MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  natpropd Structured version   Visualization version   GIF version

Theorem natpropd 17238
Description: If two categories have the same set of objects, morphisms, and compositions, then they have the same natural transformations. (Contributed by Mario Carneiro, 26-Jan-2017.)
Hypotheses
Ref Expression
fucpropd.1 (𝜑 → (Homf𝐴) = (Homf𝐵))
fucpropd.2 (𝜑 → (compf𝐴) = (compf𝐵))
fucpropd.3 (𝜑 → (Homf𝐶) = (Homf𝐷))
fucpropd.4 (𝜑 → (compf𝐶) = (compf𝐷))
fucpropd.a (𝜑𝐴 ∈ Cat)
fucpropd.b (𝜑𝐵 ∈ Cat)
fucpropd.c (𝜑𝐶 ∈ Cat)
fucpropd.d (𝜑𝐷 ∈ Cat)
Assertion
Ref Expression
natpropd (𝜑 → (𝐴 Nat 𝐶) = (𝐵 Nat 𝐷))

Proof of Theorem natpropd
Dummy variables 𝑎 𝑓 𝑔 𝑟 𝑠 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fucpropd.1 . . . 4 (𝜑 → (Homf𝐴) = (Homf𝐵))
2 fucpropd.2 . . . 4 (𝜑 → (compf𝐴) = (compf𝐵))
3 fucpropd.3 . . . 4 (𝜑 → (Homf𝐶) = (Homf𝐷))
4 fucpropd.4 . . . 4 (𝜑 → (compf𝐶) = (compf𝐷))
5 fucpropd.a . . . 4 (𝜑𝐴 ∈ Cat)
6 fucpropd.b . . . 4 (𝜑𝐵 ∈ Cat)
7 fucpropd.c . . . 4 (𝜑𝐶 ∈ Cat)
8 fucpropd.d . . . 4 (𝜑𝐷 ∈ Cat)
91, 2, 3, 4, 5, 6, 7, 8funcpropd 17162 . . 3 (𝜑 → (𝐴 Func 𝐶) = (𝐵 Func 𝐷))
109adantr 481 . . 3 ((𝜑𝑓 ∈ (𝐴 Func 𝐶)) → (𝐴 Func 𝐶) = (𝐵 Func 𝐷))
11 nfv 1908 . . . 4 𝑟(𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶)))
12 nfcsb1v 3910 . . . . 5 𝑟(1st𝑓) / 𝑟(1st𝑔) / 𝑠{𝑎X𝑥 ∈ (Base‘𝐵)((𝑟𝑥)(Hom ‘𝐷)(𝑠𝑥)) ∣ ∀𝑥 ∈ (Base‘𝐵)∀𝑦 ∈ (Base‘𝐵)∀ ∈ (𝑥(Hom ‘𝐵)𝑦)((𝑎𝑦)(⟨(𝑟𝑥), (𝑟𝑦)⟩(comp‘𝐷)(𝑠𝑦))((𝑥(2nd𝑓)𝑦)‘)) = (((𝑥(2nd𝑔)𝑦)‘)(⟨(𝑟𝑥), (𝑠𝑥)⟩(comp‘𝐷)(𝑠𝑦))(𝑎𝑥))}
1312a1i 11 . . . 4 ((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) → 𝑟(1st𝑓) / 𝑟(1st𝑔) / 𝑠{𝑎X𝑥 ∈ (Base‘𝐵)((𝑟𝑥)(Hom ‘𝐷)(𝑠𝑥)) ∣ ∀𝑥 ∈ (Base‘𝐵)∀𝑦 ∈ (Base‘𝐵)∀ ∈ (𝑥(Hom ‘𝐵)𝑦)((𝑎𝑦)(⟨(𝑟𝑥), (𝑟𝑦)⟩(comp‘𝐷)(𝑠𝑦))((𝑥(2nd𝑓)𝑦)‘)) = (((𝑥(2nd𝑔)𝑦)‘)(⟨(𝑟𝑥), (𝑠𝑥)⟩(comp‘𝐷)(𝑠𝑦))(𝑎𝑥))})
14 fvexd 6681 . . . 4 ((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) → (1st𝑓) ∈ V)
15 nfv 1908 . . . . . 6 𝑠((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st𝑓))
16 nfcsb1v 3910 . . . . . . 7 𝑠(1st𝑔) / 𝑠{𝑎X𝑥 ∈ (Base‘𝐵)((𝑟𝑥)(Hom ‘𝐷)(𝑠𝑥)) ∣ ∀𝑥 ∈ (Base‘𝐵)∀𝑦 ∈ (Base‘𝐵)∀ ∈ (𝑥(Hom ‘𝐵)𝑦)((𝑎𝑦)(⟨(𝑟𝑥), (𝑟𝑦)⟩(comp‘𝐷)(𝑠𝑦))((𝑥(2nd𝑓)𝑦)‘)) = (((𝑥(2nd𝑔)𝑦)‘)(⟨(𝑟𝑥), (𝑠𝑥)⟩(comp‘𝐷)(𝑠𝑦))(𝑎𝑥))}
1716a1i 11 . . . . . 6 (((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st𝑓)) → 𝑠(1st𝑔) / 𝑠{𝑎X𝑥 ∈ (Base‘𝐵)((𝑟𝑥)(Hom ‘𝐷)(𝑠𝑥)) ∣ ∀𝑥 ∈ (Base‘𝐵)∀𝑦 ∈ (Base‘𝐵)∀ ∈ (𝑥(Hom ‘𝐵)𝑦)((𝑎𝑦)(⟨(𝑟𝑥), (𝑟𝑦)⟩(comp‘𝐷)(𝑠𝑦))((𝑥(2nd𝑓)𝑦)‘)) = (((𝑥(2nd𝑔)𝑦)‘)(⟨(𝑟𝑥), (𝑠𝑥)⟩(comp‘𝐷)(𝑠𝑦))(𝑎𝑥))})
18 fvexd 6681 . . . . . 6 (((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st𝑓)) → (1st𝑔) ∈ V)
19 eqid 2825 . . . . . . . . . . 11 (Base‘𝐶) = (Base‘𝐶)
20 eqid 2825 . . . . . . . . . . 11 (Hom ‘𝐶) = (Hom ‘𝐶)
21 eqid 2825 . . . . . . . . . . 11 (Hom ‘𝐷) = (Hom ‘𝐷)
223ad4antr 728 . . . . . . . . . . 11 (((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st𝑓)) ∧ 𝑠 = (1st𝑔)) ∧ 𝑥 ∈ (Base‘𝐴)) → (Homf𝐶) = (Homf𝐷))
