MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  natpropd Structured version   Visualization version   GIF version

Theorem natpropd 18033
Description: If two categories have the same set of objects, morphisms, and compositions, then they have the same natural transformations. (Contributed by Mario Carneiro, 26-Jan-2017.)
Hypotheses
Ref Expression
fucpropd.1 (𝜑 → (Homf𝐴) = (Homf𝐵))
fucpropd.2 (𝜑 → (compf𝐴) = (compf𝐵))
fucpropd.3 (𝜑 → (Homf𝐶) = (Homf𝐷))
fucpropd.4 (𝜑 → (compf𝐶) = (compf𝐷))
fucpropd.a (𝜑𝐴 ∈ Cat)
fucpropd.b (𝜑𝐵 ∈ Cat)
fucpropd.c (𝜑𝐶 ∈ Cat)
fucpropd.d (𝜑𝐷 ∈ Cat)
Assertion
Ref Expression
natpropd (𝜑 → (𝐴 Nat 𝐶) = (𝐵 Nat 𝐷))

Proof of Theorem natpropd
Dummy variables 𝑎 𝑓 𝑔 𝑟 𝑠 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fucpropd.1 . . . 4 (𝜑 → (Homf𝐴) = (Homf𝐵))
2 fucpropd.2 . . . 4 (𝜑 → (compf𝐴) = (compf𝐵))
3 fucpropd.3 . . . 4 (𝜑 → (Homf𝐶) = (Homf𝐷))
4 fucpropd.4 . . . 4 (𝜑 → (compf𝐶) = (compf𝐷))
5 fucpropd.a . . . 4 (𝜑𝐴 ∈ Cat)
6 fucpropd.b . . . 4 (𝜑𝐵 ∈ Cat)
7 fucpropd.c . . . 4 (𝜑𝐶 ∈ Cat)
8 fucpropd.d . . . 4 (𝜑𝐷 ∈ Cat)
91, 2, 3, 4, 5, 6, 7, 8funcpropd 17954 . . 3 (𝜑 → (𝐴 Func 𝐶) = (𝐵 Func 𝐷))
109adantr 480 . . 3 ((𝜑𝑓 ∈ (𝐴 Func 𝐶)) → (𝐴 Func 𝐶) = (𝐵 Func 𝐷))
11 nfv 1912 . . . 4 𝑟(𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶)))
12 nfcsb1v 3933 . . . . 5 𝑟(1st𝑓) / 𝑟(1st𝑔) / 𝑠{𝑎X𝑥 ∈ (Base‘𝐵)((𝑟𝑥)(Hom ‘𝐷)(𝑠𝑥)) ∣ ∀𝑥 ∈ (Base‘𝐵)∀𝑦 ∈ (Base‘𝐵)∀ ∈ (𝑥(Hom ‘𝐵)𝑦)((𝑎𝑦)(⟨(𝑟𝑥), (𝑟𝑦)⟩(comp‘𝐷)(𝑠𝑦))((𝑥(2nd𝑓)𝑦)‘)) = (((𝑥(2nd𝑔)𝑦)‘)(⟨(𝑟𝑥), (𝑠𝑥)⟩(comp‘𝐷)(𝑠𝑦))(𝑎𝑥))}
1312a1i 11 . . . 4 ((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) → 𝑟(1st𝑓) / 𝑟(1st𝑔) / 𝑠{𝑎X𝑥 ∈ (Base‘𝐵)((𝑟𝑥)(Hom ‘𝐷)(𝑠𝑥)) ∣ ∀𝑥 ∈ (Base‘𝐵)∀𝑦 ∈ (Base‘𝐵)∀ ∈ (𝑥(Hom ‘𝐵)𝑦)((𝑎𝑦)(⟨(𝑟𝑥), (𝑟𝑦)⟩(comp‘𝐷)(𝑠𝑦))((𝑥(2nd𝑓)𝑦)‘)) = (((𝑥(2nd𝑔)𝑦)‘)(⟨(𝑟𝑥), (𝑠𝑥)⟩(comp‘𝐷)(𝑠𝑦))(𝑎𝑥))})
14 fvexd 6922 . . . 4 ((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) → (1st𝑓) ∈ V)
15 nfv 1912 . . . . . 6 𝑠((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st𝑓))
16 nfcsb1v 3933 . . . . . . 7 𝑠(1st𝑔) / 𝑠{𝑎X𝑥 ∈ (Base‘𝐵)((𝑟𝑥)(Hom ‘𝐷)(𝑠𝑥)) ∣ ∀𝑥 ∈ (Base‘𝐵)∀𝑦 ∈ (Base‘𝐵)∀ ∈ (𝑥(Hom ‘𝐵)𝑦)((𝑎𝑦)(⟨(𝑟𝑥), (𝑟𝑦)⟩(comp‘𝐷)(𝑠𝑦))((𝑥(2nd𝑓)𝑦)‘)) = (((𝑥(2nd𝑔)𝑦)‘)(⟨(𝑟𝑥), (𝑠𝑥)⟩(comp‘𝐷)(𝑠𝑦))(𝑎𝑥))}
1716a1i 11 . . . . . 6 (((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st𝑓)) → 𝑠(1st𝑔) / 𝑠{𝑎X𝑥 ∈ (Base‘𝐵)((𝑟𝑥)(Hom ‘𝐷)(𝑠𝑥)) ∣ ∀𝑥 ∈ (Base‘𝐵)∀𝑦 ∈ (Base‘𝐵)∀ ∈ (𝑥(Hom ‘𝐵)𝑦)((𝑎𝑦)(⟨(𝑟𝑥), (𝑟𝑦)⟩(comp‘𝐷)(𝑠𝑦))((𝑥(2nd𝑓)𝑦)‘)) = (((𝑥(2nd𝑔)𝑦)‘)(⟨(𝑟𝑥), (𝑠𝑥)⟩(comp‘𝐷)(𝑠𝑦))(𝑎𝑥))})
18 fvexd 6922 . . . . . 6 (((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st𝑓)) → (1st𝑔) ∈ V)
19 eqid 2735 . . . . . . . . . . 11 (Base‘𝐶) = (Base‘𝐶)
20 eqid 2735 . . . . . . . . . . 11 (Hom ‘𝐶) = (Hom ‘𝐶)
21 eqid 2735 . . . . . . . . . . 11 (Hom ‘𝐷) = (Hom ‘𝐷)
