Step | Hyp | Ref
| Expression |
1 | | fucpropd.1 |
. . . 4
⊢ (𝜑 → (Homf
‘𝐴) =
(Homf ‘𝐵)) |
2 | | fucpropd.2 |
. . . 4
⊢ (𝜑 →
(compf‘𝐴) = (compf‘𝐵)) |
3 | | fucpropd.3 |
. . . 4
⊢ (𝜑 → (Homf
‘𝐶) =
(Homf ‘𝐷)) |
4 | | fucpropd.4 |
. . . 4
⊢ (𝜑 →
(compf‘𝐶) = (compf‘𝐷)) |
5 | | fucpropd.a |
. . . 4
⊢ (𝜑 → 𝐴 ∈ Cat) |
6 | | fucpropd.b |
. . . 4
⊢ (𝜑 → 𝐵 ∈ Cat) |
7 | | fucpropd.c |
. . . 4
⊢ (𝜑 → 𝐶 ∈ Cat) |
8 | | fucpropd.d |
. . . 4
⊢ (𝜑 → 𝐷 ∈ Cat) |
9 | 1, 2, 3, 4, 5, 6, 7, 8 | funcpropd 17625 |
. . 3
⊢ (𝜑 → (𝐴 Func 𝐶) = (𝐵 Func 𝐷)) |
10 | 9 | adantr 481 |
. . 3
⊢ ((𝜑 ∧ 𝑓 ∈ (𝐴 Func 𝐶)) → (𝐴 Func 𝐶) = (𝐵 Func 𝐷)) |
11 | | nfv 1918 |
. . . 4
⊢
Ⅎ𝑟(𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) |
12 | | nfcsb1v 3858 |
. . . . 5
⊢
Ⅎ𝑟⦋(1st ‘𝑓) / 𝑟⦌⦋(1st
‘𝑔) / 𝑠⦌{𝑎 ∈ X𝑥 ∈
(Base‘𝐵)((𝑟‘𝑥)(Hom ‘𝐷)(𝑠‘𝑥)) ∣ ∀𝑥 ∈ (Base‘𝐵)∀𝑦 ∈ (Base‘𝐵)∀ℎ ∈ (𝑥(Hom ‘𝐵)𝑦)((𝑎‘𝑦)(〈(𝑟‘𝑥), (𝑟‘𝑦)〉(comp‘𝐷)(𝑠‘𝑦))((𝑥(2nd ‘𝑓)𝑦)‘ℎ)) = (((𝑥(2nd ‘𝑔)𝑦)‘ℎ)(〈(𝑟‘𝑥), (𝑠‘𝑥)〉(comp‘𝐷)(𝑠‘𝑦))(𝑎‘𝑥))} |
13 | 12 | a1i 11 |
. . . 4
⊢ ((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) → Ⅎ𝑟⦋(1st ‘𝑓) / 𝑟⦌⦋(1st
‘𝑔) / 𝑠⦌{𝑎 ∈ X𝑥 ∈
(Base‘𝐵)((𝑟‘𝑥)(Hom ‘𝐷)(𝑠‘𝑥)) ∣ ∀𝑥 ∈ (Base‘𝐵)∀𝑦 ∈ (Base‘𝐵)∀ℎ ∈ (𝑥(Hom ‘𝐵)𝑦)((𝑎‘𝑦)(〈(𝑟‘𝑥), (𝑟‘𝑦)〉(comp‘𝐷)(𝑠‘𝑦))((𝑥(2nd ‘𝑓)𝑦)‘ℎ)) = (((𝑥(2nd ‘𝑔)𝑦)‘ℎ)(〈(𝑟‘𝑥), (𝑠‘𝑥)〉(comp‘𝐷)(𝑠‘𝑦))(𝑎‘𝑥))}) |
14 | | fvexd 6798 |
. . . 4
⊢ ((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) → (1st ‘𝑓) ∈ V) |
15 | | nfv 1918 |
. . . . . 6
⊢
Ⅎ𝑠((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st ‘𝑓)) |
16 | | nfcsb1v 3858 |
. . . . . . 7
⊢
Ⅎ𝑠⦋(1st ‘𝑔) / 𝑠⦌{𝑎 ∈ X𝑥 ∈ (Base‘𝐵)((𝑟‘𝑥)(Hom ‘𝐷)(𝑠‘𝑥)) ∣ ∀𝑥 ∈ (Base‘𝐵)∀𝑦 ∈ (Base‘𝐵)∀ℎ ∈ (𝑥(Hom ‘𝐵)𝑦)((𝑎‘𝑦)(〈(𝑟‘𝑥), (𝑟‘𝑦)〉(comp‘𝐷)(𝑠‘𝑦))((𝑥(2nd ‘𝑓)𝑦)‘ℎ)) = (((𝑥(2nd ‘𝑔)𝑦)‘ℎ)(〈(𝑟‘𝑥), (𝑠‘𝑥)〉(comp‘𝐷)(𝑠‘𝑦))(𝑎‘𝑥))} |
17 | 16 | a1i 11 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st ‘𝑓)) → Ⅎ𝑠⦋(1st ‘𝑔) / 𝑠⦌{𝑎 ∈ X𝑥 ∈ (Base‘𝐵)((𝑟‘𝑥)(Hom ‘𝐷)(𝑠‘𝑥)) ∣ ∀𝑥 ∈ (Base‘𝐵)∀𝑦 ∈ (Base‘𝐵)∀ℎ ∈ (𝑥(Hom ‘𝐵)𝑦)((𝑎‘𝑦)(〈(𝑟‘𝑥), (𝑟‘𝑦)〉(comp‘𝐷)(𝑠‘𝑦))((𝑥(2nd ‘𝑓)𝑦)‘ℎ)) = (((𝑥(2nd ‘𝑔)𝑦)‘ℎ)(〈(𝑟‘𝑥), (𝑠‘𝑥)〉(comp‘𝐷)(𝑠‘𝑦))(𝑎‘𝑥))}) |
18 | | fvexd 6798 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st ‘𝑓)) → (1st ‘𝑔) ∈ V) |
19 | | eqid 2739 |
. . . . . . . . . . 11
⊢
(Base‘𝐶) =
(Base‘𝐶) |
20 | | eqid 2739 |
. . . . . . . . . . 11
⊢ (Hom
‘𝐶) = (Hom
‘𝐶) |
21 | | eqid 2739 |
. . . . . . . . . . 11
⊢ (Hom
‘𝐷) = (Hom
‘𝐷) |
22 | 3 | ad4antr 729 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st ‘𝑓)) ∧ 𝑠 = (1st ‘𝑔)) ∧ 𝑥 ∈ (Base‘𝐴)) → (Homf
‘𝐶) =
(Homf ‘𝐷)) |
23 | | eqid 2739 |
. . . . . . . . . . . . 13
⊢
(Base‘𝐴) =
(Base‘𝐴) |
24 | | simplr 766 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st ‘𝑓)) ∧ 𝑠 = (1st ‘𝑔)) → 𝑟 = (1st ‘𝑓)) |
25 | | relfunc 17586 |
. . . . . . . . . . . . . . 15
⊢ Rel
(𝐴 Func 𝐶) |
26 | | simpllr 773 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st ‘𝑓)) ∧ 𝑠 = (1st ‘𝑔)) → (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) |