23 eqid 2825 . . . . . . . . . . . . 13 (Base‘𝐴) = (Base‘𝐴)
24 simplr 765 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st𝑓)) ∧ 𝑠 = (1st𝑔)) → 𝑟 = (1st𝑓))
25 relfunc 17124 . . . . . . . . . . . . . . 15 Rel (𝐴 Func 𝐶)
26 simpllr 772 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st𝑓)) ∧ 𝑠 = (1st𝑔)) → (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶)))
2726simpld 495 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st𝑓)) ∧ 𝑠 = (1st𝑔)) → 𝑓 ∈ (𝐴 Func 𝐶))
28 1st2ndbr 7735 . . . . . . . . . . . . . . 15 ((Rel (𝐴 Func 𝐶) ∧ 𝑓 ∈ (𝐴 Func 𝐶)) → (1st𝑓)(𝐴 Func 𝐶)(2nd𝑓))
2925, 27, 28sylancr 587 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st𝑓)) ∧ 𝑠 = (1st𝑔)) → (1st𝑓)(𝐴 Func 𝐶)(2nd𝑓))
3024, 29eqbrtrd 5084 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st𝑓)) ∧ 𝑠 = (1st𝑔)) → 𝑟(𝐴 Func 𝐶)(2nd𝑓))
3123, 19, 30funcf1 17128 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st𝑓)) ∧ 𝑠 = (1st𝑔)) → 𝑟:(Base‘𝐴)⟶(Base‘𝐶))
3231ffvelrnda 6846 . . . . . . . . . . 11 (((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st𝑓)) ∧ 𝑠 = (1st𝑔)) ∧ 𝑥 ∈ (Base‘𝐴)) → (𝑟𝑥) ∈ (Base‘𝐶))
33 simpr 485 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st𝑓)) ∧ 𝑠 = (1st𝑔)) → 𝑠 = (1st𝑔))
3426simprd 496 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st𝑓)) ∧ 𝑠 = (1st𝑔)) → 𝑔 ∈ (𝐴 Func 𝐶))
35 1st2ndbr 7735 . . . . . . . . . . . . . . 15 ((Rel (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶)) → (1st𝑔)(𝐴 Func 𝐶)(2nd𝑔))
3625, 34, 35sylancr 587 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st𝑓)) ∧ 𝑠 = (1st𝑔)) → (1st𝑔)(𝐴 Func 𝐶)(2nd𝑔))
3733, 36eqbrtrd 5084 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st𝑓)) ∧ 𝑠 = (1st𝑔)) → 𝑠(𝐴 Func 𝐶)(2nd𝑔))
3823, 19, 37funcf1 17128 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st𝑓)) ∧ 𝑠 = (1st𝑔)) → 𝑠:(Base‘𝐴)⟶(Base‘𝐶))
3938ffvelrnda 6846 . . . . . . . . . . 11 (((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st𝑓)) ∧ 𝑠 = (1st𝑔)) ∧ 𝑥 ∈ (Base‘𝐴)) → (𝑠𝑥) ∈ (Base‘𝐶))
4019, 20, 21, 22, 32, 39homfeqval 16959 . . . . . . . . . 10 (((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st𝑓)) ∧ 𝑠 = (1st𝑔)) ∧ 𝑥 ∈ (Base‘𝐴)) → ((𝑟𝑥)(Hom ‘𝐶)(𝑠𝑥)) = ((𝑟𝑥)(Hom ‘𝐷)(𝑠𝑥)))
4140ixpeq2dva 8468 . . . . . . . . 9 ((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st𝑓)) ∧ 𝑠 = (1st𝑔)) → X𝑥 ∈ (Base‘𝐴)((𝑟𝑥)(Hom ‘𝐶)(𝑠𝑥)) = X𝑥 ∈ (Base‘𝐴)((𝑟𝑥)(Hom ‘𝐷)(𝑠𝑥)))
421homfeqbas 16958 . . . . . . . . . . 11 (𝜑 → (Base‘𝐴) = (Base‘𝐵))
4342ad3antrrr 726 . . . . . . . . . 10 ((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st𝑓)) ∧ 𝑠 = (1st𝑔)) → (Base‘𝐴) = (Base‘𝐵))
4443ixpeq1d 8465 . . . . . . . . 9 ((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st𝑓)) ∧ 𝑠 = (1st𝑔)) → X𝑥 ∈ (Base‘𝐴)((𝑟𝑥)(Hom ‘𝐷)(𝑠𝑥)) = X𝑥 ∈ (Base‘𝐵)((𝑟𝑥)(Hom ‘𝐷)(𝑠𝑥)))
4541, 44eqtrd 2860 . . . . . . . 8 ((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st𝑓)) ∧ 𝑠 = (1st𝑔)) → X𝑥 ∈ (Base‘𝐴)((𝑟𝑥)(Hom ‘𝐶)(𝑠𝑥)) = X𝑥 ∈ (Base‘𝐵)((𝑟𝑥)(Hom ‘𝐷)(𝑠𝑥)))
