MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  natpropd Structured version   Visualization version   GIF version

Theorem natpropd 17703
Description: If two categories have the same set of objects, morphisms, and compositions, then they have the same natural transformations. (Contributed by Mario Carneiro, 26-Jan-2017.)
Hypotheses
Ref Expression
fucpropd.1 (𝜑 → (Homf𝐴) = (Homf𝐵))
fucpropd.2 (𝜑 → (compf𝐴) = (compf𝐵))
fucpropd.3 (𝜑 → (Homf𝐶) = (Homf𝐷))
fucpropd.4 (𝜑 → (compf𝐶) = (compf𝐷))
fucpropd.a (𝜑𝐴 ∈ Cat)
fucpropd.b (𝜑𝐵 ∈ Cat)
fucpropd.c (𝜑𝐶 ∈ Cat)
fucpropd.d (𝜑𝐷 ∈ Cat)
Assertion
Ref Expression
natpropd (𝜑 → (𝐴 Nat 𝐶) = (𝐵 Nat 𝐷))

Proof of Theorem natpropd
Dummy variables 𝑎 𝑓 𝑔 𝑟 𝑠 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fucpropd.1 . . . 4 (𝜑 → (Homf𝐴) = (Homf𝐵))
2 fucpropd.2 . . . 4 (𝜑 → (compf𝐴) = (compf𝐵))
3 fucpropd.3 . . . 4 (𝜑 → (Homf𝐶) = (Homf𝐷))
4 fucpropd.4 . . . 4 (𝜑 → (compf𝐶) = (compf𝐷))
5 fucpropd.a . . . 4 (𝜑𝐴 ∈ Cat)
6 fucpropd.b . . . 4 (𝜑𝐵 ∈ Cat)
7 fucpropd.c . . . 4 (𝜑𝐶 ∈ Cat)
8 fucpropd.d . . . 4 (𝜑𝐷 ∈ Cat)
91, 2, 3, 4, 5, 6, 7, 8funcpropd 17625 . . 3 (𝜑 → (𝐴 Func 𝐶) = (𝐵 Func 𝐷))
109adantr 481 . . 3 ((𝜑𝑓 ∈ (𝐴 Func 𝐶)) → (𝐴 Func 𝐶) = (𝐵 Func 𝐷))
11 nfv 1918 . . . 4 𝑟(𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶)))
12 nfcsb1v 3858 . . . . 5 𝑟(1st𝑓) / 𝑟(1st𝑔) / 𝑠{𝑎X𝑥 ∈ (Base‘𝐵)((𝑟𝑥)(Hom ‘𝐷)(𝑠𝑥)) ∣ ∀𝑥 ∈ (Base‘𝐵)∀𝑦 ∈ (Base‘𝐵)∀ ∈ (𝑥(Hom ‘𝐵)𝑦)((𝑎𝑦)(⟨(𝑟𝑥), (𝑟𝑦)⟩(comp‘𝐷)(𝑠𝑦))((𝑥(2nd𝑓)𝑦)‘)) = (((𝑥(2nd𝑔)𝑦)‘)(⟨(𝑟𝑥), (𝑠𝑥)⟩(comp‘𝐷)(𝑠𝑦))(𝑎𝑥))}
1312a1i 11 . . . 4 ((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) → 𝑟(1st𝑓) / 𝑟(1st𝑔) / 𝑠{𝑎X𝑥 ∈ (Base‘𝐵)((𝑟𝑥)(Hom ‘𝐷)(𝑠𝑥)) ∣ ∀𝑥 ∈ (Base‘𝐵)∀𝑦 ∈ (Base‘𝐵)∀ ∈ (𝑥(Hom ‘𝐵)𝑦)((𝑎𝑦)(⟨(𝑟𝑥), (𝑟𝑦)⟩(comp‘𝐷)(𝑠𝑦))((𝑥(2nd𝑓)𝑦)‘)) = (((𝑥(2nd𝑔)𝑦)‘)(⟨(𝑟𝑥), (𝑠𝑥)⟩(comp‘𝐷)(𝑠𝑦))(𝑎𝑥))})
14 fvexd 6798 . . . 4 ((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) → (1st𝑓) ∈ V)
15 nfv 1918 . . . . . 6 𝑠((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st𝑓))
16 nfcsb1v 3858 . . . . . . 7 𝑠(1st𝑔) / 𝑠{𝑎X𝑥 ∈ (Base‘𝐵)((𝑟𝑥)(Hom ‘𝐷)(𝑠𝑥)) ∣ ∀𝑥 ∈ (Base‘𝐵)∀𝑦 ∈ (Base‘𝐵)∀ ∈ (𝑥(Hom ‘𝐵)𝑦)((𝑎𝑦)(⟨(𝑟𝑥), (𝑟𝑦)⟩(comp‘𝐷)(𝑠𝑦))((𝑥(2nd𝑓)𝑦)‘)) = (((𝑥(2nd𝑔)𝑦)‘)(⟨(𝑟𝑥), (𝑠𝑥)⟩(comp‘𝐷)(𝑠𝑦))(𝑎𝑥))}
1716a1i 11 . . . . . 6 (((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st𝑓)) → 𝑠(1st𝑔) / 𝑠{𝑎X𝑥 ∈ (Base‘𝐵)((𝑟𝑥)(Hom ‘𝐷)(𝑠𝑥)) ∣ ∀𝑥 ∈ (Base‘𝐵)∀𝑦 ∈ (Base‘𝐵)∀ ∈ (𝑥(Hom ‘𝐵)𝑦)((𝑎𝑦)(⟨(𝑟𝑥), (𝑟𝑦)⟩(comp‘𝐷)(𝑠𝑦))((𝑥(2nd𝑓)𝑦)‘)) = (((𝑥(2nd𝑔)𝑦)‘)(⟨(𝑟𝑥), (𝑠𝑥)⟩(comp‘𝐷)(𝑠𝑦))(𝑎𝑥))})
18 fvexd 6798 . . . . . 6 (((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st𝑓)) → (1st𝑔) ∈ V)
19 eqid 2739 . . . . . . . . . . 11 (Base‘𝐶) = (Base‘𝐶)
20 eqid 2739 . . . . . . . . . . 11 (Hom ‘𝐶) = (Hom ‘𝐶)
21 eqid 2739 . . . . . . . . . . 11 (Hom ‘𝐷) = (Hom ‘𝐷)
223ad4antr 729 . . . . . . . . . . 11 (((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st𝑓)) ∧ 𝑠 = (1st𝑔)) ∧ 𝑥 ∈ (Base‘𝐴)) → (Homf𝐶) = (Homf𝐷))