223ad4antr 732 . . . . . . . . . . 11 (((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st𝑓)) ∧ 𝑠 = (1st𝑔)) ∧ 𝑥 ∈ (Base‘𝐴)) → (Homf𝐶) = (Homf𝐷))
23 eqid 2735 . . . . . . . . . . . . 13 (Base‘𝐴) = (Base‘𝐴)
24 simplr 769 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st𝑓)) ∧ 𝑠 = (1st𝑔)) → 𝑟 = (1st𝑓))
25 relfunc 17913 . . . . . . . . . . . . . . 15 Rel (𝐴 Func 𝐶)
26 simpllr 776 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st𝑓)) ∧ 𝑠 = (1st𝑔)) → (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶)))
2726simpld 494 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st𝑓)) ∧ 𝑠 = (1st𝑔)) → 𝑓 ∈ (𝐴 Func 𝐶))
28 1st2ndbr 8066 . . . . . . . . . . . . . . 15 ((Rel (𝐴 Func 𝐶) ∧ 𝑓 ∈ (𝐴 Func 𝐶)) → (1st𝑓)(𝐴 Func 𝐶)(2nd𝑓))
2925, 27, 28sylancr 587 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st𝑓)) ∧ 𝑠 = (1st𝑔)) → (1st𝑓)(𝐴 Func 𝐶)(2nd𝑓))
3024, 29eqbrtrd 5170 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st𝑓)) ∧ 𝑠 = (1st𝑔)) → 𝑟(𝐴 Func 𝐶)(2nd𝑓))
3123, 19, 30funcf1 17917 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st𝑓)) ∧ 𝑠 = (1st𝑔)) → 𝑟:(Base‘𝐴)⟶(Base‘𝐶))
3231ffvelcdmda 7104 . . . . . . . . . . 11 (((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st𝑓)) ∧ 𝑠 = (1st𝑔)) ∧ 𝑥 ∈ (Base‘𝐴)) → (𝑟𝑥) ∈ (Base‘𝐶))
33 simpr 484 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st𝑓)) ∧ 𝑠 = (1st𝑔)) → 𝑠 = (1st𝑔))
3426simprd 495 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st𝑓)) ∧ 𝑠 = (1st𝑔)) → 𝑔 ∈ (𝐴 Func 𝐶))
35 1st2ndbr 8066 . . . . . . . . . . . . . . 15 ((Rel (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶)) → (1st𝑔)(𝐴 Func 𝐶)(2nd𝑔))
3625, 34, 35sylancr 587 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st𝑓)) ∧ 𝑠 = (1st𝑔)) → (1st𝑔)(𝐴 Func 𝐶)(2nd𝑔))
3733, 36eqbrtrd 5170 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st𝑓)) ∧ 𝑠 = (1st𝑔)) → 𝑠(𝐴 Func 𝐶)(2nd𝑔))
3823, 19, 37funcf1 17917 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st𝑓)) ∧ 𝑠 = (1st𝑔)) → 𝑠:(Base‘𝐴)⟶(Base‘𝐶))
3938ffvelcdmda 7104 . . . . . . . . . . 11 (((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st𝑓)) ∧ 𝑠 = (1st𝑔)) ∧ 𝑥 ∈ (Base‘𝐴)) → (𝑠𝑥) ∈ (Base‘𝐶))
4019, 20, 21, 22, 32, 39homfeqval 17742 . . . . . . . . . 10 (((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st𝑓)) ∧ 𝑠 = (1st𝑔)) ∧ 𝑥 ∈ (Base‘𝐴)) → ((𝑟𝑥)(Hom ‘𝐶)(𝑠𝑥)) = ((𝑟𝑥)(Hom ‘𝐷)(𝑠𝑥)))
4140ixpeq2dva 8951 . . . . . . . . 9 ((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st𝑓)) ∧ 𝑠 = (1st𝑔)) → X𝑥 ∈ (Base‘𝐴)((𝑟𝑥)(Hom ‘𝐶)(𝑠𝑥)) = X𝑥 ∈ (Base‘𝐴)((𝑟𝑥)(Hom ‘𝐷)(𝑠𝑥)))
421homfeqbas 17741 . . . . . . . . . . 11 (𝜑 → (Base‘𝐴) = (Base‘𝐵))
4342ad3antrrr 730 . . . . . . . . . 10 ((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st𝑓)) ∧ 𝑠 = (1st𝑔)) → (Base‘𝐴) = (Base‘𝐵))
4443ixpeq1d 8948 . . . . . . . . 9 ((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st𝑓)) ∧ 𝑠 = (1st𝑔)) → X𝑥 ∈ (Base‘𝐴)((𝑟𝑥)(Hom ‘𝐷)(𝑠𝑥)) = X𝑥 ∈ (Base‘𝐵)((𝑟𝑥)(Hom ‘𝐷)(𝑠𝑥)))