46 fveq2 6666 . . . . . . . . . . . 12 (𝑥 = 𝑧 → (𝑟𝑥) = (𝑟𝑧))
47 fveq2 6666 . . . . . . . . . . . 12 (𝑥 = 𝑧 → (𝑠𝑥) = (𝑠𝑧))
4846, 47oveq12d 7169 . . . . . . . . . . 11 (𝑥 = 𝑧 → ((𝑟𝑥)(Hom ‘𝐶)(𝑠𝑥)) = ((𝑟𝑧)(Hom ‘𝐶)(𝑠𝑧)))
4948cbvixpv 8471 . . . . . . . . . 10 X𝑥 ∈ (Base‘𝐴)((𝑟𝑥)(Hom ‘𝐶)(𝑠𝑥)) = X𝑧 ∈ (Base‘𝐴)((𝑟𝑧)(Hom ‘𝐶)(𝑠𝑧))
5049eleq2i 2908 . . . . . . . . 9 (𝑎X𝑥 ∈ (Base‘𝐴)((𝑟𝑥)(Hom ‘𝐶)(𝑠𝑥)) ↔ 𝑎X𝑧 ∈ (Base‘𝐴)((𝑟𝑧)(Hom ‘𝐶)(𝑠𝑧)))
5143adantr 481 . . . . . . . . . 10 (((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st𝑓)) ∧ 𝑠 = (1st𝑔)) ∧ 𝑎X𝑧 ∈ (Base‘𝐴)((𝑟𝑧)(Hom ‘𝐶)(𝑠𝑧))) → (Base‘𝐴) = (Base‘𝐵))
5251adantr 481 . . . . . . . . . . 11 ((((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st𝑓)) ∧ 𝑠 = (1st𝑔)) ∧ 𝑎X𝑧 ∈ (Base‘𝐴)((𝑟𝑧)(Hom ‘𝐶)(𝑠𝑧))) ∧ 𝑥 ∈ (Base‘𝐴)) → (Base‘𝐴) = (Base‘𝐵))
53 eqid 2825 . . . . . . . . . . . . 13 (Hom ‘𝐴) = (Hom ‘𝐴)
54 eqid 2825 . . . . . . . . . . . . 13 (Hom ‘𝐵) = (Hom ‘𝐵)
551ad6antr 732 . . . . . . . . . . . . 13 (((((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st𝑓)) ∧ 𝑠 = (1st𝑔)) ∧ 𝑎X𝑧 ∈ (Base‘𝐴)((𝑟𝑧)(Hom ‘𝐶)(𝑠𝑧))) ∧ 𝑥 ∈ (Base‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴)) → (Homf𝐴) = (Homf𝐵))
56 simplr 765 . . . . . . . . . . . . 13 (((((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st𝑓)) ∧ 𝑠 = (1st𝑔)) ∧ 𝑎X𝑧 ∈ (Base‘𝐴)((𝑟𝑧)(Hom ‘𝐶)(𝑠𝑧))) ∧ 𝑥 ∈ (Base‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴)) → 𝑥 ∈ (Base‘𝐴))
57 simpr 485 . . . . . . . . . . . . 13 (((((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st𝑓)) ∧ 𝑠 = (1st𝑔)) ∧ 𝑎X𝑧 ∈ (Base‘𝐴)((𝑟𝑧)(Hom ‘𝐶)(𝑠𝑧))) ∧ 𝑥 ∈ (Base‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴)) → 𝑦 ∈ (Base‘𝐴))
5823, 53, 54, 55, 56, 57homfeqval 16959 . . . . . . . . . . . 12 (((((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st𝑓)) ∧ 𝑠 = (1st𝑔)) ∧ 𝑎X𝑧 ∈ (Base‘𝐴)((𝑟𝑧)(Hom ‘𝐶)(𝑠𝑧))) ∧ 𝑥 ∈ (Base‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴)) → (𝑥(Hom ‘𝐴)𝑦) = (𝑥(Hom ‘𝐵)𝑦))
59 eqid 2825 . . . . . . . . . . . . . 14 (comp‘𝐶) = (comp‘𝐶)
60 eqid 2825 . . . . . . . . . . . . . 14 (comp‘𝐷) = (comp‘𝐷)
613ad7antr 734 . . . . . . . . . . . . . 14 ((((((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st𝑓)) ∧ 𝑠 = (1st𝑔)) ∧ 𝑎X𝑧 ∈ (Base‘𝐴)((𝑟𝑧)(Hom ‘𝐶)(𝑠𝑧))) ∧ 𝑥 ∈ (Base‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴)) ∧ ∈ (𝑥(Hom ‘𝐴)𝑦)) → (Homf𝐶) = (Homf𝐷))
624ad7antr 734 . . . . . . . . . . . . . 14 ((((((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st𝑓)) ∧ 𝑠 = (1st𝑔)) ∧ 𝑎X𝑧 ∈ (Base‘𝐴)((𝑟𝑧)(Hom ‘𝐶)(𝑠𝑧))) ∧ 𝑥 ∈ (Base‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴)) ∧ ∈ (𝑥(Hom ‘𝐴)𝑦)) → (compf𝐶) = (compf𝐷))
6332ad5ant13 753 . . . . . . . . . . . . . 14 ((((((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st𝑓)) ∧ 𝑠 = (1st𝑔)) ∧ 𝑎X𝑧 ∈ (Base‘𝐴)((𝑟𝑧)(Hom ‘𝐶)(𝑠𝑧))) ∧ 𝑥 ∈ (Base‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴)) ∧ ∈ (𝑥(Hom ‘𝐴)𝑦)) → (𝑟𝑥) ∈ (Base‘𝐶))