27 | 26 | simpld 495 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st ‘𝑓)) ∧ 𝑠 = (1st ‘𝑔)) → 𝑓 ∈ (𝐴 Func 𝐶)) |
28 | | 1st2ndbr 7892 |
. . . . . . . . . . . . . . 15
⊢ ((Rel
(𝐴 Func 𝐶) ∧ 𝑓 ∈ (𝐴 Func 𝐶)) → (1st ‘𝑓)(𝐴 Func 𝐶)(2nd ‘𝑓)) |
29 | 25, 27, 28 | sylancr 587 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st ‘𝑓)) ∧ 𝑠 = (1st ‘𝑔)) → (1st ‘𝑓)(𝐴 Func 𝐶)(2nd ‘𝑓)) |
30 | 24, 29 | eqbrtrd 5097 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st ‘𝑓)) ∧ 𝑠 = (1st ‘𝑔)) → 𝑟(𝐴 Func 𝐶)(2nd ‘𝑓)) |
31 | 23, 19, 30 | funcf1 17590 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st ‘𝑓)) ∧ 𝑠 = (1st ‘𝑔)) → 𝑟:(Base‘𝐴)⟶(Base‘𝐶)) |
32 | 31 | ffvelrnda 6970 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st ‘𝑓)) ∧ 𝑠 = (1st ‘𝑔)) ∧ 𝑥 ∈ (Base‘𝐴)) → (𝑟‘𝑥) ∈ (Base‘𝐶)) |
33 | | simpr 485 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st ‘𝑓)) ∧ 𝑠 = (1st ‘𝑔)) → 𝑠 = (1st ‘𝑔)) |
34 | 26 | simprd 496 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st ‘𝑓)) ∧ 𝑠 = (1st ‘𝑔)) → 𝑔 ∈ (𝐴 Func 𝐶)) |
35 | | 1st2ndbr 7892 |
. . . . . . . . . . . . . . 15
⊢ ((Rel
(𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶)) → (1st ‘𝑔)(𝐴 Func 𝐶)(2nd ‘𝑔)) |
36 | 25, 34, 35 | sylancr 587 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st ‘𝑓)) ∧ 𝑠 = (1st ‘𝑔)) → (1st ‘𝑔)(𝐴 Func 𝐶)(2nd ‘𝑔)) |
37 | 33, 36 | eqbrtrd 5097 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st ‘𝑓)) ∧ 𝑠 = (1st ‘𝑔)) → 𝑠(𝐴 Func 𝐶)(2nd ‘𝑔)) |
38 | 23, 19, 37 | funcf1 17590 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st ‘𝑓)) ∧ 𝑠 = (1st ‘𝑔)) → 𝑠:(Base‘𝐴)⟶(Base‘𝐶)) |
39 | 38 | ffvelrnda 6970 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st ‘𝑓)) ∧ 𝑠 = (1st ‘𝑔)) ∧ 𝑥 ∈ (Base‘𝐴)) → (𝑠‘𝑥) ∈ (Base‘𝐶)) |
40 | 19, 20, 21, 22, 32, 39 | homfeqval 17415 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st ‘𝑓)) ∧ 𝑠 = (1st ‘𝑔)) ∧ 𝑥 ∈ (Base‘𝐴)) → ((𝑟‘𝑥)(Hom ‘𝐶)(𝑠‘𝑥)) = ((𝑟‘𝑥)(Hom ‘𝐷)(𝑠‘𝑥))) |
41 | 40 | ixpeq2dva 8709 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st ‘𝑓)) ∧ 𝑠 = (1st ‘𝑔)) → X𝑥 ∈ (Base‘𝐴)((𝑟‘𝑥)(Hom ‘𝐶)(𝑠‘𝑥)) = X𝑥 ∈ (Base‘𝐴)((𝑟‘𝑥)(Hom ‘𝐷)(𝑠‘𝑥))) |
42 | 1 | homfeqbas 17414 |
. . . . . . . . . . 11
⊢ (𝜑 → (Base‘𝐴) = (Base‘𝐵)) |
43 | 42 | ad3antrrr 727 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st ‘𝑓)) ∧ 𝑠 = (1st ‘𝑔)) → (Base‘𝐴) = (Base‘𝐵)) |
44 | 43 | ixpeq1d 8706 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st ‘𝑓)) ∧ 𝑠 = (1st ‘𝑔)) → X𝑥 ∈ (Base‘𝐴)((𝑟‘𝑥)(Hom ‘𝐷)(𝑠‘𝑥)) = X𝑥 ∈ (Base‘𝐵)((𝑟‘𝑥)(Hom ‘𝐷)(𝑠‘𝑥))) |
45 | 41, 44 | eqtrd 2779 |
. . . . . . . 8
⊢ ((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st ‘𝑓)) ∧ 𝑠 = (1st ‘𝑔)) → X𝑥 ∈ (Base‘𝐴)((𝑟‘𝑥)(Hom ‘𝐶)(𝑠‘𝑥)) = X𝑥 ∈ (Base‘𝐵)((𝑟‘𝑥)(Hom ‘𝐷)(𝑠‘𝑥))) |
46 | | fveq2 6783 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑧 → (𝑟‘𝑥) = (𝑟‘𝑧)) |
47 | | fveq2 6783 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑧 → (𝑠‘𝑥) = (𝑠‘𝑧)) |
48 | 46, 47 | oveq12d 7302 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑧 → ((𝑟‘𝑥)(Hom ‘𝐶)(𝑠‘𝑥)) = ((𝑟‘𝑧)(Hom ‘𝐶)(𝑠‘𝑧))) |