4541, 44eqtrd 2775 . . . . . . . 8 ((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st𝑓)) ∧ 𝑠 = (1st𝑔)) → X𝑥 ∈ (Base‘𝐴)((𝑟𝑥)(Hom ‘𝐶)(𝑠𝑥)) = X𝑥 ∈ (Base‘𝐵)((𝑟𝑥)(Hom ‘𝐷)(𝑠𝑥)))
46 fveq2 6907 . . . . . . . . . . . 12 (𝑥 = 𝑧 → (𝑟𝑥) = (𝑟𝑧))
47 fveq2 6907 . . . . . . . . . . . 12 (𝑥 = 𝑧 → (𝑠𝑥) = (𝑠𝑧))
4846, 47oveq12d 7449 . . . . . . . . . . 11 (𝑥 = 𝑧 → ((𝑟𝑥)(Hom ‘𝐶)(𝑠𝑥)) = ((𝑟𝑧)(Hom ‘𝐶)(𝑠𝑧)))
4948cbvixpv 8954 . . . . . . . . . 10 X𝑥 ∈ (Base‘𝐴)((𝑟𝑥)(Hom ‘𝐶)(𝑠𝑥)) = X𝑧 ∈ (Base‘𝐴)((𝑟𝑧)(Hom ‘𝐶)(𝑠𝑧))
5049eleq2i 2831 . . . . . . . . 9 (𝑎X𝑥 ∈ (Base‘𝐴)((𝑟𝑥)(Hom ‘𝐶)(𝑠𝑥)) ↔ 𝑎X𝑧 ∈ (Base‘𝐴)((𝑟𝑧)(Hom ‘𝐶)(𝑠𝑧)))
5143adantr 480 . . . . . . . . . 10 (((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st𝑓)) ∧ 𝑠 = (1st𝑔)) ∧ 𝑎X𝑧 ∈ (Base‘𝐴)((𝑟𝑧)(Hom ‘𝐶)(𝑠𝑧))) → (Base‘𝐴) = (Base‘𝐵))
5251adantr 480 . . . . . . . . . . 11 ((((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st𝑓)) ∧ 𝑠 = (1st𝑔)) ∧ 𝑎X𝑧 ∈ (Base‘𝐴)((𝑟𝑧)(Hom ‘𝐶)(𝑠𝑧))) ∧ 𝑥 ∈ (Base‘𝐴)) → (Base‘𝐴) = (Base‘𝐵))
53 eqid 2735 . . . . . . . . . . . . 13 (Hom ‘𝐴) = (Hom ‘𝐴)
54 eqid 2735 . . . . . . . . . . . . 13 (Hom ‘𝐵) = (Hom ‘𝐵)
551ad6antr 736 . . . . . . . . . . . . 13 (((((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st𝑓)) ∧ 𝑠 = (1st𝑔)) ∧ 𝑎X𝑧 ∈ (Base‘𝐴)((𝑟𝑧)(Hom ‘𝐶)(𝑠𝑧))) ∧ 𝑥 ∈ (Base‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴)) → (Homf𝐴) = (Homf𝐵))
56 simplr 769 . . . . . . . . . . . . 13 (((((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st𝑓)) ∧ 𝑠 = (1st𝑔)) ∧ 𝑎X𝑧 ∈ (Base‘𝐴)((𝑟𝑧)(Hom ‘𝐶)(𝑠𝑧))) ∧ 𝑥 ∈ (Base‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴)) → 𝑥 ∈ (Base‘𝐴))
57 simpr 484 . . . . . . . . . . . . 13 (((((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st𝑓)) ∧ 𝑠 = (1st𝑔)) ∧ 𝑎X𝑧 ∈ (Base‘𝐴)((𝑟𝑧)(Hom ‘𝐶)(𝑠𝑧))) ∧ 𝑥 ∈ (Base‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴)) → 𝑦 ∈ (Base‘𝐴))
5823, 53, 54, 55, 56, 57homfeqval 17742 . . . . . . . . . . . 12 (((((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st𝑓)) ∧ 𝑠 = (1st𝑔)) ∧ 𝑎X𝑧 ∈ (Base‘𝐴)((𝑟𝑧)(Hom ‘𝐶)(𝑠𝑧))) ∧ 𝑥 ∈ (Base‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴)) → (𝑥(Hom ‘𝐴)𝑦) = (𝑥(Hom ‘𝐵)𝑦))
59 eqid 2735 . . . . . . . . . . . . . 14 (comp‘𝐶) = (comp‘𝐶)
60 eqid 2735 . . . . . . . . . . . . . 14 (comp‘𝐷) = (comp‘𝐷)
613ad7antr 738 . . . . . . . . . . . . . 14 ((((((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st𝑓)) ∧ 𝑠 = (1st𝑔)) ∧ 𝑎X𝑧 ∈ (Base‘𝐴)((𝑟𝑧)(Hom ‘𝐶)(𝑠𝑧))) ∧ 𝑥 ∈ (Base‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴)) ∧ ∈ (𝑥(Hom ‘𝐴)𝑦)) → (Homf𝐶) = (Homf𝐷))
624ad7antr 738 . . . . . . . . . . . . . 14 ((((((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st𝑓)) ∧ 𝑠 = (1st𝑔)) ∧ 𝑎X𝑧 ∈ (Base‘𝐴)((𝑟𝑧)(Hom ‘𝐶)(𝑠𝑧))) ∧ 𝑥 ∈ (Base‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴)) ∧ ∈ (𝑥(Hom ‘𝐴)𝑦)) → (compf𝐶) = (compf𝐷))