6431ad2antrr 722 . . . . . . . . . . . . . . . 16 ((((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st𝑓)) ∧ 𝑠 = (1st𝑔)) ∧ 𝑎X𝑧 ∈ (Base‘𝐴)((𝑟𝑧)(Hom ‘𝐶)(𝑠𝑧))) ∧ 𝑥 ∈ (Base‘𝐴)) → 𝑟:(Base‘𝐴)⟶(Base‘𝐶))
6564ffvelrnda 6846 . . . . . . . . . . . . . . 15 (((((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st𝑓)) ∧ 𝑠 = (1st𝑔)) ∧ 𝑎X𝑧 ∈ (Base‘𝐴)((𝑟𝑧)(Hom ‘𝐶)(𝑠𝑧))) ∧ 𝑥 ∈ (Base‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴)) → (𝑟𝑦) ∈ (Base‘𝐶))
6665adantr 481 . . . . . . . . . . . . . 14 ((((((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st𝑓)) ∧ 𝑠 = (1st𝑔)) ∧ 𝑎X𝑧 ∈ (Base‘𝐴)((𝑟𝑧)(Hom ‘𝐶)(𝑠𝑧))) ∧ 𝑥 ∈ (Base‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴)) ∧ ∈ (𝑥(Hom ‘𝐴)𝑦)) → (𝑟𝑦) ∈ (Base‘𝐶))
6738ad2antrr 722 . . . . . . . . . . . . . . . 16 ((((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st𝑓)) ∧ 𝑠 = (1st𝑔)) ∧ 𝑎X𝑧 ∈ (Base‘𝐴)((𝑟𝑧)(Hom ‘𝐶)(𝑠𝑧))) ∧ 𝑥 ∈ (Base‘𝐴)) → 𝑠:(Base‘𝐴)⟶(Base‘𝐶))
6867ffvelrnda 6846 . . . . . . . . . . . . . . 15 (((((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st𝑓)) ∧ 𝑠 = (1st𝑔)) ∧ 𝑎X𝑧 ∈ (Base‘𝐴)((𝑟𝑧)(Hom ‘𝐶)(𝑠𝑧))) ∧ 𝑥 ∈ (Base‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴)) → (𝑠𝑦) ∈ (Base‘𝐶))
6968adantr 481 . . . . . . . . . . . . . 14 ((((((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st𝑓)) ∧ 𝑠 = (1st𝑔)) ∧ 𝑎X𝑧 ∈ (Base‘𝐴)((𝑟𝑧)(Hom ‘𝐶)(𝑠𝑧))) ∧ 𝑥 ∈ (Base‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴)) ∧ ∈ (𝑥(Hom ‘𝐴)𝑦)) → (𝑠𝑦) ∈ (Base‘𝐶))
7030ad3antrrr 726 . . . . . . . . . . . . . . . 16 (((((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st𝑓)) ∧ 𝑠 = (1st𝑔)) ∧ 𝑎X𝑧 ∈ (Base‘𝐴)((𝑟𝑧)(Hom ‘𝐶)(𝑠𝑧))) ∧ 𝑥 ∈ (Base‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴)) → 𝑟(𝐴 Func 𝐶)(2nd𝑓))
7123, 53, 20, 70, 56, 57funcf2 17130 . . . . . . . . . . . . . . 15 (((((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st𝑓)) ∧ 𝑠 = (1st𝑔)) ∧ 𝑎X𝑧 ∈ (Base‘𝐴)((𝑟𝑧)(Hom ‘𝐶)(𝑠𝑧))) ∧ 𝑥 ∈ (Base‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴)) → (𝑥(2nd𝑓)𝑦):(𝑥(Hom ‘𝐴)𝑦)⟶((𝑟𝑥)(Hom ‘𝐶)(𝑟𝑦)))
7271ffvelrnda 6846 . . . . . . . . . . . . . 14 ((((((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st𝑓)) ∧ 𝑠 = (1st𝑔)) ∧ 𝑎X𝑧 ∈ (Base‘𝐴)((𝑟𝑧)(Hom ‘𝐶)(𝑠𝑧))) ∧ 𝑥 ∈ (Base‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴)) ∧ ∈ (𝑥(Hom ‘𝐴)𝑦)) → ((𝑥(2nd𝑓)𝑦)‘) ∈ ((𝑟𝑥)(Hom ‘𝐶)(𝑟𝑦)))
73 fveq2 6666 . . . . . . . . . . . . . . . . 17 (𝑧 = 𝑦 → (𝑟𝑧) = (𝑟𝑦))
74 fveq2 6666 . . . . . . . . . . . . . . . . 17 (𝑧 = 𝑦 → (𝑠𝑧) = (𝑠𝑦))
7573, 74oveq12d 7169 . . . . . . . . . . . . . . . 16 (𝑧 = 𝑦 → ((𝑟𝑧)(Hom ‘𝐶)(𝑠𝑧)) = ((𝑟𝑦)(Hom ‘𝐶)(𝑠𝑦)))
7675fvixp 8458 . . . . . . . . . . . . . . 15 ((𝑎X𝑧 ∈ (Base‘𝐴)((𝑟𝑧)(Hom ‘𝐶)(𝑠𝑧)) ∧ 𝑦 ∈ (Base‘𝐴)) → (𝑎𝑦) ∈ ((𝑟𝑦)(Hom ‘𝐶)(𝑠𝑦)))
7776ad5ant24 757 . . . . . . . . . . . . . 14 ((((((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st𝑓)) ∧ 𝑠 = (1st𝑔)) ∧ 𝑎X𝑧 ∈ (Base‘𝐴)((𝑟𝑧)(Hom ‘𝐶)(𝑠𝑧))) ∧ 𝑥 ∈ (Base‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴)) ∧ ∈ (𝑥(Hom ‘𝐴)𝑦)) → (𝑎𝑦) ∈ ((𝑟𝑦)(Hom ‘𝐶)(𝑠𝑦)))