49 | 48 | cbvixpv 8712 |
. . . . . . . . . 10
⊢ X𝑥 ∈
(Base‘𝐴)((𝑟‘𝑥)(Hom ‘𝐶)(𝑠‘𝑥)) = X𝑧 ∈ (Base‘𝐴)((𝑟‘𝑧)(Hom ‘𝐶)(𝑠‘𝑧)) |
50 | 49 | eleq2i 2831 |
. . . . . . . . 9
⊢ (𝑎 ∈ X𝑥 ∈
(Base‘𝐴)((𝑟‘𝑥)(Hom ‘𝐶)(𝑠‘𝑥)) ↔ 𝑎 ∈ X𝑧 ∈ (Base‘𝐴)((𝑟‘𝑧)(Hom ‘𝐶)(𝑠‘𝑧))) |
51 | 43 | adantr 481 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st ‘𝑓)) ∧ 𝑠 = (1st ‘𝑔)) ∧ 𝑎 ∈ X𝑧 ∈ (Base‘𝐴)((𝑟‘𝑧)(Hom ‘𝐶)(𝑠‘𝑧))) → (Base‘𝐴) = (Base‘𝐵)) |
52 | 51 | adantr 481 |
. . . . . . . . . . 11
⊢
((((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st ‘𝑓)) ∧ 𝑠 = (1st ‘𝑔)) ∧ 𝑎 ∈ X𝑧 ∈ (Base‘𝐴)((𝑟‘𝑧)(Hom ‘𝐶)(𝑠‘𝑧))) ∧ 𝑥 ∈ (Base‘𝐴)) → (Base‘𝐴) = (Base‘𝐵)) |
53 | | eqid 2739 |
. . . . . . . . . . . . 13
⊢ (Hom
‘𝐴) = (Hom
‘𝐴) |
54 | | eqid 2739 |
. . . . . . . . . . . . 13
⊢ (Hom
‘𝐵) = (Hom
‘𝐵) |
55 | 1 | ad6antr 733 |
. . . . . . . . . . . . 13
⊢
(((((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st ‘𝑓)) ∧ 𝑠 = (1st ‘𝑔)) ∧ 𝑎 ∈ X𝑧 ∈ (Base‘𝐴)((𝑟‘𝑧)(Hom ‘𝐶)(𝑠‘𝑧))) ∧ 𝑥 ∈ (Base‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴)) → (Homf
‘𝐴) =
(Homf ‘𝐵)) |
56 | | simplr 766 |
. . . . . . . . . . . . 13
⊢
(((((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st ‘𝑓)) ∧ 𝑠 = (1st ‘𝑔)) ∧ 𝑎 ∈ X𝑧 ∈ (Base‘𝐴)((𝑟‘𝑧)(Hom ‘𝐶)(𝑠‘𝑧))) ∧ 𝑥 ∈ (Base‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴)) → 𝑥 ∈ (Base‘𝐴)) |
57 | | simpr 485 |
. . . . . . . . . . . . 13
⊢
(((((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st ‘𝑓)) ∧ 𝑠 = (1st ‘𝑔)) ∧ 𝑎 ∈ X𝑧 ∈ (Base‘𝐴)((𝑟‘𝑧)(Hom ‘𝐶)(𝑠‘𝑧))) ∧ 𝑥 ∈ (Base‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴)) → 𝑦 ∈ (Base‘𝐴)) |
58 | 23, 53, 54, 55, 56, 57 | homfeqval 17415 |
. . . . . . . . . . . 12
⊢
(((((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st ‘𝑓)) ∧ 𝑠 = (1st ‘𝑔)) ∧ 𝑎 ∈ X𝑧 ∈ (Base‘𝐴)((𝑟‘𝑧)(Hom ‘𝐶)(𝑠‘𝑧))) ∧ 𝑥 ∈ (Base‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴)) → (𝑥(Hom ‘𝐴)𝑦) = (𝑥(Hom ‘𝐵)𝑦)) |
59 | | eqid 2739 |
. . . . . . . . . . . . . 14
⊢
(comp‘𝐶) =
(comp‘𝐶) |
60 | | eqid 2739 |
. . . . . . . . . . . . . 14
⊢
(comp‘𝐷) =
(comp‘𝐷) |
61 | 3 | ad7antr 735 |
. . . . . . . . . . . . . 14
⊢
((((((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st ‘𝑓)) ∧ 𝑠 = (1st ‘𝑔)) ∧ 𝑎 ∈ X𝑧 ∈ (Base‘𝐴)((𝑟‘𝑧)(Hom ‘𝐶)(𝑠‘𝑧))) ∧ 𝑥 ∈ (Base‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴)) ∧ ℎ ∈ (𝑥(Hom ‘𝐴)𝑦)) → (Homf
‘𝐶) =
(Homf ‘𝐷)) |
62 | 4 | ad7antr 735 |
. . . . . . . . . . . . . 14
⊢
((((((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st ‘𝑓)) ∧ 𝑠 = (1st ‘𝑔)) ∧ 𝑎 ∈ X𝑧 ∈ (Base‘𝐴)((𝑟‘𝑧)(Hom ‘𝐶)(𝑠‘𝑧))) ∧ 𝑥 ∈ (Base‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴)) ∧ ℎ ∈ (𝑥(Hom ‘𝐴)𝑦)) →
(compf‘𝐶) = (compf‘𝐷)) |
63 | 32 | ad5ant13 754 |
. . . . . . . . . . . . . 14
⊢
((((((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st ‘𝑓)) ∧ 𝑠 = (1st ‘𝑔)) ∧ 𝑎 ∈ X𝑧 ∈ (Base‘𝐴)((𝑟‘𝑧)(Hom ‘𝐶)(𝑠‘𝑧))) ∧ 𝑥 ∈ (Base‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴)) ∧ ℎ ∈ (𝑥(Hom ‘𝐴)𝑦)) → (𝑟‘𝑥) ∈ (Base‘𝐶)) |