6332ad5ant13 757 . . . . . . . . . . . . . 14 ((((((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st𝑓)) ∧ 𝑠 = (1st𝑔)) ∧ 𝑎X𝑧 ∈ (Base‘𝐴)((𝑟𝑧)(Hom ‘𝐶)(𝑠𝑧))) ∧ 𝑥 ∈ (Base‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴)) ∧ ∈ (𝑥(Hom ‘𝐴)𝑦)) → (𝑟𝑥) ∈ (Base‘𝐶))
6431ad2antrr 726 . . . . . . . . . . . . . . . 16 ((((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st𝑓)) ∧ 𝑠 = (1st𝑔)) ∧ 𝑎X𝑧 ∈ (Base‘𝐴)((𝑟𝑧)(Hom ‘𝐶)(𝑠𝑧))) ∧ 𝑥 ∈ (Base‘𝐴)) → 𝑟:(Base‘𝐴)⟶(Base‘𝐶))
6564ffvelcdmda 7104 . . . . . . . . . . . . . . 15 (((((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st𝑓)) ∧ 𝑠 = (1st𝑔)) ∧ 𝑎X𝑧 ∈ (Base‘𝐴)((𝑟𝑧)(Hom ‘𝐶)(𝑠𝑧))) ∧ 𝑥 ∈ (Base‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴)) → (𝑟𝑦) ∈ (Base‘𝐶))
6665adantr 480 . . . . . . . . . . . . . 14 ((((((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st𝑓)) ∧ 𝑠 = (1st𝑔)) ∧ 𝑎X𝑧 ∈ (Base‘𝐴)((𝑟𝑧)(Hom ‘𝐶)(𝑠𝑧))) ∧ 𝑥 ∈ (Base‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴)) ∧ ∈ (𝑥(Hom ‘𝐴)𝑦)) → (𝑟𝑦) ∈ (Base‘𝐶))
6738ad2antrr 726 . . . . . . . . . . . . . . . 16 ((((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st𝑓)) ∧ 𝑠 = (1st𝑔)) ∧ 𝑎X𝑧 ∈ (Base‘𝐴)((𝑟𝑧)(Hom ‘𝐶)(𝑠𝑧))) ∧ 𝑥 ∈ (Base‘𝐴)) → 𝑠:(Base‘𝐴)⟶(Base‘𝐶))
6867ffvelcdmda 7104 . . . . . . . . . . . . . . 15 (((((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st𝑓)) ∧ 𝑠 = (1st𝑔)) ∧ 𝑎X𝑧 ∈ (Base‘𝐴)((𝑟𝑧)(Hom ‘𝐶)(𝑠𝑧))) ∧ 𝑥 ∈ (Base‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴)) → (𝑠𝑦) ∈ (Base‘𝐶))
6968adantr 480 . . . . . . . . . . . . . 14 ((((((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st𝑓)) ∧ 𝑠 = (1st𝑔)) ∧ 𝑎X𝑧 ∈ (Base‘𝐴)((𝑟𝑧)(Hom ‘𝐶)(𝑠𝑧))) ∧ 𝑥 ∈ (Base‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴)) ∧ ∈ (𝑥(Hom ‘𝐴)𝑦)) → (𝑠𝑦) ∈ (Base‘𝐶))
7030ad3antrrr 730 . . . . . . . . . . . . . . . 16 (((((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st𝑓)) ∧ 𝑠 = (1st𝑔)) ∧ 𝑎X𝑧 ∈ (Base‘𝐴)((𝑟𝑧)(Hom ‘𝐶)(𝑠𝑧))) ∧ 𝑥 ∈ (Base‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴)) → 𝑟(𝐴 Func 𝐶)(2nd𝑓))
7123, 53, 20, 70, 56, 57funcf2 17919 . . . . . . . . . . . . . . 15 (((((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st𝑓)) ∧ 𝑠 = (1st𝑔)) ∧ 𝑎X𝑧 ∈ (Base‘𝐴)((𝑟𝑧)(Hom ‘𝐶)(𝑠𝑧))) ∧ 𝑥 ∈ (Base‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴)) → (𝑥(2nd𝑓)𝑦):(𝑥(Hom ‘𝐴)𝑦)⟶((𝑟𝑥)(Hom ‘𝐶)(𝑟𝑦)))
7271ffvelcdmda 7104 . . . . . . . . . . . . . 14 ((((((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st𝑓)) ∧ 𝑠 = (1st𝑔)) ∧ 𝑎X𝑧 ∈ (Base‘𝐴)((𝑟𝑧)(Hom ‘𝐶)(𝑠𝑧))) ∧ 𝑥 ∈ (Base‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴)) ∧ ∈ (𝑥(Hom ‘𝐴)𝑦)) → ((𝑥(2nd𝑓)𝑦)‘) ∈ ((𝑟𝑥)(Hom ‘𝐶)(𝑟𝑦)))
73 fveq2 6907 . . . . . . . . . . . . . . . . 17 (𝑧 = 𝑦 → (𝑟𝑧) = (𝑟𝑦))
74 fveq2 6907 . . . . . . . . . . . . . . . . 17 (𝑧 = 𝑦 → (𝑠𝑧) = (𝑠𝑦))
7573, 74oveq12d 7449 . . . . . . . . . . . . . . . 16 (𝑧 = 𝑦 → ((𝑟𝑧)(Hom ‘𝐶)(𝑠𝑧)) = ((𝑟𝑦)(Hom ‘𝐶)(𝑠𝑦)))