23 eqid 2739 . . . . . . . . . . . . 13 (Base‘𝐴) = (Base‘𝐴)
24 simplr 766 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st𝑓)) ∧ 𝑠 = (1st𝑔)) → 𝑟 = (1st𝑓))
25 relfunc 17586 . . . . . . . . . . . . . . 15 Rel (𝐴 Func 𝐶)
26 simpllr 773 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st𝑓)) ∧ 𝑠 = (1st𝑔)) → (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶)))
2726simpld 495 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st𝑓)) ∧ 𝑠 = (1st𝑔)) → 𝑓 ∈ (𝐴 Func 𝐶))
28 1st2ndbr 7892 . . . . . . . . . . . . . . 15 ((Rel (𝐴 Func 𝐶) ∧ 𝑓 ∈ (𝐴 Func 𝐶)) → (1st𝑓)(𝐴 Func 𝐶)(2nd𝑓))
2925, 27, 28sylancr 587 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st𝑓)) ∧ 𝑠 = (1st𝑔)) → (1st𝑓)(𝐴 Func 𝐶)(2nd𝑓))
3024, 29eqbrtrd 5097 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st𝑓)) ∧ 𝑠 = (1st𝑔)) → 𝑟(𝐴 Func 𝐶)(2nd𝑓))
3123, 19, 30funcf1 17590 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st𝑓)) ∧ 𝑠 = (1st𝑔)) → 𝑟:(Base‘𝐴)⟶(Base‘𝐶))
3231ffvelrnda 6970 . . . . . . . . . . 11 (((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st𝑓)) ∧ 𝑠 = (1st𝑔)) ∧ 𝑥 ∈ (Base‘𝐴)) → (𝑟𝑥) ∈ (Base‘𝐶))
33 simpr 485 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st𝑓)) ∧ 𝑠 = (1st𝑔)) → 𝑠 = (1st𝑔))
3426simprd 496 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st𝑓)) ∧ 𝑠 = (1st𝑔)) → 𝑔 ∈ (𝐴 Func 𝐶))
35 1st2ndbr 7892 . . . . . . . . . . . . . . 15 ((Rel (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶)) → (1st𝑔)(𝐴 Func 𝐶)(2nd𝑔))
3625, 34, 35sylancr 587 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st𝑓)) ∧ 𝑠 = (1st𝑔)) → (1st𝑔)(𝐴 Func 𝐶)(2nd𝑔))
3733, 36eqbrtrd 5097 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st𝑓)) ∧ 𝑠 = (1st𝑔)) → 𝑠(𝐴 Func 𝐶)(2nd𝑔))
3823, 19, 37funcf1 17590 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st𝑓)) ∧ 𝑠 = (1st𝑔)) → 𝑠:(Base‘𝐴)⟶(Base‘𝐶))
3938ffvelrnda 6970 . . . . . . . . . . 11 (((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st𝑓)) ∧ 𝑠 = (1st𝑔)) ∧ 𝑥 ∈ (Base‘𝐴)) → (𝑠𝑥) ∈ (Base‘𝐶))
4019, 20, 21, 22, 32, 39homfeqval 17415 . . . . . . . . . 10 (((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st𝑓)) ∧ 𝑠 = (1st𝑔)) ∧ 𝑥 ∈ (Base‘𝐴)) → ((𝑟𝑥)(Hom ‘𝐶)(𝑠𝑥)) = ((𝑟𝑥)(Hom ‘𝐷)(𝑠𝑥)))
4140ixpeq2dva 8709 . . . . . . . . 9 ((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st𝑓)) ∧ 𝑠 = (1st𝑔)) → X𝑥 ∈ (Base‘𝐴)((𝑟𝑥)(Hom ‘𝐶)(𝑠𝑥)) = X𝑥 ∈ (Base‘𝐴)((𝑟𝑥)(Hom ‘𝐷)(𝑠𝑥)))
421homfeqbas 17414 . . . . . . . . . . 11 (𝜑 → (Base‘𝐴) = (Base‘𝐵))
4342ad3antrrr 727 . . . . . . . . . 10 ((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st𝑓)) ∧ 𝑠 = (1st𝑔)) → (Base‘𝐴) = (Base‘𝐵))
4443ixpeq1d 8706 . . . . . . . . 9 ((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st𝑓)) ∧ 𝑠 = (1st𝑔)) → X𝑥 ∈ (Base‘𝐴)((𝑟𝑥)(Hom ‘𝐷)(𝑠𝑥)) = X𝑥 ∈ (Base‘𝐵)((𝑟𝑥)(Hom ‘𝐷)(𝑠𝑥)))
4541, 44eqtrd 2779 . . . . . . . 8 ((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st𝑓)) ∧ 𝑠 = (1st𝑔)) → X𝑥 ∈ (Base‘𝐴)((𝑟𝑥)(Hom ‘𝐶)(𝑠𝑥)) = X𝑥 ∈ (Base‘𝐵)((𝑟𝑥)(Hom ‘𝐷)(𝑠𝑥)))