7819, 20, 59, 60, 61, 62, 63, 66, 69, 72, 77comfeqval 16970 . . . . . . . . . . . . 13 ((((((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st𝑓)) ∧ 𝑠 = (1st𝑔)) ∧ 𝑎X𝑧 ∈ (Base‘𝐴)((𝑟𝑧)(Hom ‘𝐶)(𝑠𝑧))) ∧ 𝑥 ∈ (Base‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴)) ∧ ∈ (𝑥(Hom ‘𝐴)𝑦)) → ((𝑎𝑦)(⟨(𝑟𝑥), (𝑟𝑦)⟩(comp‘𝐶)(𝑠𝑦))((𝑥(2nd𝑓)𝑦)‘)) = ((𝑎𝑦)(⟨(𝑟𝑥), (𝑟𝑦)⟩(comp‘𝐷)(𝑠𝑦))((𝑥(2nd𝑓)𝑦)‘)))
7939ad5ant13 753 . . . . . . . . . . . . . 14 ((((((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st𝑓)) ∧ 𝑠 = (1st𝑔)) ∧ 𝑎X𝑧 ∈ (Base‘𝐴)((𝑟𝑧)(Hom ‘𝐶)(𝑠𝑧))) ∧ 𝑥 ∈ (Base‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴)) ∧ ∈ (𝑥(Hom ‘𝐴)𝑦)) → (𝑠𝑥) ∈ (Base‘𝐶))
80 fveq2 6666 . . . . . . . . . . . . . . . . 17 (𝑧 = 𝑥 → (𝑟𝑧) = (𝑟𝑥))
81 fveq2 6666 . . . . . . . . . . . . . . . . 17 (𝑧 = 𝑥 → (𝑠𝑧) = (𝑠𝑥))
8280, 81oveq12d 7169 . . . . . . . . . . . . . . . 16 (𝑧 = 𝑥 → ((𝑟𝑧)(Hom ‘𝐶)(𝑠𝑧)) = ((𝑟𝑥)(Hom ‘𝐶)(𝑠𝑥)))
8382fvixp 8458 . . . . . . . . . . . . . . 15 ((𝑎X𝑧 ∈ (Base‘𝐴)((𝑟𝑧)(Hom ‘𝐶)(𝑠𝑧)) ∧ 𝑥 ∈ (Base‘𝐴)) → (𝑎𝑥) ∈ ((𝑟𝑥)(Hom ‘𝐶)(𝑠𝑥)))
8483ad5ant23 756 . . . . . . . . . . . . . 14 ((((((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st𝑓)) ∧ 𝑠 = (1st𝑔)) ∧ 𝑎X𝑧 ∈ (Base‘𝐴)((𝑟𝑧)(Hom ‘𝐶)(𝑠𝑧))) ∧ 𝑥 ∈ (Base‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴)) ∧ ∈ (𝑥(Hom ‘𝐴)𝑦)) → (𝑎𝑥) ∈ ((𝑟𝑥)(Hom ‘𝐶)(𝑠𝑥)))
8537ad3antrrr 726 . . . . . . . . . . . . . . . 16 (((((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st𝑓)) ∧ 𝑠 = (1st𝑔)) ∧ 𝑎X𝑧 ∈ (Base‘𝐴)((𝑟𝑧)(Hom ‘𝐶)(𝑠𝑧))) ∧ 𝑥 ∈ (Base‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴)) → 𝑠(𝐴 Func 𝐶)(2nd𝑔))
8623, 53, 20, 85, 56, 57funcf2 17130 . . . . . . . . . . . . . . 15 (((((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st𝑓)) ∧ 𝑠 = (1st𝑔)) ∧ 𝑎X𝑧 ∈ (Base‘𝐴)((𝑟𝑧)(Hom ‘𝐶)(𝑠𝑧))) ∧ 𝑥 ∈ (Base‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴)) → (𝑥(2nd𝑔)𝑦):(𝑥(Hom ‘𝐴)𝑦)⟶((𝑠𝑥)(Hom ‘𝐶)(𝑠𝑦)))
8786ffvelrnda 6846 . . . . . . . . . . . . . 14 ((((((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st𝑓)) ∧ 𝑠 = (1st𝑔)) ∧ 𝑎X𝑧 ∈ (Base‘𝐴)((𝑟𝑧)(Hom ‘𝐶)(𝑠𝑧))) ∧ 𝑥 ∈ (Base‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴)) ∧ ∈ (𝑥(Hom ‘𝐴)𝑦)) → ((𝑥(2nd𝑔)𝑦)‘) ∈ ((𝑠𝑥)(Hom ‘𝐶)(𝑠𝑦)))
8819, 20, 59, 60, 61, 62, 63, 79, 69, 84, 87comfeqval 16970 . . . . . . . . . . . . 13 ((((((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st𝑓)) ∧ 𝑠 = (1st𝑔)) ∧ 𝑎X𝑧 ∈ (Base‘𝐴)((𝑟𝑧)(Hom ‘𝐶)(𝑠𝑧))) ∧ 𝑥 ∈ (Base‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴)) ∧ ∈ (𝑥(Hom ‘𝐴)𝑦)) → (((𝑥(2nd𝑔)𝑦)‘)(⟨(𝑟𝑥), (𝑠𝑥)⟩(comp‘𝐶)(𝑠𝑦))(𝑎𝑥)) = (((𝑥(2nd𝑔)𝑦)‘)(⟨(𝑟𝑥), (𝑠𝑥)⟩(comp‘𝐷)(𝑠𝑦))(𝑎𝑥)))
8978, 88eqeq12d 2841 . . . . . . . . . . . 12 ((((((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st𝑓)) ∧ 𝑠 = (1st𝑔)) ∧ 𝑎X𝑧 ∈ (Base‘𝐴)((𝑟𝑧)(Hom ‘𝐶)(𝑠𝑧))) ∧ 𝑥 ∈ (Base‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴)) ∧ ∈ (𝑥(Hom ‘𝐴)𝑦)) → (((𝑎𝑦)(⟨(𝑟𝑥), (𝑟𝑦)⟩(comp‘𝐶)(𝑠𝑦))((𝑥(2nd𝑓)𝑦)‘)) = (((𝑥(2nd𝑔)𝑦)‘)(⟨(𝑟𝑥), (𝑠𝑥)⟩(comp‘𝐶)(𝑠𝑦))(𝑎𝑥)) ↔ ((𝑎𝑦)(⟨(𝑟𝑥), (𝑟𝑦)⟩(comp‘𝐷)(𝑠𝑦))((𝑥(2nd𝑓)𝑦)‘)) = (((𝑥(2nd𝑔)𝑦)‘)(⟨(𝑟𝑥), (𝑠𝑥)⟩(comp‘𝐷)(𝑠𝑦))(𝑎𝑥))))