7675fvixp 8941 . . . . . . . . . . . . . . 15 ((𝑎X𝑧 ∈ (Base‘𝐴)((𝑟𝑧)(Hom ‘𝐶)(𝑠𝑧)) ∧ 𝑦 ∈ (Base‘𝐴)) → (𝑎𝑦) ∈ ((𝑟𝑦)(Hom ‘𝐶)(𝑠𝑦)))
7776ad5ant24 761 . . . . . . . . . . . . . 14 ((((((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st𝑓)) ∧ 𝑠 = (1st𝑔)) ∧ 𝑎X𝑧 ∈ (Base‘𝐴)((𝑟𝑧)(Hom ‘𝐶)(𝑠𝑧))) ∧ 𝑥 ∈ (Base‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴)) ∧ ∈ (𝑥(Hom ‘𝐴)𝑦)) → (𝑎𝑦) ∈ ((𝑟𝑦)(Hom ‘𝐶)(𝑠𝑦)))
7819, 20, 59, 60, 61, 62, 63, 66, 69, 72, 77comfeqval 17753 . . . . . . . . . . . . 13 ((((((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st𝑓)) ∧ 𝑠 = (1st𝑔)) ∧ 𝑎X𝑧 ∈ (Base‘𝐴)((𝑟𝑧)(Hom ‘𝐶)(𝑠𝑧))) ∧ 𝑥 ∈ (Base‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴)) ∧ ∈ (𝑥(Hom ‘𝐴)𝑦)) → ((𝑎𝑦)(⟨(𝑟𝑥), (𝑟𝑦)⟩(comp‘𝐶)(𝑠𝑦))((𝑥(2nd𝑓)𝑦)‘)) = ((𝑎𝑦)(⟨(𝑟𝑥), (𝑟𝑦)⟩(comp‘𝐷)(𝑠𝑦))((𝑥(2nd𝑓)𝑦)‘)))
7939ad5ant13 757 . . . . . . . . . . . . . 14 ((((((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st𝑓)) ∧ 𝑠 = (1st𝑔)) ∧ 𝑎X𝑧 ∈ (Base‘𝐴)((𝑟𝑧)(Hom ‘𝐶)(𝑠𝑧))) ∧ 𝑥 ∈ (Base‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴)) ∧ ∈ (𝑥(Hom ‘𝐴)𝑦)) → (𝑠𝑥) ∈ (Base‘𝐶))
80 fveq2 6907 . . . . . . . . . . . . . . . . 17 (𝑧 = 𝑥 → (𝑟𝑧) = (𝑟𝑥))
81 fveq2 6907 . . . . . . . . . . . . . . . . 17 (𝑧 = 𝑥 → (𝑠𝑧) = (𝑠𝑥))
8280, 81oveq12d 7449 . . . . . . . . . . . . . . . 16 (𝑧 = 𝑥 → ((𝑟𝑧)(Hom ‘𝐶)(𝑠𝑧)) = ((𝑟𝑥)(Hom ‘𝐶)(𝑠𝑥)))
8382fvixp 8941 . . . . . . . . . . . . . . 15 ((𝑎X𝑧 ∈ (Base‘𝐴)((𝑟𝑧)(Hom ‘𝐶)(𝑠𝑧)) ∧ 𝑥 ∈ (Base‘𝐴)) → (𝑎𝑥) ∈ ((𝑟𝑥)(Hom ‘𝐶)(𝑠𝑥)))
8483ad5ant23 760 . . . . . . . . . . . . . 14 ((((((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st𝑓)) ∧ 𝑠 = (1st𝑔)) ∧ 𝑎X𝑧 ∈ (Base‘𝐴)((𝑟𝑧)(Hom ‘𝐶)(𝑠𝑧))) ∧ 𝑥 ∈ (Base‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴)) ∧ ∈ (𝑥(Hom ‘𝐴)𝑦)) → (𝑎𝑥) ∈ ((𝑟𝑥)(Hom ‘𝐶)(𝑠𝑥)))
8537ad3antrrr 730 . . . . . . . . . . . . . . . 16 (((((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st𝑓)) ∧ 𝑠 = (1st𝑔)) ∧ 𝑎X𝑧 ∈ (Base‘𝐴)((𝑟𝑧)(Hom ‘𝐶)(𝑠𝑧))) ∧ 𝑥 ∈ (Base‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴)) → 𝑠(𝐴 Func 𝐶)(2nd𝑔))
8623, 53, 20, 85, 56, 57funcf2 17919 . . . . . . . . . . . . . . 15 (((((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st𝑓)) ∧ 𝑠 = (1st𝑔)) ∧ 𝑎X𝑧 ∈ (Base‘𝐴)((𝑟𝑧)(Hom ‘𝐶)(𝑠𝑧))) ∧ 𝑥 ∈ (Base‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴)) → (𝑥(2nd𝑔)𝑦):(𝑥(Hom ‘𝐴)𝑦)⟶((𝑠𝑥)(Hom ‘𝐶)(𝑠𝑦)))
8786ffvelcdmda 7104 . . . . . . . . . . . . . 14 ((((((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st𝑓)) ∧ 𝑠 = (1st𝑔)) ∧ 𝑎X𝑧 ∈ (Base‘𝐴)((𝑟𝑧)(Hom ‘𝐶)(𝑠𝑧))) ∧ 𝑥 ∈ (Base‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴)) ∧ ∈ (𝑥(Hom ‘𝐴)𝑦)) → ((𝑥(2nd𝑔)𝑦)‘) ∈ ((𝑠𝑥)(Hom ‘𝐶)(𝑠𝑦)))
8819, 20, 59, 60, 61, 62, 63, 79, 69, 84, 87comfeqval 17753 . . . . . . . . . . . . 13 ((((((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st𝑓)) ∧ 𝑠 = (1st𝑔)) ∧ 𝑎X𝑧 ∈ (Base‘𝐴)((𝑟𝑧)(Hom ‘𝐶)(𝑠𝑧))) ∧ 𝑥 ∈ (Base‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴)) ∧ ∈ (𝑥(Hom ‘𝐴)𝑦)) → (((𝑥(2nd𝑔)𝑦)‘)(⟨(𝑟𝑥), (𝑠𝑥)⟩(comp‘𝐶)(𝑠𝑦))(𝑎𝑥)) = (((𝑥(2nd𝑔)𝑦)‘)(⟨(𝑟𝑥), (𝑠𝑥)⟩(comp‘𝐷)(𝑠𝑦))(𝑎𝑥)))