64 | 31 | ad2antrr 723 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st ‘𝑓)) ∧ 𝑠 = (1st ‘𝑔)) ∧ 𝑎 ∈ X𝑧 ∈ (Base‘𝐴)((𝑟‘𝑧)(Hom ‘𝐶)(𝑠‘𝑧))) ∧ 𝑥 ∈ (Base‘𝐴)) → 𝑟:(Base‘𝐴)⟶(Base‘𝐶)) |
65 | 64 | ffvelrnda 6970 |
. . . . . . . . . . . . . . 15
⊢
(((((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st ‘𝑓)) ∧ 𝑠 = (1st ‘𝑔)) ∧ 𝑎 ∈ X𝑧 ∈ (Base‘𝐴)((𝑟‘𝑧)(Hom ‘𝐶)(𝑠‘𝑧))) ∧ 𝑥 ∈ (Base‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴)) → (𝑟‘𝑦) ∈ (Base‘𝐶)) |
66 | 65 | adantr 481 |
. . . . . . . . . . . . . 14
⊢
((((((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st ‘𝑓)) ∧ 𝑠 = (1st ‘𝑔)) ∧ 𝑎 ∈ X𝑧 ∈ (Base‘𝐴)((𝑟‘𝑧)(Hom ‘𝐶)(𝑠‘𝑧))) ∧ 𝑥 ∈ (Base‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴)) ∧ ℎ ∈ (𝑥(Hom ‘𝐴)𝑦)) → (𝑟‘𝑦) ∈ (Base‘𝐶)) |
67 | 38 | ad2antrr 723 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st ‘𝑓)) ∧ 𝑠 = (1st ‘𝑔)) ∧ 𝑎 ∈ X𝑧 ∈ (Base‘𝐴)((𝑟‘𝑧)(Hom ‘𝐶)(𝑠‘𝑧))) ∧ 𝑥 ∈ (Base‘𝐴)) → 𝑠:(Base‘𝐴)⟶(Base‘𝐶)) |
68 | 67 | ffvelrnda 6970 |
. . . . . . . . . . . . . . 15
⊢
(((((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st ‘𝑓)) ∧ 𝑠 = (1st ‘𝑔)) ∧ 𝑎 ∈ X𝑧 ∈ (Base‘𝐴)((𝑟‘𝑧)(Hom ‘𝐶)(𝑠‘𝑧))) ∧ 𝑥 ∈ (Base‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴)) → (𝑠‘𝑦) ∈ (Base‘𝐶)) |
69 | 68 | adantr 481 |
. . . . . . . . . . . . . 14
⊢
((((((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st ‘𝑓)) ∧ 𝑠 = (1st ‘𝑔)) ∧ 𝑎 ∈ X𝑧 ∈ (Base‘𝐴)((𝑟‘𝑧)(Hom ‘𝐶)(𝑠‘𝑧))) ∧ 𝑥 ∈ (Base‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴)) ∧ ℎ ∈ (𝑥(Hom ‘𝐴)𝑦)) → (𝑠‘𝑦) ∈ (Base‘𝐶)) |
70 | 30 | ad3antrrr 727 |
. . . . . . . . . . . . . . . 16
⊢
(((((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st ‘𝑓)) ∧ 𝑠 = (1st ‘𝑔)) ∧ 𝑎 ∈ X𝑧 ∈ (Base‘𝐴)((𝑟‘𝑧)(Hom ‘𝐶)(𝑠‘𝑧))) ∧ 𝑥 ∈ (Base‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴)) → 𝑟(𝐴 Func 𝐶)(2nd ‘𝑓)) |
71 | 23, 53, 20, 70, 56, 57 | funcf2 17592 |
. . . . . . . . . . . . . . 15
⊢
(((((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st ‘𝑓)) ∧ 𝑠 = (1st ‘𝑔)) ∧ 𝑎 ∈ X𝑧 ∈ (Base‘𝐴)((𝑟‘𝑧)(Hom ‘𝐶)(𝑠‘𝑧))) ∧ 𝑥 ∈ (Base‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴)) → (𝑥(2nd ‘𝑓)𝑦):(𝑥(Hom ‘𝐴)𝑦)⟶((𝑟‘𝑥)(Hom ‘𝐶)(𝑟‘𝑦))) |
72 | 71 | ffvelrnda 6970 |
. . . . . . . . . . . . . 14
⊢
((((((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st ‘𝑓)) ∧ 𝑠 = (1st ‘𝑔)) ∧ 𝑎 ∈ X𝑧 ∈ (Base‘𝐴)((𝑟‘𝑧)(Hom ‘𝐶)(𝑠‘𝑧))) ∧ 𝑥 ∈ (Base‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴)) ∧ ℎ ∈ (𝑥(Hom ‘𝐴)𝑦)) → ((𝑥(2nd ‘𝑓)𝑦)‘ℎ) ∈ ((𝑟‘𝑥)(Hom ‘𝐶)(𝑟‘𝑦))) |
73 | | fveq2 6783 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑧 = 𝑦 → (𝑟‘𝑧) = (𝑟‘𝑦)) |
74 | | fveq2 6783 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑧 = 𝑦 → (𝑠‘𝑧) = (𝑠‘𝑦)) |
75 | 73, 74 | oveq12d 7302 |
. . . . . . . . . . . . . . . 16
⊢ (𝑧 = 𝑦 → ((𝑟‘𝑧)(Hom ‘𝐶)(𝑠‘𝑧)) = ((𝑟‘𝑦)(Hom ‘𝐶)(𝑠‘𝑦))) |
76 | 75 | fvixp 8699 |
. . . . . . . . . . . . . . 15
⊢ ((𝑎 ∈ X𝑧 ∈
(Base‘𝐴)((𝑟‘𝑧)(Hom ‘𝐶)(𝑠‘𝑧)) ∧ 𝑦 ∈ (Base‘𝐴)) → (𝑎‘𝑦) ∈ ((𝑟‘𝑦)(Hom ‘𝐶)(𝑠‘𝑦))) |
77 | 76 | ad5ant24 758 |