46 fveq2 6783 . . . . . . . . . . . 12 (𝑥 = 𝑧 → (𝑟𝑥) = (𝑟𝑧))
47 fveq2 6783 . . . . . . . . . . . 12 (𝑥 = 𝑧 → (𝑠𝑥) = (𝑠𝑧))
4846, 47oveq12d 7302 . . . . . . . . . . 11 (𝑥 = 𝑧 → ((𝑟𝑥)(Hom ‘𝐶)(𝑠𝑥)) = ((𝑟𝑧)(Hom ‘𝐶)(𝑠𝑧)))
4948cbvixpv 8712 . . . . . . . . . 10 X𝑥 ∈ (Base‘𝐴)((𝑟𝑥)(Hom ‘𝐶)(𝑠𝑥)) = X𝑧 ∈ (Base‘𝐴)((𝑟𝑧)(Hom ‘𝐶)(𝑠𝑧))
5049eleq2i 2831 . . . . . . . . 9 (𝑎X𝑥 ∈ (Base‘𝐴)((𝑟𝑥)(Hom ‘𝐶)(𝑠𝑥)) ↔ 𝑎X𝑧 ∈ (Base‘𝐴)((𝑟𝑧)(Hom ‘𝐶)(𝑠𝑧)))
5143adantr 481 . . . . . . . . . 10 (((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st𝑓)) ∧ 𝑠 = (1st𝑔)) ∧ 𝑎X𝑧 ∈ (Base‘𝐴)((𝑟𝑧)(Hom ‘𝐶)(𝑠𝑧))) → (Base‘𝐴) = (Base‘𝐵))
5251adantr 481 . . . . . . . . . . 11 ((((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st𝑓)) ∧ 𝑠 = (1st𝑔)) ∧ 𝑎X𝑧 ∈ (Base‘𝐴)((𝑟𝑧)(Hom ‘𝐶)(𝑠𝑧))) ∧ 𝑥 ∈ (Base‘𝐴)) → (Base‘𝐴) = (Base‘𝐵))
53 eqid 2739 . . . . . . . . . . . . 13 (Hom ‘𝐴) = (Hom ‘𝐴)
54 eqid 2739 . . . . . . . . . . . . 13 (Hom ‘𝐵) = (Hom ‘𝐵)
551ad6antr 733 . . . . . . . . . . . . 13 (((((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st𝑓)) ∧ 𝑠 = (1st𝑔)) ∧ 𝑎X𝑧 ∈ (Base‘𝐴)((𝑟𝑧)(Hom ‘𝐶)(𝑠𝑧))) ∧ 𝑥 ∈ (Base‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴)) → (Homf𝐴) = (Homf𝐵))
56 simplr 766 . . . . . . . . . . . . 13 (((((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st𝑓)) ∧ 𝑠 = (1st𝑔)) ∧ 𝑎X𝑧 ∈ (Base‘𝐴)((𝑟𝑧)(Hom ‘𝐶)(𝑠𝑧))) ∧ 𝑥 ∈ (Base‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴)) → 𝑥 ∈ (Base‘𝐴))
57 simpr 485 . . . . . . . . . . . . 13 (((((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st𝑓)) ∧ 𝑠 = (1st𝑔)) ∧ 𝑎X𝑧 ∈ (Base‘𝐴)((𝑟𝑧)(Hom ‘𝐶)(𝑠𝑧))) ∧ 𝑥 ∈ (Base‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴)) → 𝑦 ∈ (Base‘𝐴))
5823, 53, 54, 55, 56, 57homfeqval 17415 . . . . . . . . . . . 12 (((((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st𝑓)) ∧ 𝑠 = (1st𝑔)) ∧ 𝑎X𝑧 ∈ (Base‘𝐴)((𝑟𝑧)(Hom ‘𝐶)(𝑠𝑧))) ∧ 𝑥 ∈ (Base‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴)) → (𝑥(Hom ‘𝐴)𝑦) = (𝑥(Hom ‘𝐵)𝑦))
59 eqid 2739 . . . . . . . . . . . . . 14 (comp‘𝐶) = (comp‘𝐶)
60 eqid 2739 . . . . . . . . . . . . . 14 (comp‘𝐷) = (comp‘𝐷)
613ad7antr 735 . . . . . . . . . . . . . 14 ((((((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st𝑓)) ∧ 𝑠 = (1st𝑔)) ∧ 𝑎X𝑧 ∈ (Base‘𝐴)((𝑟𝑧)(Hom ‘𝐶)(𝑠𝑧))) ∧ 𝑥 ∈ (Base‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴)) ∧ ∈ (𝑥(Hom ‘𝐴)𝑦)) → (Homf𝐶) = (Homf𝐷))
624ad7antr 735 . . . . . . . . . . . . . 14 ((((((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st𝑓)) ∧ 𝑠 = (1st𝑔)) ∧ 𝑎X𝑧 ∈ (Base‘𝐴)((𝑟𝑧)(Hom ‘𝐶)(𝑠𝑧))) ∧ 𝑥 ∈ (Base‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴)) ∧ ∈ (𝑥(Hom ‘𝐴)𝑦)) → (compf𝐶) = (compf𝐷))
6332ad5ant13 754 . . . . . . . . . . . . . 14 ((((((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st𝑓)) ∧ 𝑠 = (1st𝑔)) ∧ 𝑎X𝑧 ∈ (Base‘𝐴)((𝑟𝑧)(Hom ‘𝐶)(𝑠𝑧))) ∧ 𝑥 ∈ (Base‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴)) ∧ ∈ (𝑥(Hom ‘𝐴)𝑦)) → (𝑟𝑥) ∈ (Base‘𝐶))