8978, 88eqeq12d 2751 . . . . . . . . . . . 12 ((((((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st𝑓)) ∧ 𝑠 = (1st𝑔)) ∧ 𝑎X𝑧 ∈ (Base‘𝐴)((𝑟𝑧)(Hom ‘𝐶)(𝑠𝑧))) ∧ 𝑥 ∈ (Base‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴)) ∧ ∈ (𝑥(Hom ‘𝐴)𝑦)) → (((𝑎𝑦)(⟨(𝑟𝑥), (𝑟𝑦)⟩(comp‘𝐶)(𝑠𝑦))((𝑥(2nd𝑓)𝑦)‘)) = (((𝑥(2nd𝑔)𝑦)‘)(⟨(𝑟𝑥), (𝑠𝑥)⟩(comp‘𝐶)(𝑠𝑦))(𝑎𝑥)) ↔ ((𝑎𝑦)(⟨(𝑟𝑥), (𝑟𝑦)⟩(comp‘𝐷)(𝑠𝑦))((𝑥(2nd𝑓)𝑦)‘)) = (((𝑥(2nd𝑔)𝑦)‘)(⟨(𝑟𝑥), (𝑠𝑥)⟩(comp‘𝐷)(𝑠𝑦))(𝑎𝑥))))
9058, 89raleqbidva 3330 . . . . . . . . . . 11 (((((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st𝑓)) ∧ 𝑠 = (1st𝑔)) ∧ 𝑎X𝑧 ∈ (Base‘𝐴)((𝑟𝑧)(Hom ‘𝐶)(𝑠𝑧))) ∧ 𝑥 ∈ (Base‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴)) → (∀ ∈ (𝑥(Hom ‘𝐴)𝑦)((𝑎𝑦)(⟨(𝑟𝑥), (𝑟𝑦)⟩(comp‘𝐶)(𝑠𝑦))((𝑥(2nd𝑓)𝑦)‘)) = (((𝑥(2nd𝑔)𝑦)‘)(⟨(𝑟𝑥), (𝑠𝑥)⟩(comp‘𝐶)(𝑠𝑦))(𝑎𝑥)) ↔ ∀ ∈ (𝑥(Hom ‘𝐵)𝑦)((𝑎𝑦)(⟨(𝑟𝑥), (𝑟𝑦)⟩(comp‘𝐷)(𝑠𝑦))((𝑥(2nd𝑓)𝑦)‘)) = (((𝑥(2nd𝑔)𝑦)‘)(⟨(𝑟𝑥), (𝑠𝑥)⟩(comp‘𝐷)(𝑠𝑦))(𝑎𝑥))))
9152, 90raleqbidva 3330 . . . . . . . . . 10 ((((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st𝑓)) ∧ 𝑠 = (1st𝑔)) ∧ 𝑎X𝑧 ∈ (Base‘𝐴)((𝑟𝑧)(Hom ‘𝐶)(𝑠𝑧))) ∧ 𝑥 ∈ (Base‘𝐴)) → (∀𝑦 ∈ (Base‘𝐴)∀ ∈ (𝑥(Hom ‘𝐴)𝑦)((𝑎𝑦)(⟨(𝑟𝑥), (𝑟𝑦)⟩(comp‘𝐶)(𝑠𝑦))((𝑥(2nd𝑓)𝑦)‘)) = (((𝑥(2nd𝑔)𝑦)‘)(⟨(𝑟𝑥), (𝑠𝑥)⟩(comp‘𝐶)(𝑠𝑦))(𝑎𝑥)) ↔ ∀𝑦 ∈ (Base‘𝐵)∀ ∈ (𝑥(Hom ‘𝐵)𝑦)((𝑎𝑦)(⟨(𝑟𝑥), (𝑟𝑦)⟩(comp‘𝐷)(𝑠𝑦))((𝑥(2nd𝑓)𝑦)‘)) = (((𝑥(2nd𝑔)𝑦)‘)(⟨(𝑟𝑥), (𝑠𝑥)⟩(comp‘𝐷)(𝑠𝑦))(𝑎𝑥))))
9251, 91raleqbidva 3330 . . . . . . . . 9 (((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st𝑓)) ∧ 𝑠 = (1st𝑔)) ∧ 𝑎X𝑧 ∈ (Base‘𝐴)((𝑟𝑧)(Hom ‘𝐶)(𝑠𝑧))) → (∀𝑥 ∈ (Base‘𝐴)∀𝑦 ∈ (Base‘𝐴)∀ ∈ (𝑥(Hom ‘𝐴)𝑦)((𝑎𝑦)(⟨(𝑟𝑥), (𝑟𝑦)⟩(comp‘𝐶)(𝑠𝑦))((𝑥(2nd𝑓)𝑦)‘)) = (((𝑥(2nd𝑔)𝑦)‘)(⟨(𝑟𝑥), (𝑠𝑥)⟩(comp‘𝐶)(𝑠𝑦))(𝑎𝑥)) ↔ ∀𝑥 ∈ (Base‘𝐵)∀𝑦 ∈ (Base‘𝐵)∀ ∈ (𝑥(Hom ‘𝐵)𝑦)((𝑎𝑦)(⟨(𝑟𝑥), (𝑟𝑦)⟩(comp‘𝐷)(𝑠𝑦))((𝑥(2nd𝑓)𝑦)‘)) = (((𝑥(2nd𝑔)𝑦)‘)(⟨(𝑟𝑥), (𝑠𝑥)⟩(comp‘𝐷)(𝑠𝑦))(𝑎𝑥))))
9350, 92sylan2b 594 . . . . . . . 8 (((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st𝑓)) ∧ 𝑠 = (1st𝑔)) ∧ 𝑎X𝑥 ∈ (Base‘𝐴)((𝑟𝑥)(Hom ‘𝐶)(𝑠𝑥))) → (∀𝑥 ∈ (Base‘𝐴)∀𝑦 ∈ (Base‘𝐴)∀ ∈ (𝑥(Hom ‘𝐴)𝑦)((𝑎𝑦)(⟨(𝑟𝑥), (𝑟𝑦)⟩(comp‘𝐶)(𝑠𝑦))((𝑥(2nd𝑓)𝑦)‘)) = (((𝑥(2nd𝑔)𝑦)‘)(⟨(𝑟𝑥), (𝑠𝑥)⟩(comp‘𝐶)(𝑠𝑦))(𝑎𝑥)) ↔ ∀𝑥 ∈ (Base‘𝐵)∀𝑦 ∈ (Base‘𝐵)∀ ∈ (𝑥(Hom ‘𝐵)𝑦)((𝑎𝑦)(⟨(𝑟𝑥), (𝑟𝑦)⟩(comp‘𝐷)(𝑠𝑦))((𝑥(2nd𝑓)𝑦)‘)) = (((𝑥(2nd𝑔)𝑦)‘)(⟨(𝑟𝑥), (𝑠𝑥)⟩(comp‘𝐷)(𝑠𝑦))(𝑎𝑥))))
9445, 93rabeqbidva 3450 . . . . . . 7 ((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st𝑓)) ∧ 𝑠 = (1st𝑔)) → {𝑎X𝑥 ∈ (Base‘𝐴)((𝑟𝑥)(Hom ‘𝐶)(𝑠𝑥)) ∣ ∀𝑥 ∈ (Base‘𝐴)∀𝑦 ∈ (Base‘𝐴)∀ ∈ (𝑥(Hom ‘𝐴)𝑦)((𝑎𝑦)(⟨(𝑟𝑥), (𝑟𝑦)⟩(comp‘𝐶)(𝑠𝑦))((𝑥(2nd𝑓)𝑦)‘)) = (((𝑥(2nd𝑔)𝑦)‘)(⟨(𝑟𝑥), (𝑠𝑥)⟩(comp‘𝐶)(𝑠𝑦))(𝑎𝑥))} = {𝑎X𝑥 ∈ (Base‘𝐵)((𝑟𝑥)(Hom ‘𝐷)(𝑠𝑥)) ∣ ∀𝑥 ∈ (Base‘𝐵)∀𝑦 ∈ (Base‘𝐵)∀ ∈ (𝑥(Hom ‘𝐵)𝑦)((𝑎𝑦)(⟨(𝑟𝑥), (𝑟𝑦)⟩(comp‘𝐷)(𝑠𝑦))((𝑥(2nd𝑓)𝑦)‘)) = (((𝑥(2nd𝑔)𝑦)‘)(⟨(𝑟𝑥), (𝑠𝑥)⟩(comp‘𝐷)(𝑠𝑦))(𝑎𝑥))})