9058, 89raleqbidva 3430 . . . . . . . . . . 11 (((((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st𝑓)) ∧ 𝑠 = (1st𝑔)) ∧ 𝑎X𝑧 ∈ (Base‘𝐴)((𝑟𝑧)(Hom ‘𝐶)(𝑠𝑧))) ∧ 𝑥 ∈ (Base‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴)) → (∀ ∈ (𝑥(Hom ‘𝐴)𝑦)((𝑎𝑦)(⟨(𝑟𝑥), (𝑟𝑦)⟩(comp‘𝐶)(𝑠𝑦))((𝑥(2nd𝑓)𝑦)‘)) = (((𝑥(2nd𝑔)𝑦)‘)(⟨(𝑟𝑥), (𝑠𝑥)⟩(comp‘𝐶)(𝑠𝑦))(𝑎𝑥)) ↔ ∀ ∈ (𝑥(Hom ‘𝐵)𝑦)((𝑎𝑦)(⟨(𝑟𝑥), (𝑟𝑦)⟩(comp‘𝐷)(𝑠𝑦))((𝑥(2nd𝑓)𝑦)‘)) = (((𝑥(2nd𝑔)𝑦)‘)(⟨(𝑟𝑥), (𝑠𝑥)⟩(comp‘𝐷)(𝑠𝑦))(𝑎𝑥))))
9152, 90raleqbidva 3430 . . . . . . . . . 10 ((((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st𝑓)) ∧ 𝑠 = (1st𝑔)) ∧ 𝑎X𝑧 ∈ (Base‘𝐴)((𝑟𝑧)(Hom ‘𝐶)(𝑠𝑧))) ∧ 𝑥 ∈ (Base‘𝐴)) → (∀𝑦 ∈ (Base‘𝐴)∀ ∈ (𝑥(Hom ‘𝐴)𝑦)((𝑎𝑦)(⟨(𝑟𝑥), (𝑟𝑦)⟩(comp‘𝐶)(𝑠𝑦))((𝑥(2nd𝑓)𝑦)‘)) = (((𝑥(2nd𝑔)𝑦)‘)(⟨(𝑟𝑥), (𝑠𝑥)⟩(comp‘𝐶)(𝑠𝑦))(𝑎𝑥)) ↔ ∀𝑦 ∈ (Base‘𝐵)∀ ∈ (𝑥(Hom ‘𝐵)𝑦)((𝑎𝑦)(⟨(𝑟𝑥), (𝑟𝑦)⟩(comp‘𝐷)(𝑠𝑦))((𝑥(2nd𝑓)𝑦)‘)) = (((𝑥(2nd𝑔)𝑦)‘)(⟨(𝑟𝑥), (𝑠𝑥)⟩(comp‘𝐷)(𝑠𝑦))(𝑎𝑥))))
9251, 91raleqbidva 3430 . . . . . . . . 9 (((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st𝑓)) ∧ 𝑠 = (1st𝑔)) ∧ 𝑎X𝑧 ∈ (Base‘𝐴)((𝑟𝑧)(Hom ‘𝐶)(𝑠𝑧))) → (∀𝑥 ∈ (Base‘𝐴)∀𝑦 ∈ (Base‘𝐴)∀ ∈ (𝑥(Hom ‘𝐴)𝑦)((𝑎𝑦)(⟨(𝑟𝑥), (𝑟𝑦)⟩(comp‘𝐶)(𝑠𝑦))((𝑥(2nd𝑓)𝑦)‘)) = (((𝑥(2nd𝑔)𝑦)‘)(⟨(𝑟𝑥), (𝑠𝑥)⟩(comp‘𝐶)(𝑠𝑦))(𝑎𝑥)) ↔ ∀𝑥 ∈ (Base‘𝐵)∀𝑦 ∈ (Base‘𝐵)∀ ∈ (𝑥(Hom ‘𝐵)𝑦)((𝑎𝑦)(⟨(𝑟𝑥), (𝑟𝑦)⟩(comp‘𝐷)(𝑠𝑦))((𝑥(2nd𝑓)𝑦)‘)) = (((𝑥(2nd𝑔)𝑦)‘)(⟨(𝑟𝑥), (𝑠𝑥)⟩(comp‘𝐷)(𝑠𝑦))(𝑎𝑥))))
9350, 92sylan2b 593 . . . . . . . 8 (((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st𝑓)) ∧ 𝑠 = (1st𝑔)) ∧ 𝑎X𝑥 ∈ (Base‘𝐴)((𝑟𝑥)(Hom ‘𝐶)(𝑠𝑥))) → (∀𝑥 ∈ (Base‘𝐴)∀𝑦 ∈ (Base‘𝐴)∀ ∈ (𝑥(Hom ‘𝐴)𝑦)((𝑎𝑦)(⟨(𝑟𝑥), (𝑟𝑦)⟩(comp‘𝐶)(𝑠𝑦))((𝑥(2nd𝑓)𝑦)‘)) = (((𝑥(2nd𝑔)𝑦)‘)(⟨(𝑟𝑥), (𝑠𝑥)⟩(comp‘𝐶)(𝑠𝑦))(𝑎𝑥)) ↔ ∀𝑥 ∈ (Base‘𝐵)∀𝑦 ∈ (Base‘𝐵)∀ ∈ (𝑥(Hom ‘𝐵)𝑦)((𝑎𝑦)(⟨(𝑟𝑥), (𝑟𝑦)⟩(comp‘𝐷)(𝑠𝑦))((𝑥(2nd𝑓)𝑦)‘)) = (((𝑥(2nd𝑔)𝑦)‘)(⟨(𝑟𝑥), (𝑠𝑥)⟩(comp‘𝐷)(𝑠𝑦))(𝑎𝑥))))
9445, 93rabeqbidva 3491 . . . . . . 7 ((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st𝑓)) ∧ 𝑠 = (1st𝑔)) → {𝑎X𝑥 ∈ (Base‘𝐴)((𝑟𝑥)(Hom ‘𝐶)(𝑠𝑥)) ∣ ∀𝑥 ∈ (Base‘𝐴)∀𝑦 ∈ (Base‘𝐴)∀ ∈ (𝑥(Hom ‘𝐴)𝑦)((𝑎𝑦)(⟨(𝑟𝑥), (𝑟𝑦)⟩(comp‘𝐶)(𝑠𝑦))((𝑥(2nd𝑓)𝑦)‘)) = (((𝑥(2nd𝑔)𝑦)‘)(⟨(𝑟𝑥), (𝑠𝑥)⟩(comp‘𝐶)(𝑠𝑦))(𝑎𝑥))} = {𝑎X𝑥 ∈ (Base‘𝐵)((𝑟𝑥)(Hom ‘𝐷)(𝑠𝑥)) ∣ ∀𝑥 ∈ (Base‘𝐵)∀𝑦 ∈ (Base‘𝐵)∀ ∈ (𝑥(Hom ‘𝐵)𝑦)((𝑎𝑦)(⟨(𝑟𝑥), (𝑟𝑦)⟩(comp‘𝐷)(𝑠𝑦))((𝑥(2nd𝑓)𝑦)‘)) = (((𝑥(2nd𝑔)𝑦)‘)(⟨(𝑟𝑥), (𝑠𝑥)⟩(comp‘𝐷)(𝑠𝑦))(𝑎𝑥))})
95 csbeq1a 3900 . . . . . . . 8 (𝑠 = (1st𝑔) → {𝑎X𝑥 ∈ (Base‘𝐵)((𝑟𝑥)(Hom ‘𝐷)(𝑠𝑥)) ∣ ∀𝑥 ∈ (Base‘𝐵)∀𝑦 ∈ (Base‘𝐵)∀ ∈ (𝑥(Hom ‘𝐵)𝑦)((𝑎𝑦)(⟨(𝑟𝑥), (𝑟𝑦)⟩(comp‘𝐷)(𝑠𝑦))((𝑥(2nd𝑓)𝑦)‘)) = (((𝑥(2nd𝑔)𝑦)‘)(⟨(𝑟𝑥), (𝑠𝑥)⟩(comp‘𝐷)(𝑠𝑦))(𝑎𝑥))} = (1st𝑔) / 𝑠{𝑎X𝑥 ∈ (Base‘𝐵)((𝑟𝑥)(Hom ‘𝐷)(𝑠𝑥)) ∣ ∀𝑥 ∈ (Base‘𝐵)∀𝑦 ∈ (Base‘𝐵)∀ ∈ (𝑥(Hom ‘𝐵)𝑦)((𝑎𝑦)(⟨(𝑟𝑥), (𝑟𝑦)⟩(comp‘𝐷)(𝑠𝑦))((𝑥(2nd𝑓)𝑦)‘)) = (((𝑥(2nd𝑔)𝑦)‘)(⟨(𝑟𝑥), (𝑠𝑥)⟩(comp‘𝐷)(𝑠𝑦))(𝑎𝑥))})
9695adantl 482 . . . . . . 7 ((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st𝑓)) ∧ 𝑠 = (1st𝑔)) → {𝑎X𝑥 ∈ (Base‘𝐵)((𝑟𝑥)(Hom ‘𝐷)(𝑠𝑥)) ∣ ∀𝑥 ∈ (Base‘𝐵)∀𝑦 ∈ (Base‘𝐵)∀ ∈ (𝑥(Hom ‘𝐵)𝑦)((𝑎𝑦)(⟨(𝑟𝑥), (𝑟𝑦)⟩(comp‘𝐷)(𝑠𝑦))((𝑥(2nd𝑓)𝑦)‘)) = (((𝑥(2nd𝑔)𝑦)‘)(⟨(𝑟𝑥), (𝑠𝑥)⟩(comp‘𝐷)(𝑠𝑦))(𝑎𝑥))} = (1st𝑔) / 𝑠{𝑎X𝑥 ∈ (Base‘𝐵)((𝑟𝑥)(Hom ‘𝐷)(𝑠𝑥)) ∣ ∀𝑥 ∈ (Base‘𝐵)∀𝑦 ∈ (Base‘𝐵)∀ ∈ (𝑥(Hom ‘𝐵)𝑦)((𝑎𝑦)(⟨(𝑟𝑥), (𝑟𝑦)⟩(comp‘𝐷)(𝑠𝑦))((𝑥(2nd𝑓)𝑦)‘)) = (((𝑥(2nd𝑔)𝑦)‘)(⟨(𝑟𝑥), (𝑠𝑥)⟩(comp‘𝐷)(𝑠𝑦))(𝑎𝑥))})