. . . . . . . . . . . . . 14
⊢
((((((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st ‘𝑓)) ∧ 𝑠 = (1st ‘𝑔)) ∧ 𝑎 ∈ X𝑧 ∈ (Base‘𝐴)((𝑟‘𝑧)(Hom ‘𝐶)(𝑠‘𝑧))) ∧ 𝑥 ∈ (Base‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴)) ∧ ℎ ∈ (𝑥(Hom ‘𝐴)𝑦)) → (𝑎‘𝑦) ∈ ((𝑟‘𝑦)(Hom ‘𝐶)(𝑠‘𝑦))) |
78 | 19, 20, 59, 60, 61, 62, 63, 66, 69, 72, 77 | comfeqval 17426 |
. . . . . . . . . . . . 13
⊢
((((((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st ‘𝑓)) ∧ 𝑠 = (1st ‘𝑔)) ∧ 𝑎 ∈ X𝑧 ∈ (Base‘𝐴)((𝑟‘𝑧)(Hom ‘𝐶)(𝑠‘𝑧))) ∧ 𝑥 ∈ (Base‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴)) ∧ ℎ ∈ (𝑥(Hom ‘𝐴)𝑦)) → ((𝑎‘𝑦)(〈(𝑟‘𝑥), (𝑟‘𝑦)〉(comp‘𝐶)(𝑠‘𝑦))((𝑥(2nd ‘𝑓)𝑦)‘ℎ)) = ((𝑎‘𝑦)(〈(𝑟‘𝑥), (𝑟‘𝑦)〉(comp‘𝐷)(𝑠‘𝑦))((𝑥(2nd ‘𝑓)𝑦)‘ℎ))) |
79 | 39 | ad5ant13 754 |
. . . . . . . . . . . . . 14
⊢
((((((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st ‘𝑓)) ∧ 𝑠 = (1st ‘𝑔)) ∧ 𝑎 ∈ X𝑧 ∈ (Base‘𝐴)((𝑟‘𝑧)(Hom ‘𝐶)(𝑠‘𝑧))) ∧ 𝑥 ∈ (Base‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴)) ∧ ℎ ∈ (𝑥(Hom ‘𝐴)𝑦)) → (𝑠‘𝑥) ∈ (Base‘𝐶)) |
80 | | fveq2 6783 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑧 = 𝑥 → (𝑟‘𝑧) = (𝑟‘𝑥)) |
81 | | fveq2 6783 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑧 = 𝑥 → (𝑠‘𝑧) = (𝑠‘𝑥)) |
82 | 80, 81 | oveq12d 7302 |
. . . . . . . . . . . . . . . 16
⊢ (𝑧 = 𝑥 → ((𝑟‘𝑧)(Hom ‘𝐶)(𝑠‘𝑧)) = ((𝑟‘𝑥)(Hom ‘𝐶)(𝑠‘𝑥))) |
83 | 82 | fvixp 8699 |
. . . . . . . . . . . . . . 15
⊢ ((𝑎 ∈ X𝑧 ∈
(Base‘𝐴)((𝑟‘𝑧)(Hom ‘𝐶)(𝑠‘𝑧)) ∧ 𝑥 ∈ (Base‘𝐴)) → (𝑎‘𝑥) ∈ ((𝑟‘𝑥)(Hom ‘𝐶)(𝑠‘𝑥))) |
84 | 83 | ad5ant23 757 |
. . . . . . . . . . . . . 14
⊢
((((((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st ‘𝑓)) ∧ 𝑠 = (1st ‘𝑔)) ∧ 𝑎 ∈ X𝑧 ∈ (Base‘𝐴)((𝑟‘𝑧)(Hom ‘𝐶)(𝑠‘𝑧))) ∧ 𝑥 ∈ (Base‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴)) ∧ ℎ ∈ (𝑥(Hom ‘𝐴)𝑦)) → (𝑎‘𝑥) ∈ ((𝑟‘𝑥)(Hom ‘𝐶)(𝑠‘𝑥))) |
85 | 37 | ad3antrrr 727 |
. . . . . . . . . . . . . . . 16
⊢
(((((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st ‘𝑓)) ∧ 𝑠 = (1st ‘𝑔)) ∧ 𝑎 ∈ X𝑧 ∈ (Base‘𝐴)((𝑟‘𝑧)(Hom ‘𝐶)(𝑠‘𝑧))) ∧ 𝑥 ∈ (Base‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴)) → 𝑠(𝐴 Func 𝐶)(2nd ‘𝑔)) |
86 | 23, 53, 20, 85, 56, 57 | funcf2 17592 |
. . . . . . . . . . . . . . 15
⊢
(((((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st ‘𝑓)) ∧ 𝑠 = (1st ‘𝑔)) ∧ 𝑎 ∈ X𝑧 ∈ (Base‘𝐴)((𝑟‘𝑧)(Hom ‘𝐶)(𝑠‘𝑧))) ∧ 𝑥 ∈ (Base‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴)) → (𝑥(2nd ‘𝑔)𝑦):(𝑥(Hom ‘𝐴)𝑦)⟶((𝑠‘𝑥)(Hom ‘𝐶)(𝑠‘𝑦))) |
87 | 86 | ffvelrnda 6970 |
. . . . . . . . . . . . . 14
⊢
((((((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st ‘𝑓)) ∧ 𝑠 = (1st ‘𝑔)) ∧ 𝑎 ∈ X𝑧 ∈ (Base‘𝐴)((𝑟‘𝑧)(Hom ‘𝐶)(𝑠‘𝑧))) ∧ 𝑥 ∈ (Base‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴)) ∧ ℎ ∈ (𝑥(Hom ‘𝐴)𝑦)) → ((𝑥(2nd ‘𝑔)𝑦)‘ℎ) ∈ ((𝑠‘𝑥)(Hom ‘𝐶)(𝑠‘𝑦))) |
88 | 19, 20, 59, 60, 61, 62, 63, 79, 69, 84, 87 | comfeqval 17426 |
. . . . . . . . . . . . 13
⊢