6431ad2antrr 723 . . . . . . . . . . . . . . . 16 ((((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st𝑓)) ∧ 𝑠 = (1st𝑔)) ∧ 𝑎X𝑧 ∈ (Base‘𝐴)((𝑟𝑧)(Hom ‘𝐶)(𝑠𝑧))) ∧ 𝑥 ∈ (Base‘𝐴)) → 𝑟:(Base‘𝐴)⟶(Base‘𝐶))
6564ffvelrnda 6970 . . . . . . . . . . . . . . 15 (((((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st𝑓)) ∧ 𝑠 = (1st𝑔)) ∧ 𝑎X𝑧 ∈ (Base‘𝐴)((𝑟𝑧)(Hom ‘𝐶)(𝑠𝑧))) ∧ 𝑥 ∈ (Base‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴)) → (𝑟𝑦) ∈ (Base‘𝐶))
6665adantr 481 . . . . . . . . . . . . . 14 ((((((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st𝑓)) ∧ 𝑠 = (1st𝑔)) ∧ 𝑎X𝑧 ∈ (Base‘𝐴)((𝑟𝑧)(Hom ‘𝐶)(𝑠𝑧))) ∧ 𝑥 ∈ (Base‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴)) ∧ ∈ (𝑥(Hom ‘𝐴)𝑦)) → (𝑟𝑦) ∈ (Base‘𝐶))
6738ad2antrr 723 . . . . . . . . . . . . . . . 16 ((((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st𝑓)) ∧ 𝑠 = (1st𝑔)) ∧ 𝑎X𝑧 ∈ (Base‘𝐴)((𝑟𝑧)(Hom ‘𝐶)(𝑠𝑧))) ∧ 𝑥 ∈ (Base‘𝐴)) → 𝑠:(Base‘𝐴)⟶(Base‘𝐶))
6867ffvelrnda 6970 . . . . . . . . . . . . . . 15 (((((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st𝑓)) ∧ 𝑠 = (1st𝑔)) ∧ 𝑎X𝑧 ∈ (Base‘𝐴)((𝑟𝑧)(Hom ‘𝐶)(𝑠𝑧))) ∧ 𝑥 ∈ (Base‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴)) → (𝑠𝑦) ∈ (Base‘𝐶))
6968adantr 481 . . . . . . . . . . . . . 14 ((((((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st𝑓)) ∧ 𝑠 = (1st𝑔)) ∧ 𝑎X𝑧 ∈ (Base‘𝐴)((𝑟𝑧)(Hom ‘𝐶)(𝑠𝑧))) ∧ 𝑥 ∈ (Base‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴)) ∧ ∈ (𝑥(Hom ‘𝐴)𝑦)) → (𝑠𝑦) ∈ (Base‘𝐶))
7030ad3antrrr 727 . . . . . . . . . . . . . . . 16 (((((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st𝑓)) ∧ 𝑠 = (1st𝑔)) ∧ 𝑎X𝑧 ∈ (Base‘𝐴)((𝑟𝑧)(Hom ‘𝐶)(𝑠𝑧))) ∧ 𝑥 ∈ (Base‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴)) → 𝑟(𝐴 Func 𝐶)(2nd𝑓))
7123, 53, 20, 70, 56, 57funcf2 17592 . . . . . . . . . . . . . . 15 (((((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st𝑓)) ∧ 𝑠 = (1st𝑔)) ∧ 𝑎X𝑧 ∈ (Base‘𝐴)((𝑟𝑧)(Hom ‘𝐶)(𝑠𝑧))) ∧ 𝑥 ∈ (Base‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴)) → (𝑥(2nd𝑓)𝑦):(𝑥(Hom ‘𝐴)𝑦)⟶((𝑟𝑥)(Hom ‘𝐶)(𝑟𝑦)))
7271ffvelrnda 6970 . . . . . . . . . . . . . 14 ((((((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st𝑓)) ∧ 𝑠 = (1st𝑔)) ∧ 𝑎X𝑧 ∈ (Base‘𝐴)((𝑟𝑧)(Hom ‘𝐶)(𝑠𝑧))) ∧ 𝑥 ∈ (Base‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴)) ∧ ∈ (𝑥(Hom ‘𝐴)𝑦)) → ((𝑥(2nd𝑓)𝑦)‘) ∈ ((𝑟𝑥)(Hom ‘𝐶)(𝑟𝑦)))
73 fveq2 6783 . . . . . . . . . . . . . . . . 17 (𝑧 = 𝑦 → (𝑟𝑧) = (𝑟𝑦))
74 fveq2 6783 . . . . . . . . . . . . . . . . 17 (𝑧 = 𝑦 → (𝑠𝑧) = (𝑠𝑦))
7573, 74oveq12d 7302 . . . . . . . . . . . . . . . 16 (𝑧 = 𝑦 → ((𝑟𝑧)(Hom ‘𝐶)(𝑠𝑧)) = ((𝑟𝑦)(Hom ‘𝐶)(𝑠𝑦)))
7675fvixp 8699 . . . . . . . . . . . . . . 15 ((𝑎X𝑧 ∈ (Base‘𝐴)((𝑟𝑧)(Hom ‘𝐶)(𝑠𝑧)) ∧ 𝑦 ∈ (Base‘𝐴)) → (𝑎𝑦) ∈ ((𝑟𝑦)(Hom ‘𝐶)(𝑠𝑦)))
7776ad5ant24 758 . . . . . . . . . . . . . 14 ((((((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st𝑓)) ∧ 𝑠 = (1st𝑔)) ∧ 𝑎X𝑧 ∈ (Base‘𝐴)((𝑟𝑧)(Hom ‘𝐶)(𝑠𝑧))) ∧ 𝑥 ∈ (Base‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴)) ∧ ∈ (𝑥(Hom ‘𝐴)𝑦)) → (𝑎𝑦) ∈ ((𝑟𝑦)(Hom ‘𝐶)(𝑠𝑦)))
