵)∀ℎ ∈ (𝑥(Hom ‘𝐵)𝑦)((𝑎‘𝑦)(〈(𝑟‘𝑥), (𝑟‘𝑦)〉(comp‘𝐷)(𝑠‘𝑦))((𝑥(2nd ‘𝑓)𝑦)‘ℎ)) = (((𝑥(2nd ‘𝑔)𝑦)‘ℎ)(〈(𝑟‘𝑥), (𝑠‘𝑥)〉(comp‘𝐷)(𝑠‘𝑦))(𝑎‘𝑥))}) |
| 103 | 9, 10, 102 | mpoeq123dva 7507 |
. 2
⊢ (𝜑 → (𝑓 ∈ (𝐴 Func 𝐶), 𝑔 ∈ (𝐴 Func 𝐶) ↦ ⦋(1st
‘𝑓) / 𝑟⦌⦋(1st
‘𝑔) / 𝑠⦌{𝑎 ∈ X𝑥 ∈
(Base‘𝐴)((𝑟‘𝑥)(Hom ‘𝐶)(𝑠‘𝑥)) ∣ ∀𝑥 ∈ (Base‘𝐴)∀𝑦 ∈ (Base‘𝐴)∀ℎ ∈ (𝑥(Hom ‘𝐴)𝑦)((𝑎‘𝑦)(〈(𝑟‘𝑥), (𝑟‘𝑦)〉(comp‘𝐶)(𝑠‘𝑦))((𝑥(2nd ‘𝑓)𝑦)‘ℎ)) = (((𝑥(2nd ‘𝑔)𝑦)‘ℎ)(〈(𝑟‘𝑥), (𝑠‘𝑥)〉(comp‘𝐶)(𝑠‘𝑦))(𝑎‘𝑥))}) = (𝑓 ∈ (𝐵 Func 𝐷), 𝑔 ∈ (𝐵 Func 𝐷) ↦ ⦋(1st
‘𝑓) / 𝑟⦌⦋(1st
‘𝑔) / 𝑠⦌{𝑎 ∈ X𝑥 ∈
(Base‘𝐵)((𝑟‘𝑥)(Hom ‘𝐷)(𝑠‘𝑥)) ∣ ∀𝑥 ∈ (Base‘𝐵)∀𝑦 ∈ (Base‘𝐵)∀ℎ ∈ (𝑥(Hom ‘𝐵)𝑦)((𝑎‘𝑦)(〈(𝑟‘𝑥), (𝑟‘𝑦)〉(comp‘𝐷)(𝑠‘𝑦))((𝑥(2nd ‘𝑓)𝑦)‘ℎ)) = (((𝑥(2nd ‘𝑔)𝑦)‘ℎ)(〈(𝑟‘𝑥), (𝑠‘𝑥)〉(comp‘𝐷)(𝑠‘𝑦))(𝑎‘𝑥))})) |
| 104 | | eqid 2737 |
. . 3
⊢ (𝐴 Nat 𝐶) = (𝐴 Nat 𝐶) |
| 105 | 104, 23, 53, 20, 59 | natfval 17994 |
. 2
⊢ (𝐴 Nat 𝐶) = (𝑓 ∈ (𝐴 Func 𝐶), 𝑔 ∈ (𝐴 Func 𝐶) ↦ ⦋(1st
‘𝑓) / 𝑟⦌⦋(1st
‘𝑔) / 𝑠⦌{𝑎 ∈ X𝑥 ∈
(Base‘𝐴)((𝑟‘𝑥)(Hom ‘𝐶)(𝑠‘𝑥)) ∣ ∀𝑥 ∈ (Base‘𝐴)∀𝑦 ∈ (Base‘𝐴)∀ℎ ∈ (𝑥(Hom ‘𝐴)𝑦)((𝑎‘𝑦)(〈(𝑟‘𝑥), (𝑟‘𝑦)〉(comp‘𝐶)(𝑠‘𝑦))((𝑥(2nd ‘𝑓)𝑦)‘ℎ)) = (((𝑥(2nd ‘𝑔)𝑦)‘ℎ)(〈(𝑟‘𝑥), (𝑠‘𝑥)〉(comp‘𝐶)(𝑠‘𝑦))(𝑎‘𝑥))}) |
| 106 | | eqid 2737 |
. . 3
⊢ (𝐵 Nat 𝐷) = (𝐵 Nat 𝐷) |
| 107 | | eqid 2737 |
. . 3
⊢
(Base‘𝐵) =
(Base‘𝐵) |
| 108 | 106, 107,
54, 21, 60 | natfval 17994 |
. 2
⊢ (𝐵 Nat 𝐷) = (𝑓 ∈ (𝐵 Func 𝐷), 𝑔 ∈ (𝐵 Func 𝐷) ↦ ⦋(1st
‘𝑓) / 𝑟⦌⦋(1st
‘𝑔) / 𝑠⦌{𝑎 ∈ X𝑥 ∈
(Base‘𝐵)((𝑟‘𝑥)(Hom ‘𝐷)(𝑠‘𝑥)) ∣ ∀𝑥 ∈ (Base‘𝐵)∀𝑦 ∈ (Base‘𝐵)∀ℎ ∈ (𝑥(Hom ‘𝐵)𝑦)((𝑎‘𝑦)(〈(𝑟‘𝑥), (𝑟‘𝑦)〉(comp‘𝐷)(𝑠‘𝑦))((𝑥(2nd ‘𝑓)𝑦)‘ℎ)) = (((𝑥(2nd ‘𝑔)𝑦)‘ℎ)(〈(𝑟‘𝑥), (𝑠‘𝑥)〉(comp‘𝐷)(𝑠‘𝑦))(𝑎‘𝑥))}) |
| 109 | 103, 105,
108 | 3eqtr4g 2802 |
1
⊢ (𝜑 → (𝐴 Nat 𝐶) = (𝐵 Nat 𝐷)) |