95 csbeq1a 3922 . . . . . . . 8 (𝑠 = (1st𝑔) → {𝑎X𝑥 ∈ (Base‘𝐵)((𝑟𝑥)(Hom ‘𝐷)(𝑠𝑥)) ∣ ∀𝑥 ∈ (Base‘𝐵)∀𝑦 ∈ (Base‘𝐵)∀ ∈ (𝑥(Hom ‘𝐵)𝑦)((𝑎𝑦)(⟨(𝑟𝑥), (𝑟𝑦)⟩(comp‘𝐷)(𝑠𝑦))((𝑥(2nd𝑓)𝑦)‘)) = (((𝑥(2nd𝑔)𝑦)‘)(⟨(𝑟𝑥), (𝑠𝑥)⟩(comp‘𝐷)(𝑠𝑦))(𝑎𝑥))} = (1st𝑔) / 𝑠{𝑎X𝑥 ∈ (Base‘𝐵)((𝑟𝑥)(Hom ‘𝐷)(𝑠𝑥)) ∣ ∀𝑥 ∈ (Base‘𝐵)∀𝑦 ∈ (Base‘𝐵)∀ ∈ (𝑥(Hom ‘𝐵)𝑦)((𝑎𝑦)(⟨(𝑟𝑥), (𝑟𝑦)⟩(comp‘𝐷)(𝑠𝑦))((𝑥(2nd𝑓)𝑦)‘)) = (((𝑥(2nd𝑔)𝑦)‘)(⟨(𝑟𝑥), (𝑠𝑥)⟩(comp‘𝐷)(𝑠𝑦))(𝑎𝑥))})
9695adantl 481 . . . . . . 7 ((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st𝑓)) ∧ 𝑠 = (1st𝑔)) → {𝑎X𝑥 ∈ (Base‘𝐵)((𝑟𝑥)(Hom ‘𝐷)(𝑠𝑥)) ∣ ∀𝑥 ∈ (Base‘𝐵)∀𝑦 ∈ (Base‘𝐵)∀ ∈ (𝑥(Hom ‘𝐵)𝑦)((𝑎𝑦)(⟨(𝑟𝑥), (𝑟𝑦)⟩(comp‘𝐷)(𝑠𝑦))((𝑥(2nd𝑓)𝑦)‘)) = (((𝑥(2nd𝑔)𝑦)‘)(⟨(𝑟𝑥), (𝑠𝑥)⟩(comp‘𝐷)(𝑠𝑦))(𝑎𝑥))} = (1st𝑔) / 𝑠{𝑎X𝑥 ∈ (Base‘𝐵)((𝑟𝑥)(Hom ‘𝐷)(𝑠𝑥)) ∣ ∀𝑥 ∈ (Base‘𝐵)∀𝑦 ∈ (Base‘𝐵)∀ ∈ (𝑥(Hom ‘𝐵)𝑦)((𝑎𝑦)(⟨(𝑟𝑥), (𝑟𝑦)⟩(comp‘𝐷)(𝑠𝑦))((𝑥(2nd𝑓)𝑦)‘)) = (((𝑥(2nd𝑔)𝑦)‘)(⟨(𝑟𝑥), (𝑠𝑥)⟩(comp‘𝐷)(𝑠𝑦))(𝑎𝑥))})
9794, 96eqtrd 2775 . . . . . 6 ((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st𝑓)) ∧ 𝑠 = (1st𝑔)) → {𝑎X𝑥 ∈ (Base‘𝐴)((𝑟𝑥)(Hom ‘𝐶)(𝑠𝑥)) ∣ ∀𝑥 ∈ (Base‘𝐴)∀𝑦 ∈ (Base‘𝐴)∀ ∈ (𝑥(Hom ‘𝐴)𝑦)((𝑎𝑦)(⟨(𝑟𝑥), (𝑟𝑦)⟩(comp‘𝐶)(𝑠𝑦))((𝑥(2nd𝑓)𝑦)‘)) = (((𝑥(2nd𝑔)𝑦)‘)(⟨(𝑟𝑥), (𝑠𝑥)⟩(comp‘𝐶)(𝑠𝑦))(𝑎𝑥))} = (1st𝑔) / 𝑠{𝑎X𝑥 ∈ (Base‘𝐵)((𝑟𝑥)(Hom ‘𝐷)(𝑠𝑥)) ∣ ∀𝑥 ∈ (Base‘𝐵)∀𝑦 ∈ (Base‘𝐵)∀ ∈ (𝑥(Hom ‘𝐵)𝑦)((𝑎𝑦)(⟨(𝑟𝑥), (𝑟𝑦)⟩(comp‘𝐷)(𝑠𝑦))((𝑥(2nd𝑓)𝑦)‘)) = (((𝑥(2nd𝑔)𝑦)‘)(⟨(𝑟𝑥), (𝑠𝑥)⟩(comp‘𝐷)(𝑠𝑦))(𝑎𝑥))})
9815, 17, 18, 97csbiedf 3939 . . . . 5 (((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st𝑓)) → (1st𝑔) / 𝑠{𝑎X𝑥 ∈ (Base‘𝐴)((𝑟𝑥)(Hom ‘𝐶)(𝑠𝑥)) ∣ ∀𝑥 ∈ (Base‘𝐴)∀𝑦 ∈ (Base‘𝐴)∀ ∈ (𝑥(Hom ‘𝐴)𝑦)((𝑎𝑦)(⟨(𝑟𝑥), (𝑟𝑦)⟩(comp‘𝐶)(𝑠𝑦))((𝑥(2nd𝑓)𝑦)‘)) = (((𝑥(2nd𝑔)𝑦)‘)(⟨(𝑟𝑥), (𝑠𝑥)⟩(comp‘𝐶)(𝑠𝑦))(𝑎𝑥))} = (1st𝑔) / 𝑠{𝑎X𝑥 ∈ (Base‘𝐵)((𝑟𝑥)(Hom ‘𝐷)(𝑠𝑥)) ∣ ∀𝑥 ∈ (Base‘𝐵)∀𝑦 ∈ (Base‘𝐵)∀ ∈ (𝑥(Hom ‘𝐵)𝑦)((𝑎𝑦)(⟨(𝑟𝑥), (𝑟𝑦)⟩(comp‘𝐷)(𝑠𝑦))((𝑥(2nd𝑓)𝑦)‘)) = (((𝑥(2nd𝑔)𝑦)‘)(⟨(𝑟𝑥), (𝑠𝑥)⟩(comp‘𝐷)(𝑠𝑦))(𝑎𝑥))})
99 csbeq1a 3922 . . . . . 6 (𝑟 = (1st𝑓) → (1st𝑔) / 𝑠{𝑎X𝑥 ∈ (Base‘𝐵)((𝑟𝑥)(Hom ‘𝐷)(𝑠𝑥)) ∣ ∀𝑥 ∈ (Base‘𝐵)∀𝑦 ∈ (Base‘𝐵)∀ ∈ (𝑥(Hom ‘𝐵)𝑦)((𝑎𝑦)(⟨(𝑟𝑥), (𝑟𝑦)⟩(comp‘𝐷)(𝑠𝑦))((𝑥(2nd𝑓)𝑦)‘)) = (((𝑥(2nd𝑔)𝑦)‘)(⟨(𝑟𝑥), (𝑠𝑥)⟩(comp‘𝐷)(𝑠𝑦))(𝑎𝑥))} = (1st𝑓) / 𝑟(1st𝑔) / 𝑠{𝑎X𝑥 ∈ (Base‘𝐵)((𝑟𝑥)(Hom ‘𝐷)(𝑠𝑥)) ∣ ∀𝑥 ∈ (Base‘𝐵)∀𝑦 ∈ (Base‘𝐵)∀ ∈ (𝑥(Hom ‘𝐵)𝑦)((𝑎𝑦)(⟨(𝑟𝑥), (𝑟𝑦)⟩(comp‘𝐷)(𝑠𝑦))((𝑥(2nd𝑓)𝑦)‘)) = (((𝑥(2nd𝑔)𝑦)‘)(⟨(𝑟𝑥), (𝑠𝑥)⟩(comp‘𝐷)(𝑠𝑦))(𝑎𝑥))})
10099adantl 481 . . . . 5 (((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st𝑓)) → (1st𝑔) / 𝑠{𝑎X𝑥 ∈ (Base‘𝐵)((𝑟𝑥)(Hom ‘𝐷)(𝑠𝑥)) ∣ ∀𝑥 ∈ (Base‘𝐵)∀𝑦 ∈ (Base‘𝐵)∀ ∈ (𝑥(Hom ‘𝐵)𝑦)((𝑎𝑦)(⟨(𝑟𝑥), (𝑟𝑦)⟩(comp‘𝐷)(𝑠𝑦))((𝑥(2nd𝑓)𝑦)‘)) = (((𝑥(2nd𝑔)𝑦)‘)(⟨(𝑟𝑥), (𝑠𝑥)⟩(comp‘𝐷)(𝑠𝑦))(𝑎𝑥))} = (1st𝑓) / 𝑟(1st𝑔) / 𝑠{𝑎X𝑥 ∈ (Base‘𝐵)((𝑟𝑥)(Hom ‘𝐷)(𝑠𝑥)) ∣ ∀𝑥 ∈ (Base‘𝐵)∀𝑦 ∈ (Base‘𝐵)∀ ∈ (𝑥(Hom ‘𝐵)𝑦)((𝑎𝑦)(⟨(𝑟𝑥), (𝑟𝑦)⟩(comp‘𝐷)(𝑠𝑦))((𝑥(2nd𝑓)𝑦)‘)) = (((𝑥(2nd𝑔)𝑦)‘)(⟨(𝑟𝑥), (𝑠𝑥)⟩(comp‘𝐷)(𝑠𝑦))(𝑎𝑥))})