7819, 20, 59, 60, 61, 62, 63, 66, 69, 72, 77comfeqval 17426 . . . . . . . . . . . . 13 ((((((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st𝑓)) ∧ 𝑠 = (1st𝑔)) ∧ 𝑎X𝑧 ∈ (Base‘𝐴)((𝑟𝑧)(Hom ‘𝐶)(𝑠𝑧))) ∧ 𝑥 ∈ (Base‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴)) ∧ ∈ (𝑥(Hom ‘𝐴)𝑦)) → ((𝑎𝑦)(⟨(𝑟𝑥), (𝑟𝑦)⟩(comp‘𝐶)(𝑠𝑦))((𝑥(2nd𝑓)𝑦)‘)) = ((𝑎𝑦)(⟨(𝑟𝑥), (𝑟𝑦)⟩(comp‘𝐷)(𝑠𝑦))((𝑥(2nd𝑓)𝑦)‘)))
7939ad5ant13 754 . . . . . . . . . . . . . 14 ((((((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st𝑓)) ∧ 𝑠 = (1st𝑔)) ∧ 𝑎X𝑧 ∈ (Base‘𝐴)((𝑟𝑧)(Hom ‘𝐶)(𝑠𝑧))) ∧ 𝑥 ∈ (Base‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴)) ∧ ∈ (𝑥(Hom ‘𝐴)𝑦)) → (𝑠𝑥) ∈ (Base‘𝐶))
80 fveq2 6783 . . . . . . . . . . . . . . . . 17 (𝑧 = 𝑥 → (𝑟𝑧) = (𝑟𝑥))
81 fveq2 6783 . . . . . . . . . . . . . . . . 17 (𝑧 = 𝑥 → (𝑠𝑧) = (𝑠𝑥))
8280, 81oveq12d 7302 . . . . . . . . . . . . . . . 16 (𝑧 = 𝑥 → ((𝑟𝑧)(Hom ‘𝐶)(𝑠𝑧)) = ((𝑟𝑥)(Hom ‘𝐶)(𝑠𝑥)))
8382fvixp 8699 . . . . . . . . . . . . . . 15 ((𝑎X𝑧 ∈ (Base‘𝐴)((𝑟𝑧)(Hom ‘𝐶)(𝑠𝑧)) ∧ 𝑥 ∈ (Base‘𝐴)) → (𝑎𝑥) ∈ ((𝑟𝑥)(Hom ‘𝐶)(𝑠𝑥)))
8483ad5ant23 757 . . . . . . . . . . . . . 14 ((((((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st𝑓)) ∧ 𝑠 = (1st𝑔)) ∧ 𝑎X𝑧 ∈ (Base‘𝐴)((𝑟𝑧)(Hom ‘𝐶)(𝑠𝑧))) ∧ 𝑥 ∈ (Base‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴)) ∧ ∈ (𝑥(Hom ‘𝐴)𝑦)) → (𝑎𝑥) ∈ ((𝑟𝑥)(Hom ‘𝐶)(𝑠𝑥)))
8537ad3antrrr 727 . . . . . . . . . . . . . . . 16 (((((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st𝑓)) ∧ 𝑠 = (1st𝑔)) ∧ 𝑎X𝑧 ∈ (Base‘𝐴)((𝑟𝑧)(Hom ‘𝐶)(𝑠𝑧))) ∧ 𝑥 ∈ (Base‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴)) → 𝑠(𝐴 Func 𝐶)(2nd𝑔))
8623, 53, 20, 85, 56, 57funcf2 17592 . . . . . . . . . . . . . . 15 (((((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st𝑓)) ∧ 𝑠 = (1st𝑔)) ∧ 𝑎X𝑧 ∈ (Base‘𝐴)((𝑟𝑧)(Hom ‘𝐶)(𝑠𝑧))) ∧ 𝑥 ∈ (Base‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴)) → (𝑥(2nd𝑔)𝑦):(𝑥(Hom ‘𝐴)𝑦)⟶((𝑠𝑥)(Hom ‘𝐶)(𝑠𝑦)))
8786ffvelrnda 6970 . . . . . . . . . . . . . 14 ((((((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st𝑓)) ∧ 𝑠 = (1st𝑔)) ∧ 𝑎X𝑧 ∈ (Base‘𝐴)((𝑟𝑧)(Hom ‘𝐶)(𝑠𝑧))) ∧ 𝑥 ∈ (Base‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴)) ∧ ∈ (𝑥(Hom ‘𝐴)𝑦)) → ((𝑥(2nd𝑔)𝑦)‘) ∈ ((𝑠𝑥)(Hom ‘𝐶)(𝑠𝑦)))
8819, 20, 59, 60, 61, 62, 63, 79, 69, 84, 87comfeqval 17426 . . . . . . . . . . . . 13 ((((((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st𝑓)) ∧ 𝑠 = (1st𝑔)) ∧ 𝑎X𝑧 ∈ (Base‘𝐴)((𝑟𝑧)(Hom ‘𝐶)(𝑠𝑧))) ∧ 𝑥 ∈ (Base‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴)) ∧ ∈ (𝑥(Hom ‘𝐴)𝑦)) → (((𝑥(2nd𝑔)𝑦)‘)(⟨(𝑟𝑥), (𝑠𝑥)⟩(comp‘𝐶)(𝑠𝑦))(𝑎𝑥)) = (((𝑥(2nd𝑔)𝑦)‘)(⟨(𝑟𝑥), (𝑠𝑥)⟩(comp‘𝐷)(𝑠𝑦))(𝑎𝑥)))
8978, 88eqeq12d 2755 . . . . . . . . . . . 12 ((((((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st𝑓)) ∧ 𝑠 = (1st𝑔)) ∧ 𝑎X𝑧 ∈ (Base‘𝐴)((𝑟𝑧)(Hom ‘𝐶)(𝑠𝑧))) ∧ 𝑥 ∈ (Base‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴)) ∧ ∈ (𝑥(Hom ‘𝐴)𝑦)) → (((𝑎𝑦)(⟨(𝑟𝑥), (𝑟𝑦)⟩(comp‘𝐶)(𝑠𝑦))((𝑥(2nd𝑓)𝑦)‘)) = (((𝑥(2nd𝑔)𝑦)‘)(⟨(𝑟𝑥), (𝑠𝑥)⟩(comp‘𝐶)(𝑠𝑦))(𝑎𝑥)) ↔ ((𝑎𝑦)(⟨(𝑟𝑥), (𝑟𝑦)⟩(comp‘𝐷)(𝑠𝑦))((𝑥(2nd𝑓)𝑦)‘)) = (((𝑥(2nd𝑔)𝑦)‘)(⟨(𝑟𝑥), (𝑠𝑥)⟩(comp‘𝐷)(𝑠𝑦))(𝑎𝑥))))