((((((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st ‘𝑓)) ∧ 𝑠 = (1st ‘𝑔)) ∧ 𝑎 ∈ X𝑧 ∈ (Base‘𝐴)((𝑟‘𝑧)(Hom ‘𝐶)(𝑠‘𝑧))) ∧ 𝑥 ∈ (Base‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴)) ∧ ℎ ∈ (𝑥(Hom ‘𝐴)𝑦)) → (((𝑥(2nd ‘𝑔)𝑦)‘ℎ)(〈(𝑟‘𝑥), (𝑠‘𝑥)〉(comp‘𝐶)(𝑠‘𝑦))(𝑎‘𝑥)) = (((𝑥(2nd ‘𝑔)𝑦)‘ℎ)(〈(𝑟‘𝑥), (𝑠‘𝑥)〉(comp‘𝐷)(𝑠‘𝑦))(𝑎‘𝑥))) |
89 | 78, 88 | eqeq12d 2755 |
. . . . . . . . . . . 12
⊢
((((((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st ‘𝑓)) ∧ 𝑠 = (1st ‘𝑔)) ∧ 𝑎 ∈ X𝑧 ∈ (Base‘𝐴)((𝑟‘𝑧)(Hom ‘𝐶)(𝑠‘𝑧))) ∧ 𝑥 ∈ (Base‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴)) ∧ ℎ ∈ (𝑥(Hom ‘𝐴)𝑦)) → (((𝑎‘𝑦)(〈(𝑟‘𝑥), (𝑟‘𝑦)〉(comp‘𝐶)(𝑠‘𝑦))((𝑥(2nd ‘𝑓)𝑦)‘ℎ)) = (((𝑥(2nd ‘𝑔)𝑦)‘ℎ)(〈(𝑟‘𝑥), (𝑠‘𝑥)〉(comp‘𝐶)(𝑠‘𝑦))(𝑎‘𝑥)) ↔ ((𝑎‘𝑦)(〈(𝑟‘𝑥), (𝑟‘𝑦)〉(comp‘𝐷)(𝑠‘𝑦))((𝑥(2nd ‘𝑓)𝑦)‘ℎ)) = (((𝑥(2nd ‘𝑔)𝑦)‘ℎ)(〈(𝑟‘𝑥), (𝑠‘𝑥)〉(comp‘𝐷)(𝑠‘𝑦))(𝑎‘𝑥)))) |
90 | 58, 89 | raleqbidva 3355 |
. . . . . . . . . . 11
⊢
(((((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st ‘𝑓)) ∧ 𝑠 = (1st ‘𝑔)) ∧ 𝑎 ∈ X𝑧 ∈ (Base‘𝐴)((𝑟‘𝑧)(Hom ‘𝐶)(𝑠‘𝑧))) ∧ 𝑥 ∈ (Base‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴)) → (∀ℎ ∈ (𝑥(Hom ‘𝐴)𝑦)((𝑎‘𝑦)(〈(𝑟‘𝑥), (𝑟‘𝑦)〉(comp‘𝐶)(𝑠‘𝑦))((𝑥(2nd ‘𝑓)𝑦)‘ℎ)) = (((𝑥(2nd ‘𝑔)𝑦)‘ℎ)(〈(𝑟‘𝑥), (𝑠‘𝑥)〉(comp‘𝐶)(𝑠‘𝑦))(𝑎‘𝑥)) ↔ ∀ℎ ∈ (𝑥(Hom ‘𝐵)𝑦)((𝑎‘𝑦)(〈(𝑟‘𝑥), (𝑟‘𝑦)〉(comp‘𝐷)(𝑠‘𝑦))((𝑥(2nd ‘𝑓)𝑦)‘ℎ)) = (((𝑥(2nd ‘𝑔)𝑦)‘ℎ)(〈(𝑟‘𝑥), (𝑠‘𝑥)〉(comp‘𝐷)(𝑠‘𝑦))(𝑎‘𝑥)))) |
91 | 52, 90 | raleqbidva 3355 |
. . . . . . . . . 10
⊢
((((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st ‘𝑓)) ∧ 𝑠 = (1st ‘𝑔)) ∧ 𝑎 ∈ X𝑧 ∈ (Base‘𝐴)((𝑟‘𝑧)(Hom ‘𝐶)(𝑠‘𝑧))) ∧ 𝑥 ∈ (Base‘𝐴)) → (∀𝑦 ∈ (Base‘𝐴)∀ℎ ∈ (𝑥(Hom ‘𝐴)𝑦)((𝑎‘𝑦)(〈(𝑟‘𝑥), (𝑟‘𝑦)〉(comp‘𝐶)(𝑠‘𝑦))((𝑥(2nd ‘𝑓)𝑦)‘ℎ)) = (((𝑥(2nd ‘𝑔)𝑦)‘ℎ)(〈(𝑟‘𝑥), (𝑠‘𝑥)〉(comp‘𝐶)(𝑠‘𝑦))(𝑎‘𝑥)) ↔ ∀𝑦 ∈ (Base‘𝐵)∀ℎ ∈ (𝑥(Hom ‘𝐵)𝑦)((𝑎‘𝑦)(〈(𝑟‘𝑥), (𝑟‘𝑦)〉(comp‘𝐷)(𝑠‘𝑦))((𝑥(2nd ‘𝑓)𝑦)‘ℎ)) = (((𝑥(2nd ‘𝑔)𝑦)‘ℎ)(〈(𝑟‘𝑥), (𝑠‘𝑥)〉(comp‘𝐷)(𝑠‘𝑦))(𝑎‘𝑥)))) |
92 | 51, 91 | raleqbidva 3355 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st ‘𝑓)) ∧ 𝑠 = (1st ‘𝑔)) ∧ 𝑎 ∈ X𝑧 ∈ (Base‘𝐴)((𝑟‘𝑧)(Hom ‘𝐶)(𝑠‘𝑧))) → (∀𝑥 ∈ (Base‘𝐴)∀𝑦 ∈ (Base‘𝐴)∀ℎ ∈ (𝑥(Hom ‘𝐴)𝑦)((𝑎‘𝑦)(〈(𝑟‘𝑥), (𝑟‘𝑦)〉(comp‘𝐶)(𝑠‘𝑦))((𝑥(2nd ‘𝑓)𝑦)‘ℎ)) = (((𝑥(2nd ‘𝑔)𝑦)‘ℎ)(〈(𝑟‘𝑥), (𝑠‘𝑥)〉(comp‘𝐶)(𝑠‘𝑦))(𝑎‘𝑥)) ↔ ∀𝑥 ∈ (Base‘𝐵)∀𝑦 ∈ (Base‘𝐵)∀ℎ ∈ (𝑥(Hom ‘𝐵)𝑦)((𝑎‘𝑦)(〈(𝑟‘𝑥), (𝑟‘𝑦)〉(comp‘𝐷)(𝑠‘𝑦))((𝑥(2nd ‘𝑓)𝑦)‘ℎ)) = (((𝑥(2nd ‘𝑔)𝑦)‘ℎ)(〈(𝑟‘𝑥), (𝑠‘𝑥)〉(comp‘𝐷)(𝑠‘𝑦))(𝑎‘𝑥)))) |
93 | 50, 92 | sylan2b 594 |
. . . . . . . 8
⊢
(((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st ‘𝑓)) ∧ 𝑠 = (1st ‘𝑔)) ∧ 𝑎 ∈ X𝑥 ∈ (Base‘𝐴)((𝑟‘𝑥)(Hom ‘𝐶)(𝑠‘𝑥))) → (∀𝑥 ∈ (Base‘𝐴)∀𝑦 ∈ (Base‘𝐴)∀ℎ ∈ (𝑥(Hom ‘𝐴)𝑦)((𝑎‘𝑦)(〈(𝑟‘𝑥), (𝑟‘𝑦)〉(comp‘𝐶)(𝑠‘𝑦))((𝑥(2nd ‘𝑓)𝑦)‘ℎ)) = (((𝑥(2nd ‘𝑔)𝑦)‘ℎ)(〈(𝑟‘𝑥), (𝑠‘𝑥)〉(comp‘𝐶)(𝑠‘𝑦))(𝑎‘𝑥)) ↔ ∀𝑥 ∈ (Base‘𝐵)∀𝑦 ∈ (Base‘𝐵)∀ℎ ∈ (𝑥(Hom ‘𝐵)𝑦)((𝑎‘𝑦)(〈(𝑟‘𝑥), (𝑟‘𝑦)〉(comp‘𝐷)(𝑠‘𝑦))((𝑥(2nd ‘𝑓)𝑦)‘ℎ)) = (((𝑥(2nd ‘𝑔)𝑦)‘ℎ)(〈(𝑟‘𝑥), (𝑠‘𝑥)〉(comp‘𝐷)(𝑠‘𝑦))(𝑎‘𝑥)))) |
94 | 45, 93 | rabeqbidva 3422 |
. . . . . . 7
⊢ ((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st ‘𝑓)) ∧ 𝑠 = (1st ‘𝑔)) → {𝑎 ∈ X𝑥 ∈ (Base‘𝐴)((𝑟‘𝑥)(Hom ‘𝐶)(𝑠‘𝑥)) ∣ ∀𝑥 ∈ (Base‘𝐴)∀𝑦 ∈ (Base‘𝐴)∀ℎ ∈ (𝑥(Hom ‘𝐴)𝑦)((𝑎‘𝑦)(〈(𝑟‘𝑥), (𝑟‘𝑦)〉(comp‘𝐶)(𝑠‘𝑦))((𝑥(2nd ‘𝑓)𝑦)‘ℎ)) = (((𝑥(2nd ‘𝑔)𝑦)‘ℎ)(〈(𝑟‘𝑥), (𝑠‘𝑥)〉(comp‘𝐶)(𝑠‘𝑦))(𝑎‘𝑥))} = {𝑎 ∈ X𝑥 ∈ (Base‘𝐵)((𝑟‘𝑥)(Hom ‘𝐷)(𝑠‘𝑥)) ∣ ∀𝑥 ∈ (Base‘𝐵)∀𝑦 ∈ (Base‘𝐵)∀ℎ ∈ (𝑥(Hom ‘𝐵)𝑦)((𝑎‘𝑦)(〈(𝑟‘𝑥), (𝑟‘𝑦)〉(comp‘𝐷)(𝑠‘𝑦))((𝑥(2nd ‘𝑓)𝑦)‘ℎ)) = (((𝑥(2nd ‘𝑔)𝑦)‘ℎ)(〈(𝑟‘𝑥), (𝑠‘𝑥)〉(comp‘𝐷)(𝑠‘𝑦))(𝑎‘𝑥))}) |