10198, 100eqtrd 2775 . . . 4 (((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st𝑓)) → (1st𝑔) / 𝑠{𝑎X𝑥 ∈ (Base‘𝐴)((𝑟𝑥)(Hom ‘𝐶)(𝑠𝑥)) ∣ ∀𝑥 ∈ (Base‘𝐴)∀𝑦 ∈ (Base‘𝐴)∀ ∈ (𝑥(Hom ‘𝐴)𝑦)((𝑎𝑦)(⟨(𝑟𝑥), (𝑟𝑦)⟩(comp‘𝐶)(𝑠𝑦))((𝑥(2nd𝑓)𝑦)‘)) = (((𝑥(2nd𝑔)𝑦)‘)(⟨(𝑟𝑥), (𝑠𝑥)⟩(comp‘𝐶)(𝑠𝑦))(𝑎𝑥))} = (1st𝑓) / 𝑟(1st𝑔) / 𝑠{𝑎X𝑥 ∈ (Base‘𝐵)((𝑟𝑥)(Hom ‘𝐷)(𝑠𝑥)) ∣ ∀𝑥 ∈ (Base‘𝐵)∀𝑦 ∈ (Base‘𝐵)∀ ∈ (𝑥(Hom ‘𝐵)𝑦)((𝑎𝑦)(⟨(𝑟𝑥), (𝑟𝑦)⟩(comp‘𝐷)(𝑠𝑦))((𝑥(2nd𝑓)𝑦)‘)) = (((𝑥(2nd𝑔)𝑦)‘)(⟨(𝑟𝑥), (𝑠𝑥)⟩(comp‘𝐷)(𝑠𝑦))(𝑎𝑥))})
10211, 13, 14, 101csbiedf 3939 . . 3 ((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) → (1st𝑓) / 𝑟(1st𝑔) / 𝑠{𝑎X𝑥 ∈ (Base‘𝐴)((𝑟𝑥)(Hom ‘𝐶)(𝑠𝑥)) ∣ ∀𝑥 ∈ (Base‘𝐴)∀𝑦 ∈ (Base‘𝐴)∀ ∈ (𝑥(Hom ‘𝐴)𝑦)((𝑎𝑦)(⟨(𝑟𝑥), (𝑟𝑦)⟩(comp‘𝐶)(𝑠𝑦))((𝑥(2nd𝑓)𝑦)‘)) = (((𝑥(2nd𝑔)𝑦)‘)(⟨(𝑟𝑥), (𝑠𝑥)⟩(comp‘𝐶)(𝑠𝑦))(𝑎𝑥))} = (1st𝑓) / 𝑟(1st𝑔) / 𝑠{𝑎X𝑥 ∈ (Base‘𝐵)((𝑟𝑥)(Hom ‘𝐷)(𝑠𝑥)) ∣ ∀𝑥 ∈ (Base‘𝐵)∀𝑦 ∈ (Base‘𝐵)∀ ∈ (𝑥(Hom ‘𝐵)𝑦)((𝑎𝑦)(⟨(𝑟𝑥), (𝑟𝑦)⟩(comp‘𝐷)(𝑠𝑦))((𝑥(2nd𝑓)𝑦)‘)) = (((𝑥(2nd𝑔)𝑦)‘)(⟨(𝑟𝑥), (𝑠𝑥)⟩(comp‘𝐷)(𝑠𝑦))(𝑎𝑥))})
1039, 10, 102mpoeq123dva 7507 . 2 (𝜑 → (𝑓 ∈ (𝐴 Func 𝐶), 𝑔 ∈ (𝐴 Func 𝐶) ↦ (1st𝑓) / 𝑟(1st𝑔) / 𝑠{𝑎X𝑥 ∈ (Base‘𝐴)((𝑟𝑥)(Hom ‘𝐶)(𝑠𝑥)) ∣ ∀𝑥 ∈ (Base‘𝐴)∀𝑦 ∈ (Base‘𝐴)∀ ∈ (𝑥(Hom ‘𝐴)𝑦)((𝑎𝑦)(⟨(𝑟𝑥), (𝑟𝑦)⟩(comp‘𝐶)(𝑠𝑦))((𝑥(2nd𝑓)𝑦)‘)) = (((𝑥(2nd𝑔)𝑦)‘)(⟨(𝑟𝑥), (𝑠𝑥)⟩(comp‘𝐶)(𝑠𝑦))(𝑎𝑥))}) = (𝑓 ∈ (𝐵 Func 𝐷), 𝑔 ∈ (𝐵 Func 𝐷) ↦ (1st𝑓) / 𝑟(1st𝑔) / 𝑠{𝑎X𝑥 ∈ (Base‘𝐵)((𝑟𝑥)(Hom ‘𝐷)(𝑠𝑥)) ∣ ∀𝑥 ∈ (Base‘𝐵)∀𝑦 ∈ (Base‘𝐵)∀ ∈ (𝑥(Hom ‘𝐵)𝑦)((𝑎𝑦)(⟨(𝑟𝑥), (𝑟𝑦)⟩(comp‘𝐷)(𝑠𝑦))((𝑥(2nd𝑓)𝑦)‘)) = (((𝑥(2nd𝑔)𝑦)‘)(⟨(𝑟𝑥), (𝑠𝑥)⟩(comp‘𝐷)(𝑠𝑦))(𝑎𝑥))}))
104 eqid 2735 . . 3 (𝐴 Nat 𝐶) = (𝐴 Nat 𝐶)
105104, 23, 53, 20, 59natfval 18001 . 2 (𝐴 Nat 𝐶) = (𝑓 ∈ (𝐴 Func 𝐶), 𝑔 ∈ (𝐴 Func 𝐶) ↦ (1st𝑓) / 𝑟(1st𝑔) / 𝑠{𝑎X𝑥 ∈ (Base‘𝐴)((𝑟𝑥)(Hom ‘𝐶)(𝑠𝑥)) ∣ ∀𝑥 ∈ (Base‘𝐴)∀𝑦 ∈ (Base‘𝐴)∀ ∈ (𝑥(Hom ‘𝐴)𝑦)((𝑎𝑦)(⟨(𝑟𝑥), (𝑟𝑦)⟩(comp‘𝐶)(𝑠𝑦))((𝑥(2nd𝑓)𝑦)‘)) = (((𝑥(2nd𝑔)𝑦)‘)(⟨(𝑟𝑥), (𝑠𝑥)⟩(comp‘𝐶)(𝑠𝑦))(𝑎𝑥))})
106 eqid 2735 . . 3 (𝐵 Nat 𝐷) = (𝐵 Nat 𝐷)
107 eqid 2735 . . 3 (Base‘𝐵) = (Base‘𝐵)
108106, 107, 54, 21, 60natfval 18001 . 2 (𝐵 Nat 𝐷) = (𝑓 ∈ (𝐵 Func 𝐷), 𝑔 ∈ (𝐵 Func 𝐷) ↦ (1st𝑓) / 𝑟(1st𝑔) / 𝑠{𝑎X𝑥 ∈ (Base‘𝐵)((𝑟𝑥)(Hom ‘𝐷)(𝑠𝑥)) ∣ ∀𝑥 ∈ (Base‘𝐵)∀𝑦 ∈ (Base‘𝐵)∀ ∈ (𝑥(Hom ‘𝐵)𝑦)((𝑎𝑦)(⟨(𝑟𝑥), (𝑟𝑦)⟩(comp‘𝐷)(𝑠𝑦))((𝑥(2nd𝑓)𝑦)‘)) = (((𝑥(2nd𝑔)𝑦)‘)(⟨(𝑟𝑥), (𝑠𝑥)⟩(comp‘𝐷)(𝑠𝑦))(𝑎𝑥))})
109103, 105, 1083eqtr4g 2800 1 (𝜑 → (𝐴 Nat 𝐶) = (𝐵 Nat 𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2106  wnfc 2888  wral 3059  {crab 3433  Vcvv 3478  csb 3908  cop 4637   class class class wbr 5148  Rel wrel 5694  wf 6559  cfv 6563  (class class class)co 7431  cmpo 7433  1st c1st 8011  2nd c2nd 8012  Xcixp 8936  Basecbs 17245  Hom chom 17309  compcco 17310  Catccat 17709  Homf chomf 17711  compfccomf 17712   Func cfunc 17905   Nat cnat 17996
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-1st 8013  df-2nd 8014  df-map 8867  df-ixp 8937  df-cat 17713  df-cid 17714  df-homf 17715  df-comf 17716  df-func 17909  df-nat 17998
This theorem is referenced by:  fucpropd  18034
  Copyright terms: Public domain W3C validator