9058, 89raleqbidva 3355 . . . . . . . . . . 11 (((((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st𝑓)) ∧ 𝑠 = (1st𝑔)) ∧ 𝑎X𝑧 ∈ (Base‘𝐴)((𝑟𝑧)(Hom ‘𝐶)(𝑠𝑧))) ∧ 𝑥 ∈ (Base‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴)) → (∀ ∈ (𝑥(Hom ‘𝐴)𝑦)((𝑎𝑦)(⟨(𝑟𝑥), (𝑟𝑦)⟩(comp‘𝐶)(𝑠𝑦))((𝑥(2nd𝑓)𝑦)‘)) = (((𝑥(2nd𝑔)𝑦)‘)(⟨(𝑟𝑥), (𝑠𝑥)⟩(comp‘𝐶)(𝑠𝑦))(𝑎𝑥)) ↔ ∀ ∈ (𝑥(Hom ‘𝐵)𝑦)((𝑎𝑦)(⟨(𝑟𝑥), (𝑟𝑦)⟩(comp‘𝐷)(𝑠𝑦))((𝑥(2nd𝑓)𝑦)‘)) = (((𝑥(2nd𝑔)𝑦)‘)(⟨(𝑟𝑥), (𝑠𝑥)⟩(comp‘𝐷)(𝑠𝑦))(𝑎𝑥))))
9152, 90raleqbidva 3355 . . . . . . . . . 10 ((((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st𝑓)) ∧ 𝑠 = (1st𝑔)) ∧ 𝑎X𝑧 ∈ (Base‘𝐴)((𝑟𝑧)(Hom ‘𝐶)(𝑠𝑧))) ∧ 𝑥 ∈ (Base‘𝐴)) → (∀𝑦 ∈ (Base‘𝐴)∀ ∈ (𝑥(Hom ‘𝐴)𝑦)((𝑎𝑦)(⟨(𝑟𝑥), (𝑟𝑦)⟩(comp‘𝐶)(𝑠𝑦))((𝑥(2nd𝑓)𝑦)‘)) = (((𝑥(2nd𝑔)𝑦)‘)(⟨(𝑟𝑥), (𝑠𝑥)⟩(comp‘𝐶)(𝑠𝑦))(𝑎𝑥)) ↔ ∀𝑦 ∈ (Base‘𝐵)∀ ∈ (𝑥(Hom ‘𝐵)𝑦)((𝑎𝑦)(⟨(𝑟𝑥), (𝑟𝑦)⟩(comp‘𝐷)(𝑠𝑦))((𝑥(2nd𝑓)𝑦)‘)) = (((𝑥(2nd𝑔)𝑦)‘)(⟨(𝑟𝑥), (𝑠𝑥)⟩(comp‘𝐷)(𝑠𝑦))(𝑎𝑥))))
9251, 91raleqbidva 3355 . . . . . . . . 9 (((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st𝑓)) ∧ 𝑠 = (1st𝑔)) ∧ 𝑎X𝑧 ∈ (Base‘𝐴)((𝑟𝑧)(Hom ‘𝐶)(𝑠𝑧))) → (∀𝑥 ∈ (Base‘𝐴)∀𝑦 ∈ (Base‘𝐴)∀ ∈ (𝑥(Hom ‘𝐴)𝑦)((𝑎𝑦)(⟨(𝑟𝑥), (𝑟𝑦)⟩(comp‘𝐶)(𝑠𝑦))((𝑥(2nd𝑓)𝑦)‘)) = (((𝑥(2nd𝑔)𝑦)‘)(⟨(𝑟𝑥), (𝑠𝑥)⟩(comp‘𝐶)(𝑠𝑦))(𝑎𝑥)) ↔ ∀𝑥 ∈ (Base‘𝐵)∀𝑦 ∈ (Base‘𝐵)∀ ∈ (𝑥(Hom ‘𝐵)𝑦)((𝑎𝑦)(⟨(𝑟𝑥), (𝑟𝑦)⟩(comp‘𝐷)(𝑠𝑦))((𝑥(2nd𝑓)𝑦)‘)) = (((𝑥(2nd𝑔)𝑦)‘)(⟨(𝑟𝑥), (𝑠𝑥)⟩(comp‘𝐷)(𝑠𝑦))(𝑎𝑥))))
9350, 92sylan2b 594 . . . . . . . 8 (((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st𝑓)) ∧ 𝑠 = (1st𝑔)) ∧ 𝑎X𝑥 ∈ (Base‘𝐴)((𝑟𝑥)(Hom ‘𝐶)(𝑠𝑥))) → (∀𝑥 ∈ (Base‘𝐴)∀𝑦 ∈ (Base‘𝐴)∀ ∈ (𝑥(Hom ‘𝐴)𝑦)((𝑎𝑦)(⟨(𝑟𝑥), (𝑟𝑦)⟩(comp‘𝐶)(𝑠𝑦))((𝑥(2nd𝑓)𝑦)‘)) = (((𝑥(2nd𝑔)𝑦)‘)(⟨(𝑟𝑥), (𝑠𝑥)⟩(comp‘𝐶)(𝑠𝑦))(𝑎𝑥)) ↔ ∀𝑥 ∈ (Base‘𝐵)∀𝑦 ∈ (Base‘𝐵)∀ ∈ (𝑥(Hom ‘𝐵)𝑦)((𝑎𝑦)(⟨(𝑟𝑥), (𝑟𝑦)⟩(comp‘𝐷)(𝑠𝑦))((𝑥(2nd𝑓)𝑦)‘)) = (((𝑥(2nd𝑔)𝑦)‘)(⟨(𝑟𝑥), (𝑠𝑥)⟩(comp‘𝐷)(𝑠𝑦))(𝑎𝑥))))
9445, 93rabeqbidva 3422 . . . . . . 7 ((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st𝑓)) ∧ 𝑠 = (1st𝑔)) → {𝑎X𝑥 ∈ (Base‘𝐴)((𝑟𝑥)(Hom ‘𝐶)(𝑠𝑥)) ∣ ∀𝑥 ∈ (Base‘𝐴)∀𝑦 ∈ (Base‘𝐴)∀ ∈ (𝑥(Hom ‘𝐴)𝑦)((𝑎𝑦)(⟨(𝑟𝑥), (𝑟𝑦)⟩(comp‘𝐶)(𝑠𝑦))((𝑥(2nd𝑓)𝑦)‘)) = (((𝑥(2nd𝑔)𝑦)‘)(⟨(𝑟𝑥), (𝑠𝑥)⟩(comp‘𝐶)(𝑠𝑦))(𝑎𝑥))} = {𝑎X𝑥 ∈ (Base‘𝐵)((𝑟𝑥)(Hom ‘𝐷)(𝑠𝑥)) ∣ ∀𝑥 ∈ (Base‘𝐵)∀𝑦 ∈ (Base‘𝐵)∀ ∈ (𝑥(Hom ‘𝐵)𝑦)((𝑎𝑦)(⟨(𝑟𝑥), (𝑟𝑦)⟩(comp‘𝐷)(𝑠𝑦))((𝑥(2nd𝑓)𝑦)‘)) = (((𝑥(2nd𝑔)𝑦)‘)(⟨(𝑟𝑥), (𝑠𝑥)⟩(comp‘𝐷)(𝑠𝑦))(𝑎𝑥))})
95 csbeq1a 3847 . . . . . . . 8 (𝑠 = (1st𝑔) → {𝑎X𝑥 ∈ (Base‘𝐵)((𝑟𝑥)(Hom ‘𝐷)(𝑠𝑥)) ∣ ∀𝑥 ∈ (Base‘𝐵)∀𝑦 ∈ (Base‘𝐵)∀ ∈ (𝑥(Hom ‘𝐵)𝑦)((𝑎𝑦)(⟨(𝑟𝑥), (𝑟𝑦)⟩(comp‘𝐷)(𝑠𝑦))((𝑥(2nd𝑓)𝑦)‘)) = (((𝑥(2nd𝑔)𝑦)‘)(⟨(𝑟𝑥), (𝑠𝑥)⟩(comp‘𝐷)(𝑠𝑦))(𝑎𝑥))} = (1st𝑔) / 𝑠{𝑎X𝑥 ∈ (Base‘𝐵)((𝑟𝑥)(Hom ‘𝐷)(𝑠𝑥)) ∣ ∀𝑥 ∈ (Base‘𝐵)∀𝑦 ∈ (Base‘𝐵)∀ ∈ (𝑥(Hom ‘𝐵)𝑦)((𝑎𝑦)(⟨(𝑟𝑥), (𝑟𝑦)⟩(comp‘𝐷)(𝑠𝑦))((𝑥(2nd𝑓)𝑦)‘)) = (((𝑥(2nd𝑔)𝑦)‘)(⟨(𝑟𝑥), (𝑠𝑥)⟩(comp‘𝐷)(𝑠𝑦))(𝑎𝑥))})