95 | | csbeq1a 3847 |
. . . . . . . 8
⊢ (𝑠 = (1st ‘𝑔) → {𝑎 ∈ X𝑥 ∈ (Base‘𝐵)((𝑟‘𝑥)(Hom ‘𝐷)(𝑠‘𝑥)) ∣ ∀𝑥 ∈ (Base‘𝐵)∀𝑦 ∈ (Base‘𝐵)∀ℎ ∈ (𝑥(Hom ‘𝐵)𝑦)((𝑎‘𝑦)(〈(𝑟‘𝑥), (𝑟‘𝑦)〉(comp‘𝐷)(𝑠‘𝑦))((𝑥(2nd ‘𝑓)𝑦)‘ℎ)) = (((𝑥(2nd ‘𝑔)𝑦)‘ℎ)(〈(𝑟‘𝑥), (𝑠‘𝑥)〉(comp‘𝐷)(𝑠‘𝑦))(𝑎‘𝑥))} = ⦋(1st
‘𝑔) / 𝑠⦌{𝑎 ∈ X𝑥 ∈
(Base‘𝐵)((𝑟‘𝑥)(Hom ‘𝐷)(𝑠‘𝑥)) ∣ ∀𝑥 ∈ (Base‘𝐵)∀𝑦 ∈ (Base‘𝐵)∀ℎ ∈ (𝑥(Hom ‘𝐵)𝑦)((𝑎‘𝑦)(〈(𝑟‘𝑥), (𝑟‘𝑦)〉(comp‘𝐷)(𝑠‘𝑦))((𝑥(2nd ‘𝑓)𝑦)‘ℎ)) = (((𝑥(2nd ‘𝑔)𝑦)‘ℎ)(〈(𝑟‘𝑥), (𝑠‘𝑥)〉(comp‘𝐷)(𝑠‘𝑦))(𝑎‘𝑥))}) |
96 | 95 | adantl 482 |
. . . . . . 7
⊢ ((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st ‘𝑓)) ∧ 𝑠 = (1st ‘𝑔)) → {𝑎 ∈ X𝑥 ∈ (Base‘𝐵)((𝑟‘𝑥)(Hom ‘𝐷)(𝑠‘𝑥)) ∣ ∀𝑥 ∈ (Base‘𝐵)∀𝑦 ∈ (Base‘𝐵)∀ℎ ∈ (𝑥(Hom ‘𝐵)𝑦)((𝑎‘𝑦)(〈(𝑟‘𝑥), (𝑟‘𝑦)〉(comp‘𝐷)(𝑠‘𝑦))((𝑥(2nd ‘𝑓)𝑦)‘ℎ)) = (((𝑥(2nd ‘𝑔)𝑦)‘ℎ)(〈(𝑟‘𝑥), (𝑠‘𝑥)〉(comp‘𝐷)(𝑠‘𝑦))(𝑎‘𝑥))} = ⦋(1st
‘𝑔) / 𝑠⦌{𝑎 ∈ X𝑥 ∈
(Base‘𝐵)((𝑟‘𝑥)(Hom ‘𝐷)(𝑠‘𝑥)) ∣ ∀𝑥 ∈ (Base‘𝐵)∀𝑦 ∈ (Base‘𝐵)∀ℎ ∈ (𝑥(Hom ‘𝐵)𝑦)((𝑎‘𝑦)(〈(𝑟‘𝑥), (𝑟‘𝑦)〉(comp‘𝐷)(𝑠‘𝑦))((𝑥(2nd ‘𝑓)𝑦)‘ℎ)) = (((𝑥(2nd ‘𝑔)𝑦)‘ℎ)(〈(𝑟‘𝑥), (𝑠‘𝑥)〉(comp‘𝐷)(𝑠‘𝑦))(𝑎‘𝑥))}) |
97 | 94, 96 | eqtrd 2779 |
. . . . . 6
⊢ ((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st ‘𝑓)) ∧ 𝑠 = (1st ‘𝑔)) → {𝑎 ∈ X𝑥 ∈ (Base‘𝐴)((𝑟‘𝑥)(Hom ‘𝐶)(𝑠‘𝑥)) ∣ ∀𝑥 ∈ (Base‘𝐴)∀𝑦 ∈ (Base‘𝐴)∀ℎ ∈ (𝑥(Hom ‘𝐴)𝑦)((𝑎‘𝑦)(〈(𝑟‘𝑥), (𝑟‘𝑦)〉(comp‘𝐶)(𝑠‘𝑦))((𝑥(2nd ‘𝑓)𝑦)‘ℎ)) = (((𝑥(2nd ‘𝑔)𝑦)‘ℎ)(〈(𝑟‘𝑥), (𝑠‘𝑥)〉(comp‘𝐶)(𝑠‘𝑦))(𝑎‘𝑥))} = ⦋(1st
‘𝑔) / 𝑠⦌{𝑎 ∈ X𝑥 ∈
(Base‘𝐵)((𝑟‘𝑥)(Hom ‘𝐷)(𝑠‘𝑥)) ∣ ∀𝑥 ∈ (Base‘𝐵)∀𝑦 ∈ (Base‘𝐵)∀ℎ ∈ (𝑥(Hom ‘𝐵)𝑦)((𝑎‘𝑦)(〈(𝑟‘𝑥), (𝑟‘𝑦)〉(comp‘𝐷)(𝑠‘𝑦))((𝑥(2nd ‘𝑓)𝑦)‘ℎ)) = (((𝑥(2nd ‘𝑔)𝑦)‘ℎ)(〈(𝑟‘𝑥), (𝑠‘𝑥)〉(comp‘𝐷)(𝑠‘𝑦))(𝑎‘𝑥))}) |
98 | 15, 17, 18, 97 | csbiedf 3864 |
. . . . 5
⊢ (((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st ‘𝑓)) → ⦋(1st
‘𝑔) / 𝑠⦌{𝑎 ∈ X𝑥 ∈
(Base‘𝐴)((𝑟‘𝑥)(Hom ‘𝐶)(𝑠‘𝑥)) ∣ ∀𝑥 ∈ (Base‘𝐴)∀𝑦 ∈ (Base‘𝐴)∀ℎ ∈ (𝑥(Hom ‘𝐴)𝑦)((𝑎‘𝑦)(〈(𝑟‘𝑥), (𝑟‘𝑦)〉(comp‘𝐶)(𝑠‘𝑦))((𝑥(2nd ‘𝑓)𝑦)‘ℎ)) = (((𝑥(2nd ‘𝑔)𝑦)‘ℎ)(〈(𝑟‘𝑥), (𝑠‘𝑥)〉(comp‘𝐶)(𝑠‘𝑦))(𝑎‘𝑥))} = ⦋(1st
‘𝑔) / 𝑠⦌{𝑎 ∈ X𝑥 ∈
(Base‘𝐵)((𝑟‘𝑥)(Hom ‘𝐷)(𝑠‘𝑥)) ∣ ∀𝑥 ∈ (Base‘𝐵)∀𝑦 ∈ (Base‘𝐵)∀ℎ ∈ (𝑥(Hom ‘𝐵)𝑦)((𝑎‘𝑦)(〈(𝑟‘𝑥), (𝑟‘𝑦)〉(comp‘𝐷)(𝑠‘𝑦))((𝑥(2nd ‘𝑓)𝑦)‘ℎ)) = (((𝑥(2nd ‘𝑔)𝑦)‘ℎ)(〈(𝑟‘𝑥), (𝑠‘𝑥)〉(comp‘𝐷)(𝑠‘𝑦))(𝑎‘𝑥))}) |
99 | | csbeq1a 3847 |
. . . . . 6
⊢ (𝑟 = (1st ‘𝑓) →
⦋(1st ‘𝑔) / 𝑠⦌{𝑎 ∈ X𝑥 ∈ (Base‘𝐵)((𝑟‘𝑥)(Hom ‘𝐷)(𝑠‘𝑥)) ∣ ∀𝑥 ∈ (Base‘𝐵)∀𝑦 ∈ (Base‘𝐵)∀ℎ ∈ (𝑥(Hom ‘𝐵)𝑦)((𝑎‘𝑦)(〈(𝑟‘𝑥), (𝑟‘𝑦)〉(comp‘𝐷)(𝑠‘𝑦))((𝑥(2nd ‘𝑓)𝑦)‘ℎ)) = (((𝑥(2nd ‘𝑔)𝑦)‘ℎ)(〈(𝑟‘𝑥), (𝑠‘𝑥)〉(comp‘𝐷)(𝑠‘𝑦))(𝑎‘𝑥))} = ⦋(1st
‘𝑓) / 𝑟⦌⦋(1st
‘𝑔) / 𝑠⦌{𝑎 ∈ X𝑥 ∈
(Base‘𝐵)((𝑟‘𝑥)(Hom ‘𝐷)(𝑠‘𝑥)) ∣ ∀𝑥 ∈ (Base‘𝐵)∀𝑦 ∈ (Base‘𝐵)∀ℎ ∈ (𝑥(Hom ‘𝐵)𝑦)((𝑎‘𝑦)(〈(𝑟‘𝑥), (𝑟‘𝑦)〉(comp‘𝐷)(𝑠‘𝑦))((𝑥(2nd ‘𝑓)𝑦)‘ℎ)) = (((𝑥(2nd ‘𝑔)𝑦)‘ℎ)(〈(𝑟‘𝑥), (𝑠‘𝑥)〉(comp‘𝐷)(𝑠‘𝑦))(𝑎‘𝑥))}) |
100 | 99 | adantl 482 |
. . . . 5
⊢ (((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st ‘𝑓)) → ⦋(1st
‘𝑔) / 𝑠⦌{𝑎 ∈ X𝑥 ∈