9794, 96eqtrd 2860 . . . . . 6 ((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st𝑓)) ∧ 𝑠 = (1st𝑔)) → {𝑎X𝑥 ∈ (Base‘𝐴)((𝑟𝑥)(Hom ‘𝐶)(𝑠𝑥)) ∣ ∀𝑥 ∈ (Base‘𝐴)∀𝑦 ∈ (Base‘𝐴)∀ ∈ (𝑥(Hom ‘𝐴)𝑦)((𝑎𝑦)(⟨(𝑟𝑥), (𝑟𝑦)⟩(comp‘𝐶)(𝑠𝑦))((𝑥(2nd𝑓)𝑦)‘)) = (((𝑥(2nd𝑔)𝑦)‘)(⟨(𝑟𝑥), (𝑠𝑥)⟩(comp‘𝐶)(𝑠𝑦))(𝑎𝑥))} = (1st𝑔) / 𝑠{𝑎X𝑥 ∈ (Base‘𝐵)((𝑟𝑥)(Hom ‘𝐷)(𝑠𝑥)) ∣ ∀𝑥 ∈ (Base‘𝐵)∀𝑦 ∈ (Base‘𝐵)∀ ∈ (𝑥(Hom ‘𝐵)𝑦)((𝑎𝑦)(⟨(𝑟𝑥), (𝑟𝑦)⟩(comp‘𝐷)(𝑠𝑦))((𝑥(2nd𝑓)𝑦)‘)) = (((𝑥(2nd𝑔)𝑦)‘)(⟨(𝑟𝑥), (𝑠𝑥)⟩(comp‘𝐷)(𝑠𝑦))(𝑎𝑥))})
9815, 17, 18, 97csbiedf 3916 . . . . 5 (((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st𝑓)) → (1st𝑔) / 𝑠{𝑎X𝑥 ∈ (Base‘𝐴)((𝑟𝑥)(Hom ‘𝐶)(𝑠𝑥)) ∣ ∀𝑥 ∈ (Base‘𝐴)∀𝑦 ∈ (Base‘𝐴)∀ ∈ (𝑥(Hom ‘𝐴)𝑦)((𝑎𝑦)(⟨(𝑟𝑥), (𝑟𝑦)⟩(comp‘𝐶)(𝑠𝑦))((𝑥(2nd𝑓)𝑦)‘)) = (((𝑥(2nd𝑔)𝑦)‘)(⟨(𝑟𝑥), (𝑠𝑥)⟩(comp‘𝐶)(𝑠𝑦))(𝑎𝑥))} = (1st𝑔) / 𝑠{𝑎X𝑥 ∈ (Base‘𝐵)((𝑟𝑥)(Hom ‘𝐷)(𝑠𝑥)) ∣ ∀𝑥 ∈ (Base‘𝐵)∀𝑦 ∈ (Base‘𝐵)∀ ∈ (𝑥(Hom ‘𝐵)𝑦)((𝑎𝑦)(⟨(𝑟𝑥), (𝑟𝑦)⟩(comp‘𝐷)(𝑠𝑦))((𝑥(2nd𝑓)𝑦)‘)) = (((𝑥(2nd𝑔)𝑦)‘)(⟨(𝑟𝑥), (𝑠𝑥)⟩(comp‘𝐷)(𝑠𝑦))(𝑎𝑥))})
99 csbeq1a 3900 . . . . . 6 (𝑟 = (1st𝑓) → (1st𝑔) / 𝑠{𝑎X𝑥 ∈ (Base‘𝐵)((𝑟𝑥)(Hom ‘𝐷)(𝑠𝑥)) ∣ ∀𝑥 ∈ (Base‘𝐵)∀𝑦 ∈ (Base‘𝐵)∀ ∈ (𝑥(Hom ‘𝐵)𝑦)((𝑎𝑦)(⟨(𝑟𝑥), (𝑟𝑦)⟩(comp‘𝐷)(𝑠𝑦))((𝑥(2nd𝑓)𝑦)‘)) = (((𝑥(2nd𝑔)𝑦)‘)(⟨(𝑟𝑥), (𝑠𝑥)⟩(comp‘𝐷)(𝑠𝑦))(𝑎𝑥))} = (1st𝑓) / 𝑟(1st𝑔) / 𝑠{𝑎X𝑥 ∈ (Base‘𝐵)((𝑟𝑥)(Hom ‘𝐷)(𝑠𝑥)) ∣ ∀𝑥 ∈ (Base‘𝐵)∀𝑦 ∈ (Base‘𝐵)∀ ∈ (𝑥(Hom ‘𝐵)𝑦)((𝑎𝑦)(⟨(𝑟𝑥), (𝑟𝑦)⟩(comp‘𝐷)(𝑠𝑦))((𝑥(2nd𝑓)𝑦)‘)) = (((𝑥(2nd𝑔)𝑦)‘)(⟨(𝑟𝑥), (𝑠𝑥)⟩(comp‘𝐷)(𝑠𝑦))(𝑎𝑥))})
10099adantl 482 . . . . 5 (((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st𝑓)) → (1st𝑔) / 𝑠{𝑎X𝑥 ∈ (Base‘𝐵)((𝑟𝑥)(Hom ‘𝐷)(𝑠𝑥)) ∣ ∀𝑥 ∈ (Base‘𝐵)∀𝑦 ∈ (Base‘𝐵)∀ ∈ (𝑥(Hom ‘𝐵)𝑦)((𝑎𝑦)(⟨(𝑟𝑥), (𝑟𝑦)⟩(comp‘𝐷)(𝑠𝑦))((𝑥(2nd𝑓)𝑦)‘)) = (((𝑥(2nd𝑔)𝑦)‘)(⟨(𝑟𝑥), (𝑠𝑥)⟩(comp‘𝐷)(𝑠𝑦))(𝑎𝑥))} = (1st𝑓) / 𝑟(1st𝑔) / 𝑠{𝑎X𝑥 ∈ (Base‘𝐵)((𝑟𝑥)(Hom ‘𝐷)(𝑠𝑥)) ∣ ∀𝑥 ∈ (Base‘𝐵)∀𝑦 ∈ (Base‘𝐵)∀ ∈ (𝑥(Hom ‘𝐵)𝑦)((𝑎𝑦)(⟨(𝑟𝑥), (𝑟𝑦)⟩(comp‘𝐷)(𝑠𝑦))((𝑥(2nd𝑓)𝑦)‘)) = (((𝑥(2nd𝑔)𝑦)‘)(⟨(𝑟𝑥), (𝑠𝑥)⟩(comp‘𝐷)(𝑠𝑦))(𝑎𝑥))})
10198, 100eqtrd 2860 . . . 4 (((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st𝑓)) → (1st𝑔) / 𝑠{𝑎X𝑥 ∈ (Base‘𝐴)((𝑟𝑥)(Hom ‘𝐶)(𝑠𝑥)) ∣ ∀𝑥 ∈ (Base‘𝐴)∀𝑦 ∈ (Base‘𝐴)∀ ∈ (𝑥(Hom ‘𝐴)𝑦)((𝑎𝑦)(⟨(𝑟𝑥), (𝑟𝑦)⟩(comp‘𝐶)(𝑠𝑦))((𝑥(2nd𝑓)𝑦)‘)) = (((𝑥(2nd𝑔)𝑦)‘)(⟨(𝑟𝑥), (𝑠𝑥)⟩(comp‘𝐶)(𝑠𝑦))(𝑎𝑥))} = (1st𝑓) / 𝑟(1st𝑔) / 𝑠{𝑎X𝑥 ∈ (Base‘𝐵)((𝑟𝑥)(Hom ‘𝐷)(𝑠𝑥)) ∣ ∀𝑥 ∈ (Base‘𝐵)∀𝑦 ∈ (Base‘𝐵)∀ ∈ (𝑥(Hom ‘𝐵)𝑦)((𝑎𝑦)(⟨(𝑟𝑥), (𝑟𝑦)⟩(comp‘𝐷)(𝑠𝑦))((𝑥(2nd𝑓)𝑦)‘)) = (((𝑥(2nd𝑔)𝑦)‘)(⟨(𝑟𝑥), (𝑠𝑥)⟩(comp‘𝐷)(𝑠𝑦))(𝑎𝑥))})
10211, 13, 14, 101csbiedf 3916 . . 3 ((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) → (1st𝑓) / 𝑟(1st𝑔) / 𝑠{𝑎X𝑥 ∈ (Base‘𝐴)((𝑟𝑥)(Hom ‘𝐶)(𝑠𝑥)) ∣ ∀𝑥 ∈ (Base‘𝐴)∀𝑦 ∈ (Base‘𝐴)∀ ∈ (𝑥(Hom ‘𝐴)𝑦)((𝑎𝑦)(⟨(𝑟𝑥), (𝑟𝑦)⟩(comp‘𝐶)(𝑠𝑦))((𝑥(2nd𝑓)𝑦)‘)) = (((𝑥(2nd𝑔)𝑦)‘)(⟨(𝑟𝑥), (𝑠𝑥)⟩(comp‘𝐶)(𝑠𝑦))(𝑎𝑥))} = (1st𝑓) / 𝑟(1st𝑔) / 𝑠{𝑎X𝑥 ∈ (Base‘𝐵)((𝑟𝑥)(Hom ‘𝐷)(𝑠𝑥)) ∣ ∀𝑥 ∈ (Base‘𝐵)∀𝑦 ∈ (Base‘𝐵)∀ ∈ (𝑥(Hom ‘𝐵)𝑦)((𝑎𝑦)(⟨(𝑟𝑥), (𝑟𝑦)⟩(comp‘𝐷)(𝑠𝑦))((𝑥(2nd𝑓)𝑦)‘)) = (((𝑥(2nd𝑔)𝑦)‘)(⟨(𝑟𝑥), (𝑠𝑥)⟩(comp‘𝐷)(𝑠𝑦))(𝑎𝑥))})