9695adantl 482 . . . . . . 7 ((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st𝑓)) ∧ 𝑠 = (1st𝑔)) → {𝑎X𝑥 ∈ (Base‘𝐵)((𝑟𝑥)(Hom ‘𝐷)(𝑠𝑥)) ∣ ∀𝑥 ∈ (Base‘𝐵)∀𝑦 ∈ (Base‘𝐵)∀ ∈ (𝑥(Hom ‘𝐵)𝑦)((𝑎𝑦)(⟨(𝑟𝑥), (𝑟𝑦)⟩(comp‘𝐷)(𝑠𝑦))((𝑥(2nd𝑓)𝑦)‘)) = (((𝑥(2nd𝑔)𝑦)‘)(⟨(𝑟𝑥), (𝑠𝑥)⟩(comp‘𝐷)(𝑠𝑦))(𝑎𝑥))} = (1st𝑔) / 𝑠{𝑎X𝑥 ∈ (Base‘𝐵)((𝑟𝑥)(Hom ‘𝐷)(𝑠𝑥)) ∣ ∀𝑥 ∈ (Base‘𝐵)∀𝑦 ∈ (Base‘𝐵)∀ ∈ (𝑥(Hom ‘𝐵)𝑦)((𝑎𝑦)(⟨(𝑟𝑥), (𝑟𝑦)⟩(comp‘𝐷)(𝑠𝑦))((𝑥(2nd𝑓)𝑦)‘)) = (((𝑥(2nd𝑔)𝑦)‘)(⟨(𝑟𝑥), (𝑠𝑥)⟩(comp‘𝐷)(𝑠𝑦))(𝑎𝑥))})
9794, 96eqtrd 2779 . . . . . 6 ((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st𝑓)) ∧ 𝑠 = (1st𝑔)) → {𝑎X𝑥 ∈ (Base‘𝐴)((𝑟𝑥)(Hom ‘𝐶)(𝑠𝑥)) ∣ ∀𝑥 ∈ (Base‘𝐴)∀𝑦 ∈ (Base‘𝐴)∀ ∈ (𝑥(Hom ‘𝐴)𝑦)((𝑎𝑦)(⟨(𝑟𝑥), (𝑟𝑦)⟩(comp‘𝐶)(𝑠𝑦))((𝑥(2nd𝑓)𝑦)‘)) = (((𝑥(2nd𝑔)𝑦)‘)(⟨(𝑟𝑥), (𝑠𝑥)⟩(comp‘𝐶)(𝑠𝑦))(𝑎𝑥))} = (1st𝑔) / 𝑠{𝑎X𝑥 ∈ (Base‘𝐵)((𝑟𝑥)(Hom ‘𝐷)(𝑠𝑥)) ∣ ∀𝑥 ∈ (Base‘𝐵)∀𝑦 ∈ (Base‘𝐵)∀ ∈ (𝑥(Hom ‘𝐵)𝑦)((𝑎𝑦)(⟨(𝑟𝑥), (𝑟𝑦)⟩(comp‘𝐷)(𝑠𝑦))((𝑥(2nd𝑓)𝑦)‘)) = (((𝑥(2nd𝑔)𝑦)‘)(⟨(𝑟𝑥), (𝑠𝑥)⟩(comp‘𝐷)(𝑠𝑦))(𝑎𝑥))})
9815, 17, 18, 97csbiedf 3864 . . . . 5 (((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st𝑓)) → (1st𝑔) / 𝑠{𝑎X𝑥 ∈ (Base‘𝐴)((𝑟𝑥)(Hom ‘𝐶)(𝑠𝑥)) ∣ ∀𝑥 ∈ (Base‘𝐴)∀𝑦 ∈ (Base‘𝐴)∀ ∈ (𝑥(Hom ‘𝐴)𝑦)((𝑎𝑦)(⟨(𝑟𝑥), (𝑟𝑦)⟩(comp‘𝐶)(𝑠𝑦))((𝑥(2nd𝑓)𝑦)‘)) = (((𝑥(2nd𝑔)𝑦)‘)(⟨(𝑟𝑥), (𝑠𝑥)⟩(comp‘𝐶)(𝑠𝑦))(𝑎𝑥))} = (1st𝑔) / 𝑠{𝑎X𝑥 ∈ (Base‘𝐵)((𝑟𝑥)(Hom ‘𝐷)(𝑠𝑥)) ∣ ∀𝑥 ∈ (Base‘𝐵)∀𝑦 ∈ (Base‘𝐵)∀ ∈ (𝑥(Hom ‘𝐵)𝑦)((𝑎𝑦)(⟨(𝑟𝑥), (𝑟𝑦)⟩(comp‘𝐷)(𝑠𝑦))((𝑥(2nd𝑓)𝑦)‘)) = (((𝑥(2nd𝑔)𝑦)‘)(⟨(𝑟𝑥), (𝑠𝑥)⟩(comp‘𝐷)(𝑠𝑦))(𝑎𝑥))})
99 csbeq1a 3847 . . . . . 6 (𝑟 = (1st𝑓) → (1st𝑔) / 𝑠{𝑎X𝑥 ∈ (Base‘𝐵)((𝑟𝑥)(Hom ‘𝐷)(𝑠𝑥)) ∣ ∀𝑥 ∈ (Base‘𝐵)∀𝑦 ∈ (Base‘𝐵)∀ ∈ (𝑥(Hom ‘𝐵)𝑦)((𝑎𝑦)(⟨(𝑟𝑥), (𝑟𝑦)⟩(comp‘𝐷)(𝑠𝑦))((𝑥(2nd𝑓)𝑦)‘)) = (((𝑥(2nd𝑔)𝑦)‘)(⟨(𝑟𝑥), (𝑠𝑥)⟩(comp‘𝐷)(𝑠𝑦))(𝑎𝑥))} = (1st𝑓) / 𝑟(1st𝑔) / 𝑠{𝑎X𝑥 ∈ (Base‘𝐵)((𝑟𝑥)(Hom ‘𝐷)(𝑠𝑥)) ∣ ∀𝑥 ∈ (Base‘𝐵)∀𝑦 ∈ (Base‘𝐵)∀ ∈ (𝑥(Hom ‘𝐵)𝑦)((𝑎𝑦)(⟨(𝑟𝑥), (𝑟𝑦)⟩(comp‘𝐷)(𝑠𝑦))((𝑥(2nd𝑓)𝑦)‘)) = (((𝑥(2nd𝑔)𝑦)‘)(⟨(𝑟𝑥), (𝑠𝑥)⟩(comp‘𝐷)(𝑠𝑦))(𝑎𝑥))})
10099adantl 482 . . . . 5 (((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st𝑓)) → (1st𝑔) / 𝑠{𝑎X𝑥 ∈ (Base‘𝐵)((𝑟𝑥)(Hom ‘𝐷)(𝑠𝑥)) ∣ ∀𝑥 ∈ (Base‘𝐵)∀𝑦 ∈ (Base‘𝐵)∀ ∈ (𝑥(Hom ‘𝐵)𝑦)((𝑎𝑦)(⟨(𝑟𝑥), (𝑟𝑦)⟩(comp‘𝐷)(𝑠𝑦))((𝑥(2nd𝑓)𝑦)‘)) = (((𝑥(2nd𝑔)𝑦)‘)(⟨(𝑟𝑥), (𝑠𝑥)⟩(comp‘𝐷)(𝑠𝑦))(𝑎𝑥))} = (1st𝑓) / 𝑟(1st𝑔) / 𝑠{𝑎X𝑥 ∈ (Base‘𝐵)((𝑟𝑥)(Hom ‘𝐷)(𝑠𝑥)) ∣ ∀𝑥 ∈ (Base‘𝐵)∀𝑦 ∈ (Base‘𝐵)∀ ∈ (𝑥(Hom ‘𝐵)𝑦)((𝑎𝑦)(⟨(𝑟𝑥), (𝑟𝑦)⟩(comp‘𝐷)(𝑠𝑦))((𝑥(2nd𝑓)𝑦)‘)) = (((𝑥(2nd𝑔)𝑦)‘)(⟨(𝑟𝑥), (𝑠𝑥)⟩(comp‘𝐷)(𝑠𝑦))(𝑎𝑥))})
10198, 100eqtrd 2779 . . . 4 (((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st𝑓)) → (1st𝑔) / 𝑠{𝑎X𝑥 ∈ (Base‘𝐴)((𝑟𝑥)(Hom ‘𝐶)(𝑠𝑥)) ∣ ∀𝑥 ∈ (Base‘𝐴)∀𝑦 ∈ (Base‘𝐴)∀ ∈ (𝑥(Hom ‘𝐴)𝑦)((𝑎𝑦)(⟨(𝑟𝑥), (𝑟𝑦)⟩(comp‘𝐶)(𝑠𝑦))((𝑥(2nd𝑓)𝑦)‘)) = (((𝑥(2nd𝑔)𝑦)‘)(⟨(𝑟𝑥), (𝑠𝑥)⟩(comp‘𝐶)(𝑠𝑦))(𝑎𝑥))} = (1st𝑓) / 𝑟(1st𝑔) / 𝑠{𝑎X𝑥 ∈ (Base‘𝐵)((𝑟𝑥)(Hom ‘𝐷)(𝑠𝑥)) ∣ ∀𝑥 ∈ (Base‘𝐵)∀𝑦 ∈ (Base‘𝐵)∀ ∈ (𝑥(Hom ‘𝐵)𝑦)((𝑎𝑦)(⟨(𝑟𝑥), (𝑟𝑦)⟩(comp‘𝐷)(𝑠𝑦))((𝑥(2nd𝑓)𝑦)‘)) = (((𝑥(2nd𝑔)𝑦)‘)(⟨(𝑟𝑥), (𝑠𝑥)⟩(comp‘𝐷)(𝑠𝑦))(𝑎𝑥))})