(Base‘𝐵)((𝑟‘𝑥)(Hom ‘𝐷)(𝑠‘𝑥)) ∣ ∀𝑥 ∈ (Base‘𝐵)∀𝑦 ∈ (Base‘𝐵)∀ℎ ∈ (𝑥(Hom ‘𝐵)𝑦)((𝑎‘𝑦)(〈(𝑟‘𝑥), (𝑟‘𝑦)〉(comp‘𝐷)(𝑠‘𝑦))((𝑥(2nd ‘𝑓)𝑦)‘ℎ)) = (((𝑥(2nd ‘𝑔)𝑦)‘ℎ)(〈(𝑟‘𝑥), (𝑠‘𝑥)〉(comp‘𝐷)(𝑠‘𝑦))(𝑎‘𝑥))} = ⦋(1st
‘𝑓) / 𝑟⦌⦋(1st
‘𝑔) / 𝑠⦌{𝑎 ∈ X𝑥 ∈
(Base‘𝐵)((𝑟‘𝑥)(Hom ‘𝐷)(𝑠‘𝑥)) ∣ ∀𝑥 ∈ (Base‘𝐵)∀𝑦 ∈ (Base‘𝐵)∀ℎ ∈ (𝑥(Hom ‘𝐵)𝑦)((𝑎‘𝑦)(〈(𝑟‘𝑥), (𝑟‘𝑦)〉(comp‘𝐷)(𝑠‘𝑦))((𝑥(2nd ‘𝑓)𝑦)‘ℎ)) = (((𝑥(2nd ‘𝑔)𝑦)‘ℎ)(〈(𝑟‘𝑥), (𝑠‘𝑥)〉(comp‘𝐷)(𝑠‘𝑦))(𝑎‘𝑥))}) |
101 | 98, 100 | eqtrd 2779 |
. . . 4
⊢ (((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st ‘𝑓)) → ⦋(1st
‘𝑔) / 𝑠⦌{𝑎 ∈ X𝑥 ∈
(Base‘𝐴)((𝑟‘𝑥)(Hom ‘𝐶)(𝑠‘𝑥)) ∣ ∀𝑥 ∈ (Base‘𝐴)∀𝑦 ∈ (Base‘𝐴)∀ℎ ∈ (𝑥(Hom ‘𝐴)𝑦)((𝑎‘𝑦)(〈(𝑟‘𝑥), (𝑟‘𝑦)〉(comp‘𝐶)(𝑠‘𝑦))((𝑥(2nd ‘𝑓)𝑦)‘ℎ)) = (((𝑥(2nd ‘𝑔)𝑦)‘ℎ)(〈(𝑟‘𝑥), (𝑠‘𝑥)〉(comp‘𝐶)(𝑠‘𝑦))(𝑎‘𝑥))} = ⦋(1st
‘𝑓) / 𝑟⦌⦋(1st
‘𝑔) / 𝑠⦌{𝑎 ∈ X𝑥 ∈
(Base‘𝐵)((𝑟‘𝑥)(Hom ‘𝐷)(𝑠‘𝑥)) ∣ ∀𝑥 ∈ (Base‘𝐵)∀𝑦 ∈ (Base‘𝐵)∀ℎ ∈ (𝑥(Hom ‘𝐵)𝑦)((𝑎‘𝑦)(〈(𝑟‘𝑥), (𝑟‘𝑦)〉(comp‘𝐷)(𝑠‘𝑦))((𝑥(2nd ‘𝑓)𝑦)‘ℎ)) = (((𝑥(2nd ‘𝑔)𝑦)‘ℎ)(〈(𝑟‘𝑥), (𝑠‘𝑥)〉(comp‘𝐷)(𝑠‘𝑦))(𝑎‘𝑥))}) |
102 | 11, 13, 14, 101 | csbiedf 3864 |
. . 3
⊢ ((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) → ⦋(1st
‘𝑓) / 𝑟⦌⦋(1st
‘𝑔) / 𝑠⦌{𝑎 ∈ X𝑥 ∈
(Base‘𝐴)((𝑟‘𝑥)(Hom ‘𝐶)(𝑠‘𝑥)) ∣ ∀𝑥 ∈ (Base‘𝐴)∀𝑦 ∈ (Base‘𝐴)∀ℎ ∈ (𝑥(Hom ‘𝐴)𝑦)((𝑎‘𝑦)(〈(𝑟‘𝑥), (𝑟‘𝑦)〉(comp‘𝐶)(𝑠‘𝑦))((𝑥(2nd ‘𝑓)𝑦)‘ℎ)) = (((𝑥(2nd ‘𝑔)𝑦)‘ℎ)(〈(𝑟‘𝑥), (𝑠‘𝑥)〉(comp‘𝐶)(𝑠‘𝑦))(𝑎‘𝑥))} = ⦋(1st
‘𝑓) / 𝑟⦌⦋(1st
‘𝑔) / 𝑠⦌{𝑎 ∈ X𝑥 ∈
(Base‘𝐵)((𝑟‘𝑥)(Hom ‘𝐷)(𝑠‘𝑥)) ∣ ∀𝑥 ∈ (Base‘𝐵)∀𝑦 ∈ (Base‘𝐵)∀ℎ ∈ (𝑥(Hom ‘𝐵)𝑦)((𝑎‘𝑦)(〈(𝑟‘𝑥), (𝑟‘𝑦)〉(comp‘𝐷)(𝑠‘𝑦))((𝑥(2nd ‘𝑓)𝑦)‘ℎ)) = (((𝑥(2nd ‘𝑔)𝑦)‘ℎ)(〈(𝑟‘𝑥), (𝑠‘𝑥)〉(comp‘𝐷)(𝑠‘𝑦))(𝑎‘𝑥))}) |
103 | 9, 10, 102 | mpoeq123dva 7358 |
. 2
⊢ (𝜑 → (𝑓 ∈ (𝐴 Func 𝐶), 𝑔 ∈ (𝐴 Func 𝐶) ↦ ⦋(1st
‘𝑓) / 𝑟⦌⦋(1st
‘𝑔) / 𝑠⦌{𝑎 ∈ X𝑥 ∈
(Base‘𝐴)((𝑟‘𝑥)(Hom ‘𝐶)(𝑠‘𝑥)) ∣ ∀𝑥 ∈ (Base‘𝐴)∀𝑦 ∈ (Base‘𝐴)∀ℎ ∈ (𝑥(Hom ‘𝐴)𝑦)((𝑎‘𝑦)(〈(𝑟‘𝑥), (𝑟‘𝑦)〉(comp‘𝐶)(𝑠‘𝑦))((𝑥(2nd ‘𝑓)𝑦)‘ℎ)) = (((𝑥(2nd ‘𝑔)𝑦)‘ℎ)(〈(𝑟‘𝑥), (𝑠‘𝑥)〉(comp‘𝐶)(𝑠‘𝑦))(𝑎‘𝑥))}) = (𝑓 ∈ (𝐵 Func 𝐷), 𝑔 ∈ (𝐵 Func 𝐷) ↦ ⦋(1st
‘𝑓) / 𝑟⦌⦋(1st
‘𝑔) / 𝑠⦌{𝑎 ∈ X𝑥 ∈
(Base‘𝐵)((𝑟‘𝑥)(Hom ‘𝐷)(𝑠‘𝑥)) ∣ ∀𝑥 ∈ (Base‘𝐵)∀𝑦 ∈ (Base‘𝐵)∀ℎ ∈ (𝑥(Hom ‘𝐵)𝑦)((𝑎‘𝑦)(〈(𝑟‘𝑥), (𝑟‘𝑦)〉(comp‘𝐷)(𝑠‘𝑦))((𝑥(2nd ‘𝑓)𝑦)‘ℎ)) = (((𝑥(2nd ‘𝑔)𝑦)‘ℎ)(〈(𝑟‘𝑥), (𝑠‘𝑥)〉(comp‘𝐷)(𝑠‘𝑦))(𝑎‘𝑥))})) |
104 | | eqid 2739 |
. . 3
⊢ (𝐴 Nat 𝐶) = (𝐴 Nat 𝐶) |
105 | 104, 23, 53, 20, 59 | natfval 17671 |
. 2
⊢ (𝐴 Nat 𝐶) = (𝑓 ∈ (𝐴 Func 𝐶), 𝑔 ∈ (𝐴 Func 𝐶) ↦ ⦋(1st
‘𝑓) / 𝑟⦌⦋(1st
‘𝑔) / 𝑠⦌{𝑎 ∈ X𝑥 ∈
(Base‘𝐴)((𝑟‘𝑥)(Hom ‘𝐶)(𝑠‘𝑥)) ∣ ∀𝑥 ∈ (Base‘𝐴)∀𝑦 ∈ (Base‘𝐴)∀ℎ ∈ (𝑥(Hom ‘𝐴)𝑦)((𝑎‘𝑦)(〈(𝑟‘𝑥), (𝑟‘𝑦)〉(comp‘𝐶)(𝑠‘𝑦))((𝑥(2nd ‘𝑓)𝑦)‘ℎ)) = (((𝑥(2nd ‘𝑔)𝑦)‘ℎ)(〈(𝑟‘𝑥), (𝑠‘𝑥)〉(comp‘𝐶)(𝑠‘𝑦))(𝑎‘𝑥))}) |
106 | | eqid 2739 |
. . 3
⊢ (𝐵 Nat 𝐷) = (𝐵 Nat 𝐷) |
107 | | eqid 2739 |
. . 3
⊢
(Base‘𝐵) =
(Base‘𝐵) |
108 | 106, 107,
54, 21, 60 | natfval 17671 |
. 2
⊢ (𝐵 Nat 𝐷) = (𝑓 ∈ (𝐵 Func 𝐷), 𝑔 ∈ (𝐵 Func 𝐷) ↦ ⦋(1st
‘𝑓) / 𝑟⦌⦋(1st
‘𝑔) / 𝑠⦌{𝑎 ∈ X𝑥 ∈
(Base‘𝐵)((𝑟‘𝑥)(Hom ‘𝐷)(𝑠‘𝑥)) ∣ ∀𝑥 ∈ (Base‘𝐵)∀𝑦 ∈ (Base‘𝐵)∀ℎ ∈ (𝑥(Hom ‘𝐵)𝑦)((𝑎‘𝑦)(〈(𝑟‘𝑥), (𝑟‘𝑦)〉(comp‘𝐷)(𝑠‘𝑦))((𝑥(2nd ‘𝑓)𝑦)‘ℎ)) = (((𝑥(2nd ‘𝑔)𝑦)‘ℎ)(〈(𝑟‘𝑥), (𝑠‘𝑥)〉(comp‘𝐷)(𝑠‘𝑦))(𝑎‘𝑥))}) |
109 | 103, 105,
108 | 3eqtr4g 2804 |
1
⊢ (𝜑 → (𝐴 Nat 𝐶) = (𝐵 Nat 𝐷)) |