1039, 10, 102mpoeq123dva 7223 . 2 (𝜑 → (𝑓 ∈ (𝐴 Func 𝐶), 𝑔 ∈ (𝐴 Func 𝐶) ↦ (1st𝑓) / 𝑟(1st𝑔) / 𝑠{𝑎X𝑥 ∈ (Base‘𝐴)((𝑟𝑥)(Hom ‘𝐶)(𝑠𝑥)) ∣ ∀𝑥 ∈ (Base‘𝐴)∀𝑦 ∈ (Base‘𝐴)∀ ∈ (𝑥(Hom ‘𝐴)𝑦)((𝑎𝑦)(⟨(𝑟𝑥), (𝑟𝑦)⟩(comp‘𝐶)(𝑠𝑦))((𝑥(2nd𝑓)𝑦)‘)) = (((𝑥(2nd𝑔)𝑦)‘)(⟨(𝑟𝑥), (𝑠𝑥)⟩(comp‘𝐶)(𝑠𝑦))(𝑎𝑥))}) = (𝑓 ∈ (𝐵 Func 𝐷), 𝑔 ∈ (𝐵 Func 𝐷) ↦ (1st𝑓) / 𝑟(1st𝑔) / 𝑠{𝑎X𝑥 ∈ (Base‘𝐵)((𝑟𝑥)(Hom ‘𝐷)(𝑠𝑥)) ∣ ∀𝑥 ∈ (Base‘𝐵)∀𝑦 ∈ (Base‘𝐵)∀ ∈ (𝑥(Hom ‘𝐵)𝑦)((𝑎𝑦)(⟨(𝑟𝑥), (𝑟𝑦)⟩(comp‘𝐷)(𝑠𝑦))((𝑥(2nd𝑓)𝑦)‘)) = (((𝑥(2nd𝑔)𝑦)‘)(⟨(𝑟𝑥), (𝑠𝑥)⟩(comp‘𝐷)(𝑠𝑦))(𝑎𝑥))}))
104 eqid 2825 . . 3 (𝐴 Nat 𝐶) = (𝐴 Nat 𝐶)
105104, 23, 53, 20, 59natfval 17208 . 2 (𝐴 Nat 𝐶) = (𝑓 ∈ (𝐴 Func 𝐶), 𝑔 ∈ (𝐴 Func 𝐶) ↦ (1st𝑓) / 𝑟(1st𝑔) / 𝑠{𝑎X𝑥 ∈ (Base‘𝐴)((𝑟𝑥)(Hom ‘𝐶)(𝑠𝑥)) ∣ ∀𝑥 ∈ (Base‘𝐴)∀𝑦 ∈ (Base‘𝐴)∀ ∈ (𝑥(Hom ‘𝐴)𝑦)((𝑎𝑦)(⟨(𝑟𝑥), (𝑟𝑦)⟩(comp‘𝐶)(𝑠𝑦))((𝑥(2nd𝑓)𝑦)‘)) = (((𝑥(2nd𝑔)𝑦)‘)(⟨(𝑟𝑥), (𝑠𝑥)⟩(comp‘𝐶)(𝑠𝑦))(𝑎𝑥))})
106 eqid 2825 . . 3 (𝐵 Nat 𝐷) = (𝐵 Nat 𝐷)
107 eqid 2825 . . 3 (Base‘𝐵) = (Base‘𝐵)
108106, 107, 54, 21, 60natfval 17208 . 2 (𝐵 Nat 𝐷) = (𝑓 ∈ (𝐵 Func 𝐷), 𝑔 ∈ (𝐵 Func 𝐷) ↦ (1st𝑓) / 𝑟(1st𝑔) / 𝑠{𝑎X𝑥 ∈ (Base‘𝐵)((𝑟𝑥)(Hom ‘𝐷)(𝑠𝑥)) ∣ ∀𝑥 ∈ (Base‘𝐵)∀𝑦 ∈ (Base‘𝐵)∀ ∈ (𝑥(Hom ‘𝐵)𝑦)((𝑎𝑦)(⟨(𝑟𝑥), (𝑟𝑦)⟩(comp‘𝐷)(𝑠𝑦))((𝑥(2nd𝑓)𝑦)‘)) = (((𝑥(2nd𝑔)𝑦)‘)(⟨(𝑟𝑥), (𝑠𝑥)⟩(comp‘𝐷)(𝑠𝑦))(𝑎𝑥))})
109103, 105, 1083eqtr4g 2885 1 (𝜑 → (𝐴 Nat 𝐶) = (𝐵 Nat 𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396   = wceq 1530  wcel 2107  wnfc 2965  wral 3142  {crab 3146  Vcvv 3499  csb 3886  cop 4569   class class class wbr 5062  Rel wrel 5558  wf 6347  cfv 6351  (class class class)co 7151  cmpo 7153  1st c1st 7681  2nd c2nd 7682  Xcixp 8453  Basecbs 16475  Hom chom 16568  compcco 16569  Catccat 16927  Homf chomf 16929  compfccomf 16930   Func cfunc 17116   Nat cnat 17203
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-13 2385  ax-ext 2797  ax-rep 5186  ax-sep 5199  ax-nul 5206  ax-pow 5262  ax-pr 5325  ax-un 7454
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3an 1083  df-tru 1533  df-fal 1543  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2619  df-eu 2651  df-clab 2804  df-cleq 2818  df-clel 2897  df-nfc 2967  df-ne 3021  df-ral 3147  df-rex 3148  df-reu 3149  df-rab 3151  df-v 3501  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-nul 4295  df-if 4470  df-pw 4543  df-sn 4564  df-pr 4566  df-op 4570  df-uni 4837  df-iun 4918  df-br 5063  df-opab 5125  df-mpt 5143  df-id 5458  df-xp 5559  df-rel 5560  df-cnv 5561  df-co 5562  df-dm 5563  df-rn 5564  df-res 5565  df-ima 5566  df-iota 6311  df-fun 6353  df-fn 6354  df-f 6355  df-f1 6356  df-fo 6357  df-f1o 6358  df-fv 6359  df-riota 7109  df-ov 7154  df-oprab 7155  df-mpo 7156  df-1st 7683  df-2nd 7684  df-map 8401  df-ixp 8454  df-cat 16931  df-cid 16932  df-homf 16933  df-comf 16934  df-func 17120  df-nat 17205
This theorem is referenced by:  fucpropd  17239
  Copyright terms: Public domain W3C validator