10211, 13, 14, 101csbiedf 3864 . . 3 ((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) → (1st𝑓) / 𝑟(1st𝑔) / 𝑠{𝑎X𝑥 ∈ (Base‘𝐴)((𝑟𝑥)(Hom ‘𝐶)(𝑠𝑥)) ∣ ∀𝑥 ∈ (Base‘𝐴)∀𝑦 ∈ (Base‘𝐴)∀ ∈ (𝑥(Hom ‘𝐴)𝑦)((𝑎𝑦)(⟨(𝑟𝑥), (𝑟𝑦)⟩(comp‘𝐶)(𝑠𝑦))((𝑥(2nd𝑓)𝑦)‘)) = (((𝑥(2nd𝑔)𝑦)‘)(⟨(𝑟𝑥), (𝑠𝑥)⟩(comp‘𝐶)(𝑠𝑦))(𝑎𝑥))} = (1st𝑓) / 𝑟(1st𝑔) / 𝑠{𝑎X𝑥 ∈ (Base‘𝐵)((𝑟𝑥)(Hom ‘𝐷)(𝑠𝑥)) ∣ ∀𝑥 ∈ (Base‘𝐵)∀𝑦 ∈ (Base‘𝐵)∀ ∈ (𝑥(Hom ‘𝐵)𝑦)((𝑎𝑦)(⟨(𝑟𝑥), (𝑟𝑦)⟩(comp‘𝐷)(𝑠𝑦))((𝑥(2nd𝑓)𝑦)‘)) = (((𝑥(2nd𝑔)𝑦)‘)(⟨(𝑟𝑥), (𝑠𝑥)⟩(comp‘𝐷)(𝑠𝑦))(𝑎𝑥))})
1039, 10, 102mpoeq123dva 7358 . 2 (𝜑 → (𝑓 ∈ (𝐴 Func 𝐶), 𝑔 ∈ (𝐴 Func 𝐶) ↦ (1st𝑓) / 𝑟(1st𝑔) / 𝑠{𝑎X𝑥 ∈ (Base‘𝐴)((𝑟𝑥)(Hom ‘𝐶)(𝑠𝑥)) ∣ ∀𝑥 ∈ (Base‘𝐴)∀𝑦 ∈ (Base‘𝐴)∀ ∈ (𝑥(Hom ‘𝐴)𝑦)((𝑎𝑦)(⟨(𝑟𝑥), (𝑟𝑦)⟩(comp‘𝐶)(𝑠𝑦))((𝑥(2nd𝑓)𝑦)‘)) = (((𝑥(2nd𝑔)𝑦)‘)(⟨(𝑟𝑥), (𝑠𝑥)⟩(comp‘𝐶)(𝑠𝑦))(𝑎𝑥))}) = (𝑓 ∈ (𝐵 Func 𝐷), 𝑔 ∈ (𝐵 Func 𝐷) ↦ (1st𝑓) / 𝑟(1st𝑔) / 𝑠{𝑎X𝑥 ∈ (Base‘𝐵)((𝑟𝑥)(Hom ‘𝐷)(𝑠𝑥)) ∣ ∀𝑥 ∈ (Base‘𝐵)∀𝑦 ∈ (Base‘𝐵)∀ ∈ (𝑥(Hom ‘𝐵)𝑦)((𝑎𝑦)(⟨(𝑟𝑥), (𝑟𝑦)⟩(comp‘𝐷)(𝑠𝑦))((𝑥(2nd𝑓)𝑦)‘)) = (((𝑥(2nd𝑔)𝑦)‘)(⟨(𝑟𝑥), (𝑠𝑥)⟩(comp‘𝐷)(𝑠𝑦))(𝑎𝑥))}))
104 eqid 2739 . . 3 (𝐴 Nat 𝐶) = (𝐴 Nat 𝐶)
105104, 23, 53, 20, 59natfval 17671 . 2 (𝐴 Nat 𝐶) = (𝑓 ∈ (𝐴 Func 𝐶), 𝑔 ∈ (𝐴 Func 𝐶) ↦ (1st𝑓) / 𝑟(1st𝑔) / 𝑠{𝑎X𝑥 ∈ (Base‘𝐴)((𝑟𝑥)(Hom ‘𝐶)(𝑠𝑥)) ∣ ∀𝑥 ∈ (Base‘𝐴)∀𝑦 ∈ (Base‘𝐴)∀ ∈ (𝑥(Hom ‘𝐴)𝑦)((𝑎𝑦)(⟨(𝑟𝑥), (𝑟𝑦)⟩(comp‘𝐶)(𝑠𝑦))((𝑥(2nd𝑓)𝑦)‘)) = (((𝑥(2nd𝑔)𝑦)‘)(⟨(𝑟𝑥), (𝑠𝑥)⟩(comp‘𝐶)(𝑠𝑦))(𝑎𝑥))})
106 eqid 2739 . . 3 (𝐵 Nat 𝐷) = (𝐵 Nat 𝐷)
107 eqid 2739 . . 3 (Base‘𝐵) = (Base‘𝐵)
108106, 107, 54, 21, 60natfval 17671 . 2 (𝐵 Nat 𝐷) = (𝑓 ∈ (𝐵 Func 𝐷), 𝑔 ∈ (𝐵 Func 𝐷) ↦ (1st𝑓) / 𝑟(1st𝑔) / 𝑠{𝑎X𝑥 ∈ (Base‘𝐵)((𝑟𝑥)(Hom ‘𝐷)(𝑠𝑥)) ∣ ∀𝑥 ∈ (Base‘𝐵)∀𝑦 ∈ (Base‘𝐵)∀ ∈ (𝑥(Hom ‘𝐵)𝑦)((𝑎𝑦)(⟨(𝑟𝑥), (𝑟𝑦)⟩(comp‘𝐷)(𝑠𝑦))((𝑥(2nd𝑓)𝑦)‘)) = (((𝑥(2nd𝑔)𝑦)‘)(⟨(𝑟𝑥), (𝑠𝑥)⟩(comp‘𝐷)(𝑠𝑦))(𝑎𝑥))})
109103, 105, 1083eqtr4g 2804 1 (𝜑 → (𝐴 Nat 𝐶) = (𝐵 Nat 𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wcel 2107  wnfc 2888  wral 3065  {crab 3069  Vcvv 3433  csb 3833  cop 4568   class class class wbr 5075  Rel wrel 5595  wf 6433  cfv 6437  (class class class)co 7284  cmpo 7286  1st c1st 7838  2nd c2nd 7839  Xcixp 8694  Basecbs 16921  Hom chom 16982  compcco 16983  Catccat 17382  Homf chomf 17384  compfccomf 17385   Func cfunc 17578   Nat cnat 17666
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2710  ax-rep 5210  ax-sep 5224  ax-nul 5231  ax-pow 5289  ax-pr 5353  ax-un 7597
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-ral 3070  df-rex 3071  df-reu 3073  df-rab 3074  df-v 3435  df-sbc 3718  df-csb 3834  df-dif 3891  df-un 3893  df-in 3895  df-ss 3905  df-nul 4258  df-if 4461  df-pw 4536  df-sn 4563  df-pr 4565  df-op 4569  df-uni 4841  df-iun 4927  df-br 5076  df-opab 5138  df-mpt 5159  df-id 5490  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-iota 6395  df-fun 6439  df-fn 6440  df-f 6441  df-f1 6442  df-fo 6443  df-f1o 6444  df-fv 6445  df-riota 7241  df-ov 7287  df-oprab 7288  df-mpo 7289  df-1st 7840  df-2nd 7841  df-map 8626  df-ixp 8695  df-cat 17386  df-cid 17387  df-homf 17388  df-comf 17389  df-func 17582  df-nat 17668
This theorem is referenced by:  fucpropd  17704
  Copyright terms: Public domain W3C validator